Properties

Label 132.2.c.d.23.3
Level $132$
Weight $2$
Character 132.23
Analytic conductor $1.054$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [132,2,Mod(23,132)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(132, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("132.23"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 132 = 2^{2} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 132.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.05402530668\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.386672896.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} - 2x^{5} + 2x^{4} - 4x^{3} - 4x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 23.3
Root \(-0.835949 + 1.14070i\) of defining polynomial
Character \(\chi\) \(=\) 132.23
Dual form 132.2.c.d.23.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.835949 - 1.14070i) q^{2} +(1.10238 + 1.33595i) q^{3} +(-0.602380 + 1.90713i) q^{4} +0.671897i q^{5} +(0.602380 - 2.37427i) q^{6} +2.00000i q^{7} +(2.67901 - 0.907128i) q^{8} +(-0.569517 + 2.94545i) q^{9} +(0.766431 - 0.561672i) q^{10} -1.00000 q^{11} +(-3.21188 + 1.29763i) q^{12} +4.56279 q^{13} +(2.28139 - 1.67190i) q^{14} +(-0.897620 + 0.740686i) q^{15} +(-3.27428 - 2.29763i) q^{16} -4.40952i q^{17} +(3.83595 - 1.81259i) q^{18} -4.56279i q^{19} +(-1.28139 - 0.404737i) q^{20} +(-2.67190 + 2.20476i) q^{21} +(0.835949 + 1.14070i) q^{22} -3.42375 q^{23} +(4.16517 + 2.57903i) q^{24} +4.54855 q^{25} +(-3.81426 - 5.20476i) q^{26} +(-4.56279 + 2.48615i) q^{27} +(-3.81426 - 1.20476i) q^{28} +4.00000i q^{29} +(1.59526 + 0.404737i) q^{30} -1.32810i q^{31} +(0.116226 + 5.65566i) q^{32} +(-1.10238 - 1.33595i) q^{33} +(-5.02993 + 3.68613i) q^{34} -1.34379 q^{35} +(-5.27428 - 2.86042i) q^{36} -11.9865 q^{37} +(-5.20476 + 3.81426i) q^{38} +(5.02993 + 6.09565i) q^{39} +(0.609497 + 1.80002i) q^{40} -4.93428i q^{41} +(4.74853 + 1.20476i) q^{42} -8.97231i q^{43} +(0.602380 - 1.90713i) q^{44} +(-1.97904 - 0.382657i) q^{45} +(2.86208 + 3.90547i) q^{46} +5.21899 q^{47} +(-0.539980 - 6.90713i) q^{48} +3.00000 q^{49} +(-3.80236 - 5.18852i) q^{50} +(5.89089 - 4.86097i) q^{51} +(-2.74853 + 8.70182i) q^{52} +2.78101i q^{53} +(6.65021 + 3.12646i) q^{54} -0.671897i q^{55} +(1.81426 + 5.35803i) q^{56} +(6.09565 - 5.02993i) q^{57} +(4.56279 - 3.34379i) q^{58} +7.33034 q^{59} +(-0.871875 - 2.15805i) q^{60} -3.62851 q^{61} +(-1.51496 + 1.11023i) q^{62} +(-5.89089 - 1.13903i) q^{63} +(6.35424 - 4.86042i) q^{64} +3.06572i q^{65} +(-0.602380 + 2.37427i) q^{66} +0.803347i q^{67} +(8.40952 + 2.65621i) q^{68} +(-3.77428 - 4.57396i) q^{69} +(1.12334 + 1.53286i) q^{70} +9.70182 q^{71} +(1.14615 + 8.40752i) q^{72} +1.47524 q^{73} +(10.0201 + 13.6730i) q^{74} +(5.01423 + 6.07663i) q^{75} +(8.70182 + 2.74853i) q^{76} -2.00000i q^{77} +(2.74853 - 10.8333i) q^{78} -5.37226i q^{79} +(1.54377 - 2.19998i) q^{80} +(-8.35130 - 3.35496i) q^{81} +(-5.62851 + 4.12480i) q^{82} -12.7161 q^{83} +(-2.59526 - 6.42375i) q^{84} +2.96274 q^{85} +(-10.2347 + 7.50039i) q^{86} +(-5.34379 + 4.40952i) q^{87} +(-2.67901 + 0.907128i) q^{88} -15.2347i q^{89} +(1.21788 + 2.57736i) q^{90} +9.12558i q^{91} +(2.06240 - 6.52954i) q^{92} +(1.77428 - 1.46407i) q^{93} +(-4.36281 - 5.95329i) q^{94} +3.06572 q^{95} +(-7.42755 + 6.38996i) q^{96} +1.54855 q^{97} +(-2.50785 - 3.42209i) q^{98} +(0.569517 - 2.94545i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{3} + 2 q^{4} - 2 q^{6} + 6 q^{8} + 2 q^{9} + 6 q^{10} - 8 q^{11} - 10 q^{12} - 8 q^{13} - 4 q^{14} - 14 q^{15} - 6 q^{16} + 24 q^{18} + 12 q^{20} - 8 q^{21} + 4 q^{23} - 18 q^{24} - 4 q^{25}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/132\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(67\) \(89\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.835949 1.14070i −0.591105 0.806595i
\(3\) 1.10238 + 1.33595i 0.636459 + 0.771310i
\(4\) −0.602380 + 1.90713i −0.301190 + 0.953564i
\(5\) 0.671897i 0.300482i 0.988649 + 0.150241i \(0.0480049\pi\)
−0.988649 + 0.150241i \(0.951995\pi\)
\(6\) 0.602380 2.37427i 0.245921 0.969290i
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) 2.67901 0.907128i 0.947175 0.320718i
\(9\) −0.569517 + 2.94545i −0.189839 + 0.981815i
\(10\) 0.766431 0.561672i 0.242367 0.177616i
\(11\) −1.00000 −0.301511
\(12\) −3.21188 + 1.29763i −0.927189 + 0.374594i
\(13\) 4.56279 1.26549 0.632745 0.774360i \(-0.281928\pi\)
0.632745 + 0.774360i \(0.281928\pi\)
\(14\) 2.28139 1.67190i 0.609728 0.446833i
\(15\) −0.897620 + 0.740686i −0.231765 + 0.191244i
\(16\) −3.27428 2.29763i −0.818569 0.574408i
\(17\) 4.40952i 1.06947i −0.845021 0.534733i \(-0.820412\pi\)
0.845021 0.534733i \(-0.179588\pi\)
\(18\) 3.83595 1.81259i 0.904142 0.427233i
\(19\) 4.56279i 1.04678i −0.852095 0.523388i \(-0.824668\pi\)
0.852095 0.523388i \(-0.175332\pi\)
\(20\) −1.28139 0.404737i −0.286528 0.0905020i
\(21\) −2.67190 + 2.20476i −0.583056 + 0.481118i
\(22\) 0.835949 + 1.14070i 0.178225 + 0.243197i
\(23\) −3.42375 −0.713902 −0.356951 0.934123i \(-0.616184\pi\)
−0.356951 + 0.934123i \(0.616184\pi\)
\(24\) 4.16517 + 2.57903i 0.850211 + 0.526441i
\(25\) 4.54855 0.909711
\(26\) −3.81426 5.20476i −0.748037 1.02074i
\(27\) −4.56279 + 2.48615i −0.878109 + 0.478461i
\(28\) −3.81426 1.20476i −0.720827 0.227678i
\(29\) 4.00000i 0.742781i 0.928477 + 0.371391i \(0.121119\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 1.59526 + 0.404737i 0.291254 + 0.0738946i
\(31\) 1.32810i 0.238534i −0.992862 0.119267i \(-0.961946\pi\)
0.992862 0.119267i \(-0.0380545\pi\)
\(32\) 0.116226 + 5.65566i 0.0205460 + 0.999789i
\(33\) −1.10238 1.33595i −0.191900 0.232559i
\(34\) −5.02993 + 3.68613i −0.862625 + 0.632166i
\(35\) −1.34379 −0.227143
\(36\) −5.27428 2.86042i −0.879046 0.476737i
\(37\) −11.9865 −1.97058 −0.985288 0.170904i \(-0.945331\pi\)
−0.985288 + 0.170904i \(0.945331\pi\)
