Properties

Label 1338.2.a.c.1.3
Level $1338$
Weight $2$
Character 1338.1
Self dual yes
Analytic conductor $10.684$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1338,2,Mod(1,1338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1338.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.6839837904\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.473.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.201640\) of defining polynomial
Character \(\chi\) \(=\) 1338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +2.95934 q^{5} +1.00000 q^{6} +3.20164 q^{7} -1.00000 q^{8} +1.00000 q^{9} -2.95934 q^{10} +2.20164 q^{11} -1.00000 q^{12} +6.95934 q^{13} -3.20164 q^{14} -2.95934 q^{15} +1.00000 q^{16} -3.55606 q^{17} -1.00000 q^{18} +4.75770 q^{19} +2.95934 q^{20} -3.20164 q^{21} -2.20164 q^{22} +5.71704 q^{23} +1.00000 q^{24} +3.75770 q^{25} -6.95934 q^{26} -1.00000 q^{27} +3.20164 q^{28} -2.79836 q^{29} +2.95934 q^{30} -4.35442 q^{31} -1.00000 q^{32} -2.20164 q^{33} +3.55606 q^{34} +9.47474 q^{35} +1.00000 q^{36} -11.6357 q^{37} -4.75770 q^{38} -6.95934 q^{39} -2.95934 q^{40} +4.95114 q^{41} +3.20164 q^{42} +3.35442 q^{43} +2.20164 q^{44} +2.95934 q^{45} -5.71704 q^{46} -7.36262 q^{47} -1.00000 q^{48} +3.25050 q^{49} -3.75770 q^{50} +3.55606 q^{51} +6.95934 q^{52} -8.67638 q^{53} +1.00000 q^{54} +6.51540 q^{55} -3.20164 q^{56} -4.75770 q^{57} +2.79836 q^{58} -11.8780 q^{59} -2.95934 q^{60} -5.91048 q^{61} +4.35442 q^{62} +3.20164 q^{63} +1.00000 q^{64} +20.5951 q^{65} +2.20164 q^{66} -4.87802 q^{67} -3.55606 q^{68} -5.71704 q^{69} -9.47474 q^{70} -4.59672 q^{71} -1.00000 q^{72} +0.749503 q^{73} +11.6357 q^{74} -3.75770 q^{75} +4.75770 q^{76} +7.04886 q^{77} +6.95934 q^{78} +12.9105 q^{79} +2.95934 q^{80} +1.00000 q^{81} -4.95114 q^{82} +15.4829 q^{83} -3.20164 q^{84} -10.5236 q^{85} -3.35442 q^{86} +2.79836 q^{87} -2.20164 q^{88} -18.5544 q^{89} -2.95934 q^{90} +22.2813 q^{91} +5.71704 q^{92} +4.35442 q^{93} +7.36262 q^{94} +14.0797 q^{95} +1.00000 q^{96} +1.95114 q^{97} -3.25050 q^{98} +2.20164 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - 3 q^{3} + 3 q^{4} - q^{5} + 3 q^{6} + 9 q^{7} - 3 q^{8} + 3 q^{9} + q^{10} + 6 q^{11} - 3 q^{12} + 11 q^{13} - 9 q^{14} + q^{15} + 3 q^{16} - 2 q^{17} - 3 q^{18} + 5 q^{19} - q^{20}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 2.95934 1.32346 0.661729 0.749743i \(-0.269823\pi\)
0.661729 + 0.749743i \(0.269823\pi\)
\(6\) 1.00000 0.408248
\(7\) 3.20164 1.21011 0.605053 0.796185i \(-0.293152\pi\)
0.605053 + 0.796185i \(0.293152\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −2.95934 −0.935826
\(11\) 2.20164 0.663819 0.331910 0.943311i \(-0.392307\pi\)
0.331910 + 0.943311i \(0.392307\pi\)
\(12\) −1.00000 −0.288675
\(13\) 6.95934 1.93017 0.965087 0.261929i \(-0.0843588\pi\)
0.965087 + 0.261929i \(0.0843588\pi\)
\(14\) −3.20164 −0.855674
\(15\) −2.95934 −0.764099
\(16\) 1.00000 0.250000
\(17\) −3.55606 −0.862472 −0.431236 0.902239i \(-0.641922\pi\)
−0.431236 + 0.902239i \(0.641922\pi\)
\(18\) −1.00000 −0.235702
\(19\) 4.75770 1.09149 0.545746 0.837951i \(-0.316246\pi\)
0.545746 + 0.837951i \(0.316246\pi\)
\(20\) 2.95934 0.661729
\(21\) −3.20164 −0.698655
\(22\) −2.20164 −0.469391
\(23\) 5.71704 1.19209 0.596043 0.802953i \(-0.296739\pi\)
0.596043 + 0.802953i \(0.296739\pi\)
\(24\) 1.00000 0.204124
\(25\) 3.75770 0.751540
\(26\) −6.95934 −1.36484
\(27\) −1.00000 −0.192450
\(28\) 3.20164 0.605053
\(29\) −2.79836 −0.519642 −0.259821 0.965657i \(-0.583664\pi\)
−0.259821 + 0.965657i \(0.583664\pi\)
\(30\) 2.95934 0.540299
\(31\) −4.35442 −0.782077 −0.391039 0.920374i \(-0.627884\pi\)
−0.391039 + 0.920374i \(0.627884\pi\)
\(32\) −1.00000 −0.176777
\(33\) −2.20164 −0.383256
\(34\) 3.55606 0.609860
\(35\) 9.47474 1.60152
\(36\) 1.00000 0.166667
\(37\) −11.6357 −1.91290 −0.956451 0.291894i \(-0.905715\pi\)
−0.956451 + 0.291894i \(0.905715\pi\)
\(38\) −4.75770 −0.771801
\(39\) −6.95934 −1.11439
\(40\) −2.95934 −0.467913
\(41\) 4.95114 0.773239 0.386619 0.922239i \(-0.373643\pi\)
0.386619 + 0.922239i \(0.373643\pi\)
\(42\) 3.20164 0.494024
\(43\) 3.35442 0.511545 0.255772 0.966737i \(-0.417670\pi\)
0.255772 + 0.966737i \(0.417670\pi\)
\(44\) 2.20164 0.331910
\(45\) 2.95934 0.441153
\(46\) −5.71704 −0.842932
\(47\) −7.36262 −1.07395 −0.536974 0.843599i \(-0.680433\pi\)
−0.536974 + 0.843599i \(0.680433\pi\)
\(48\) −1.00000 −0.144338
\(49\) 3.25050 0.464357
\(50\) −3.75770 −0.531419
\(51\) 3.55606 0.497948
\(52\) 6.95934 0.965087
\(53\) −8.67638 −1.19179 −0.595897 0.803061i \(-0.703203\pi\)
−0.595897 + 0.803061i \(0.703203\pi\)
\(54\) 1.00000 0.136083
\(55\) 6.51540 0.878537
\(56\) −3.20164 −0.427837
\(57\) −4.75770 −0.630173
\(58\) 2.79836 0.367443
\(59\) −11.8780 −1.54639 −0.773194 0.634170i \(-0.781342\pi\)
−0.773194 + 0.634170i \(0.781342\pi\)
\(60\) −2.95934 −0.382049
\(61\) −5.91048 −0.756760 −0.378380 0.925650i \(-0.623519\pi\)
−0.378380 + 0.925650i \(0.623519\pi\)
\(62\) 4.35442 0.553012
\(63\) 3.20164 0.403369
\(64\) 1.00000 0.125000
\(65\) 20.5951 2.55450
\(66\) 2.20164 0.271003
