Properties

Label 1338.2.a.i.1.5
Level $1338$
Weight $2$
Character 1338.1
Self dual yes
Analytic conductor $10.684$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1338,2,Mod(1,1338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1338.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.6839837904\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.232773917.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 12x^{4} - x^{3} + 33x^{2} + 5x - 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.36937\) of defining polynomial
Character \(\chi\) \(=\) 1338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +2.36937 q^{5} +1.00000 q^{6} +3.68274 q^{7} +1.00000 q^{8} +1.00000 q^{9} +2.36937 q^{10} -5.92506 q^{11} +1.00000 q^{12} +2.87295 q^{13} +3.68274 q^{14} +2.36937 q^{15} +1.00000 q^{16} +6.47611 q^{17} +1.00000 q^{18} -7.48297 q^{19} +2.36937 q^{20} +3.68274 q^{21} -5.92506 q^{22} -3.33505 q^{23} +1.00000 q^{24} +0.613915 q^{25} +2.87295 q^{26} +1.00000 q^{27} +3.68274 q^{28} +4.99778 q^{29} +2.36937 q^{30} -7.04303 q^{31} +1.00000 q^{32} -5.92506 q^{33} +6.47611 q^{34} +8.72577 q^{35} +1.00000 q^{36} -8.68737 q^{37} -7.48297 q^{38} +2.87295 q^{39} +2.36937 q^{40} +3.14107 q^{41} +3.68274 q^{42} -4.56477 q^{43} -5.92506 q^{44} +2.36937 q^{45} -3.33505 q^{46} -1.68441 q^{47} +1.00000 q^{48} +6.56254 q^{49} +0.613915 q^{50} +6.47611 q^{51} +2.87295 q^{52} +3.46926 q^{53} +1.00000 q^{54} -14.0387 q^{55} +3.68274 q^{56} -7.48297 q^{57} +4.99778 q^{58} -10.7886 q^{59} +2.36937 q^{60} +5.81331 q^{61} -7.04303 q^{62} +3.68274 q^{63} +1.00000 q^{64} +6.80709 q^{65} -5.92506 q^{66} +1.64434 q^{67} +6.47611 q^{68} -3.33505 q^{69} +8.72577 q^{70} +12.3833 q^{71} +1.00000 q^{72} +0.779919 q^{73} -8.68737 q^{74} +0.613915 q^{75} -7.48297 q^{76} -21.8204 q^{77} +2.87295 q^{78} -15.0857 q^{79} +2.36937 q^{80} +1.00000 q^{81} +3.14107 q^{82} +5.37448 q^{83} +3.68274 q^{84} +15.3443 q^{85} -4.56477 q^{86} +4.99778 q^{87} -5.92506 q^{88} -7.50543 q^{89} +2.36937 q^{90} +10.5803 q^{91} -3.33505 q^{92} -7.04303 q^{93} -1.68441 q^{94} -17.7299 q^{95} +1.00000 q^{96} +8.15885 q^{97} +6.56254 q^{98} -5.92506 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} + 6 q^{3} + 6 q^{4} + 6 q^{5} + 6 q^{6} + 5 q^{7} + 6 q^{8} + 6 q^{9} + 6 q^{10} + q^{11} + 6 q^{12} + 6 q^{13} + 5 q^{14} + 6 q^{15} + 6 q^{16} + 10 q^{17} + 6 q^{18} - 4 q^{19} + 6 q^{20}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 2.36937 1.05961 0.529807 0.848118i \(-0.322264\pi\)
0.529807 + 0.848118i \(0.322264\pi\)
\(6\) 1.00000 0.408248
\(7\) 3.68274 1.39194 0.695972 0.718069i \(-0.254974\pi\)
0.695972 + 0.718069i \(0.254974\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 2.36937 0.749261
\(11\) −5.92506 −1.78647 −0.893236 0.449588i \(-0.851571\pi\)
−0.893236 + 0.449588i \(0.851571\pi\)
\(12\) 1.00000 0.288675
\(13\) 2.87295 0.796814 0.398407 0.917209i \(-0.369563\pi\)
0.398407 + 0.917209i \(0.369563\pi\)
\(14\) 3.68274 0.984253
\(15\) 2.36937 0.611769
\(16\) 1.00000 0.250000
\(17\) 6.47611 1.57069 0.785344 0.619059i \(-0.212486\pi\)
0.785344 + 0.619059i \(0.212486\pi\)
\(18\) 1.00000 0.235702
\(19\) −7.48297 −1.71671 −0.858356 0.513055i \(-0.828514\pi\)
−0.858356 + 0.513055i \(0.828514\pi\)
\(20\) 2.36937 0.529807
\(21\) 3.68274 0.803639
\(22\) −5.92506 −1.26323
\(23\) −3.33505 −0.695405 −0.347703 0.937605i \(-0.613038\pi\)
−0.347703 + 0.937605i \(0.613038\pi\)
\(24\) 1.00000 0.204124
\(25\) 0.613915 0.122783
\(26\) 2.87295 0.563432
\(27\) 1.00000 0.192450
\(28\) 3.68274 0.695972
\(29\) 4.99778 0.928064 0.464032 0.885818i \(-0.346402\pi\)
0.464032 + 0.885818i \(0.346402\pi\)
\(30\) 2.36937 0.432586
\(31\) −7.04303 −1.26497 −0.632483 0.774575i \(-0.717964\pi\)
−0.632483 + 0.774575i \(0.717964\pi\)
\(32\) 1.00000 0.176777
\(33\) −5.92506 −1.03142
\(34\) 6.47611 1.11064
\(35\) 8.72577 1.47492
\(36\) 1.00000 0.166667
\(37\) −8.68737 −1.42819 −0.714097 0.700046i \(-0.753163\pi\)
−0.714097 + 0.700046i \(0.753163\pi\)
\(38\) −7.48297 −1.21390
\(39\) 2.87295 0.460041
\(40\) 2.36937 0.374630
\(41\) 3.14107 0.490552 0.245276 0.969453i \(-0.421121\pi\)
0.245276 + 0.969453i \(0.421121\pi\)
\(42\) 3.68274 0.568258
\(43\) −4.56477 −0.696120 −0.348060 0.937472i \(-0.613160\pi\)
−0.348060 + 0.937472i \(0.613160\pi\)
\(44\) −5.92506 −0.893236
\(45\) 2.36937 0.353205
\(46\) −3.33505 −0.491726
\(47\) −1.68441 −0.245697 −0.122848 0.992425i \(-0.539203\pi\)
−0.122848 + 0.992425i \(0.539203\pi\)
\(48\) 1.00000 0.144338
\(49\) 6.56254 0.937506
\(50\) 0.613915 0.0868207
\(51\) 6.47611 0.906837
\(52\) 2.87295 0.398407
\(53\) 3.46926 0.476539 0.238270 0.971199i \(-0.423420\pi\)
0.238270 + 0.971199i \(0.423420\pi\)
\(54\) 1.00000 0.136083
\(55\) −14.0387 −1.89297
\(56\) 3.68274 0.492126
\(57\) −7.48297 −0.991144
\(58\) 4.99778 0.656240
\(59\) −10.7886 −1.40456 −0.702280 0.711901i \(-0.747834\pi\)
−0.702280 + 0.711901i \(0.747834\pi\)
\(60\) 2.36937 0.305884
\(61\) 5.81331 0.744318 0.372159 0.928169i \(-0.378618\pi\)
0.372159 + 0.928169i \(0.378618\pi\)
\(62\) −7.04303 −0.894466
\(63\) 3.68274 0.463981
\(64\) 1.00000 0.125000
