Properties

Label 1323.4.bl
Level $1323$
Weight $4$
Character orbit 1323.bl
Rep. character $\chi_{1323}(100,\cdot)$
Character field $\Q(\zeta_{21})$
Dimension $1992$
Sturm bound $672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.bl (of order \(21\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 441 \)
Character field: \(\Q(\zeta_{21})\)
Sturm bound: \(672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1323, [\chi])\).

Total New Old
Modular forms 6120 2040 4080
Cusp forms 5976 1992 3984
Eisenstein series 144 48 96

Trace form

\( 1992 q + 8 q^{2} + 648 q^{4} + 45 q^{5} + 4 q^{8} - 10 q^{10} + 5 q^{11} + 7 q^{13} + 278 q^{14} + 2544 q^{16} - 134 q^{17} - 72 q^{19} - 355 q^{20} + 11 q^{22} - 205 q^{23} - 7905 q^{25} - 238 q^{26} + 144 q^{28}+ \cdots - 9027 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1323, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1323, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1323, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 2}\)