\(67\) −4.87802 −0.595946 −0.297973 0.954574i \(-0.596310\pi\)
−0.297973 + 0.954574i \(0.596310\pi\)
\(68\) −3.55606 −0.431236
\(69\) −5.71704 −0.688251
\(70\) −9.47474 −1.13245
\(71\) −4.59672 −0.545530 −0.272765 0.962081i \(-0.587938\pi\)
−0.272765 + 0.962081i \(0.587938\pi\)
\(72\) −1.00000 −0.117851
\(73\) 0.749503 0.0877227 0.0438614 0.999038i \(-0.486034\pi\)
0.0438614 + 0.999038i \(0.486034\pi\)
\(74\) 11.6357 1.35263
\(75\) −3.75770 −0.433902
\(76\) 4.75770 0.545746
\(77\) 7.04886 0.803292
\(78\) 6.95934 0.787990
\(79\) 12.9105 1.45254 0.726271 0.687408i \(-0.241252\pi\)
0.726271 + 0.687408i \(0.241252\pi\)
\(80\) 2.95934 0.330864
\(81\) 1.00000 0.111111
\(82\) −4.95114 −0.546762
\(83\) 15.4829 1.69947 0.849737 0.527207i \(-0.176761\pi\)
0.849737 + 0.527207i \(0.176761\pi\)
\(84\) −3.20164 −0.349328
\(85\) −10.5236 −1.14144
\(86\) −3.35442 −0.361717
\(87\) 2.79836 0.300016
\(88\) −2.20164 −0.234696
\(89\) −18.5544 −1.96676 −0.983382 0.181550i \(-0.941889\pi\)
−0.983382 + 0.181550i \(0.941889\pi\)
\(90\) −2.95934 −0.311942
\(91\) 22.2813 2.33572
\(92\) 5.71704 0.596043
\(93\) 4.35442 0.451533
\(94\) 7.36262 0.759396
\(95\) 14.0797 1.44454
\(96\) 1.00000 0.102062
\(97\) 1.95114 0.198109 0.0990543 0.995082i \(-0.468418\pi\)
0.0990543 + 0.995082i \(0.468418\pi\)
\(98\) −3.25050 −0.328350
\(99\) 2.20164 0.221273
\(100\) 3.75770 0.375770
\(101\) −9.92688 −0.987762 −0.493881 0.869530i \(-0.664422\pi\)
−0.493881 + 0.869530i \(0.664422\pi\)
\(102\) −3.55606 −0.352103
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) −6.95934 −0.682420
\(105\) −9.47474 −0.924640
\(106\) 8.67638 0.842725
\(107\) −12.5951 −1.21761 −0.608806 0.793319i \(-0.708351\pi\)
−0.608806 + 0.793319i \(0.708351\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 11.4829 1.09987 0.549933 0.835209i \(-0.314653\pi\)
0.549933 + 0.835209i \(0.314653\pi\)
\(110\) −6.51540 −0.621219
\(111\) 11.6357 1.10441
\(112\) 3.20164 0.302527
\(113\) −3.60492 −0.339122 −0.169561 0.985520i \(-0.554235\pi\)
−0.169561 + 0.985520i \(0.554235\pi\)
\(114\) 4.75770 0.445600
\(115\) 16.9187 1.57768
\(116\) −2.79836 −0.259821
\(117\) 6.95934 0.643391
\(118\) 11.8780 1.09346
\(119\) −11.3852 −1.04368
\(120\) 2.95934 0.270150
\(121\) −6.15278 −0.559344
\(122\) 5.91048 0.535110
\(123\) −4.95114 −0.446430
\(124\) −4.35442 −0.391039
\(125\) −3.67638 −0.328826
\(126\) −3.20164 −0.285225
\(127\) 16.7885 1.48974 0.744870 0.667210i \(-0.232512\pi\)
0.744870 + 0.667210i \(0.232512\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −3.35442 −0.295340
\(130\) −20.5951 −1.80631
\(131\) −2.91868 −0.255007 −0.127503 0.991838i \(-0.540696\pi\)
−0.127503 + 0.991838i \(0.540696\pi\)
\(132\) −2.20164 −0.191628
\(133\) 15.2324 1.32082
\(134\) 4.87802 0.421397
\(135\) −2.95934 −0.254700
\(136\) 3.55606 0.304930
\(137\) 11.2895 0.964527 0.482264 0.876026i \(-0.339815\pi\)
0.482264 + 0.876026i \(0.339815\pi\)
\(138\) 5.71704 0.486667
\(139\) 16.3626 1.38786 0.693930 0.720043i \(-0.255878\pi\)
0.693930 + 0.720043i \(0.255878\pi\)
\(140\) 9.47474 0.800762
\(141\) 7.36262 0.620045
\(142\) 4.59672 0.385748
\(143\) 15.3220 1.28129
\(144\) 1.00000 0.0833333
\(145\) −8.28130 −0.687725
\(146\) −0.749503 −0.0620293
\(147\) −3.25050 −0.268096
\(148\) −11.6357 −0.956451
\(149\) 5.16098 0.422804 0.211402 0.977399i \(-0.432197\pi\)
0.211402 + 0.977399i \(0.432197\pi\)
\(150\) 3.75770 0.306815
\(151\) −13.9675 −1.13666 −0.568331 0.822800i \(-0.692411\pi\)
−0.568331 + 0.822800i \(0.692411\pi\)
\(152\) −4.75770 −0.385901
\(153\) −3.55606 −0.287491
\(154\) −7.04886 −0.568013
\(155\) −12.8862 −1.03505
\(156\) −6.95934 −0.557193
\(157\) 15.3302 1.22348 0.611740 0.791059i \(-0.290470\pi\)
0.611740 + 0.791059i \(0.290470\pi\)
\(158\) −12.9105 −1.02710
\(159\) 8.67638 0.688082
\(160\) −2.95934 −0.233956
\(161\) 18.3039 1.44255
\(162\) −1.00000 −0.0785674
\(163\) −22.8682 −1.79117 −0.895587 0.444887i \(-0.853244\pi\)
−0.895587 + 0.444887i \(0.853244\pi\)
\(164\) 4.95114 0.386619
\(165\) −6.51540 −0.507223
\(166\) −15.4829 −1.20171
\(167\) 6.32362 0.489336 0.244668 0.969607i \(-0.421321\pi\)
0.244668 + 0.969607i \(0.421321\pi\)
\(168\) 3.20164 0.247012
\(169\) 35.4324 2.72557
\(170\) 10.5236 0.807123
\(171\) 4.75770 0.363831
\(172\) 3.35442 0.255772
\(173\) −7.16918 −0.545063 −0.272531 0.962147i \(-0.587861\pi\)
−0.272531 + 0.962147i \(0.587861\pi\)
\(174\) −2.79836 −0.212143
\(175\) 12.0308 0.909444
\(176\) 2.20164 0.165955
\(177\) 11.8780 0.892807
\(178\) 18.5544 1.39071
\(179\) 5.42589 0.405550 0.202775 0.979225i \(-0.435004\pi\)
0.202775 + 0.979225i \(0.435004\pi\)
\(180\) 2.95934 0.220576
\(181\) −7.36262 −0.547259 −0.273630 0.961835i \(-0.588224\pi\)
−0.273630 + 0.961835i \(0.588224\pi\)
\(182\) −22.2813 −1.65160
\(183\) 5.91048 0.436916
\(184\) −5.71704 −0.421466
\(185\) −34.4341 −2.53164
\(186\) −4.35442 −0.319282
\(187\) −7.82917 −0.572525
\(188\) −7.36262 −0.536974
\(189\) −3.20164 −0.232885
\(190\) −14.0797 −1.02145
\(191\) 21.7885 1.57656 0.788281 0.615316i \(-0.210972\pi\)
0.788281 + 0.615316i \(0.210972\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −11.4423 −0.823634 −0.411817 0.911267i \(-0.635106\pi\)