\(65\) 6.80709 0.844316
\(66\) −5.92506 −0.729324
\(67\) 1.64434 0.200888 0.100444 0.994943i \(-0.467974\pi\)
0.100444 + 0.994943i \(0.467974\pi\)
\(68\) 6.47611 0.785344
\(69\) −3.33505 −0.401492
\(70\) 8.72577 1.04293
\(71\) 12.3833 1.46962 0.734811 0.678272i \(-0.237271\pi\)
0.734811 + 0.678272i \(0.237271\pi\)
\(72\) 1.00000 0.117851
\(73\) 0.779919 0.0912826 0.0456413 0.998958i \(-0.485467\pi\)
0.0456413 + 0.998958i \(0.485467\pi\)
\(74\) −8.68737 −1.00989
\(75\) 0.613915 0.0708888
\(76\) −7.48297 −0.858356
\(77\) −21.8204 −2.48667
\(78\) 2.87295 0.325298
\(79\) −15.0857 −1.69728 −0.848640 0.528971i \(-0.822578\pi\)
−0.848640 + 0.528971i \(0.822578\pi\)
\(80\) 2.36937 0.264904
\(81\) 1.00000 0.111111
\(82\) 3.14107 0.346873
\(83\) 5.37448 0.589925 0.294963 0.955509i \(-0.404693\pi\)
0.294963 + 0.955509i \(0.404693\pi\)
\(84\) 3.68274 0.401819
\(85\) 15.3443 1.66432
\(86\) −4.56477 −0.492231
\(87\) 4.99778 0.535818
\(88\) −5.92506 −0.631613
\(89\) −7.50543 −0.795574 −0.397787 0.917478i \(-0.630222\pi\)
−0.397787 + 0.917478i \(0.630222\pi\)
\(90\) 2.36937 0.249754
\(91\) 10.5803 1.10912
\(92\) −3.33505 −0.347703
\(93\) −7.04303 −0.730328
\(94\) −1.68441 −0.173734
\(95\) −17.7299 −1.81905
\(96\) 1.00000 0.102062
\(97\) 8.15885 0.828406 0.414203 0.910185i \(-0.364060\pi\)
0.414203 + 0.910185i \(0.364060\pi\)
\(98\) 6.56254 0.662917
\(99\) −5.92506 −0.595491
\(100\) 0.613915 0.0613915
\(101\) −11.8823 −1.18233 −0.591166 0.806550i \(-0.701332\pi\)
−0.591166 + 0.806550i \(0.701332\pi\)
\(102\) 6.47611 0.641231
\(103\) 6.60780 0.651085 0.325543 0.945527i \(-0.394453\pi\)
0.325543 + 0.945527i \(0.394453\pi\)
\(104\) 2.87295 0.281716
\(105\) 8.72577 0.851547
\(106\) 3.46926 0.336964
\(107\) 17.8368 1.72435 0.862176 0.506609i \(-0.169101\pi\)
0.862176 + 0.506609i \(0.169101\pi\)
\(108\) 1.00000 0.0962250
\(109\) 0.117660 0.0112698 0.00563488 0.999984i \(-0.498206\pi\)
0.00563488 + 0.999984i \(0.498206\pi\)
\(110\) −14.0387 −1.33853
\(111\) −8.68737 −0.824569
\(112\) 3.68274 0.347986
\(113\) −5.47444 −0.514992 −0.257496 0.966279i \(-0.582897\pi\)
−0.257496 + 0.966279i \(0.582897\pi\)
\(114\) −7.48297 −0.700844
\(115\) −7.90196 −0.736862
\(116\) 4.99778 0.464032
\(117\) 2.87295 0.265605
\(118\) −10.7886 −0.993173
\(119\) 23.8498 2.18631
\(120\) 2.36937 0.216293
\(121\) 24.1063 2.19148
\(122\) 5.81331 0.526312
\(123\) 3.14107 0.283221
\(124\) −7.04303 −0.632483
\(125\) −10.3923 −0.929512
\(126\) 3.68274 0.328084
\(127\) −1.05057 −0.0932226 −0.0466113 0.998913i \(-0.514842\pi\)
−0.0466113 + 0.998913i \(0.514842\pi\)
\(128\) 1.00000 0.0883883
\(129\) −4.56477 −0.401905
\(130\) 6.80709 0.597021
\(131\) 17.3438 1.51534 0.757669 0.652639i \(-0.226338\pi\)
0.757669 + 0.652639i \(0.226338\pi\)
\(132\) −5.92506 −0.515710
\(133\) −27.5578 −2.38956
\(134\) 1.64434 0.142049
\(135\) 2.36937 0.203923
\(136\) 6.47611 0.555322
\(137\) 20.0510 1.71307 0.856534 0.516090i \(-0.172613\pi\)
0.856534 + 0.516090i \(0.172613\pi\)
\(138\) −3.33505 −0.283898
\(139\) 10.0545 0.852813 0.426407 0.904532i \(-0.359779\pi\)
0.426407 + 0.904532i \(0.359779\pi\)
\(140\) 8.72577 0.737462
\(141\) −1.68441 −0.141853
\(142\) 12.3833 1.03918
\(143\) −17.0224 −1.42349
\(144\) 1.00000 0.0833333
\(145\) 11.8416 0.983390
\(146\) 0.779919 0.0645465
\(147\) 6.56254 0.541270
\(148\) −8.68737 −0.714097
\(149\) 17.0239 1.39465 0.697327 0.716753i \(-0.254372\pi\)
0.697327 + 0.716753i \(0.254372\pi\)
\(150\) 0.613915 0.0501260
\(151\) 19.9467 1.62324 0.811618 0.584188i \(-0.198587\pi\)
0.811618 + 0.584188i \(0.198587\pi\)
\(152\) −7.48297 −0.606949
\(153\) 6.47611 0.523563
\(154\) −21.8204 −1.75834
\(155\) −16.6875 −1.34038
\(156\) 2.87295 0.230020
\(157\) −23.3954 −1.86715 −0.933577 0.358378i \(-0.883330\pi\)
−0.933577 + 0.358378i \(0.883330\pi\)
\(158\) −15.0857 −1.20016
\(159\) 3.46926 0.275130
\(160\) 2.36937 0.187315
\(161\) −12.2821 −0.967965
\(162\) 1.00000 0.0785674
\(163\) −15.2069 −1.19110 −0.595548 0.803320i \(-0.703065\pi\)
−0.595548 + 0.803320i \(0.703065\pi\)
\(164\) 3.14107 0.245276
\(165\) −14.0387 −1.09291
\(166\) 5.37448 0.417140
\(167\) 8.85449 0.685181 0.342590 0.939485i \(-0.388696\pi\)
0.342590 + 0.939485i \(0.388696\pi\)
\(168\) 3.68274 0.284129
\(169\) −4.74614 −0.365088
\(170\) 15.3443 1.17686
\(171\) −7.48297 −0.572237
\(172\) −4.56477 −0.348060
\(173\) −8.20552 −0.623854 −0.311927 0.950106i \(-0.600974\pi\)
−0.311927 + 0.950106i \(0.600974\pi\)
\(174\) 4.99778 0.378881
\(175\) 2.26089 0.170907
\(176\) −5.92506 −0.446618
\(177\) −10.7886 −0.810923
\(178\) −7.50543 −0.562556
\(179\) −5.28915 −0.395330 −0.197665 0.980270i \(-0.563336\pi\)
−0.197665 + 0.980270i \(0.563336\pi\)
\(180\) 2.36937 0.176602
\(181\) −9.19861 −0.683727 −0.341864 0.939750i \(-0.611058\pi\)
−0.341864 + 0.939750i \(0.611058\pi\)
\(182\) 10.5803 0.784266
\(183\) 5.81331 0.429732
\(184\) −3.33505 −0.245863
\(185\) −20.5836 −1.51334
\(186\) −7.04303 −0.516420
\(187\) −38.3714 −2.80599
\(188\) −1.68441 −0.122848
\(189\) 3.68274 0.267880
\(190\) −17.7299 −1.28626
\(191\) 6.41200 0.463956 0.231978 0.972721i \(-0.425480\pi\)