\(38\) −5.20476 + 3.81426i −0.844324 + 0.618754i
\(39\) 5.02993 + 6.09565i 0.805433 + 0.976085i
\(40\) 0.609497 + 1.80002i 0.0963699 + 0.284609i
\(41\) 4.93428i 0.770604i −0.922790 0.385302i \(-0.874097\pi\)
0.922790 0.385302i \(-0.125903\pi\)
\(42\) 4.74853 + 1.20476i 0.732714 + 0.185898i
\(43\) 8.97231i 1.36826i −0.729358 0.684132i \(-0.760181\pi\)
0.729358 0.684132i \(-0.239819\pi\)
\(44\) 0.602380 1.90713i 0.0908122 0.287510i
\(45\) −1.97904 0.382657i −0.295017 0.0570432i
\(46\) 2.86208 + 3.90547i 0.421991 + 0.575830i
\(47\) 5.21899 0.761269 0.380634 0.924726i \(-0.375706\pi\)
0.380634 + 0.924726i \(0.375706\pi\)
\(48\) −0.539980 6.90713i −0.0779393 0.996958i
\(49\) 3.00000 0.428571
\(50\) −3.80236 5.18852i −0.537735 0.733768i
\(51\) 5.89089 4.86097i 0.824890 0.680671i
\(52\) −2.74853 + 8.70182i −0.381153 + 1.20673i
\(53\) 2.78101i 0.382001i 0.981590 + 0.191000i \(0.0611731\pi\)
−0.981590 + 0.191000i \(0.938827\pi\)
\(54\) 6.65021 + 3.12646i 0.904978 + 0.425458i
\(55\) 0.671897i 0.0905986i
\(56\) 1.81426 + 5.35803i 0.242440 + 0.715997i
\(57\) 6.09565 5.02993i 0.807389 0.666230i
\(58\) 4.56279 3.34379i 0.599123 0.439062i
\(59\) 7.33034 0.954329 0.477164 0.878814i \(-0.341665\pi\)
0.477164 + 0.878814i \(0.341665\pi\)
\(60\) −0.871875 2.15805i −0.112559 0.278603i
\(61\) −3.62851 −0.464584 −0.232292 0.972646i \(-0.574622\pi\)
−0.232292 + 0.972646i \(0.574622\pi\)
\(62\) −1.51496 + 1.11023i −0.192400 + 0.140999i
\(63\) −5.89089 1.13903i −0.742183 0.143505i
\(64\) 6.35424 4.86042i 0.794280 0.607552i
\(65\) 3.06572i 0.380256i
\(66\) −0.602380 + 2.37427i −0.0741478 + 0.292252i
\(67\) 0.803347i 0.0981445i 0.998795 + 0.0490722i \(0.0156265\pi\)
−0.998795 + 0.0490722i \(0.984374\pi\)
\(68\) 8.40952 + 2.65621i 1.01980 + 0.322112i
\(69\) −3.77428 4.57396i −0.454370 0.550640i
\(70\) 1.12334 + 1.53286i 0.134265 + 0.183212i
\(71\) 9.70182 1.15139 0.575697 0.817663i \(-0.304731\pi\)
0.575697 + 0.817663i \(0.304731\pi\)
\(72\) 1.14615 + 8.40752i 0.135075 + 0.990835i
\(73\) 1.47524 0.172664 0.0863321 0.996266i \(-0.472485\pi\)
0.0863321 + 0.996266i \(0.472485\pi\)
\(74\) 10.0201 + 13.6730i 1.16482 + 1.58946i
\(75\) 5.01423 + 6.07663i 0.578994 + 0.701669i
\(76\) 8.70182 + 2.74853i 0.998168 + 0.315278i
\(77\) 2.00000i 0.227921i
\(78\) 2.74853 10.8333i 0.311210 1.22663i
\(79\) 5.37226i 0.604427i −0.953240 0.302213i \(-0.902274\pi\)
0.953240 0.302213i \(-0.0977255\pi\)
\(80\) 1.54377 2.19998i 0.172599 0.245965i
\(81\) −8.35130 3.35496i −0.927922 0.372774i
\(82\) −5.62851 + 4.12480i −0.621565 + 0.455508i
\(83\) −12.7161 −1.39577 −0.697884 0.716210i \(-0.745875\pi\)
−0.697884 + 0.716210i \(0.745875\pi\)
\(84\) −2.59526 6.42375i −0.283166 0.700889i
\(85\) 2.96274 0.321355
\(86\) −10.2347 + 7.50039i −1.10363 + 0.808788i
\(87\) −5.34379 + 4.40952i −0.572915 + 0.472750i
\(88\) −2.67901 + 0.907128i −0.285584 + 0.0967002i
\(89\) 15.2347i 1.61487i −0.589954 0.807437i \(-0.700854\pi\)
0.589954 0.807437i \(-0.299146\pi\)
\(90\) 1.21788 + 2.57736i 0.128376 + 0.271678i
\(91\) 9.12558i 0.956620i
\(92\) 2.06240 6.52954i 0.215020 0.680751i
\(93\) 1.77428 1.46407i 0.183984 0.151817i
\(94\) −4.36281 5.95329i −0.449990 0.614035i
\(95\) 3.06572 0.314537
\(96\) −7.42755 + 6.38996i −0.758071 + 0.652172i
\(97\) 1.54855 0.157232 0.0786159 0.996905i \(-0.474950\pi\)
0.0786159 + 0.996905i \(0.474950\pi\)
\(98\) −2.50785 3.42209i −0.253331 0.345683i
\(99\) 0.569517 2.94545i 0.0572387 0.296028i
\(100\) −2.73996 + 8.67468i −0.273996 + 0.867468i
\(101\) 13.5351i 1.34679i 0.739282 + 0.673396i \(0.235165\pi\)
−0.739282 + 0.673396i \(0.764835\pi\)
\(102\) −10.4694 2.65621i −1.03662 0.263004i
\(103\) 13.2788i 1.30840i 0.756320 + 0.654202i \(0.226995\pi\)
−0.756320 + 0.654202i \(0.773005\pi\)
\(104\) 12.2238 4.13903i 1.19864 0.405866i
\(105\) −1.48137 1.79524i −0.144567 0.175198i
\(106\) 3.17229 2.32478i 0.308120 0.225802i
\(107\) −16.6008 −1.60486 −0.802431 0.596745i \(-0.796460\pi\)
−0.802431 + 0.596745i \(0.796460\pi\)
\(108\) −1.99288 10.1994i −0.191765 0.981441i
\(109\) 3.21899 0.308324 0.154162 0.988046i \(-0.450732\pi\)
0.154162 + 0.988046i \(0.450732\pi\)
\(110\) −0.766431 + 0.561672i −0.0730764 + 0.0535533i
\(111\) −13.2137 16.0134i −1.25419 1.51993i
\(112\) 4.59526 6.54855i 0.434212 0.618780i
\(113\) 19.0165i 1.78892i 0.447149 + 0.894459i \(0.352439\pi\)
−0.447149 + 0.894459i \(0.647561\pi\)
\(114\) −10.8333 2.74853i −1.01463 0.257424i
\(115\) 2.30041i 0.214514i
\(116\) −7.62851 2.40952i −0.708290 0.223718i
\(117\) −2.59859 + 13.4394i −0.240239 + 1.24248i
\(118\) −6.12778 8.36169i −0.564108 0.769756i
\(119\) 8.81904 0.808440
\(120\) −1.73284 + 2.79857i −0.158186 + 0.255473i
\(121\) 1.00000 0.0909091
\(122\) 3.03325 + 4.13903i 0.274618 + 0.374731i
\(123\) 6.59194 5.43945i 0.594375 0.490458i
\(124\) 2.53286 + 0.800022i 0.227458 + 0.0718441i
\(125\) 6.41565i 0.573833i
\(126\) 3.62519 + 7.67190i 0.322957 + 0.683467i
\(127\) 5.47524i 0.485849i −0.970045 0.242925i \(-0.921893\pi\)
0.970045 0.242925i \(-0.0781068\pi\)
\(128\) −10.8561 3.18520i −0.959551 0.281534i
\(129\) 11.9865 9.89089i 1.05536 0.870844i
\(130\) 3.49706 2.56279i 0.306713 0.224771i
\(131\) 5.34379 0.466889 0.233445 0.972370i \(-0.425000\pi\)
0.233445 + 0.972370i \(0.425000\pi\)
\(132\) 3.21188 1.29763i 0.279558 0.112944i
\(133\) 9.12558 0.791288
\(134\) 0.916376 0.671557i 0.0791628 0.0580137i
\(135\) −1.67044 3.06572i −0.143769 0.263856i
\(136\) −4.00000 11.8132i −0.342997 1.01297i
\(137\) 8.57848i 0.732909i −0.930436 0.366455i \(-0.880572\pi\)
0.930436 0.366455i \(-0.119428\pi\)
\(138\) −2.06240 + 8.12890i −0.175563 + 0.691978i
\(139\) 20.3446i 1.72560i 0.505542 + 0.862802i \(0.331293\pi\)
−0.505542 + 0.862802i \(0.668707\pi\)
\(140\) 0.809475 2.56279i 0.0684131 0.216595i
\(141\) 5.75331 + 6.97231i 0.484516 + 0.587174i
\(142\) −8.11023 11.0668i −0.680595 0.928709i
\(143\) −4.56279 −0.381560
