Properties

Label 1323.4.be
Level $1323$
Weight $4$
Character orbit 1323.be
Rep. character $\chi_{1323}(68,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $2136$
Sturm bound $672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.be (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 189 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1323, [\chi])\).

Total New Old
Modular forms 3072 2184 888
Cusp forms 2976 2136 840
Eisenstein series 96 48 48

Trace form

\( 2136 q + 3 q^{2} + 9 q^{3} + 3 q^{4} + 9 q^{5} - 36 q^{6} - 36 q^{8} + 99 q^{9} - 21 q^{11} + 9 q^{12} - 288 q^{15} - 21 q^{16} + 18 q^{17} + 3 q^{18} - 72 q^{20} - 24 q^{22} + 441 q^{23} + 9 q^{24} + 3 q^{25}+ \cdots - 1440 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1323, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1323, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1323, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 2}\)