0.231978 + 0.972721i \(0.425480\pi\)
\(192\) 1.00000 0.0721688
\(193\) −24.0509 −1.73122 −0.865612 0.500716i \(-0.833070\pi\)
−0.865612 + 0.500716i \(0.833070\pi\)
\(194\) 8.15885 0.585771
\(195\) 6.80709 0.487466
\(196\) 6.56254 0.468753
\(197\) −24.3937 −1.73798 −0.868991 0.494829i \(-0.835231\pi\)
−0.868991 + 0.494829i \(0.835231\pi\)
\(198\) −5.92506 −0.421076
\(199\) −11.0011 −0.779845 −0.389923 0.920848i \(-0.627498\pi\)
−0.389923 + 0.920848i \(0.627498\pi\)
\(200\) 0.613915 0.0434104
\(201\) 1.64434 0.115983
\(202\) −11.8823 −0.836035
\(203\) 18.4055 1.29181
\(204\) 6.47611 0.453419
\(205\) 7.44235 0.519796
\(206\) 6.60780 0.460387
\(207\) −3.33505 −0.231802
\(208\) 2.87295 0.199203
\(209\) 44.3370 3.06686
\(210\) 8.72577 0.602135
\(211\) 1.26320 0.0869622 0.0434811 0.999054i \(-0.486155\pi\)
0.0434811 + 0.999054i \(0.486155\pi\)
\(212\) 3.46926 0.238270
\(213\) 12.3833 0.848487
\(214\) 17.8368 1.21930
\(215\) −10.8156 −0.737619
\(216\) 1.00000 0.0680414
\(217\) −25.9376 −1.76076
\(218\) 0.117660 0.00796892
\(219\) 0.779919 0.0527020
\(220\) −14.0387 −0.946486
\(221\) 18.6056 1.25155
\(222\) −8.68737 −0.583058
\(223\) 1.00000 0.0669650
\(224\) 3.68274 0.246063
\(225\) 0.613915 0.0409277
\(226\) −5.47444 −0.364154
\(227\) −26.0600 −1.72967 −0.864833 0.502060i \(-0.832576\pi\)
−0.864833 + 0.502060i \(0.832576\pi\)
\(228\) −7.48297 −0.495572
\(229\) −8.20934 −0.542489 −0.271244 0.962511i \(-0.587435\pi\)
−0.271244 + 0.962511i \(0.587435\pi\)
\(230\) −7.90196 −0.521040
\(231\) −21.8204 −1.43568
\(232\) 4.99778 0.328120
\(233\) −9.30454 −0.609561 −0.304780 0.952423i \(-0.598583\pi\)
−0.304780 + 0.952423i \(0.598583\pi\)
\(234\) 2.87295 0.187811
\(235\) −3.99100 −0.260344
\(236\) −10.7886 −0.702280
\(237\) −15.0857 −0.979925
\(238\) 23.8498 1.54595
\(239\) 12.5859 0.814114 0.407057 0.913403i \(-0.366555\pi\)
0.407057 + 0.913403i \(0.366555\pi\)
\(240\) 2.36937 0.152942
\(241\) 5.73022 0.369116 0.184558 0.982822i \(-0.440915\pi\)
0.184558 + 0.982822i \(0.440915\pi\)
\(242\) 24.1063 1.54961
\(243\) 1.00000 0.0641500
\(244\) 5.81331 0.372159
\(245\) 15.5491 0.993395
\(246\) 3.14107 0.200267
\(247\) −21.4982 −1.36790
\(248\) −7.04303 −0.447233
\(249\) 5.37448 0.340594
\(250\) −10.3923 −0.657264
\(251\) 16.5457 1.04435 0.522177 0.852837i \(-0.325120\pi\)
0.522177 + 0.852837i \(0.325120\pi\)
\(252\) 3.68274 0.231991
\(253\) 19.7604 1.24232
\(254\) −1.05057 −0.0659184
\(255\) 15.3443 0.960898
\(256\) 1.00000 0.0625000
\(257\) 19.7435 1.23157 0.615784 0.787915i \(-0.288839\pi\)
0.615784 + 0.787915i \(0.288839\pi\)
\(258\) −4.56477 −0.284190
\(259\) −31.9933 −1.98797
\(260\) 6.80709 0.422158
\(261\) 4.99778 0.309355
\(262\) 17.3438 1.07151
\(263\) 2.70806 0.166986 0.0834929 0.996508i \(-0.473392\pi\)
0.0834929 + 0.996508i \(0.473392\pi\)
\(264\) −5.92506 −0.364662
\(265\) 8.21996 0.504948
\(266\) −27.5578 −1.68968
\(267\) −7.50543 −0.459325
\(268\) 1.64434 0.100444
\(269\) −9.02584 −0.550315 −0.275158 0.961399i \(-0.588730\pi\)
−0.275158 + 0.961399i \(0.588730\pi\)
\(270\) 2.36937 0.144195
\(271\) −10.5394 −0.640221 −0.320111 0.947380i \(-0.603720\pi\)
−0.320111 + 0.947380i \(0.603720\pi\)
\(272\) 6.47611 0.392672
\(273\) 10.5803 0.640351
\(274\) 20.0510 1.21132
\(275\) −3.63748 −0.219349
\(276\) −3.33505 −0.200746
\(277\) 9.31793 0.559860 0.279930 0.960020i \(-0.409689\pi\)
0.279930 + 0.960020i \(0.409689\pi\)
\(278\) 10.0545 0.603030
\(279\) −7.04303 −0.421655
\(280\) 8.72577 0.521464
\(281\) 6.58372 0.392752 0.196376 0.980529i \(-0.437083\pi\)
0.196376 + 0.980529i \(0.437083\pi\)
\(282\) −1.68441 −0.100305
\(283\) 28.3400 1.68464 0.842318 0.538981i \(-0.181191\pi\)
0.842318 + 0.538981i \(0.181191\pi\)
\(284\) 12.3833 0.734811
\(285\) −17.7299 −1.05023
\(286\) −17.0224 −1.00656
\(287\) 11.5677 0.682821
\(288\) 1.00000 0.0589256
\(289\) 24.9401 1.46706
\(290\) 11.8416 0.695362
\(291\) 8.15885 0.478280
\(292\) 0.779919 0.0456413
\(293\) −17.3983 −1.01642 −0.508211 0.861233i \(-0.669693\pi\)
−0.508211 + 0.861233i \(0.669693\pi\)
\(294\) 6.56254 0.382735
\(295\) −25.5622 −1.48829
\(296\) −8.68737 −0.504943
\(297\) −5.92506 −0.343807
\(298\) 17.0239 0.986170
\(299\) −9.58143 −0.554109
\(300\) 0.613915 0.0354444
\(301\) −16.8108 −0.968960
\(302\) 19.9467 1.14780
\(303\) −11.8823 −0.682620
\(304\) −7.48297 −0.429178
\(305\) 13.7739 0.788690
\(306\) 6.47611 0.370215
\(307\) −18.7757 −1.07159 −0.535794 0.844349i \(-0.679988\pi\)
−0.535794 + 0.844349i \(0.679988\pi\)
\(308\) −21.8204 −1.24333
\(309\) 6.60780 0.375904
\(310\) −16.6875 −0.947789
\(311\) −27.2344 −1.54432 −0.772161 0.635427i \(-0.780824\pi\)
−0.772161 + 0.635427i \(0.780824\pi\)
\(312\) 2.87295 0.162649
\(313\) 9.02461 0.510101 0.255051 0.966928i \(-0.417908\pi\)
0.255051 + 0.966928i \(0.417908\pi\)
\(314\) −23.3954 −1.32028
\(315\) 8.72577 0.491641
\(316\) −15.0857 −0.848640
\(317\) −11.3753 −0.638901 −0.319450 0.947603i \(-0.603498\pi\)
−0.319450 + 0.947603i \(0.603498\pi\)
\(318\) 3.46926 0.194546
\(319\) −29.6121 −1.65796
\(320\) 2.36937 0.132452
\(321\) 17.8368 0.995555
\(322\) −12.2821 −0.684455