\(144\) 8.63231 8.33566i 0.719359 0.694639i
\(145\) −2.68759 −0.223192
\(146\) −1.23323 1.68281i −0.102063 0.139270i
\(147\) 3.30714 + 4.00785i 0.272768 + 0.330562i
\(148\) 7.22045 22.8599i 0.593517 1.87907i
\(149\) 11.0971i 0.909111i 0.890719 + 0.454555i \(0.150202\pi\)
−0.890719 + 0.454555i \(0.849798\pi\)
\(150\) 2.73996 10.7995i 0.223717 0.881774i
\(151\) 16.0599i 1.30693i −0.756956 0.653466i \(-0.773314\pi\)
0.756956 0.653466i \(-0.226686\pi\)
\(152\) −4.13903 12.2238i −0.335720 0.991479i
\(153\) 12.9880 + 2.51130i 1.05002 + 0.203026i
\(154\) −2.28139 + 1.67190i −0.183840 + 0.134725i
\(155\) 0.892349 0.0716752
\(156\) −14.6551 + 5.92082i −1.17335 + 0.474045i
\(157\) −16.5427 −1.32025 −0.660125 0.751156i \(-0.729497\pi\)
−0.660125 + 0.751156i \(0.729497\pi\)
\(158\) −6.12813 + 4.49094i −0.487527 + 0.357280i
\(159\) −3.71528 + 3.06572i −0.294641 + 0.243128i
\(160\) −3.80002 + 0.0780919i −0.300418 + 0.00617370i
\(161\) 6.84751i 0.539659i
\(162\) 3.15426 + 12.3309i 0.247822 + 0.968806i
\(163\) 6.84086i 0.535817i 0.963444 + 0.267909i \(0.0863325\pi\)
−0.963444 + 0.267909i \(0.913667\pi\)
\(164\) 9.41030 + 2.97231i 0.734821 + 0.232098i
\(165\) 0.897620 0.740686i 0.0698796 0.0576623i
\(166\) 10.6300 + 14.5052i 0.825046 + 1.12582i
\(167\) −18.8789 −1.46089 −0.730446 0.682970i \(-0.760688\pi\)
−0.730446 + 0.682970i \(0.760688\pi\)
\(168\) −5.15805 + 8.33034i −0.397952 + 0.642699i
\(169\) 7.81904 0.601465
\(170\) −2.47670 3.37959i −0.189954 0.259203i
\(171\) 13.4394 + 2.59859i 1.02774 + 0.198719i
\(172\) 17.1113 + 5.40474i 1.30473 + 0.412107i
\(173\) 0.218217i 0.0165908i −0.999966 0.00829538i \(-0.997359\pi\)
0.999966 0.00829538i \(-0.00264053\pi\)
\(174\) 9.49706 + 2.40952i 0.719971 + 0.182665i
\(175\) 9.09711i 0.687677i
\(176\) 3.27428 + 2.29763i 0.246808 + 0.173190i
\(177\) 8.08082 + 9.79295i 0.607391 + 0.736083i
\(178\) −17.3782 + 12.7354i −1.30255 + 0.954560i
\(179\) 0.233228 0.0174323 0.00871615 0.999962i \(-0.497226\pi\)
0.00871615 + 0.999962i \(0.497226\pi\)
\(180\) 1.92191 3.54377i 0.143251 0.264137i
\(181\) −13.9581 −1.03750 −0.518748 0.854927i \(-0.673602\pi\)
−0.518748 + 0.854927i \(0.673602\pi\)
\(182\) 10.4095 7.62851i 0.771605 0.565463i
\(183\) −4.00000 4.84751i −0.295689 0.358338i
\(184\) −9.17229 + 3.10578i −0.676190 + 0.228961i
\(185\) 8.05372i 0.592122i
\(186\) −3.15327 0.800022i −0.231209 0.0586605i
\(187\) 4.40952i 0.322456i
\(188\) −3.14382 + 9.95329i −0.229286 + 0.725918i
\(189\) −4.97231 9.12558i −0.361682 0.663788i
\(190\) −2.56279 3.49706i −0.185924 0.253704i
\(191\) 15.0142 1.08639 0.543196 0.839606i \(-0.317214\pi\)
0.543196 + 0.839606i \(0.317214\pi\)
\(192\) 13.4981 + 3.13090i 0.974138 + 0.225954i
\(193\) −13.0971 −0.942750 −0.471375 0.881933i \(-0.656242\pi\)
−0.471375 + 0.881933i \(0.656242\pi\)
\(194\) −1.29451 1.76643i −0.0929405 0.126822i
\(195\) −4.09565 + 3.37959i −0.293296 + 0.242018i
\(196\) −1.80714 + 5.72139i −0.129081 + 0.408670i
\(197\) 27.0388i 1.92644i −0.268722 0.963218i \(-0.586601\pi\)
0.268722 0.963218i \(-0.413399\pi\)
\(198\) −3.83595 + 1.81259i −0.272609 + 0.128815i
\(199\) 14.2847i 1.01262i 0.862352 + 0.506308i \(0.168990\pi\)
−0.862352 + 0.506308i \(0.831010\pi\)
\(200\) 12.1856 4.12612i 0.861655 0.291761i
\(201\) −1.07323 + 0.885594i −0.0756998 + 0.0624650i
\(202\) 15.4394 11.3146i 1.08632 0.796096i
\(203\) −8.00000 −0.561490
\(204\) 5.72193 + 14.1628i 0.400615 + 0.991597i
\(205\) 3.31533 0.231552
\(206\) 15.1471 11.1004i 1.05535 0.773404i
\(207\) 1.94989 10.0845i 0.135527 0.700920i
\(208\) −14.9398 10.4836i −1.03589 0.726907i
\(209\) 4.56279i 0.315615i
\(210\) −0.809475 + 3.19053i −0.0558591 + 0.220167i
\(211\) 2.75254i 0.189492i −0.995501 0.0947462i \(-0.969796\pi\)
0.995501 0.0947462i \(-0.0302040\pi\)
\(212\) −5.30374 1.67522i −0.364262 0.115055i
\(213\) 10.6951 + 12.9611i 0.732816 + 0.888082i
\(214\) 13.8774 + 18.9365i 0.948642 + 1.29447i
\(215\) 6.02847 0.411138
\(216\) −9.96852 + 10.7995i −0.678272 + 0.734811i
\(217\) 2.65621 0.180315
\(218\) −2.69091 3.67190i −0.182252 0.248692i
\(219\) 1.62628 + 1.97085i 0.109894 + 0.133178i
\(220\) 1.28139 + 0.404737i 0.0863916 + 0.0272874i
\(221\) 20.1197i 1.35340i
\(222\) −7.22045 + 28.4592i −0.484605 + 1.91006i
\(223\) 5.32810i 0.356796i 0.983958 + 0.178398i \(0.0570915\pi\)
−0.983958 + 0.178398i \(0.942909\pi\)
\(224\) −11.3113 + 0.232452i −0.755769 + 0.0155313i
\(225\) −2.59048 + 13.3975i −0.172699 + 0.893168i
\(226\) 21.6920 15.8968i 1.44293 1.05744i
\(227\) 10.4694 0.694877 0.347438 0.937703i \(-0.387052\pi\)
0.347438 + 0.937703i \(0.387052\pi\)
\(228\) 5.92082 + 14.6551i 0.392116 + 0.970559i
\(229\) −14.6741 −0.969694 −0.484847 0.874599i \(-0.661125\pi\)
−0.484847 + 0.874599i \(0.661125\pi\)
\(230\) −2.62407 + 1.92303i −0.173026 + 0.126801i
\(231\) 2.67190 2.20476i 0.175798 0.145063i
\(232\) 3.62851 + 10.7161i 0.238224 + 0.703544i
\(233\) 2.87442i 0.188310i −0.995558 0.0941549i \(-0.969985\pi\)
0.995558 0.0941549i \(-0.0300149\pi\)
\(234\) 17.5026 8.27048i 1.14418 0.540658i
\(235\) 3.50663i 0.228747i
\(236\) −4.41565 + 13.9799i −0.287434 + 0.910014i
\(237\) 7.17707 5.92227i 0.466201 0.384693i
\(238\) −7.37226 10.0599i −0.477873 0.652083i
\(239\) 12.4095 0.802705 0.401353 0.915924i \(-0.368540\pi\)
0.401353 + 0.915924i \(0.368540\pi\)
\(240\) 4.64088 0.362811i 0.299568 0.0234193i
\(241\) −0.540969 −0.0348469 −0.0174234 0.999848i \(-0.505546\pi\)
−0.0174234 + 0.999848i \(0.505546\pi\)
\(242\) −0.835949 1.14070i −0.0537368 0.0733268i
\(243\) −4.72424 14.8554i −0.303060 0.952971i
\(244\) 2.18574 6.92004i 0.139928 0.443010i
\(245\) 2.01569i 0.128778i
\(246\) −11.7153 2.97231i −0.746939 0.189507i
\(247\) 20.8190i 1.32468i
\(248\) −1.20476 3.55801i −0.0765023 0.225934i
\(249\) −14.0179 16.9880i −0.888350 1.07657i
\(250\) 7.31831 5.36315i 0.462851 0.339195i