−0.411817 + 0.911267i \(0.635106\pi\)
\(194\) −1.95114 −0.140084
\(195\) −20.5951 −1.47484
\(196\) 3.25050 0.232178
\(197\) 0.0406586 0.00289680 0.00144840 0.999999i \(-0.499539\pi\)
0.00144840 + 0.999999i \(0.499539\pi\)
\(198\) −2.20164 −0.156464
\(199\) −9.60492 −0.680875 −0.340437 0.940267i \(-0.610575\pi\)
−0.340437 + 0.940267i \(0.610575\pi\)
\(200\) −3.75770 −0.265710
\(201\) 4.87802 0.344069
\(202\) 9.92688 0.698453
\(203\) −8.95934 −0.628822
\(204\) 3.55606 0.248974
\(205\) 14.6521 1.02335
\(206\) −14.0000 −0.975426
\(207\) 5.71704 0.397362
\(208\) 6.95934 0.482544
\(209\) 10.4747 0.724553
\(210\) 9.47474 0.653820
\(211\) −4.51540 −0.310853 −0.155427 0.987847i \(-0.549675\pi\)
−0.155427 + 0.987847i \(0.549675\pi\)
\(212\) −8.67638 −0.595897
\(213\) 4.59672 0.314962
\(214\) 12.5951 0.860981
\(215\) 9.92688 0.677008
\(216\) 1.00000 0.0680414
\(217\) −13.9413 −0.946397
\(218\) −11.4829 −0.777723
\(219\) −0.749503 −0.0506467
\(220\) 6.51540 0.439268
\(221\) −24.7479 −1.66472
\(222\) −11.6357 −0.780939
\(223\) 1.00000 0.0669650
\(224\) −3.20164 −0.213919
\(225\) 3.75770 0.250513
\(226\) 3.60492 0.239796
\(227\) −10.8292 −0.718757 −0.359379 0.933192i \(-0.617011\pi\)
−0.359379 + 0.933192i \(0.617011\pi\)
\(228\) −4.75770 −0.315086
\(229\) −28.2082 −1.86405 −0.932025 0.362395i \(-0.881959\pi\)
−0.932025 + 0.362395i \(0.881959\pi\)
\(230\) −16.9187 −1.11558
\(231\) −7.04886 −0.463781
\(232\) 2.79836 0.183721
\(233\) −23.9901 −1.57165 −0.785823 0.618451i \(-0.787761\pi\)
−0.785823 + 0.618451i \(0.787761\pi\)
\(234\) −6.95934 −0.454946
\(235\) −21.7885 −1.42133
\(236\) −11.8780 −0.773194
\(237\) −12.9105 −0.838626
\(238\) 11.3852 0.737995
\(239\) 11.7741 0.761603 0.380802 0.924657i \(-0.375648\pi\)
0.380802 + 0.924657i \(0.375648\pi\)
\(240\) −2.95934 −0.191025
\(241\) −23.7252 −1.52828 −0.764139 0.645052i \(-0.776836\pi\)
−0.764139 + 0.645052i \(0.776836\pi\)
\(242\) 6.15278 0.395516
\(243\) −1.00000 −0.0641500
\(244\) −5.91048 −0.378380
\(245\) 9.61933 0.614556
\(246\) 4.95114 0.315673
\(247\) 33.1105 2.10677
\(248\) 4.35442 0.276506
\(249\) −15.4829 −0.981192
\(250\) 3.67638 0.232515
\(251\) −14.6033 −0.921750 −0.460875 0.887465i \(-0.652464\pi\)
−0.460875 + 0.887465i \(0.652464\pi\)
\(252\) 3.20164 0.201684
\(253\) 12.5869 0.791330
\(254\) −16.7885 −1.05340
\(255\) 10.5236 0.659014
\(256\) 1.00000 0.0625000
\(257\) −0.234100 −0.0146027 −0.00730137 0.999973i \(-0.502324\pi\)
−0.00730137 + 0.999973i \(0.502324\pi\)
\(258\) 3.35442 0.208837
\(259\) −37.2534 −2.31481
\(260\) 20.5951 1.27725
\(261\) −2.79836 −0.173214
\(262\) 2.91868 0.180317
\(263\) −12.3138 −0.759299 −0.379650 0.925130i \(-0.623955\pi\)
−0.379650 + 0.925130i \(0.623955\pi\)
\(264\) 2.20164 0.135502
\(265\) −25.6764 −1.57729
\(266\) −15.2324 −0.933961
\(267\) 18.5544 1.13551
\(268\) −4.87802 −0.297973
\(269\) 5.35442 0.326465 0.163232 0.986588i \(-0.447808\pi\)
0.163232 + 0.986588i \(0.447808\pi\)
\(270\) 2.95934 0.180100
\(271\) −22.5462 −1.36958 −0.684792 0.728738i \(-0.740107\pi\)
−0.684792 + 0.728738i \(0.740107\pi\)
\(272\) −3.55606 −0.215618
\(273\) −22.2813 −1.34853
\(274\) −11.2895 −0.682024
\(275\) 8.27311 0.498887
\(276\) −5.71704 −0.344126
\(277\) 24.0308 1.44387 0.721936 0.691960i \(-0.243253\pi\)
0.721936 + 0.691960i \(0.243253\pi\)
\(278\) −16.3626 −0.981365
\(279\) −4.35442 −0.260692
\(280\) −9.47474 −0.566224
\(281\) 1.81476 0.108259 0.0541297 0.998534i \(-0.482762\pi\)
0.0541297 + 0.998534i \(0.482762\pi\)
\(282\) −7.36262 −0.438438
\(283\) 15.8374 0.941434 0.470717 0.882284i \(-0.343995\pi\)
0.470717 + 0.882284i \(0.343995\pi\)
\(284\) −4.59672 −0.272765
\(285\) −14.0797 −0.834007
\(286\) −15.3220 −0.906007
\(287\) 15.8518 0.935701
\(288\) −1.00000 −0.0589256
\(289\) −4.35442 −0.256142
\(290\) 8.28130 0.486295
\(291\) −1.95114 −0.114378
\(292\) 0.749503 0.0438614
\(293\) 17.9088 1.04625 0.523123 0.852257i \(-0.324767\pi\)
0.523123 + 0.852257i \(0.324767\pi\)
\(294\) 3.25050 0.189573
\(295\) −35.1511 −2.04658
\(296\) 11.6357 0.676313
\(297\) −2.20164 −0.127752
\(298\) −5.16098 −0.298968
\(299\) 39.7869 2.30093
\(300\) −3.75770 −0.216951
\(301\) 10.7397 0.619023
\(302\) 13.9675 0.803742
\(303\) 9.92688 0.570284
\(304\) 4.75770 0.272873
\(305\) −17.4911 −1.00154
\(306\) 3.55606 0.203287
\(307\) 7.00000 0.399511 0.199756 0.979846i \(-0.435985\pi\)
0.199756 + 0.979846i \(0.435985\pi\)
\(308\) 7.04886 0.401646
\(309\) −14.0000 −0.796432
\(310\) 12.8862 0.731888
\(311\) 14.0065 0.794238 0.397119 0.917767i \(-0.370010\pi\)
0.397119 + 0.917767i \(0.370010\pi\)
\(312\) 6.95934 0.393995
\(313\) 14.4829 0.818624 0.409312 0.912394i \(-0.365769\pi\)
0.409312 + 0.912394i \(0.365769\pi\)
\(314\) −15.3302 −0.865131
\(315\) 9.47474 0.533841
\(316\) 12.9105 0.726271
\(317\) 35.1511 1.97428 0.987142 0.159845i \(-0.0510996\pi\)
0.987142 + 0.159845i \(0.0510996\pi\)
\(318\) −8.67638 −0.486547
\(319\) −6.16098 −0.344949
\(320\) 2.95934 0.165432
\(321\) 12.5951 0.702988
\(322\) −18.3039 −1.02004
\(323\) −16.9187 −0.941381
\(324\) 1.00000 0.0555556