\(323\) −48.4606 −2.69642
\(324\) 1.00000 0.0555556
\(325\) 1.76375 0.0978352
\(326\) −15.2069 −0.842231
\(327\) 0.117660 0.00650660
\(328\) 3.14107 0.173436
\(329\) −6.20325 −0.341996
\(330\) −14.0387 −0.772803
\(331\) −3.04513 −0.167375 −0.0836877 0.996492i \(-0.526670\pi\)
−0.0836877 + 0.996492i \(0.526670\pi\)
\(332\) 5.37448 0.294963
\(333\) −8.68737 −0.476065
\(334\) 8.85449 0.484496
\(335\) 3.89605 0.212864
\(336\) 3.68274 0.200910
\(337\) 20.1514 1.09772 0.548858 0.835915i \(-0.315063\pi\)
0.548858 + 0.835915i \(0.315063\pi\)
\(338\) −4.74614 −0.258156
\(339\) −5.47444 −0.297331
\(340\) 15.3443 0.832162
\(341\) 41.7304 2.25983
\(342\) −7.48297 −0.404633
\(343\) −1.61103 −0.0869877
\(344\) −4.56477 −0.246116
\(345\) −7.90196 −0.425427
\(346\) −8.20552 −0.441131
\(347\) 12.8590 0.690306 0.345153 0.938546i \(-0.387827\pi\)
0.345153 + 0.938546i \(0.387827\pi\)
\(348\) 4.99778 0.267909
\(349\) 18.7442 1.00335 0.501677 0.865055i \(-0.332717\pi\)
0.501677 + 0.865055i \(0.332717\pi\)
\(350\) 2.26089 0.120850
\(351\) 2.87295 0.153347
\(352\) −5.92506 −0.315807
\(353\) −31.0339 −1.65177 −0.825885 0.563839i \(-0.809324\pi\)
−0.825885 + 0.563839i \(0.809324\pi\)
\(354\) −10.7886 −0.573409
\(355\) 29.3405 1.55723
\(356\) −7.50543 −0.397787
\(357\) 23.8498 1.26227
\(358\) −5.28915 −0.279540
\(359\) 8.50064 0.448647 0.224323 0.974515i \(-0.427983\pi\)
0.224323 + 0.974515i \(0.427983\pi\)
\(360\) 2.36937 0.124877
\(361\) 36.9948 1.94710
\(362\) −9.19861 −0.483468
\(363\) 24.1063 1.26525
\(364\) 10.5803 0.554560
\(365\) 1.84792 0.0967244
\(366\) 5.81331 0.303867
\(367\) −0.248358 −0.0129642 −0.00648208 0.999979i \(-0.502063\pi\)
−0.00648208 + 0.999979i \(0.502063\pi\)
\(368\) −3.33505 −0.173851
\(369\) 3.14107 0.163517
\(370\) −20.5836 −1.07009
\(371\) 12.7764 0.663316
\(372\) −7.04303 −0.365164
\(373\) 2.17789 0.112767 0.0563833 0.998409i \(-0.482043\pi\)
0.0563833 + 0.998409i \(0.482043\pi\)
\(374\) −38.3714 −1.98414
\(375\) −10.3923 −0.536654
\(376\) −1.68441 −0.0868669
\(377\) 14.3584 0.739494
\(378\) 3.68274 0.189419
\(379\) 11.7774 0.604966 0.302483 0.953155i \(-0.402185\pi\)
0.302483 + 0.953155i \(0.402185\pi\)
\(380\) −17.7299 −0.909526
\(381\) −1.05057 −0.0538221
\(382\) 6.41200 0.328067
\(383\) 5.81808 0.297290 0.148645 0.988891i \(-0.452509\pi\)
0.148645 + 0.988891i \(0.452509\pi\)
\(384\) 1.00000 0.0510310
\(385\) −51.7007 −2.63491
\(386\) −24.0509 −1.22416
\(387\) −4.56477 −0.232040
\(388\) 8.15885 0.414203
\(389\) 8.66072 0.439116 0.219558 0.975599i \(-0.429539\pi\)
0.219558 + 0.975599i \(0.429539\pi\)
\(390\) 6.80709 0.344690
\(391\) −21.5981 −1.09227
\(392\) 6.56254 0.331459
\(393\) 17.3438 0.874881
\(394\) −24.3937 −1.22894
\(395\) −35.7437 −1.79846
\(396\) −5.92506 −0.297745
\(397\) −11.4324 −0.573776 −0.286888 0.957964i \(-0.592621\pi\)
−0.286888 + 0.957964i \(0.592621\pi\)
\(398\) −11.0011 −0.551434
\(399\) −27.5578 −1.37962
\(400\) 0.613915 0.0306958
\(401\) −0.885941 −0.0442418 −0.0221209 0.999755i \(-0.507042\pi\)
−0.0221209 + 0.999755i \(0.507042\pi\)
\(402\) 1.64434 0.0820122
\(403\) −20.2343 −1.00794
\(404\) −11.8823 −0.591166
\(405\) 2.36937 0.117735
\(406\) 18.4055 0.913449
\(407\) 51.4732 2.55143
\(408\) 6.47611 0.320615
\(409\) 8.45734 0.418189 0.209094 0.977895i \(-0.432948\pi\)
0.209094 + 0.977895i \(0.432948\pi\)
\(410\) 7.44235 0.367552
\(411\) 20.0510 0.989041
\(412\) 6.60780 0.325543
\(413\) −39.7317 −1.95507
\(414\) −3.33505 −0.163909
\(415\) 12.7341 0.625093
\(416\) 2.87295 0.140858
\(417\) 10.0545 0.492372
\(418\) 44.3370 2.16860
\(419\) 11.5955 0.566480 0.283240 0.959049i \(-0.408591\pi\)
0.283240 + 0.959049i \(0.408591\pi\)
\(420\) 8.72577 0.425774
\(421\) −30.1802 −1.47089 −0.735446 0.677583i \(-0.763027\pi\)
−0.735446 + 0.677583i \(0.763027\pi\)
\(422\) 1.26320 0.0614916
\(423\) −1.68441 −0.0818989
\(424\) 3.46926 0.168482
\(425\) 3.97579 0.192854
\(426\) 12.3833 0.599971
\(427\) 21.4089 1.03605
\(428\) 17.8368 0.862176
\(429\) −17.0224 −0.821850
\(430\) −10.8156 −0.521576
\(431\) 22.9847 1.10713 0.553567 0.832805i \(-0.313266\pi\)
0.553567 + 0.832805i \(0.313266\pi\)
\(432\) 1.00000 0.0481125
\(433\) −20.9595 −1.00725 −0.503625 0.863922i \(-0.668001\pi\)
−0.503625 + 0.863922i \(0.668001\pi\)
\(434\) −25.9376 −1.24505
\(435\) 11.8416 0.567761
\(436\) 0.117660 0.00563488
\(437\) 24.9561 1.19381
\(438\) 0.779919 0.0372660
\(439\) 8.90504 0.425014 0.212507 0.977159i \(-0.431837\pi\)
0.212507 + 0.977159i \(0.431837\pi\)
\(440\) −14.0387 −0.669267
\(441\) 6.56254 0.312502
\(442\) 18.6056 0.884977
\(443\) −24.7773 −1.17721 −0.588603 0.808422i \(-0.700322\pi\)
−0.588603 + 0.808422i \(0.700322\pi\)
\(444\) −8.68737 −0.412284
\(445\) −17.7832 −0.843002
\(446\) 1.00000 0.0473514
\(447\) 17.0239 0.805204
\(448\) 3.68274 0.173993
\(449\) 33.3970 1.57610 0.788051 0.615610i \(-0.211090\pi\)
0.788051 + 0.615610i \(0.211090\pi\)
\(450\) 0.613915 0.0289402
\(451\) −18.6110 −0.876358
\(452\) −5.47444 −0.257496
\(453\) 19.9467 0.937176
\(454\) −26.0600 −1.22306
\(455\) 25.0687 1.17524
\(456\) −7.48297 −0.350422
\(457\) −20.0787 −0.939241 −0.469620 0.882869i \(-0.655609\pi\)