\(251\) −8.33621 −0.526177 −0.263088 0.964772i \(-0.584741\pi\)
−0.263088 + 0.964772i \(0.584741\pi\)
\(252\) 5.72084 10.5486i 0.360379 0.664496i
\(253\) 3.42375 0.215250
\(254\) −6.24560 + 4.57702i −0.391884 + 0.287188i
\(255\) 3.26607 + 3.95807i 0.204529 + 0.247864i
\(256\) 5.44178 + 15.0462i 0.340111 + 0.940385i
\(257\) 6.38105i 0.398039i 0.979996 + 0.199020i \(0.0637757\pi\)
−0.979996 + 0.199020i \(0.936224\pi\)
\(258\) −21.3026 5.40474i −1.32624 0.336484i
\(259\) 23.9731i 1.48961i
\(260\) −5.84673 1.84673i −0.362599 0.114529i
\(261\) −11.7818 2.27807i −0.729274 0.141009i
\(262\) −4.46714 6.09565i −0.275981 0.376591i
\(263\) 3.21234 0.198082 0.0990408 0.995083i \(-0.468423\pi\)
0.0990408 + 0.995083i \(0.468423\pi\)
\(264\) −4.16517 2.57903i −0.256348 0.158728i
\(265\) −1.86855 −0.114784
\(266\) −7.62851 10.4095i −0.467734 0.638249i
\(267\) 20.3528 16.7944i 1.24557 1.02780i
\(268\) −1.53209 0.483920i −0.0935870 0.0295601i
\(269\) 0.912456i 0.0556334i 0.999613 + 0.0278167i \(0.00885547\pi\)
−0.999613 + 0.0278167i \(0.991145\pi\)
\(270\) −2.10066 + 4.46825i −0.127842 + 0.271929i
\(271\) 1.39918i 0.0849941i −0.999097 0.0424970i \(-0.986469\pi\)
0.999097 0.0424970i \(-0.0135313\pi\)
\(272\) −10.1314 + 14.4380i −0.614309 + 0.875432i
\(273\) −12.1913 + 10.0599i −0.737851 + 0.608850i
\(274\) −9.78545 + 7.17117i −0.591161 + 0.433226i
\(275\) −4.54855 −0.274288
\(276\) 10.9967 4.44277i 0.661922 0.267423i
\(277\) −5.35044 −0.321477 −0.160739 0.986997i \(-0.551388\pi\)
−0.160739 + 0.986997i \(0.551388\pi\)
\(278\) 23.2070 17.0070i 1.39186 1.02001i
\(279\) 3.91185 + 0.756378i 0.234197 + 0.0452831i
\(280\) −3.60004 + 1.21899i −0.215144 + 0.0728488i
\(281\) 9.09419i 0.542514i 0.962507 + 0.271257i \(0.0874393\pi\)
−0.962507 + 0.271257i \(0.912561\pi\)
\(282\) 3.14382 12.3913i 0.187212 0.737890i
\(283\) 3.05908i 0.181843i 0.995858 + 0.0909216i \(0.0289813\pi\)
−0.995858 + 0.0909216i \(0.971019\pi\)
\(284\) −5.84418 + 18.5026i −0.346788 + 1.09793i
\(285\) 3.37959 + 4.09565i 0.200190 + 0.242605i
\(286\) 3.81426 + 5.20476i 0.225542 + 0.307764i
\(287\) 9.86855 0.582522
\(288\) −16.7246 2.87866i −0.985508 0.169627i
\(289\) −2.44386 −0.143757
\(290\) 2.24669 + 3.06572i 0.131930 + 0.180026i
\(291\) 1.70709 + 2.06879i 0.100072 + 0.121275i
\(292\) −0.888657 + 2.81348i −0.0520047 + 0.164646i
\(293\) 13.8103i 0.806803i 0.915023 + 0.403402i \(0.132172\pi\)
−0.915023 + 0.403402i \(0.867828\pi\)
\(294\) 1.80714 7.12280i 0.105395 0.415410i
\(295\) 4.92523i 0.286758i
\(296\) −32.1121 + 10.8733i −1.86648 + 0.632000i
\(297\) 4.56279 2.48615i 0.264760 0.144261i
\(298\) 12.6584 9.27661i 0.733284 0.537380i
\(299\) −15.6219 −0.903436
\(300\) −14.6094 + 5.90235i −0.843474 + 0.340772i
\(301\) 17.9446 1.03431
\(302\) −18.3194 + 13.4252i −1.05416 + 0.772534i
\(303\) −18.0822 + 14.9208i −1.03879 + 0.857179i
\(304\) −10.4836 + 14.9398i −0.601276 + 0.856858i
\(305\) 2.43799i 0.139599i
\(306\) −7.99267 16.9147i −0.456911 0.966948i
\(307\) 2.12480i 0.121269i −0.998160 0.0606344i \(-0.980688\pi\)
0.998160 0.0606344i \(-0.0193124\pi\)
\(308\) 3.81426 + 1.20476i 0.217337 + 0.0686476i
\(309\) −17.7399 + 14.6383i −1.00919 + 0.832746i
\(310\) −0.745958 1.01790i −0.0423675 0.0578128i
\(311\) −9.77513 −0.554297 −0.277148 0.960827i \(-0.589389\pi\)
−0.277148 + 0.960827i \(0.589389\pi\)
\(312\) 19.0048 + 11.7675i 1.07593 + 0.666206i
\(313\) 5.13903 0.290475 0.145238 0.989397i \(-0.453605\pi\)
0.145238 + 0.989397i \(0.453605\pi\)
\(314\) 13.8288 + 18.8702i 0.780406 + 1.06491i
\(315\) 0.765314 3.95807i 0.0431206 0.223012i
\(316\) 10.2456 + 3.23614i 0.576360 + 0.182047i
\(317\) 21.7975i 1.22427i −0.790754 0.612134i \(-0.790311\pi\)
0.790754 0.612134i \(-0.209689\pi\)
\(318\) 6.60285 + 1.67522i 0.370269 + 0.0939418i
\(319\) 4.00000i 0.223957i
\(320\) 3.26570 + 4.26939i 0.182558 + 0.238666i
\(321\) −18.3004 22.1778i −1.02143 1.23785i
\(322\) −7.81093 + 5.72416i −0.435286 + 0.318995i
\(323\) −20.1197 −1.11949
\(324\) 11.4290 13.9060i 0.634945 0.772558i
\(325\) 20.7541 1.15123
\(326\) 7.80335 5.71861i 0.432187 0.316724i
\(327\) 3.54855 + 4.30041i 0.196235 + 0.237813i
\(328\) −4.47602 13.2190i −0.247147 0.729897i
\(329\) 10.4380i 0.575465i
\(330\) −1.59526 0.404737i −0.0878163 0.0222801i
\(331\) 19.7975i 1.08817i −0.839031 0.544084i \(-0.816877\pi\)
0.839031 0.544084i \(-0.183123\pi\)
\(332\) 7.65990 24.2512i 0.420391 1.33095i
\(333\) 6.82654 35.3057i 0.374092 1.93474i
\(334\) 15.7818 + 21.5351i 0.863541 + 1.17835i
\(335\) −0.539767 −0.0294906
\(336\) 13.8143 1.07996i 0.753629 0.0589166i
\(337\) −11.7533 −0.640244 −0.320122 0.947376i \(-0.603724\pi\)
−0.320122 + 0.947376i \(0.603724\pi\)
\(338\) −6.53631 8.91915i −0.355529 0.485138i
\(339\) −25.4050 + 20.9634i −1.37981 + 1.13857i
\(340\) −1.78470 + 5.65033i −0.0967888 + 0.306432i
\(341\) 1.32810i 0.0719208i
\(342\) −8.27048 17.5026i −0.447217 0.946433i
\(343\) 20.0000i 1.07990i
\(344\) −8.13903 24.0369i −0.438827 1.29599i
\(345\) 3.07323 2.53593i 0.165457 0.136530i
\(346\) −0.248920 + 0.182419i −0.0133820 + 0.00980688i
\(347\) 14.6293 0.785341 0.392671 0.919679i \(-0.371551\pi\)
0.392671 + 0.919679i \(0.371551\pi\)
\(348\) −5.19053 12.8475i −0.278241 0.688699i
\(349\) 22.3475 1.19623 0.598117 0.801409i \(-0.295916\pi\)
0.598117 + 0.801409i \(0.295916\pi\)
\(350\) 10.3770 7.60472i 0.554676 0.406489i
\(351\) −20.8190 + 11.3438i −1.11124 + 0.605487i
\(352\) −0.116226 5.65566i −0.00619486 0.301448i
\(353\) 23.4843i 1.24994i 0.780648 + 0.624971i \(0.214889\pi\)
−0.780648 + 0.624971i \(0.785111\pi\)
\(354\) 4.41565 17.4042i 0.234689 0.925021i
\(355\) 6.51863i 0.345973i
\(356\) 29.0545 + 9.17707i 1.53989 + 0.486384i
\(357\) 9.72193 + 11.7818i 0.514539 + 0.623558i
\(358\) −0.194967 0.266043i −0.0103043 0.0140608i
\(359\) −0.378136 −0.0199573 −0.00997863 0.999950i \(-0.503176\pi\)
−0.00997863 + 0.999950i \(0.503176\pi\)