\(325\) 26.1511 1.45060
\(326\) 22.8682 1.26655
\(327\) −11.4829 −0.635008
\(328\) −4.95114 −0.273381
\(329\) −23.5725 −1.29959
\(330\) 6.51540 0.358661
\(331\) 1.42589 0.0783739 0.0391869 0.999232i \(-0.487523\pi\)
0.0391869 + 0.999232i \(0.487523\pi\)
\(332\) 15.4829 0.849737
\(333\) −11.6357 −0.637634
\(334\) −6.32362 −0.346013
\(335\) −14.4357 −0.788709
\(336\) −3.20164 −0.174664
\(337\) −11.1220 −0.605853 −0.302926 0.953014i \(-0.597964\pi\)
−0.302926 + 0.953014i \(0.597964\pi\)
\(338\) −35.4324 −1.92727
\(339\) 3.60492 0.195792
\(340\) −10.5236 −0.570722
\(341\) −9.58687 −0.519158
\(342\) −4.75770 −0.257267
\(343\) −12.0046 −0.648185
\(344\) −3.35442 −0.180858
\(345\) −16.9187 −0.910871
\(346\) 7.16918 0.385417
\(347\) 29.0226 1.55802 0.779008 0.627014i \(-0.215723\pi\)
0.779008 + 0.627014i \(0.215723\pi\)
\(348\) 2.79836 0.150008
\(349\) −5.36427 −0.287143 −0.143571 0.989640i \(-0.545859\pi\)
−0.143571 + 0.989640i \(0.545859\pi\)
\(350\) −12.0308 −0.643074
\(351\) −6.95934 −0.371462
\(352\) −2.20164 −0.117348
\(353\) 5.12032 0.272527 0.136264 0.990673i \(-0.456491\pi\)
0.136264 + 0.990673i \(0.456491\pi\)
\(354\) −11.8780 −0.631310
\(355\) −13.6033 −0.721986
\(356\) −18.5544 −0.983382
\(357\) 11.3852 0.602570
\(358\) −5.42589 −0.286767
\(359\) −3.35277 −0.176952 −0.0884762 0.996078i \(-0.528200\pi\)
−0.0884762 + 0.996078i \(0.528200\pi\)
\(360\) −2.95934 −0.155971
\(361\) 3.63573 0.191354
\(362\) 7.36262 0.386971
\(363\) 6.15278 0.322937
\(364\) 22.2813 1.16786
\(365\) 2.21804 0.116097
\(366\) −5.91048 −0.308946
\(367\) 13.4928 0.704318 0.352159 0.935940i \(-0.385448\pi\)
0.352159 + 0.935940i \(0.385448\pi\)
\(368\) 5.71704 0.298021
\(369\) 4.95114 0.257746
\(370\) 34.4341 1.79014
\(371\) −27.7787 −1.44220
\(372\) 4.35442 0.225766
\(373\) 1.37082 0.0709783 0.0354892 0.999370i \(-0.488701\pi\)
0.0354892 + 0.999370i \(0.488701\pi\)
\(374\) 7.82917 0.404837
\(375\) 3.67638 0.189848
\(376\) 7.36262 0.379698
\(377\) −19.4747 −1.00300
\(378\) 3.20164 0.164675
\(379\) 22.3934 1.15027 0.575137 0.818057i \(-0.304949\pi\)
0.575137 + 0.818057i \(0.304949\pi\)
\(380\) 14.0797 0.722272
\(381\) −16.7885 −0.860101
\(382\) −21.7885 −1.11480
\(383\) −12.7577 −0.651888 −0.325944 0.945389i \(-0.605682\pi\)
−0.325944 + 0.945389i \(0.605682\pi\)
\(384\) 1.00000 0.0510310
\(385\) 20.8600 1.06312
\(386\) 11.4423 0.582397
\(387\) 3.35442 0.170515
\(388\) 1.95114 0.0990543
\(389\) −36.5236 −1.85182 −0.925910 0.377744i \(-0.876700\pi\)
−0.925910 + 0.377744i \(0.876700\pi\)
\(390\) 20.5951 1.04287
\(391\) −20.3302 −1.02814
\(392\) −3.25050 −0.164175
\(393\) 2.91868 0.147228
\(394\) −0.0406586 −0.00204835
\(395\) 38.2065 1.92238
\(396\) 2.20164 0.110637
\(397\) 23.5787 1.18338 0.591690 0.806166i \(-0.298461\pi\)
0.591690 + 0.806166i \(0.298461\pi\)
\(398\) 9.60492 0.481451
\(399\) −15.2324 −0.762576
\(400\) 3.75770 0.187885
\(401\) −12.5561 −0.627020 −0.313510 0.949585i \(-0.601505\pi\)
−0.313510 + 0.949585i \(0.601505\pi\)
\(402\) −4.87802 −0.243294
\(403\) −30.3039 −1.50955
\(404\) −9.92688 −0.493881
\(405\) 2.95934 0.147051
\(406\) 8.95934 0.444645
\(407\) −25.6177 −1.26982
\(408\) −3.55606 −0.176051
\(409\) −28.1187 −1.39038 −0.695189 0.718827i \(-0.744679\pi\)
−0.695189 + 0.718827i \(0.744679\pi\)
\(410\) −14.6521 −0.723617
\(411\) −11.2895 −0.556870
\(412\) 14.0000 0.689730
\(413\) −38.0292 −1.87129
\(414\) −5.71704 −0.280977
\(415\) 45.8193 2.24918
\(416\) −6.95934 −0.341210
\(417\) −16.3626 −0.801281
\(418\) −10.4747 −0.512337
\(419\) 19.8924 0.971809 0.485905 0.874012i \(-0.338490\pi\)
0.485905 + 0.874012i \(0.338490\pi\)
\(420\) −9.47474 −0.462320
\(421\) 4.64392 0.226331 0.113166 0.993576i \(-0.463901\pi\)
0.113166 + 0.993576i \(0.463901\pi\)
\(422\) 4.51540 0.219806
\(423\) −7.36262 −0.357983
\(424\) 8.67638 0.421362
\(425\) −13.3626 −0.648182
\(426\) −4.59672 −0.222712
\(427\) −18.9232 −0.915760
\(428\) −12.5951 −0.608806
\(429\) −15.3220 −0.739751
\(430\) −9.92688 −0.478717
\(431\) 5.78031 0.278428 0.139214 0.990262i \(-0.455542\pi\)
0.139214 + 0.990262i \(0.455542\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 28.0862 1.34974 0.674869 0.737938i \(-0.264200\pi\)
0.674869 + 0.737938i \(0.264200\pi\)
\(434\) 13.9413 0.669203
\(435\) 8.28130 0.397058
\(436\) 11.4829 0.549933
\(437\) 27.2000 1.30115
\(438\) 0.749503 0.0358127
\(439\) −31.4423 −1.50066 −0.750329 0.661064i \(-0.770105\pi\)
−0.750329 + 0.661064i \(0.770105\pi\)
\(440\) −6.51540 −0.310610
\(441\) 3.25050 0.154786
\(442\) 24.7479 1.17714
\(443\) 2.34622 0.111472 0.0557362 0.998446i \(-0.482249\pi\)
0.0557362 + 0.998446i \(0.482249\pi\)
\(444\) 11.6357 0.552207
\(445\) −54.9088 −2.60293
\(446\) −1.00000 −0.0473514
\(447\) −5.16098 −0.244106
\(448\) 3.20164 0.151263
\(449\) 18.1934 0.858602 0.429301 0.903162i \(-0.358760\pi\)
0.429301 + 0.903162i \(0.358760\pi\)
\(450\) −3.75770 −0.177140
\(451\) 10.9006 0.513291
\(452\) −3.60492 −0.169561
\(453\) 13.9675 0.656252
\(454\) 10.8292 0.508238
\(455\) 65.9380 3.09122
\(456\) 4.75770 0.222800
\(457\) −35.1757 −1.64545 −0.822726 0.568439i \(-0.807548\pi\)
