Properties

Label 1323.4.c
Level $1323$
Weight $4$
Character orbit 1323.c
Rep. character $\chi_{1323}(1322,\cdot)$
Character field $\Q$
Dimension $160$
Sturm bound $672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q\)
Sturm bound: \(672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1323, [\chi])\).

Total New Old
Modular forms 528 160 368
Cusp forms 480 160 320
Eisenstein series 48 0 48

Trace form

\( 160 q - 640 q^{4} + 2080 q^{16} - 468 q^{22} + 4324 q^{25} - 260 q^{37} + 1228 q^{43} - 2148 q^{46} - 2136 q^{58} - 8236 q^{64} - 1768 q^{67} - 1840 q^{79} - 1296 q^{85} + 10704 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1323, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1323, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1323, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 2}\)