\(360\) −5.64899 + 0.770096i −0.297728 + 0.0405876i
\(361\) −1.81904 −0.0957389
\(362\) 11.6682 + 15.9219i 0.613269 + 0.836838i
\(363\) 1.10238 + 1.33595i 0.0578599 + 0.0701191i
\(364\) −17.4036 5.49706i −0.912199 0.288124i
\(365\) 0.991213i 0.0518824i
\(366\) −2.18574 + 8.61506i −0.114251 + 0.450316i
\(367\) 13.7421i 0.717331i −0.933466 0.358666i \(-0.883232\pi\)
0.933466 0.358666i \(-0.116768\pi\)
\(368\) 11.2103 + 7.86652i 0.584378 + 0.410071i
\(369\) 14.5336 + 2.81016i 0.756591 + 0.146291i
\(370\) −9.18686 + 6.73250i −0.477602 + 0.350006i
\(371\) −5.56201 −0.288765
\(372\) 1.72339 + 4.26570i 0.0893535 + 0.221166i
\(373\) −19.9664 −1.03382 −0.516911 0.856039i \(-0.672918\pi\)
−0.516911 + 0.856039i \(0.672918\pi\)
\(374\) 5.02993 3.68613i 0.260091 0.190605i
\(375\) −8.57097 + 7.07248i −0.442603 + 0.365221i
\(376\) 13.9818 4.73430i 0.721054 0.244153i
\(377\) 18.2512i 0.939982i
\(378\) −6.25293 + 13.3004i −0.321616 + 0.684099i
\(379\) 10.3967i 0.534045i 0.963690 + 0.267022i \(0.0860398\pi\)
−0.963690 + 0.267022i \(0.913960\pi\)
\(380\) −1.84673 + 5.84673i −0.0947353 + 0.299931i
\(381\) 7.31464 6.03580i 0.374741 0.309223i
\(382\) −12.5511 17.1267i −0.642172 0.876278i
\(383\) 31.8960 1.62981 0.814906 0.579593i \(-0.196789\pi\)
0.814906 + 0.579593i \(0.196789\pi\)
\(384\) −7.71227 18.0145i −0.393565 0.919297i
\(385\) 1.34379 0.0684861
\(386\) 10.9485 + 14.9398i 0.557264 + 0.760418i
\(387\) 26.4274 + 5.10989i 1.34338 + 0.259750i
\(388\) −0.932818 + 2.95329i −0.0473566 + 0.149931i
\(389\) 9.24134i 0.468554i 0.972170 + 0.234277i \(0.0752723\pi\)
−0.972170 + 0.234277i \(0.924728\pi\)
\(390\) 7.27885 + 1.84673i 0.368579 + 0.0935129i
\(391\) 15.0971i 0.763494i
\(392\) 8.03704 2.72139i 0.405932 0.137451i
\(393\) 5.89089 + 7.13903i 0.297156 + 0.360117i
\(394\) −30.8431 + 22.6031i −1.55385 + 1.13873i
\(395\) 3.60961 0.181619
\(396\) 5.27428 + 2.86042i 0.265042 + 0.143742i
\(397\) 12.9505 0.649966 0.324983 0.945720i \(-0.394641\pi\)
0.324983 + 0.945720i \(0.394641\pi\)
\(398\) 16.2945 11.9413i 0.816771 0.598563i
\(399\) 10.0599 + 12.1913i 0.503623 + 0.610328i
\(400\) −14.8932 10.4509i −0.744661 0.522545i
\(401\) 11.2570i 0.562149i −0.959686 0.281075i \(-0.909309\pi\)
0.959686 0.281075i \(-0.0906908\pi\)
\(402\) 1.90736 + 0.483920i 0.0951304 + 0.0241357i
\(403\) 6.05985i 0.301863i
\(404\) −25.8132 8.15327i −1.28425 0.405640i
\(405\) 2.25419 5.61122i 0.112012 0.278824i
\(406\) 6.68759 + 9.12558i 0.331899 + 0.452895i
\(407\) 11.9865 0.594151
\(408\) 11.3723 18.3664i 0.563011 0.909272i
\(409\) 8.38105 0.414416 0.207208 0.978297i \(-0.433562\pi\)
0.207208 + 0.978297i \(0.433562\pi\)
\(410\) −2.77144 3.78178i −0.136872 0.186769i
\(411\) 11.4604 9.45674i 0.565300 0.466467i
\(412\) −25.3245 7.99891i −1.24765 0.394078i
\(413\) 14.6607i 0.721405i
\(414\) −13.1333 + 6.20588i −0.645469 + 0.305002i
\(415\) 8.54388i 0.419403i
\(416\) 0.530314 + 25.8056i 0.0260008 + 1.26522i
\(417\) −27.1793 + 22.4274i −1.33098 + 1.09828i
\(418\) 5.20476 3.81426i 0.254573 0.186561i
\(419\) 13.0686 0.638445 0.319222 0.947680i \(-0.396578\pi\)
0.319222 + 0.947680i \(0.396578\pi\)
\(420\) 4.31610 1.74375i 0.210604 0.0850863i
\(421\) 27.9446 1.36194 0.680969 0.732313i \(-0.261559\pi\)
0.680969 + 0.732313i \(0.261559\pi\)
\(422\) −3.13981 + 2.30098i −0.152844 + 0.112010i
\(423\) −2.97231 + 15.3723i −0.144519 + 0.747425i
\(424\) 2.52273 + 7.45036i 0.122515 + 0.361821i
\(425\) 20.0569i 0.972904i
\(426\) 5.84418 23.0347i 0.283152 1.11604i
\(427\) 7.25703i 0.351192i
\(428\) 10.0000 31.6599i 0.483368 1.53034i
\(429\) −5.02993 6.09565i −0.242847 0.294301i
\(430\) −5.03949 6.87666i −0.243026 0.331622i
\(431\) 3.53218 0.170139 0.0850696 0.996375i \(-0.472889\pi\)
0.0850696 + 0.996375i \(0.472889\pi\)
\(432\) 20.6521 + 2.34325i 0.993625 + 0.112740i
\(433\) 5.60549 0.269383 0.134691 0.990888i \(-0.456996\pi\)
0.134691 + 0.990888i \(0.456996\pi\)
\(434\) −2.22045 3.02993i −0.106585 0.145441i
\(435\) −2.96274 3.59048i −0.142053 0.172150i
\(436\) −1.93906 + 6.13903i −0.0928640 + 0.294006i
\(437\) 15.6219i 0.747295i
\(438\) 0.888657 3.50262i 0.0424617 0.167362i
\(439\) 24.1045i 1.15045i −0.817996 0.575223i \(-0.804915\pi\)
0.817996 0.575223i \(-0.195085\pi\)
\(440\) −0.609497 1.80002i −0.0290566 0.0858127i
\(441\) −1.70855 + 8.83634i −0.0813596 + 0.420778i
\(442\) −22.9505 + 16.8190i −1.09164 + 0.800000i
\(443\) −34.7340 −1.65026 −0.825131 0.564942i \(-0.808899\pi\)
−0.825131 + 0.564942i \(0.808899\pi\)
\(444\) 38.4993 15.5541i 1.82710 0.738166i
\(445\) 10.2361 0.485240
\(446\) 6.07775 4.45402i 0.287790 0.210904i
\(447\) −14.8252 + 12.2332i −0.701206 + 0.578612i
\(448\) 9.72084 + 12.7085i 0.459267 + 0.600419i
\(449\) 15.5290i 0.732857i 0.930446 + 0.366429i \(0.119420\pi\)
−0.930446 + 0.366429i \(0.880580\pi\)
\(450\) 17.4480 8.24468i 0.822508 0.388658i
\(451\) 4.93428i 0.232346i
\(452\) −36.2668 11.4551i −1.70585 0.538804i
\(453\) 21.4551 17.7041i 1.00805 0.831809i
\(454\) −8.75186 11.9424i −0.410745 0.560484i
\(455\) −6.13145 −0.287447
\(456\) 11.7675 19.0048i 0.551066 0.889980i
\(457\) 16.0912 0.752716 0.376358 0.926474i \(-0.377176\pi\)
0.376358 + 0.926474i \(0.377176\pi\)
\(458\) 12.2668 + 16.7387i 0.573191 + 0.782150i
\(459\) 10.9627 + 20.1197i 0.511697 + 0.939107i
\(460\) 4.38718 + 1.38572i 0.204553 + 0.0646096i
\(461\) 10.9941i 0.512048i −0.966670 0.256024i \(-0.917587\pi\)
0.966670 0.256024i \(-0.0824125\pi\)
\(462\) −4.74853 1.20476i −0.220922 0.0560505i
\(463\) 36.9544i 1.71742i 0.512463 + 0.858709i \(0.328733\pi\)
−0.512463 + 0.858709i \(0.671267\pi\)
\(464\) 9.19053 13.0971i 0.426659 0.608018i
\(465\) 0.983707 + 1.19213i 0.0456183 + 0.0552838i
\(466\) −3.27885 + 2.40287i −0.151890 + 0.111311i
\(467\) 19.0674 0.882336 0.441168 0.897425i \(-0.354564\pi\)
0.441168 + 0.897425i \(0.354564\pi\)
\(468\) −24.0654 13.0515i −1.11242 0.603305i
\(469\) −1.60669 −0.0741902