−0.822726 + 0.568439i \(0.807548\pi\)
\(458\) 28.2082 1.31808
\(459\) 3.55606 0.165983
\(460\) 16.9187 0.788838
\(461\) −2.26491 −0.105487 −0.0527436 0.998608i \(-0.516797\pi\)
−0.0527436 + 0.998608i \(0.516797\pi\)
\(462\) 7.04886 0.327943
\(463\) −11.6682 −0.542267 −0.271133 0.962542i \(-0.587398\pi\)
−0.271133 + 0.962542i \(0.587398\pi\)
\(464\) −2.79836 −0.129911
\(465\) 12.8862 0.597584
\(466\) 23.9901 1.11132
\(467\) 13.3462 0.617590 0.308795 0.951129i \(-0.400074\pi\)
0.308795 + 0.951129i \(0.400074\pi\)
\(468\) 6.95934 0.321696
\(469\) −15.6177 −0.721157
\(470\) 21.7885 1.00503
\(471\) −15.3302 −0.706377
\(472\) 11.8780 0.546730
\(473\) 7.38523 0.339573
\(474\) 12.9105 0.592998
\(475\) 17.8780 0.820300
\(476\) −11.3852 −0.521841
\(477\) −8.67638 −0.397264
\(478\) −11.7741 −0.538535
\(479\) −21.4829 −0.981581 −0.490790 0.871278i \(-0.663292\pi\)
−0.490790 + 0.871278i \(0.663292\pi\)
\(480\) 2.95934 0.135075
\(481\) −80.9770 −3.69223
\(482\) 23.7252 1.08066
\(483\) −18.3039 −0.832857
\(484\) −6.15278 −0.279672
\(485\) 5.77410 0.262188
\(486\) 1.00000 0.0453609
\(487\) 30.6033 1.38677 0.693383 0.720569i \(-0.256119\pi\)
0.693383 + 0.720569i \(0.256119\pi\)
\(488\) 5.91048 0.267555
\(489\) 22.8682 1.03413
\(490\) −9.61933 −0.434557
\(491\) −34.5770 −1.56044 −0.780219 0.625506i \(-0.784893\pi\)
−0.780219 + 0.625506i \(0.784893\pi\)
\(492\) −4.95114 −0.223215
\(493\) 9.95114 0.448177
\(494\) −33.1105 −1.48971
\(495\) 6.51540 0.292846
\(496\) −4.35442 −0.195519
\(497\) −14.7170 −0.660150
\(498\) 15.4829 0.693807
\(499\) 12.3380 0.552326 0.276163 0.961111i \(-0.410937\pi\)
0.276163 + 0.961111i \(0.410937\pi\)
\(500\) −3.67638 −0.164413
\(501\) −6.32362 −0.282518
\(502\) 14.6033 0.651776
\(503\) 7.41313 0.330535 0.165268 0.986249i \(-0.447151\pi\)
0.165268 + 0.986249i \(0.447151\pi\)
\(504\) −3.20164 −0.142612
\(505\) −29.3770 −1.30726
\(506\) −12.5869 −0.559555
\(507\) −35.4324 −1.57361
\(508\) 16.7885 0.744870
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) −10.5236 −0.465993
\(511\) 2.39964 0.106154
\(512\) −1.00000 −0.0441942
\(513\) −4.75770 −0.210058
\(514\) 0.234100 0.0103257
\(515\) 41.4308 1.82566
\(516\) −3.35442 −0.147670
\(517\) −16.2098 −0.712908
\(518\) 37.2534 1.63682
\(519\) 7.16918 0.314692
\(520\) −20.5951 −0.903153
\(521\) 5.51706 0.241707 0.120853 0.992670i \(-0.461437\pi\)
0.120853 + 0.992670i \(0.461437\pi\)
\(522\) 2.79836 0.122481
\(523\) −13.6033 −0.594829 −0.297415 0.954748i \(-0.596124\pi\)
−0.297415 + 0.954748i \(0.596124\pi\)
\(524\) −2.91868 −0.127503
\(525\) −12.0308 −0.525067
\(526\) 12.3138 0.536906
\(527\) 15.4846 0.674520
\(528\) −2.20164 −0.0958141
\(529\) 9.68458 0.421069
\(530\) 25.6764 1.11531
\(531\) −11.8780 −0.515462
\(532\) 15.2324 0.660410
\(533\) 34.4567 1.49249
\(534\) −18.5544 −0.802928
\(535\) −37.2731 −1.61146
\(536\) 4.87802 0.210699
\(537\) −5.42589 −0.234144
\(538\) −5.35442 −0.230846
\(539\) 7.15642 0.308249
\(540\) −2.95934 −0.127350
\(541\) 1.75935 0.0756406 0.0378203 0.999285i \(-0.487959\pi\)
0.0378203 + 0.999285i \(0.487959\pi\)
\(542\) 22.5462 0.968443
\(543\) 7.36262 0.315960
\(544\) 3.55606 0.152465
\(545\) 33.9820 1.45563
\(546\) 22.2813 0.953552
\(547\) 41.4242 1.77117 0.885586 0.464475i \(-0.153757\pi\)
0.885586 + 0.464475i \(0.153757\pi\)
\(548\) 11.2895 0.482264
\(549\) −5.91048 −0.252253
\(550\) −8.27311 −0.352766
\(551\) −13.3138 −0.567185
\(552\) 5.71704 0.243334
\(553\) 41.3347 1.75773
\(554\) −24.0308 −1.02097
\(555\) 34.4341 1.46165
\(556\) 16.3626 0.693930
\(557\) 23.7659 1.00699 0.503497 0.863997i \(-0.332047\pi\)
0.503497 + 0.863997i \(0.332047\pi\)
\(558\) 4.35442 0.184337
\(559\) 23.3446 0.987370
\(560\) 9.47474 0.400381
\(561\) 7.82917 0.330548
\(562\) −1.81476 −0.0765509
\(563\) 23.7088 0.999209 0.499604 0.866254i \(-0.333479\pi\)
0.499604 + 0.866254i \(0.333479\pi\)
\(564\) 7.36262 0.310022
\(565\) −10.6682 −0.448814
\(566\) −15.8374 −0.665694
\(567\) 3.20164 0.134456
\(568\) 4.59672 0.192874
\(569\) 14.2731 0.598360 0.299180 0.954197i \(-0.403287\pi\)
0.299180 + 0.954197i \(0.403287\pi\)
\(570\) 14.0797 0.589732
\(571\) 9.87968 0.413452 0.206726 0.978399i \(-0.433719\pi\)
0.206726 + 0.978399i \(0.433719\pi\)
\(572\) 15.3220 0.640643
\(573\) −21.7885 −0.910228
\(574\) −15.8518 −0.661640
\(575\) 21.4829 0.895901
\(576\) 1.00000 0.0416667
\(577\) 23.7741 0.989729 0.494864 0.868970i \(-0.335218\pi\)
0.494864 + 0.868970i \(0.335218\pi\)
\(578\) 4.35442 0.181120
\(579\) 11.4423 0.475525
\(580\) −8.28130 −0.343862
\(581\) 49.5708 2.05654
\(582\) 1.95114 0.0808775
\(583\) −19.1023 −0.791135
\(584\) −0.749503 −0.0310147
\(585\) 20.5951 0.851501
\(586\) −17.9088 −0.739807
\(587\) −20.4567 −0.844338 −0.422169 0.906517i \(-0.638731\pi\)
−0.422169 + 0.906517i \(0.638731\pi\)
\(588\) −3.25050 −0.134048
\(589\) −20.7170 −0.853631
\(590\) 35.1511 1.44715
\(591\) −0.0406586 −0.00167247
\(592\) −11.6357 −0.478225
\(593\) 19.3626 0.795128 0.397564 0.917575i \(-0.369856\pi\)
0.397564 + 0.917575i \(0.369856\pi\)
\(594\) 2.20164 0.0903344
\(595\) −33.6928 −1.38127
\(596\) 5.16098 0.211402