−0.469620 + 0.882869i \(0.655609\pi\)
\(458\) −8.20934 −0.383597
\(459\) 6.47611 0.302279
\(460\) −7.90196 −0.368431
\(461\) −7.41441 −0.345324 −0.172662 0.984981i \(-0.555237\pi\)
−0.172662 + 0.984981i \(0.555237\pi\)
\(462\) −21.8204 −1.01518
\(463\) 17.9516 0.834283 0.417141 0.908842i \(-0.363032\pi\)
0.417141 + 0.908842i \(0.363032\pi\)
\(464\) 4.99778 0.232016
\(465\) −16.6875 −0.773866
\(466\) −9.30454 −0.431024
\(467\) −11.1950 −0.518041 −0.259020 0.965872i \(-0.583400\pi\)
−0.259020 + 0.965872i \(0.583400\pi\)
\(468\) 2.87295 0.132802
\(469\) 6.05567 0.279625
\(470\) −3.99100 −0.184091
\(471\) −23.3954 −1.07800
\(472\) −10.7886 −0.496587
\(473\) 27.0465 1.24360
\(474\) −15.0857 −0.692911
\(475\) −4.59391 −0.210783
\(476\) 23.8498 1.09315
\(477\) 3.46926 0.158846
\(478\) 12.5859 0.575666
\(479\) 26.1072 1.19287 0.596434 0.802662i \(-0.296584\pi\)
0.596434 + 0.802662i \(0.296584\pi\)
\(480\) 2.36937 0.108146
\(481\) −24.9584 −1.13801
\(482\) 5.73022 0.261004
\(483\) −12.2821 −0.558855
\(484\) 24.1063 1.09574
\(485\) 19.3313 0.877791
\(486\) 1.00000 0.0453609
\(487\) 6.41842 0.290846 0.145423 0.989370i \(-0.453546\pi\)
0.145423 + 0.989370i \(0.453546\pi\)
\(488\) 5.81331 0.263156
\(489\) −15.2069 −0.687679
\(490\) 15.5491 0.702437
\(491\) 11.4128 0.515053 0.257526 0.966271i \(-0.417093\pi\)
0.257526 + 0.966271i \(0.417093\pi\)
\(492\) 3.14107 0.141610
\(493\) 32.3662 1.45770
\(494\) −21.4982 −0.967251
\(495\) −14.0387 −0.630991
\(496\) −7.04303 −0.316241
\(497\) 45.6043 2.04563
\(498\) 5.37448 0.240836
\(499\) −42.5880 −1.90650 −0.953251 0.302180i \(-0.902286\pi\)
−0.953251 + 0.302180i \(0.902286\pi\)
\(500\) −10.3923 −0.464756
\(501\) 8.85449 0.395589
\(502\) 16.5457 0.738469
\(503\) 34.6176 1.54352 0.771762 0.635911i \(-0.219376\pi\)
0.771762 + 0.635911i \(0.219376\pi\)
\(504\) 3.68274 0.164042
\(505\) −28.1536 −1.25282
\(506\) 19.7604 0.878455
\(507\) −4.74614 −0.210784
\(508\) −1.05057 −0.0466113
\(509\) −5.93303 −0.262977 −0.131489 0.991318i \(-0.541976\pi\)
−0.131489 + 0.991318i \(0.541976\pi\)
\(510\) 15.3443 0.679458
\(511\) 2.87224 0.127060
\(512\) 1.00000 0.0441942
\(513\) −7.48297 −0.330381
\(514\) 19.7435 0.870851
\(515\) 15.6563 0.689900
\(516\) −4.56477 −0.200953
\(517\) 9.98024 0.438931
\(518\) −31.9933 −1.40570
\(519\) −8.20552 −0.360182
\(520\) 6.80709 0.298511
\(521\) −1.56240 −0.0684498 −0.0342249 0.999414i \(-0.510896\pi\)
−0.0342249 + 0.999414i \(0.510896\pi\)
\(522\) 4.99778 0.218747
\(523\) 25.2389 1.10362 0.551809 0.833970i \(-0.313938\pi\)
0.551809 + 0.833970i \(0.313938\pi\)
\(524\) 17.3438 0.757669
\(525\) 2.26089 0.0986733
\(526\) 2.70806 0.118077
\(527\) −45.6115 −1.98687
\(528\) −5.92506 −0.257855
\(529\) −11.8775 −0.516411
\(530\) 8.21996 0.357052
\(531\) −10.7886 −0.468186
\(532\) −27.5578 −1.19478
\(533\) 9.02414 0.390879
\(534\) −7.50543 −0.324792
\(535\) 42.2621 1.82715
\(536\) 1.64434 0.0710247
\(537\) −5.28915 −0.228244
\(538\) −9.02584 −0.389132
\(539\) −38.8835 −1.67483
\(540\) 2.36937 0.101961
\(541\) 40.4155 1.73760 0.868798 0.495166i \(-0.164893\pi\)
0.868798 + 0.495166i \(0.164893\pi\)
\(542\) −10.5394 −0.452705
\(543\) −9.19861 −0.394750
\(544\) 6.47611 0.277661
\(545\) 0.278779 0.0119416
\(546\) 10.5803 0.452796
\(547\) 23.8714 1.02067 0.510333 0.859977i \(-0.329522\pi\)
0.510333 + 0.859977i \(0.329522\pi\)
\(548\) 20.0510 0.856534
\(549\) 5.81331 0.248106
\(550\) −3.63748 −0.155103
\(551\) −37.3982 −1.59322
\(552\) −3.33505 −0.141949
\(553\) −55.5568 −2.36252
\(554\) 9.31793 0.395881
\(555\) −20.5836 −0.873725
\(556\) 10.0545 0.426407
\(557\) 25.8236 1.09418 0.547091 0.837073i \(-0.315735\pi\)
0.547091 + 0.837073i \(0.315735\pi\)
\(558\) −7.04303 −0.298155
\(559\) −13.1144 −0.554678
\(560\) 8.72577 0.368731
\(561\) −38.3714 −1.62004
\(562\) 6.58372 0.277717
\(563\) −0.735710 −0.0310065 −0.0155032 0.999880i \(-0.504935\pi\)
−0.0155032 + 0.999880i \(0.504935\pi\)
\(564\) −1.68441 −0.0709266
\(565\) −12.9710 −0.545693
\(566\) 28.3400 1.19122
\(567\) 3.68274 0.154660
\(568\) 12.3833 0.519590
\(569\) 0.00122694 5.14361e−5 0 2.57181e−5 1.00000i \(-0.499992\pi\)
2.57181e−5 1.00000i \(0.499992\pi\)
\(570\) −17.7299 −0.742625
\(571\) −24.8196 −1.03867 −0.519334 0.854571i \(-0.673820\pi\)
−0.519334 + 0.854571i \(0.673820\pi\)
\(572\) −17.0224 −0.711743
\(573\) 6.41200 0.267865
\(574\) 11.5677 0.482827
\(575\) −2.04744 −0.0853840
\(576\) 1.00000 0.0416667
\(577\) −9.07498 −0.377797 −0.188898 0.981997i \(-0.560492\pi\)
−0.188898 + 0.981997i \(0.560492\pi\)
\(578\) 24.9401 1.03737
\(579\) −24.0509 −0.999523
\(580\) 11.8416 0.491695
\(581\) 19.7928 0.821143
\(582\) 8.15885 0.338195
\(583\) −20.5556 −0.851325
\(584\) 0.779919 0.0322733
\(585\) 6.80709 0.281439
\(586\) −17.3983 −0.718718
\(587\) 16.2962 0.672614 0.336307 0.941752i \(-0.390822\pi\)
0.336307 + 0.941752i \(0.390822\pi\)
\(588\) 6.56254 0.270635
\(589\) 52.7028 2.17158
\(590\) −25.5622 −1.05238
\(591\) −24.3937 −1.00342
\(592\) −8.68737 −0.357049
\(593\) −32.2541 −1.32452 −0.662259 0.749275i \(-0.730402\pi\)
−0.662259 + 0.749275i \(0.730402\pi\)