\(470\) 4.00000 2.93136i 0.184506 0.135214i
\(471\) −18.2363 22.1002i −0.840285 1.01832i
\(472\) 19.6381 6.64956i 0.903916 0.306071i
\(473\) 8.97231i 0.412547i
\(474\) −12.7552 3.23614i −0.585865 0.148641i
\(475\) 20.7541i 0.952263i
\(476\) −5.31241 + 16.8190i −0.243494 + 0.770899i
\(477\) −8.19130 1.58383i −0.375054 0.0725187i
\(478\) −10.3737 14.1555i −0.474483 0.647458i
\(479\) −16.8235 −0.768686 −0.384343 0.923190i \(-0.625572\pi\)
−0.384343 + 0.923190i \(0.625572\pi\)
\(480\) −4.29339 4.99055i −0.195966 0.227786i
\(481\) −54.6921 −2.49374
\(482\) 0.452222 + 0.617082i 0.0205982 + 0.0281073i
\(483\) 9.14792 7.54855i 0.416245 0.343471i
\(484\) −0.602380 + 1.90713i −0.0273809 + 0.0866877i
\(485\) 1.04047i 0.0472453i
\(486\) −12.9962 + 17.8072i −0.589521 + 0.807753i
\(487\) 19.1967i 0.869883i −0.900459 0.434942i \(-0.856769\pi\)
0.900459 0.434942i \(-0.143231\pi\)
\(488\) −9.72084 + 3.29153i −0.440042 + 0.149000i
\(489\) −9.13903 + 7.54122i −0.413281 + 0.341026i
\(490\) 2.29929 1.68501i 0.103872 0.0761212i
\(491\) −33.7578 −1.52347 −0.761734 0.647890i \(-0.775652\pi\)
−0.761734 + 0.647890i \(0.775652\pi\)
\(492\) 6.40287 + 15.8483i 0.288664 + 0.714496i
\(493\) 17.6381 0.794379
\(494\) −23.7482 + 17.4036i −1.06848 + 0.783027i
\(495\) 1.97904 + 0.382657i 0.0889511 + 0.0171992i
\(496\) −3.05149 + 4.34858i −0.137016 + 0.195257i
\(497\) 19.4036i 0.870372i
\(498\) −7.65990 + 30.1913i −0.343248 + 1.35290i
\(499\) 27.4731i 1.22986i −0.788580 0.614932i \(-0.789184\pi\)
0.788580 0.614932i \(-0.210816\pi\)
\(500\) −12.2355 3.86466i −0.547187 0.172833i
\(501\) −20.8117 25.2212i −0.929799 1.12680i
\(502\) 6.96864 + 9.50909i 0.311026 + 0.424411i
\(503\) 3.36001 0.149815 0.0749077 0.997190i \(-0.476134\pi\)
0.0749077 + 0.997190i \(0.476134\pi\)
\(504\) −16.8150 + 2.29230i −0.749001 + 0.102107i
\(505\) −9.09419 −0.404686
\(506\) −2.86208 3.90547i −0.127235 0.173619i
\(507\) 8.61955 + 10.4458i 0.382808 + 0.463916i
\(508\) 10.4420 + 3.29818i 0.463289 + 0.146333i
\(509\) 30.6165i 1.35705i −0.734576 0.678527i \(-0.762619\pi\)
0.734576 0.678527i \(-0.237381\pi\)
\(510\) 1.78470 7.03434i 0.0790277 0.311486i
\(511\) 2.95049i 0.130522i
\(512\) 12.6141 18.7852i 0.557468 0.830198i
\(513\) 11.3438 + 20.8190i 0.500841 + 0.919183i
\(514\) 7.27885 5.33423i 0.321056 0.235283i
\(515\) −8.92202 −0.393151
\(516\) 11.6427 + 28.8179i 0.512543 + 1.26864i
\(517\) −5.21899 −0.229531
\(518\) −27.3460 + 20.0403i −1.20152 + 0.880519i
\(519\) 0.291527 0.240559i 0.0127966 0.0105593i
\(520\) 2.78101 + 8.21312i 0.121955 + 0.360169i
\(521\) 24.0537i 1.05381i −0.849923 0.526906i \(-0.823352\pi\)
0.849923 0.526906i \(-0.176648\pi\)
\(522\) 7.25038 + 15.3438i 0.317340 + 0.671580i
\(523\) 1.13223i 0.0495088i 0.999694 + 0.0247544i \(0.00788038\pi\)
−0.999694 + 0.0247544i \(0.992120\pi\)
\(524\) −3.21899 + 10.1913i −0.140622 + 0.445209i
\(525\) −12.1533 + 10.0285i −0.530412 + 0.437678i
\(526\) −2.68536 3.66431i −0.117087 0.159772i
\(527\) −5.85629 −0.255104
\(528\) 0.539980 + 6.90713i 0.0234996 + 0.300594i
\(529\) −11.2779 −0.490344
\(530\) 1.56201 + 2.13145i 0.0678495 + 0.0925843i
\(531\) −4.17475 + 21.5911i −0.181169 + 0.936974i
\(532\) −5.49706 + 17.4036i −0.238328 + 0.754544i
\(533\) 22.5141i 0.975192i
\(534\) −36.1712 9.17707i −1.56528 0.397131i
\(535\) 11.1540i 0.482231i
\(536\) 0.728739 + 2.15218i 0.0314767 + 0.0929599i
\(537\) 0.257106 + 0.311581i 0.0110950 + 0.0134457i
\(538\) 1.04084 0.762766i 0.0448736 0.0328852i
\(539\) −3.00000 −0.129219
\(540\) 6.85297 1.33901i 0.294905 0.0576219i
\(541\) −18.4313 −0.792425 −0.396213 0.918159i \(-0.629676\pi\)
−0.396213 + 0.918159i \(0.629676\pi\)
\(542\) −1.59604 + 1.16964i −0.0685558 + 0.0502404i
\(543\) −15.3871 18.6473i −0.660324 0.800231i
\(544\) 24.9387 0.512500i 1.06924 0.0219733i
\(545\) 2.16283i 0.0926456i
\(546\) 21.6665 + 5.49706i 0.927243 + 0.235253i
\(547\) 44.0739i 1.88446i 0.334962 + 0.942232i \(0.391276\pi\)
−0.334962 + 0.942232i \(0.608724\pi\)
\(548\) 16.3603 + 5.16750i 0.698876 + 0.220745i
\(549\) 2.06650 10.6876i 0.0881961 0.456135i
\(550\) 3.80236 + 5.18852i 0.162133 + 0.221239i
\(551\) 18.2512 0.777525
\(552\) −14.2605 8.82995i −0.606968 0.375828i
\(553\) 10.7445 0.456904
\(554\) 4.47270 + 6.10324i 0.190027 + 0.259302i
\(555\) 10.7594 8.87826i 0.456709 0.376861i
\(556\) −38.7997 12.2552i −1.64547 0.519735i
\(557\) 19.9598i 0.845723i −0.906194 0.422862i \(-0.861026\pi\)
0.906194 0.422862i \(-0.138974\pi\)
\(558\) −2.40731 5.09453i −0.101910 0.215669i
\(559\) 40.9387i 1.73152i
\(560\) 4.39996 + 3.08754i 0.185932 + 0.130473i
\(561\) −5.89089 + 4.86097i −0.248714 + 0.205230i
\(562\) 10.3737 7.60228i 0.437589 0.320683i
\(563\) 20.8190 0.877418 0.438709 0.898629i \(-0.355436\pi\)
0.438709 + 0.898629i \(0.355436\pi\)
\(564\) −16.7628 + 6.77233i −0.705840 + 0.285167i
\(565\) −12.7771 −0.537537
\(566\) 3.48948 2.55723i 0.146674 0.107488i
\(567\) 6.70993 16.7026i 0.281791 0.701443i
\(568\) 25.9913 8.80080i 1.09057 0.369273i
\(569\) 4.49337i 0.188372i 0.995555 + 0.0941860i \(0.0300248\pi\)
−0.995555 + 0.0941860i \(0.969975\pi\)
\(570\) 1.84673 7.27885i 0.0773510 0.304877i
\(571\) 7.30868i 0.305859i −0.988237 0.152929i \(-0.951129\pi\)
0.988237 0.152929i \(-0.0488707\pi\)
\(572\) 2.74853 8.70182i 0.114922 0.363842i
\(573\) 16.5514 + 20.0582i 0.691444 + 0.837945i
\(574\) −8.24960 11.2570i −0.344332 0.469859i
\(575\) −15.5731 −0.649444
\(576\) 10.6973 + 21.4842i 0.445719 + 0.895173i
\(577\) −0.236143 −0.00983076 −0.00491538 0.999988i \(-0.501565\pi\)
−0.00491538 + 0.999988i \(0.501565\pi\)
\(578\) 2.04294 + 2.78771i 0.0849752 + 0.115953i
\(579\) −14.4380 17.4971i −0.600022 0.727153i
\(580\) 1.61895 5.12558i 0.0672232 0.212828i
\(581\) 25.4321i 1.05510i
\(582\) 0.932818 3.67668i 0.0386665 0.152403i
\(583\) 2.78101i 0.115177i
\(584\) 3.95220 1.33824i 0.163543 0.0553766i