\(597\) 9.60492 0.393103
\(598\) −39.7869 −1.62701
\(599\) −39.8193 −1.62697 −0.813487 0.581584i \(-0.802433\pi\)
−0.813487 + 0.581584i \(0.802433\pi\)
\(600\) 3.75770 0.153408
\(601\) −21.0226 −0.857530 −0.428765 0.903416i \(-0.641051\pi\)
−0.428765 + 0.903416i \(0.641051\pi\)
\(602\) −10.7397 −0.437716
\(603\) −4.87802 −0.198649
\(604\) −13.9675 −0.568331
\(605\) −18.2082 −0.740268
\(606\) −9.92688 −0.403252
\(607\) −22.5400 −0.914870 −0.457435 0.889243i \(-0.651232\pi\)
−0.457435 + 0.889243i \(0.651232\pi\)
\(608\) −4.75770 −0.192950
\(609\) 8.95934 0.363051
\(610\) 17.4911 0.708196
\(611\) −51.2390 −2.07291
\(612\) −3.55606 −0.143745
\(613\) 11.7560 0.474822 0.237411 0.971409i \(-0.423701\pi\)
0.237411 + 0.971409i \(0.423701\pi\)
\(614\) −7.00000 −0.282497
\(615\) −14.6521 −0.590831
\(616\) −7.04886 −0.284007
\(617\) −12.4423 −0.500908 −0.250454 0.968129i \(-0.580580\pi\)
−0.250454 + 0.968129i \(0.580580\pi\)
\(618\) 14.0000 0.563163
\(619\) −5.51375 −0.221616 −0.110808 0.993842i \(-0.535344\pi\)
−0.110808 + 0.993842i \(0.535344\pi\)
\(620\) −12.8862 −0.517523
\(621\) −5.71704 −0.229417
\(622\) −14.0065 −0.561611
\(623\) −59.4045 −2.37999
\(624\) −6.95934 −0.278597
\(625\) −29.6682 −1.18673
\(626\) −14.4829 −0.578855
\(627\) −10.4747 −0.418321
\(628\) 15.3302 0.611740
\(629\) 41.3774 1.64982
\(630\) −9.47474 −0.377483
\(631\) 23.6911 0.943129 0.471564 0.881832i \(-0.343689\pi\)
0.471564 + 0.881832i \(0.343689\pi\)
\(632\) −12.9105 −0.513551
\(633\) 4.51540 0.179471
\(634\) −35.1511 −1.39603
\(635\) 49.6829 1.97161
\(636\) 8.67638 0.344041
\(637\) 22.6213 0.896289
\(638\) 6.16098 0.243916
\(639\) −4.59672 −0.181843
\(640\) −2.95934 −0.116978
\(641\) 14.3121 0.565294 0.282647 0.959224i \(-0.408787\pi\)
0.282647 + 0.959224i \(0.408787\pi\)
\(642\) −12.5951 −0.497088
\(643\) −9.78851 −0.386021 −0.193011 0.981197i \(-0.561825\pi\)
−0.193011 + 0.981197i \(0.561825\pi\)
\(644\) 18.3039 0.721275
\(645\) −9.92688 −0.390871
\(646\) 16.9187 0.665657
\(647\) −1.16098 −0.0456429 −0.0228214 0.999740i \(-0.507265\pi\)
−0.0228214 + 0.999740i \(0.507265\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −26.1511 −1.02652
\(650\) −26.1511 −1.02573
\(651\) 13.9413 0.546402
\(652\) −22.8682 −0.895587
\(653\) −9.12687 −0.357162 −0.178581 0.983925i \(-0.557151\pi\)
−0.178581 + 0.983925i \(0.557151\pi\)
\(654\) 11.4829 0.449019
\(655\) −8.63738 −0.337490
\(656\) 4.95114 0.193310
\(657\) 0.749503 0.0292409
\(658\) 23.5725 0.918950
\(659\) 12.8698 0.501337 0.250669 0.968073i \(-0.419350\pi\)
0.250669 + 0.968073i \(0.419350\pi\)
\(660\) −6.51540 −0.253612
\(661\) 22.6341 0.880363 0.440182 0.897909i \(-0.354914\pi\)
0.440182 + 0.897909i \(0.354914\pi\)
\(662\) −1.42589 −0.0554187
\(663\) 24.7479 0.961127
\(664\) −15.4829 −0.600855
\(665\) 45.0780 1.74805
\(666\) 11.6357 0.450875
\(667\) −15.9983 −0.619458
\(668\) 6.32362 0.244668
\(669\) −1.00000 −0.0386622
\(670\) 14.4357 0.557701
\(671\) −13.0128 −0.502352
\(672\) 3.20164 0.123506
\(673\) −0.468533 −0.0180606 −0.00903031 0.999959i \(-0.502874\pi\)
−0.00903031 + 0.999959i \(0.502874\pi\)
\(674\) 11.1220 0.428402
\(675\) −3.75770 −0.144634
\(676\) 35.4324 1.36279
\(677\) −49.4406 −1.90016 −0.950079 0.312010i \(-0.898998\pi\)
−0.950079 + 0.312010i \(0.898998\pi\)
\(678\) −3.60492 −0.138446
\(679\) 6.24686 0.239732
\(680\) 10.5236 0.403562
\(681\) 10.8292 0.414975
\(682\) 9.58687 0.367100
\(683\) 16.8616 0.645192 0.322596 0.946537i \(-0.395444\pi\)
0.322596 + 0.946537i \(0.395444\pi\)
\(684\) 4.75770 0.181915
\(685\) 33.4095 1.27651
\(686\) 12.0046 0.458336
\(687\) 28.2082 1.07621
\(688\) 3.35442 0.127886
\(689\) −60.3819 −2.30037
\(690\) 16.9187 0.644083
\(691\) −14.9088 −0.567159 −0.283579 0.958949i \(-0.591522\pi\)
−0.283579 + 0.958949i \(0.591522\pi\)
\(692\) −7.16918 −0.272531
\(693\) 7.04886 0.267764
\(694\) −29.0226 −1.10168
\(695\) 48.4226 1.83677
\(696\) −2.79836 −0.106072
\(697\) −17.6066 −0.666896
\(698\) 5.36427 0.203041
\(699\) 23.9901 0.907391
\(700\) 12.0308 0.454722
\(701\) −8.94328 −0.337783 −0.168891 0.985635i \(-0.554019\pi\)
−0.168891 + 0.985635i \(0.554019\pi\)
\(702\) 6.95934 0.262663
\(703\) −55.3593 −2.08792
\(704\) 2.20164 0.0829774
\(705\) 21.7885 0.820603
\(706\) −5.12032 −0.192706
\(707\) −31.7823 −1.19530
\(708\) 11.8780 0.446403
\(709\) −13.2341 −0.497017 −0.248509 0.968630i \(-0.579940\pi\)
−0.248509 + 0.968630i \(0.579940\pi\)
\(710\) 13.6033 0.510521
\(711\) 12.9105 0.484181
\(712\) 18.5544 0.695356
\(713\) −24.8944 −0.932303
\(714\) −11.3852 −0.426082
\(715\) 45.3429 1.69573
\(716\) 5.42589 0.202775
\(717\) −11.7741 −0.439712
\(718\) 3.35277 0.125124
\(719\) 48.1675 1.79635 0.898173 0.439643i \(-0.144895\pi\)
0.898173 + 0.439643i \(0.144895\pi\)
\(720\) 2.95934 0.110288
\(721\) 44.8230 1.66929
\(722\) −3.63573 −0.135308
\(723\) 23.7252 0.882351
\(724\) −7.36262 −0.273630
\(725\) −10.5154 −0.390532
\(726\) −6.15278 −0.228351
\(727\) 1.84556 0.0684482 0.0342241 0.999414i \(-0.489104\pi\)
0.0342241 + 0.999414i \(0.489104\pi\)
\(728\) −22.2813 −0.825800
\(729\) 1.00000 0.0370370
\(730\) −2.21804 −0.0820932