\(594\) −5.92506 −0.243108
\(595\) 56.5091 2.31665
\(596\) 17.0239 0.697327
\(597\) −11.0011 −0.450244
\(598\) −9.58143 −0.391814
\(599\) −9.74849 −0.398313 −0.199156 0.979968i \(-0.563820\pi\)
−0.199156 + 0.979968i \(0.563820\pi\)
\(600\) 0.613915 0.0250630
\(601\) 37.6795 1.53698 0.768489 0.639863i \(-0.221009\pi\)
0.768489 + 0.639863i \(0.221009\pi\)
\(602\) −16.8108 −0.685158
\(603\) 1.64434 0.0669627
\(604\) 19.9467 0.811618
\(605\) 57.1168 2.32213
\(606\) −11.8823 −0.482685
\(607\) −27.5216 −1.11707 −0.558533 0.829482i \(-0.688636\pi\)
−0.558533 + 0.829482i \(0.688636\pi\)
\(608\) −7.48297 −0.303475
\(609\) 18.4055 0.745828
\(610\) 13.7739 0.557688
\(611\) −4.83924 −0.195775
\(612\) 6.47611 0.261781
\(613\) 11.3228 0.457325 0.228663 0.973506i \(-0.426565\pi\)
0.228663 + 0.973506i \(0.426565\pi\)
\(614\) −18.7757 −0.757728
\(615\) 7.44235 0.300105
\(616\) −21.8204 −0.879170
\(617\) −9.65337 −0.388630 −0.194315 0.980939i \(-0.562248\pi\)
−0.194315 + 0.980939i \(0.562248\pi\)
\(618\) 6.60780 0.265805
\(619\) 35.6694 1.43367 0.716836 0.697241i \(-0.245589\pi\)
0.716836 + 0.697241i \(0.245589\pi\)
\(620\) −16.6875 −0.670188
\(621\) −3.33505 −0.133831
\(622\) −27.2344 −1.09200
\(623\) −27.6405 −1.10739
\(624\) 2.87295 0.115010
\(625\) −27.6927 −1.10771
\(626\) 9.02461 0.360696
\(627\) 44.3370 1.77065
\(628\) −23.3954 −0.933577
\(629\) −56.2604 −2.24325
\(630\) 8.72577 0.347643
\(631\) −30.2494 −1.20421 −0.602105 0.798417i \(-0.705671\pi\)
−0.602105 + 0.798417i \(0.705671\pi\)
\(632\) −15.0857 −0.600079
\(633\) 1.26320 0.0502077
\(634\) −11.3753 −0.451771
\(635\) −2.48918 −0.0987801
\(636\) 3.46926 0.137565
\(637\) 18.8539 0.747018
\(638\) −29.6121 −1.17236
\(639\) 12.3833 0.489874
\(640\) 2.36937 0.0936576
\(641\) 35.1379 1.38786 0.693932 0.720041i \(-0.255877\pi\)
0.693932 + 0.720041i \(0.255877\pi\)
\(642\) 17.8368 0.703964
\(643\) 1.47593 0.0582049 0.0291024 0.999576i \(-0.490735\pi\)
0.0291024 + 0.999576i \(0.490735\pi\)
\(644\) −12.2821 −0.483982
\(645\) −10.8156 −0.425865
\(646\) −48.4606 −1.90666
\(647\) 29.2534 1.15007 0.575035 0.818129i \(-0.304988\pi\)
0.575035 + 0.818129i \(0.304988\pi\)
\(648\) 1.00000 0.0392837
\(649\) 63.9232 2.50921
\(650\) 1.76375 0.0691800
\(651\) −25.9376 −1.01658
\(652\) −15.2069 −0.595548
\(653\) 43.9250 1.71892 0.859459 0.511205i \(-0.170801\pi\)
0.859459 + 0.511205i \(0.170801\pi\)
\(654\) 0.117660 0.00460086
\(655\) 41.0940 1.60567
\(656\) 3.14107 0.122638
\(657\) 0.779919 0.0304275
\(658\) −6.20325 −0.241828
\(659\) 28.3329 1.10369 0.551846 0.833946i \(-0.313924\pi\)
0.551846 + 0.833946i \(0.313924\pi\)
\(660\) −14.0387 −0.546454
\(661\) −11.8666 −0.461557 −0.230779 0.973006i \(-0.574127\pi\)
−0.230779 + 0.973006i \(0.574127\pi\)
\(662\) −3.04513 −0.118352
\(663\) 18.6056 0.722581
\(664\) 5.37448 0.208570
\(665\) −65.2946 −2.53202
\(666\) −8.68737 −0.336629
\(667\) −16.6678 −0.645381
\(668\) 8.85449 0.342590
\(669\) 1.00000 0.0386622
\(670\) 3.89605 0.150518
\(671\) −34.4442 −1.32970
\(672\) 3.68274 0.142065
\(673\) −22.4795 −0.866521 −0.433261 0.901269i \(-0.642637\pi\)
−0.433261 + 0.901269i \(0.642637\pi\)
\(674\) 20.1514 0.776203
\(675\) 0.613915 0.0236296
\(676\) −4.74614 −0.182544
\(677\) 31.3067 1.20322 0.601608 0.798792i \(-0.294527\pi\)
0.601608 + 0.798792i \(0.294527\pi\)
\(678\) −5.47444 −0.210245
\(679\) 30.0469 1.15309
\(680\) 15.3443 0.588428
\(681\) −26.0600 −0.998623
\(682\) 41.7304 1.59794
\(683\) −5.35227 −0.204799 −0.102399 0.994743i \(-0.532652\pi\)
−0.102399 + 0.994743i \(0.532652\pi\)
\(684\) −7.48297 −0.286119
\(685\) 47.5081 1.81519
\(686\) −1.61103 −0.0615096
\(687\) −8.20934 −0.313206
\(688\) −4.56477 −0.174030
\(689\) 9.96702 0.379713
\(690\) −7.90196 −0.300823
\(691\) 22.3421 0.849932 0.424966 0.905209i \(-0.360286\pi\)
0.424966 + 0.905209i \(0.360286\pi\)
\(692\) −8.20552 −0.311927
\(693\) −21.8204 −0.828890
\(694\) 12.8590 0.488120
\(695\) 23.8229 0.903653
\(696\) 4.99778 0.189440
\(697\) 20.3419 0.770505
\(698\) 18.7442 0.709478
\(699\) −9.30454 −0.351930
\(700\) 2.26089 0.0854535
\(701\) −6.44431 −0.243398 −0.121699 0.992567i \(-0.538834\pi\)
−0.121699 + 0.992567i \(0.538834\pi\)
\(702\) 2.87295 0.108433
\(703\) 65.0073 2.45180
\(704\) −5.92506 −0.223309
\(705\) −3.99100 −0.150310
\(706\) −31.0339 −1.16798
\(707\) −43.7593 −1.64574
\(708\) −10.7886 −0.405461
\(709\) −8.26315 −0.310329 −0.155165 0.987889i \(-0.549591\pi\)
−0.155165 + 0.987889i \(0.549591\pi\)
\(710\) 29.3405 1.10113
\(711\) −15.0857 −0.565760
\(712\) −7.50543 −0.281278
\(713\) 23.4888 0.879664
\(714\) 23.8498 0.892557
\(715\) −40.3324 −1.50835
\(716\) −5.28915 −0.197665
\(717\) 12.5859 0.470029
\(718\) 8.50064 0.317241
\(719\) −9.84786 −0.367263 −0.183632 0.982995i \(-0.558785\pi\)
−0.183632 + 0.982995i \(0.558785\pi\)
\(720\) 2.36937 0.0883012
\(721\) 24.3348 0.906274
\(722\) 36.9948 1.37681
\(723\) 5.73022 0.213109
\(724\) −9.19861 −0.341864
\(725\) 3.06821 0.113951
\(726\) 24.1063 0.894670
\(727\) 47.7211 1.76988 0.884938 0.465709i \(-0.154201\pi\)
0.884938 + 0.465709i \(0.154201\pi\)
\(728\) 10.5803 0.392133