\(585\) −9.02993 1.74598i −0.373341 0.0721875i
\(586\) 15.7533 11.5447i 0.650763 0.476906i
\(587\) −18.1314 −0.748365 −0.374183 0.927355i \(-0.622077\pi\)
−0.374183 + 0.927355i \(0.622077\pi\)
\(588\) −9.63563 + 3.89289i −0.397367 + 0.160540i
\(589\) −6.05985 −0.249692
\(590\) 5.61820 4.11724i 0.231298 0.169504i
\(591\) 36.1225 29.8070i 1.48588 1.22610i
\(592\) 39.2473 + 27.5407i 1.61305 + 1.13191i
\(593\) 11.0702i 0.454598i −0.973825 0.227299i \(-0.927010\pi\)
0.973825 0.227299i \(-0.0729895\pi\)
\(594\) −6.65021 3.12646i −0.272861 0.128280i
\(595\) 5.92549i 0.242921i
\(596\) −21.1636 6.68467i −0.866895 0.273815i
\(597\) −19.0837 + 15.7472i −0.781042 + 0.644489i
\(598\) 13.0591 + 17.8198i 0.534025 + 0.728706i
\(599\) 3.35044 0.136895 0.0684477 0.997655i \(-0.478195\pi\)
0.0684477 + 0.997655i \(0.478195\pi\)
\(600\) 18.9455 + 11.7308i 0.773447 + 0.478909i
\(601\) 9.94170 0.405530 0.202765 0.979227i \(-0.435007\pi\)
0.202765 + 0.979227i \(0.435007\pi\)
\(602\) −15.0008 20.4694i −0.611386 0.834269i
\(603\) −2.36622 0.457520i −0.0963597 0.0186317i
\(604\) 30.6282 + 9.67413i 1.24624 + 0.393635i
\(605\) 0.671897i 0.0273165i
\(606\) 32.1359 + 8.15327i 1.30543 + 0.331204i
\(607\) 28.6921i 1.16457i 0.812983 + 0.582287i \(0.197842\pi\)
−0.812983 + 0.582287i \(0.802158\pi\)
\(608\) 25.8056 0.530314i 1.04655 0.0215071i
\(609\) −8.81904 10.6876i −0.357365 0.433083i
\(610\) −2.78101 + 2.03803i −0.112600 + 0.0825175i
\(611\) 23.8132 0.963378
\(612\) −12.6131 + 23.2570i −0.509853 + 0.940110i
\(613\) −4.24159 −0.171316 −0.0856581 0.996325i \(-0.527299\pi\)
−0.0856581 + 0.996325i \(0.527299\pi\)
\(614\) −2.42375 + 1.77622i −0.0978147 + 0.0716826i
\(615\) 3.65475 + 4.42910i 0.147374 + 0.178599i
\(616\) −1.81426 5.35803i −0.0730985 0.215881i
\(617\) 35.6396i 1.43480i −0.696663 0.717399i \(-0.745333\pi\)
0.696663 0.717399i \(-0.254667\pi\)
\(618\) 31.5275 + 7.99891i 1.26822 + 0.321763i
\(619\) 23.3041i 0.936671i −0.883551 0.468335i \(-0.844854\pi\)
0.883551 0.468335i \(-0.155146\pi\)
\(620\) −0.537533 + 1.70182i −0.0215878 + 0.0683469i
\(621\) 15.6219 8.51198i 0.626884 0.341574i
\(622\) 8.17151 + 11.1505i 0.327648 + 0.447093i
\(623\) 30.4694 1.22073
\(624\) −2.46381 31.5158i −0.0986315 1.26164i
\(625\) 18.4321 0.737285
\(626\) −4.29597 5.86208i −0.171701 0.234296i
\(627\) −6.09565 + 5.02993i −0.243437 + 0.200876i
\(628\) 9.96498 31.5490i 0.397646 1.25894i
\(629\) 52.8549i 2.10746i
\(630\) −5.15473 + 2.43575i −0.205369 + 0.0970428i
\(631\) 8.30997i 0.330815i 0.986225 + 0.165407i \(0.0528939\pi\)
−0.986225 + 0.165407i \(0.947106\pi\)
\(632\) −4.87333 14.3924i −0.193851 0.572498i
\(633\) 3.67725 3.03434i 0.146157 0.120604i
\(634\) −24.8643 + 18.2216i −0.987488 + 0.723671i
\(635\) 3.67880 0.145989
\(636\) −3.60872 8.93225i −0.143095 0.354187i
\(637\) 13.6884 0.542353
\(638\) −4.56279 + 3.34379i −0.180643 + 0.132382i
\(639\) −5.52536 + 28.5762i −0.218580 + 1.13046i
\(640\) 2.14013 7.29417i 0.0845959 0.288327i
\(641\) 12.8850i 0.508928i 0.967082 + 0.254464i \(0.0818990\pi\)
−0.967082 + 0.254464i \(0.918101\pi\)
\(642\) −10.0000 + 39.4148i −0.394669 + 1.55558i
\(643\) 23.8858i 0.941964i 0.882143 + 0.470982i \(0.156100\pi\)
−0.882143 + 0.470982i \(0.843900\pi\)
\(644\) 13.0591 + 4.12480i 0.514600 + 0.162540i
\(645\) 6.64566 + 8.05372i 0.261673 + 0.317115i
\(646\) 16.8190 + 22.9505i 0.661736 + 0.902975i
\(647\) 5.24867 0.206346 0.103173 0.994663i \(-0.467100\pi\)
0.103173 + 0.994663i \(0.467100\pi\)
\(648\) −25.4166 1.41230i −0.998460 0.0554803i
\(649\) −7.33034 −0.287741
\(650\) −17.3494 23.6741i −0.680498 0.928576i
\(651\) 2.92815 + 3.54855i 0.114763 + 0.139079i
\(652\) −13.0464 4.12079i −0.510936 0.161383i
\(653\) 28.9784i 1.13401i −0.823713 0.567007i \(-0.808101\pi\)
0.823713 0.567007i \(-0.191899\pi\)
\(654\) 1.93906 7.64275i 0.0758231 0.298855i
\(655\) 3.59048i 0.140292i
\(656\) −11.3371 + 16.1562i −0.442641 + 0.630793i
\(657\) −0.840177 + 4.34525i −0.0327784 + 0.169524i
\(658\) 11.9066 8.72562i 0.464167 0.340160i
\(659\) 34.6607 1.35019 0.675094 0.737732i \(-0.264103\pi\)
0.675094 + 0.737732i \(0.264103\pi\)
\(660\) 0.871875 + 2.15805i 0.0339377 + 0.0840020i
\(661\) −18.1180 −0.704708 −0.352354 0.935867i \(-0.614619\pi\)
−0.352354 + 0.935867i \(0.614619\pi\)
\(662\) −22.5829 + 16.5497i −0.877710 + 0.643221i
\(663\) 26.8789 22.1796i 1.04389 0.861383i
\(664\) −34.0665 + 11.5351i −1.32204 + 0.447649i
\(665\) 6.13145i 0.237767i
\(666\) −45.9798 + 21.7267i −1.78168 + 0.841894i
\(667\) 13.6950i 0.530273i
\(668\) 11.3723 36.0045i 0.440006 1.39305i
\(669\) −7.11807 + 5.87359i −0.275201 + 0.227086i
\(670\) 0.451217 + 0.615710i 0.0174320 + 0.0237870i
\(671\) 3.62851 0.140077
\(672\) −12.7799 14.8551i −0.492996 0.573048i
\(673\) 0.931360 0.0359013 0.0179507 0.999839i \(-0.494286\pi\)
0.0179507 + 0.999839i \(0.494286\pi\)
\(674\) 9.82517 + 13.4070i 0.378451 + 0.516417i
\(675\) −20.7541 + 11.3084i −0.798825 + 0.435261i
\(676\) −4.71003 + 14.9119i −0.181155 + 0.573535i
\(677\) 30.3541i 1.16660i −0.812255 0.583302i \(-0.801760\pi\)
0.812255 0.583302i \(-0.198240\pi\)
\(678\) 45.1502 + 11.4551i 1.73398 + 0.439932i
\(679\) 3.09711i 0.118856i
\(680\) 7.93723 2.68759i 0.304379 0.103064i
\(681\) 11.5412 + 13.9865i 0.442261 + 0.535965i
\(682\) 1.51496 1.11023i 0.0580109 0.0425127i
\(683\) 39.6396 1.51677 0.758384 0.651808i \(-0.225989\pi\)
0.758384 + 0.651808i \(0.225989\pi\)
\(684\) −13.0515 + 24.0654i −0.499036 + 0.920164i
\(685\) 5.76386 0.220226
\(686\) 22.8139 16.7190i 0.871040 0.638333i
\(687\) −16.1765 19.6039i −0.617171 0.747935i
\(688\) −20.6151 + 29.3778i −0.785942 + 1.12002i
\(689\) 12.6891i 0.483418i
\(690\) −5.46179 1.38572i −0.207927 0.0527535i
\(691\) 51.5984i 1.96290i 0.191731 + 0.981448i \(0.438590\pi\)
−0.191731 + 0.981448i \(0.561410\pi\)
\(692\) 0.416169 + 0.131450i 0.0158204 + 0.00499697i