\(731\) −11.9285 −0.441193
\(732\) 5.91048 0.218458
\(733\) 44.7137 1.65154 0.825770 0.564007i \(-0.190741\pi\)
0.825770 + 0.564007i \(0.190741\pi\)
\(734\) −13.4928 −0.498028
\(735\) −9.61933 −0.354814
\(736\) −5.71704 −0.210733
\(737\) −10.7397 −0.395600
\(738\) −4.95114 −0.182254
\(739\) 51.6973 1.90172 0.950859 0.309625i \(-0.100204\pi\)
0.950859 + 0.309625i \(0.100204\pi\)
\(740\) −34.4341 −1.26582
\(741\) −33.1105 −1.21634
\(742\) 27.7787 1.01979
\(743\) 27.5364 1.01021 0.505106 0.863058i \(-0.331454\pi\)
0.505106 + 0.863058i \(0.331454\pi\)
\(744\) −4.35442 −0.159641
\(745\) 15.2731 0.559563
\(746\) −1.37082 −0.0501893
\(747\) 15.4829 0.566491
\(748\) −7.82917 −0.286263
\(749\) −40.3249 −1.47344
\(750\) −3.67638 −0.134243
\(751\) −20.5967 −0.751585 −0.375793 0.926704i \(-0.622629\pi\)
−0.375793 + 0.926704i \(0.622629\pi\)
\(752\) −7.36262 −0.268487
\(753\) 14.6033 0.532173
\(754\) 19.4747 0.709228
\(755\) −41.3347 −1.50432
\(756\) −3.20164 −0.116443
\(757\) −17.7252 −0.644235 −0.322117 0.946700i \(-0.604395\pi\)
−0.322117 + 0.946700i \(0.604395\pi\)
\(758\) −22.3934 −0.813366
\(759\) −12.5869 −0.456874
\(760\) −14.0797 −0.510723
\(761\) 38.2554 1.38676 0.693378 0.720574i \(-0.256121\pi\)
0.693378 + 0.720574i \(0.256121\pi\)
\(762\) 16.7885 0.608184
\(763\) 36.7642 1.33096
\(764\) 21.7885 0.788281
\(765\) −10.5236 −0.380482
\(766\) 12.7577 0.460955
\(767\) −82.6632 −2.98480
\(768\) −1.00000 −0.0360844
\(769\) −9.86328 −0.355679 −0.177839 0.984060i \(-0.556911\pi\)
−0.177839 + 0.984060i \(0.556911\pi\)
\(770\) −20.8600 −0.751741
\(771\) 0.234100 0.00843090
\(772\) −11.4423 −0.411817
\(773\) −7.89409 −0.283931 −0.141965 0.989872i \(-0.545342\pi\)
−0.141965 + 0.989872i \(0.545342\pi\)
\(774\) −3.35442 −0.120572
\(775\) −16.3626 −0.587763
\(776\) −1.95114 −0.0700420
\(777\) 37.2534 1.33646
\(778\) 36.5236 1.30943
\(779\) 23.5561 0.843984
\(780\) −20.5951 −0.737422
\(781\) −10.1203 −0.362134
\(782\) 20.3302 0.727005
\(783\) 2.79836 0.100005
\(784\) 3.25050 0.116089
\(785\) 45.3672 1.61922
\(786\) −2.91868 −0.104106
\(787\) −1.58852 −0.0566247 −0.0283124 0.999599i \(-0.509013\pi\)
−0.0283124 + 0.999599i \(0.509013\pi\)
\(788\) 0.0406586 0.00144840
\(789\) 12.3138 0.438382
\(790\) −38.2065 −1.35933
\(791\) −11.5417 −0.410374
\(792\) −2.20164 −0.0782319
\(793\) −41.1331 −1.46068
\(794\) −23.5787 −0.836776
\(795\) 25.6764 0.910648
\(796\) −9.60492 −0.340437
\(797\) 53.3901 1.89118 0.945588 0.325368i \(-0.105488\pi\)
0.945588 + 0.325368i \(0.105488\pi\)
\(798\) 15.2324 0.539223
\(799\) 26.1819 0.926250
\(800\) −3.75770 −0.132855
\(801\) −18.5544 −0.655588
\(802\) 12.5561 0.443370
\(803\) 1.65014 0.0582320
\(804\) 4.87802 0.172035
\(805\) 54.1675 1.90915
\(806\) 30.3039 1.06741
\(807\) −5.35442 −0.188485
\(808\) 9.92688 0.349226
\(809\) 9.69079 0.340710 0.170355 0.985383i \(-0.445509\pi\)
0.170355 + 0.985383i \(0.445509\pi\)
\(810\) −2.95934 −0.103981
\(811\) −18.7967 −0.660042 −0.330021 0.943974i \(-0.607056\pi\)
−0.330021 + 0.943974i \(0.607056\pi\)
\(812\) −8.95934 −0.314411
\(813\) 22.5462 0.790730
\(814\) 25.6177 0.897899
\(815\) −67.6747 −2.37054
\(816\) 3.55606 0.124487
\(817\) 15.9593 0.558347
\(818\) 28.1187 0.983146
\(819\) 22.2813 0.778572
\(820\) 14.6521 0.511674
\(821\) 8.91703 0.311206 0.155603 0.987820i \(-0.450268\pi\)
0.155603 + 0.987820i \(0.450268\pi\)
\(822\) 11.2895 0.393767
\(823\) 1.10426 0.0384921 0.0192460 0.999815i \(-0.493873\pi\)
0.0192460 + 0.999815i \(0.493873\pi\)
\(824\) −14.0000 −0.487713
\(825\) −8.27311 −0.288033
\(826\) 38.0292 1.32320
\(827\) 11.2308 0.390533 0.195266 0.980750i \(-0.437443\pi\)
0.195266 + 0.980750i \(0.437443\pi\)
\(828\) 5.71704 0.198681
\(829\) −21.2406 −0.737718 −0.368859 0.929485i \(-0.620251\pi\)
−0.368859 + 0.929485i \(0.620251\pi\)
\(830\) −45.8193 −1.59041
\(831\) −24.0308 −0.833619
\(832\) 6.95934 0.241272
\(833\) −11.5590 −0.400494
\(834\) 16.3626 0.566591
\(835\) 18.7137 0.647616
\(836\) 10.4747 0.362277
\(837\) 4.35442 0.150511
\(838\) −19.8924 −0.687173
\(839\) −27.7154 −0.956842 −0.478421 0.878131i \(-0.658791\pi\)
−0.478421 + 0.878131i \(0.658791\pi\)
\(840\) 9.47474 0.326910
\(841\) −21.1692 −0.729972
\(842\) −4.64392 −0.160040
\(843\) −1.81476 −0.0625036
\(844\) −4.51540 −0.155427
\(845\) 104.857 3.60718
\(846\) 7.36262 0.253132
\(847\) −19.6990 −0.676865
\(848\) −8.67638 −0.297948
\(849\) −15.8374 −0.543537
\(850\) 13.3626 0.458334
\(851\) −66.5219 −2.28034
\(852\) 4.59672 0.157481
\(853\) 35.9967 1.23250 0.616252 0.787549i \(-0.288650\pi\)
0.616252 + 0.787549i \(0.288650\pi\)
\(854\) 18.9232 0.647540
\(855\) 14.0797 0.481514
\(856\) 12.5951 0.430491
\(857\) 4.62132 0.157861 0.0789306 0.996880i \(-0.474849\pi\)
0.0789306 + 0.996880i \(0.474849\pi\)
\(858\) 15.3220 0.523083
\(859\) −6.15113 −0.209874 −0.104937 0.994479i \(-0.533464\pi\)
−0.104937 + 0.994479i \(0.533464\pi\)
\(860\) 9.92688 0.338504
\(861\) −15.8518 −0.540227
\(862\) −5.78031 −0.196878
\(863\) 6.53147 0.222334 0.111167 0.993802i \(-0.464541\pi\)
0.111167 + 0.993802i \(0.464541\pi\)
\(864\) 1.00000 0.0340207