\(729\) 1.00000 0.0370370
\(730\) 1.84792 0.0683945
\(731\) −29.5619 −1.09339
\(732\) 5.81331 0.214866
\(733\) 25.7113 0.949668 0.474834 0.880075i \(-0.342508\pi\)
0.474834 + 0.880075i \(0.342508\pi\)
\(734\) −0.248358 −0.00916705
\(735\) 15.5491 0.573537
\(736\) −3.33505 −0.122931
\(737\) −9.74281 −0.358881
\(738\) 3.14107 0.115624
\(739\) −4.84445 −0.178206 −0.0891030 0.996022i \(-0.528400\pi\)
−0.0891030 + 0.996022i \(0.528400\pi\)
\(740\) −20.5836 −0.756668
\(741\) −21.4982 −0.789757
\(742\) 12.7764 0.469035
\(743\) 5.97474 0.219192 0.109596 0.993976i \(-0.465044\pi\)
0.109596 + 0.993976i \(0.465044\pi\)
\(744\) −7.04303 −0.258210
\(745\) 40.3360 1.47780
\(746\) 2.17789 0.0797381
\(747\) 5.37448 0.196642
\(748\) −38.3714 −1.40300
\(749\) 65.6883 2.40020
\(750\) −10.3923 −0.379472
\(751\) −47.6975 −1.74051 −0.870253 0.492605i \(-0.836045\pi\)
−0.870253 + 0.492605i \(0.836045\pi\)
\(752\) −1.68441 −0.0614242
\(753\) 16.5457 0.602958
\(754\) 14.3584 0.522901
\(755\) 47.2610 1.72001
\(756\) 3.68274 0.133940
\(757\) 51.2494 1.86269 0.931346 0.364136i \(-0.118636\pi\)
0.931346 + 0.364136i \(0.118636\pi\)
\(758\) 11.7774 0.427775
\(759\) 19.7604 0.717255
\(760\) −17.7299 −0.643132
\(761\) −24.5511 −0.889977 −0.444989 0.895536i \(-0.646792\pi\)
−0.444989 + 0.895536i \(0.646792\pi\)
\(762\) −1.05057 −0.0380580
\(763\) 0.433310 0.0156869
\(764\) 6.41200 0.231978
\(765\) 15.3443 0.554775
\(766\) 5.81808 0.210216
\(767\) −30.9952 −1.11917
\(768\) 1.00000 0.0360844
\(769\) −44.5326 −1.60589 −0.802943 0.596055i \(-0.796734\pi\)
−0.802943 + 0.596055i \(0.796734\pi\)
\(770\) −51.7007 −1.86316
\(771\) 19.7435 0.711047
\(772\) −24.0509 −0.865612
\(773\) 26.7048 0.960505 0.480253 0.877130i \(-0.340545\pi\)
0.480253 + 0.877130i \(0.340545\pi\)
\(774\) −4.56477 −0.164077
\(775\) −4.32382 −0.155316
\(776\) 8.15885 0.292886
\(777\) −31.9933 −1.14775
\(778\) 8.66072 0.310502
\(779\) −23.5045 −0.842137
\(780\) 6.80709 0.243733
\(781\) −73.3715 −2.62544
\(782\) −21.5981 −0.772348
\(783\) 4.99778 0.178606
\(784\) 6.56254 0.234377
\(785\) −55.4323 −1.97846
\(786\) 17.3438 0.618634
\(787\) 39.3842 1.40389 0.701947 0.712229i \(-0.252314\pi\)
0.701947 + 0.712229i \(0.252314\pi\)
\(788\) −24.3937 −0.868991
\(789\) 2.70806 0.0964093
\(790\) −35.7437 −1.27170
\(791\) −20.1609 −0.716839
\(792\) −5.92506 −0.210538
\(793\) 16.7014 0.593083
\(794\) −11.4324 −0.405721
\(795\) 8.21996 0.291532
\(796\) −11.0011 −0.389923
\(797\) 29.6090 1.04880 0.524402 0.851471i \(-0.324289\pi\)
0.524402 + 0.851471i \(0.324289\pi\)
\(798\) −27.5578 −0.975536
\(799\) −10.9084 −0.385913
\(800\) 0.613915 0.0217052
\(801\) −7.50543 −0.265191
\(802\) −0.885941 −0.0312837
\(803\) −4.62107 −0.163074
\(804\) 1.64434 0.0579914
\(805\) −29.1008 −1.02567
\(806\) −20.2343 −0.712723
\(807\) −9.02584 −0.317725
\(808\) −11.8823 −0.418018
\(809\) −40.4725 −1.42294 −0.711469 0.702717i \(-0.751970\pi\)
−0.711469 + 0.702717i \(0.751970\pi\)
\(810\) 2.36937 0.0832512
\(811\) 10.7485 0.377430 0.188715 0.982032i \(-0.439568\pi\)
0.188715 + 0.982032i \(0.439568\pi\)
\(812\) 18.4055 0.645906
\(813\) −10.5394 −0.369632
\(814\) 51.4732 1.80413
\(815\) −36.0307 −1.26210
\(816\) 6.47611 0.226709
\(817\) 34.1580 1.19504
\(818\) 8.45734 0.295704
\(819\) 10.5803 0.369707
\(820\) 7.44235 0.259898
\(821\) −15.5359 −0.542207 −0.271104 0.962550i \(-0.587389\pi\)
−0.271104 + 0.962550i \(0.587389\pi\)
\(822\) 20.0510 0.699357
\(823\) 43.6204 1.52051 0.760257 0.649623i \(-0.225073\pi\)
0.760257 + 0.649623i \(0.225073\pi\)
\(824\) 6.60780 0.230193
\(825\) −3.63748 −0.126641
\(826\) −39.7317 −1.38244
\(827\) −32.9828 −1.14693 −0.573463 0.819232i \(-0.694400\pi\)
−0.573463 + 0.819232i \(0.694400\pi\)
\(828\) −3.33505 −0.115901
\(829\) −0.0750551 −0.00260677 −0.00130339 0.999999i \(-0.500415\pi\)
−0.00130339 + 0.999999i \(0.500415\pi\)
\(830\) 12.7341 0.442008
\(831\) 9.31793 0.323235
\(832\) 2.87295 0.0996017
\(833\) 42.4998 1.47253
\(834\) 10.0545 0.348159
\(835\) 20.9796 0.726028
\(836\) 44.3370 1.53343
\(837\) −7.04303 −0.243443
\(838\) 11.5955 0.400562
\(839\) 42.8905 1.48074 0.740372 0.672197i \(-0.234649\pi\)
0.740372 + 0.672197i \(0.234649\pi\)
\(840\) 8.72577 0.301067
\(841\) −4.02221 −0.138697
\(842\) −30.1802 −1.04008
\(843\) 6.58372 0.226755
\(844\) 1.26320 0.0434811
\(845\) −11.2454 −0.386852
\(846\) −1.68441 −0.0579113
\(847\) 88.7772 3.05042
\(848\) 3.46926 0.119135
\(849\) 28.3400 0.972625
\(850\) 3.97579 0.136368
\(851\) 28.9728 0.993174
\(852\) 12.3833 0.424243
\(853\) −10.6592 −0.364964 −0.182482 0.983209i \(-0.558413\pi\)
−0.182482 + 0.983209i \(0.558413\pi\)
\(854\) 21.4089 0.732597
\(855\) −17.7299 −0.606351
\(856\) 17.8368 0.609650
\(857\) −13.7715 −0.470424 −0.235212 0.971944i \(-0.575578\pi\)
−0.235212 + 0.971944i \(0.575578\pi\)
\(858\) −17.0224 −0.581136
\(859\) 37.7719 1.28876 0.644381 0.764705i \(-0.277115\pi\)
0.644381 + 0.764705i \(0.277115\pi\)
\(860\) −10.8156 −0.368810
\(861\) 11.5677 0.394227
\(862\) 22.9847 0.782861
\(863\) 13.1695 0.448294 0.224147 0.974555i \(-0.428040\pi\)
0.224147 + 0.974555i \(0.428040\pi\)
\(864\) 1.00000 0.0340207
\(865\) −19.4419 −0.661045
\(866\) −20.9595 −0.712234
\(867\) 24.9401 0.847009
\(868\) −25.9376 −0.880380
\(869\) 89.3839 3.03214
\(870\) 11.8416 0.401467
\(871\) 4.72411 0.160070
\(872\) 0.117660 0.00398446
\(873\) 8.15885 0.276135
\(874\) 24.9561 0.844151
\(875\) −38.2719 −1.29383
\(876\) 0.779919 0.0263510
\(877\) −43.1577 −1.45733 −0.728667 0.684869i \(-0.759860\pi\)
−0.728667 + 0.684869i \(0.759860\pi\)
\(878\) 8.90504 0.300531
\(879\) −17.3983 −0.586831
\(880\) −14.0387 −0.473243
\(881\) 43.6302 1.46994 0.734970 0.678100i \(-0.237196\pi\)
0.734970 + 0.678100i \(0.237196\pi\)
\(882\) 6.56254 0.220972
\(883\) −46.2461 −1.55631 −0.778153 0.628075i \(-0.783843\pi\)
−0.778153 + 0.628075i \(0.783843\pi\)
\(884\) 18.6056 0.625773
\(885\) −25.5622 −0.859266
\(886\) −24.7773 −0.832410
\(887\) −34.2104 −1.14867 −0.574337 0.818619i \(-0.694740\pi\)
−0.574337 + 0.818619i \(0.694740\pi\)
\(888\) −8.68737 −0.291529
\(889\) −3.86896 −0.129761
\(890\) −17.7832 −0.596093
\(891\) −5.92506 −0.198497
\(892\) 1.00000 0.0334825
\(893\) 12.6044 0.421790
\(894\) 17.0239 0.569365
\(895\) −12.5320 −0.418897
\(896\) 3.68274 0.123032
\(897\) −9.58143 −0.319915
\(898\) 33.3970 1.11447
\(899\) −35.1995 −1.17397
\(900\) 0.613915 0.0204638
\(901\) 22.4673 0.748495
\(902\) −18.6110 −0.619679
\(903\) −16.8108 −0.559429
\(904\) −5.47444 −0.182077
\(905\) −21.7949 −0.724488
\(906\) 19.9467 0.662684
\(907\) −27.2409 −0.904520 −0.452260 0.891886i \(-0.649382\pi\)
−0.452260 + 0.891886i \(0.649382\pi\)
\(908\) −26.0600 −0.864833
\(909\) −11.8823 −0.394111
\(910\) 25.0687 0.831020
\(911\) 12.7823 0.423496 0.211748 0.977324i \(-0.432084\pi\)
0.211748 + 0.977324i \(0.432084\pi\)
\(912\) −7.48297 −0.247786
\(913\) −31.8441 −1.05389
\(914\) −20.0787 −0.664143
\(915\) 13.7739 0.455351
\(916\) −8.20934 −0.271244
\(917\) 63.8728 2.10927
\(918\) 6.47611 0.213744
\(919\) 34.5982 1.14129 0.570645 0.821197i \(-0.306693\pi\)
0.570645 + 0.821197i \(0.306693\pi\)
\(920\) −7.90196 −0.260520
\(921\) −18.7757 −0.618682
\(922\) −7.41441 −0.244181
\(923\) 35.5765 1.17102
\(924\) −21.8204 −0.717839
\(925\) −5.33331 −0.175358
\(926\) 17.9516 0.589927
\(927\) 6.60780 0.217028
\(928\) 4.99778 0.164060
\(929\) 13.8858 0.455578 0.227789 0.973710i \(-0.426850\pi\)
0.227789 + 0.973710i \(0.426850\pi\)
\(930\) −16.6875 −0.547206
\(931\) −49.1073 −1.60943
\(932\) −9.30454 −0.304780
\(933\) −27.2344 −0.891615
\(934\) −11.1950 −0.366310
\(935\) −90.9160 −2.97327
\(936\) 2.87295 0.0939054
\(937\) −4.32232 −0.141204 −0.0706020 0.997505i \(-0.522492\pi\)
−0.0706020 + 0.997505i \(0.522492\pi\)
\(938\) 6.05567 0.197725
\(939\) 9.02461 0.294507
\(940\) −3.99100 −0.130172
\(941\) 25.0093 0.815281 0.407641 0.913142i \(-0.366352\pi\)
0.407641 + 0.913142i \(0.366352\pi\)
\(942\) −23.3954 −0.762262
\(943\) −10.4756 −0.341133
\(944\) −10.7886 −0.351140
\(945\) 8.72577 0.283849
\(946\) 27.0465 0.879358
\(947\) 4.70052 0.152746 0.0763732 0.997079i \(-0.475666\pi\)
0.0763732 + 0.997079i \(0.475666\pi\)
\(948\) −15.0857 −0.489962
\(949\) 2.24067 0.0727352
\(950\) −4.59391 −0.149046
\(951\) −11.3753 −0.368870
\(952\) 23.8498 0.772977
\(953\) −21.3837 −0.692684 −0.346342 0.938108i \(-0.612576\pi\)
−0.346342 + 0.938108i \(0.612576\pi\)
\(954\) 3.46926 0.112321
\(955\) 15.1924 0.491615
\(956\) 12.5859 0.407057
\(957\) −29.6121 −0.957224
\(958\) 26.1072 0.843486
\(959\) 73.8424 2.38449
\(960\) 2.36937 0.0764711
\(961\) 18.6043 0.600137
\(962\) −24.9584 −0.804691
\(963\) 17.8368 0.574784
\(964\) 5.73022 0.184558
\(965\) −56.9856 −1.83443
\(966\) −12.2821 −0.395170
\(967\) 0.971055 0.0312270 0.0156135 0.999878i \(-0.495030\pi\)
0.0156135 + 0.999878i \(0.495030\pi\)
\(968\) 24.1063 0.774807
\(969\) −48.4606 −1.55678
\(970\) 19.3313 0.620692
\(971\) −59.2611 −1.90178 −0.950890 0.309530i \(-0.899828\pi\)
−0.950890 + 0.309530i \(0.899828\pi\)
\(972\) 1.00000 0.0320750
\(973\) 37.0281 1.18707
\(974\) 6.41842 0.205659
\(975\) 1.76375 0.0564852
\(976\) 5.81331 0.186080
\(977\) 39.0005 1.24774 0.623868 0.781529i \(-0.285560\pi\)
0.623868 + 0.781529i \(0.285560\pi\)
\(978\) −15.2069 −0.486263
\(979\) 44.4701 1.42127
\(980\) 15.5491 0.496698
\(981\) 0.117660 0.00375658
\(982\) 11.4128 0.364197
\(983\) −47.7568 −1.52321 −0.761603 0.648044i \(-0.775587\pi\)
−0.761603 + 0.648044i \(0.775587\pi\)
\(984\) 3.14107 0.100134
\(985\) −57.7978 −1.84159
\(986\) 32.3662 1.03075
\(987\) −6.20325 −0.197451
\(988\) −21.4982 −0.683950
\(989\) 15.2237 0.484086
\(990\) −14.0387 −0.446178
\(991\) −8.00178 −0.254185 −0.127092 0.991891i \(-0.540564\pi\)
−0.127092 + 0.991891i \(0.540564\pi\)
\(992\) −7.04303 −0.223616
\(993\) −3.04513 −0.0966342
\(994\) 45.6043 1.44648
\(995\) −26.0656 −0.826335
\(996\) 5.37448 0.170297
\(997\) 19.3403 0.612514 0.306257 0.951949i \(-0.400923\pi\)
0.306257 + 0.951949i \(0.400923\pi\)
\(998\) −42.5880 −1.34810
\(999\) −8.68737 −0.274856
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.a.i.1.5 6
3.2 odd 2 4014.2.a.s.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.a.i.1.5 6 1.1 even 1 trivial
4014.2.a.s.1.2 6 3.2 odd 2