\(865\) −21.2160 −0.721367
\(866\) −28.0862 −0.954408
\(867\) 4.35442 0.147884
\(868\) −13.9413 −0.473198
\(869\) 28.4242 0.964226
\(870\) −8.28130 −0.280762
\(871\) −33.9478 −1.15028
\(872\) −11.4829 −0.388862
\(873\) 1.95114 0.0660362
\(874\) −27.2000 −0.920053
\(875\) −11.7705 −0.397914
\(876\) −0.749503 −0.0253234
\(877\) −28.6049 −0.965919 −0.482960 0.875643i \(-0.660438\pi\)
−0.482960 + 0.875643i \(0.660438\pi\)
\(878\) 31.4423 1.06113
\(879\) −17.9088 −0.604050
\(880\) 6.51540 0.219634
\(881\) 17.1265 0.577008 0.288504 0.957479i \(-0.406842\pi\)
0.288504 + 0.957479i \(0.406842\pi\)
\(882\) −3.25050 −0.109450
\(883\) 22.2485 0.748722 0.374361 0.927283i \(-0.377862\pi\)
0.374361 + 0.927283i \(0.377862\pi\)
\(884\) −24.7479 −0.832360
\(885\) 35.1511 1.18159
\(886\) −2.34622 −0.0788229
\(887\) 47.2045 1.58497 0.792487 0.609889i \(-0.208786\pi\)
0.792487 + 0.609889i \(0.208786\pi\)
\(888\) −11.6357 −0.390469
\(889\) 53.7508 1.80274
\(890\) 54.9088 1.84055
\(891\) 2.20164 0.0737577
\(892\) 1.00000 0.0334825
\(893\) −35.0292 −1.17221
\(894\) 5.16098 0.172609
\(895\) 16.0571 0.536728
\(896\) −3.20164 −0.106959
\(897\) −39.7869 −1.32844
\(898\) −18.1934 −0.607123
\(899\) 12.1852 0.406401
\(900\) 3.75770 0.125257
\(901\) 30.8538 1.02789
\(902\) −10.9006 −0.362951
\(903\) −10.7397 −0.357393
\(904\) 3.60492 0.119898
\(905\) −21.7885 −0.724275
\(906\) −13.9675 −0.464040
\(907\) −44.3836 −1.47373 −0.736866 0.676039i \(-0.763695\pi\)
−0.736866 + 0.676039i \(0.763695\pi\)
\(908\) −10.8292 −0.359379
\(909\) −9.92688 −0.329254
\(910\) −65.9380 −2.18582
\(911\) 20.7462 0.687352 0.343676 0.939088i \(-0.388328\pi\)
0.343676 + 0.939088i \(0.388328\pi\)
\(912\) −4.75770 −0.157543
\(913\) 34.0879 1.12814
\(914\) 35.1757 1.16351
\(915\) 17.4911 0.578239
\(916\) −28.2082 −0.932025
\(917\) −9.34457 −0.308585
\(918\) −3.55606 −0.117368
\(919\) −5.18723 −0.171111 −0.0855555 0.996333i \(-0.527266\pi\)
−0.0855555 + 0.996333i \(0.527266\pi\)
\(920\) −16.9187 −0.557792
\(921\) −7.00000 −0.230658
\(922\) 2.26491 0.0745907
\(923\) −31.9901 −1.05297
\(924\) −7.04886 −0.231890
\(925\) −43.7236 −1.43762
\(926\) 11.6682 0.383440
\(927\) 14.0000 0.459820
\(928\) 2.79836 0.0918607
\(929\) −14.7318 −0.483334 −0.241667 0.970359i \(-0.577694\pi\)
−0.241667 + 0.970359i \(0.577694\pi\)
\(930\) −12.8862 −0.422556
\(931\) 15.4649 0.506841
\(932\) −23.9901 −0.785823
\(933\) −14.0065 −0.458554
\(934\) −13.3462 −0.436702
\(935\) −23.1692 −0.757713
\(936\) −6.95934 −0.227473
\(937\) −52.5692 −1.71736 −0.858680 0.512513i \(-0.828715\pi\)
−0.858680 + 0.512513i \(0.828715\pi\)
\(938\) 15.6177 0.509935
\(939\) −14.4829 −0.472633
\(940\) −21.7885 −0.710663
\(941\) 37.9072 1.23574 0.617869 0.786281i \(-0.287996\pi\)
0.617869 + 0.786281i \(0.287996\pi\)
\(942\) 15.3302 0.499484
\(943\) 28.3059 0.921767
\(944\) −11.8780 −0.386597
\(945\) −9.47474 −0.308213
\(946\) −7.38523 −0.240115
\(947\) 26.1006 0.848156 0.424078 0.905626i \(-0.360598\pi\)
0.424078 + 0.905626i \(0.360598\pi\)
\(948\) −12.9105 −0.419313
\(949\) 5.21605 0.169320
\(950\) −17.8780 −0.580040
\(951\) −35.1511 −1.13985
\(952\) 11.3852 0.368997
\(953\) 12.5089 0.405202 0.202601 0.979261i \(-0.435061\pi\)
0.202601 + 0.979261i \(0.435061\pi\)
\(954\) 8.67638 0.280908
\(955\) 64.4796 2.08651
\(956\) 11.7741 0.380802
\(957\) 6.16098 0.199156
\(958\) 21.4829 0.694082
\(959\) 36.1449 1.16718
\(960\) −2.95934 −0.0955123
\(961\) −12.0390 −0.388355
\(962\) 80.9770 2.61080
\(963\) −12.5951 −0.405870
\(964\) −23.7252 −0.764139
\(965\) −33.8616 −1.09004
\(966\) 18.3039 0.588919
\(967\) −27.4242 −0.881904 −0.440952 0.897531i \(-0.645359\pi\)
−0.440952 + 0.897531i \(0.645359\pi\)
\(968\) 6.15278 0.197758
\(969\) 16.9187 0.543506
\(970\) −5.77410 −0.185395
\(971\) −49.0111 −1.57284 −0.786421 0.617691i \(-0.788068\pi\)
−0.786421 + 0.617691i \(0.788068\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 52.3872 1.67946
\(974\) −30.6033 −0.980592
\(975\) −26.1511 −0.837506
\(976\) −5.91048 −0.189190
\(977\) −50.3511 −1.61087 −0.805437 0.592681i \(-0.798070\pi\)
−0.805437 + 0.592681i \(0.798070\pi\)
\(978\) −22.8682 −0.731244
\(979\) −40.8501 −1.30558
\(980\) 9.61933 0.307278
\(981\) 11.4829 0.366622
\(982\) 34.5770 1.10340
\(983\) −48.8649 −1.55855 −0.779274 0.626684i \(-0.784412\pi\)
−0.779274 + 0.626684i \(0.784412\pi\)
\(984\) 4.95114 0.157837
\(985\) 0.120323 0.00383380
\(986\) −9.95114 −0.316909
\(987\) 23.5725 0.750320
\(988\) 33.1105 1.05338
\(989\) 19.1774 0.609805
\(990\) −6.51540 −0.207073
\(991\) −1.02591 −0.0325893 −0.0162946 0.999867i \(-0.505187\pi\)
−0.0162946 + 0.999867i \(0.505187\pi\)
\(992\) 4.35442 0.138253
\(993\) −1.42589 −0.0452492
\(994\) 14.7170 0.466796
\(995\) −28.4242 −0.901109
\(996\) −15.4829 −0.490596
\(997\) −7.67017 −0.242917 −0.121458 0.992597i \(-0.538757\pi\)
−0.121458 + 0.992597i \(0.538757\pi\)
\(998\) −12.3380 −0.390553
\(999\) 11.6357 0.368138
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.a.c.1.3 3
3.2 odd 2 4014.2.a.p.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.a.c.1.3 3 1.1 even 1 trivial
4014.2.a.p.1.1 3 3.2 odd 2