\(693\) 5.89089 + 1.13903i 0.223776 + 0.0432684i
\(694\) −12.2293 16.6876i −0.464219 0.633452i
\(695\) −13.6695 −0.518512
\(696\) −10.3161 + 16.6607i −0.391031 + 0.631521i
\(697\) −21.7578 −0.824135
\(698\) −18.6813 25.4917i −0.707100 0.964876i
\(699\) 3.84008 3.16871i 0.145245 0.119851i
\(700\) −17.3494 5.47991i −0.655744 0.207121i
\(701\) 28.7161i 1.08459i 0.840188 + 0.542295i \(0.182445\pi\)
−0.840188 + 0.542295i \(0.817555\pi\)
\(702\) 30.3435 + 14.2654i 1.14524 + 0.538412i
\(703\) 54.6921i 2.06275i
\(704\) −6.35424 + 4.86042i −0.239484 + 0.183184i
\(705\) −4.68467 + 3.86564i −0.176435 + 0.145588i
\(706\) 26.7885 19.6317i 1.00820 0.738847i
\(707\) −27.0702 −1.01808
\(708\) −23.5441 + 9.51207i −0.884843 + 0.357486i
\(709\) −2.78490 −0.104589 −0.0522946 0.998632i \(-0.516653\pi\)
−0.0522946 + 0.998632i \(0.516653\pi\)
\(710\) 7.43578 5.44924i 0.279060 0.204506i
\(711\) 15.8237 + 3.05960i 0.593435 + 0.114744i
\(712\) −13.8198 40.8139i −0.517919 1.52957i
\(713\) 4.54710i 0.170290i
\(714\) 5.31241 20.9387i 0.198812 0.783613i
\(715\) 3.06572i 0.114652i
\(716\) −0.140492 + 0.444796i −0.00525044 + 0.0166228i
\(717\) 13.6800 + 16.5785i 0.510889 + 0.619135i
\(718\) 0.316102 + 0.431339i 0.0117968 + 0.0160974i
\(719\) −45.5719 −1.69955 −0.849773 0.527149i \(-0.823261\pi\)
−0.849773 + 0.527149i \(0.823261\pi\)
\(720\) 5.60071 + 5.80002i 0.208726 + 0.216154i
\(721\) −26.5577 −0.989060
\(722\) 1.52062 + 2.07497i 0.0565917 + 0.0772225i
\(723\) −0.596354 0.722707i −0.0221786 0.0268778i
\(724\) 8.40806 26.6198i 0.312483 0.989318i
\(725\) 18.1942i 0.675716i
\(726\) 0.602380 2.37427i 0.0223564 0.0881173i
\(727\) 17.6479i 0.654526i −0.944933 0.327263i \(-0.893874\pi\)
0.944933 0.327263i \(-0.106126\pi\)
\(728\) 8.27807 + 24.4476i 0.306806 + 0.906087i
\(729\) 14.6381 22.6876i 0.542151 0.840281i
\(730\) 1.13067 0.828603i 0.0418481 0.0306680i
\(731\) −39.5636 −1.46331
\(732\) 11.6543 4.70847i 0.430757 0.174030i
\(733\) 17.8169 0.658082 0.329041 0.944316i \(-0.393275\pi\)
0.329041 + 0.944316i \(0.393275\pi\)
\(734\) −15.6756 + 11.4877i −0.578596 + 0.424018i
\(735\) −2.69286 + 2.22206i −0.0993277 + 0.0819618i
\(736\) −0.397929 19.3636i −0.0146679 0.713751i
\(737\) 0.803347i 0.0295917i
\(738\) −8.94384 18.9276i −0.329227 0.696736i
\(739\) 5.71528i 0.210240i −0.994460 0.105120i \(-0.966477\pi\)
0.994460 0.105120i \(-0.0335227\pi\)
\(740\) 15.3595 + 4.85140i 0.564626 + 0.178341i
\(741\) 27.8132 22.9505i 1.02174 0.843107i
\(742\) 4.64956 + 6.34457i 0.170691 + 0.232917i
\(743\) −40.5694 −1.48835 −0.744174 0.667986i \(-0.767157\pi\)
−0.744174 + 0.667986i \(0.767157\pi\)
\(744\) 3.42521 5.53177i 0.125574 0.202805i
\(745\) −7.45612 −0.273171
\(746\) 16.6909 + 22.7757i 0.611098 + 0.833876i
\(747\) 7.24202 37.4545i 0.264972 1.37039i
\(748\) −8.40952 2.65621i −0.307482 0.0971205i
\(749\) 33.2016i 1.21316i
\(750\) 15.2325 + 3.86466i 0.556210 + 0.141117i
\(751\) 8.54045i 0.311645i 0.987785 + 0.155823i \(0.0498028\pi\)
−0.987785 + 0.155823i \(0.950197\pi\)
\(752\) −17.0884 11.9913i −0.623151 0.437279i
\(753\) −9.18967 11.1367i −0.334890 0.405846i
\(754\) 20.8190 15.2570i 0.758185 0.555628i
\(755\) 10.7906 0.392709
\(756\) 20.3989 3.98577i 0.741900 0.144961i
\(757\) 1.87010 0.0679701 0.0339850 0.999422i \(-0.489180\pi\)
0.0339850 + 0.999422i \(0.489180\pi\)
\(758\) 11.8595 8.69114i 0.430758 0.315677i
\(759\) 3.77428 + 4.57396i 0.136998 + 0.166024i
\(760\) 8.21312 2.78101i 0.297921 0.100878i
\(761\) 28.1344i 1.01987i 0.860213 + 0.509935i \(0.170331\pi\)
−0.860213 + 0.509935i \(0.829669\pi\)
\(762\) −12.9997 3.29818i −0.470929 0.119480i
\(763\) 6.43799i 0.233071i
\(764\) −9.04427 + 28.6341i −0.327210 + 1.03594i
\(765\) −1.68733 + 8.72660i −0.0610057 + 0.315511i
\(766\) −26.6635 36.3837i −0.963390 1.31460i
\(767\) 33.4468 1.20769
\(768\) −14.1020 + 23.8565i −0.508862 + 0.860848i
\(769\) 50.4901 1.82072 0.910359 0.413820i \(-0.135806\pi\)
0.910359 + 0.413820i \(0.135806\pi\)
\(770\) −1.12334 1.53286i −0.0404825 0.0552405i
\(771\) −8.52476 + 7.03434i −0.307012 + 0.253336i
\(772\) 7.88943 24.9779i 0.283947 0.898973i
\(773\) 15.4265i 0.554853i 0.960747 + 0.277426i \(0.0894815\pi\)
−0.960747 + 0.277426i \(0.910519\pi\)
\(774\) −16.2632 34.4173i −0.584567 1.23710i
\(775\) 6.04095i 0.216997i
\(776\) 4.14860 1.40474i 0.148926 0.0504271i
\(777\) 32.0268 26.4274i 1.14896 0.948079i
\(778\) 10.5416 7.72528i 0.377933 0.276965i
\(779\) −22.5141 −0.806650
\(780\) −3.97818 9.84673i −0.142442 0.352570i
\(781\) −9.70182 −0.347159
\(782\) 17.2212 12.6204i 0.615830 0.451305i
\(783\) −9.94462 18.2512i −0.355392 0.652243i
\(784\) −9.82283 6.89289i −0.350815 0.246175i
\(785\) 11.1150i 0.396711i
\(786\) 3.21899 12.6876i 0.114818 0.452551i
\(787\) 30.6359i 1.09205i 0.837768 + 0.546027i \(0.183860\pi\)
−0.837768 + 0.546027i \(0.816140\pi\)
\(788\) 51.5665 + 16.2876i 1.83698 + 0.580223i
\(789\) 3.54122 + 4.29153i 0.126071 + 0.152782i
\(790\) −3.01745 4.11747i −0.107356 0.146493i
\(791\) −38.0329 −1.35230
\(792\) −1.14615 8.40752i −0.0407267 0.298748i
\(793\) −16.5561 −0.587926
\(794\) −10.8259 14.7726i −0.384198 0.524259i
\(795\) −2.05985 2.49629i −0.0730554 0.0885342i
\(796\) −27.2428 8.60483i −0.965595 0.304990i
\(797\) 42.2115i 1.49521i 0.664146 + 0.747603i \(0.268796\pi\)
−0.664146 + 0.747603i \(0.731204\pi\)
\(798\) 5.49706 21.6665i 0.194594 0.766987i
\(799\) 23.0133i 0.814150i
\(800\) 0.528660 + 25.7251i 0.0186909 + 0.909519i
\(801\) 44.8729 + 8.67642i 1.58551 + 0.306566i
\(802\) −12.8409 + 9.41030i −0.453426 + 0.332289i
\(803\) −1.47524 −0.0520602
\(804\) −1.04245 2.58025i −0.0367643 0.0909985i
\(805\) 4.60082 0.162158
\(806\) −6.91246 + 5.06572i −0.243481 + 0.178433i
\(807\) −1.21899 + 1.00587i −0.0429106 + 0.0354084i
\(808\) 12.2781 + 36.2607i 0.431941 + 1.27565i
\(809\) 22.0732i 0.776051i 0.921649 + 0.388025i \(0.126843\pi\)
−0.921649 + 0.388025i \(0.873157\pi\)
\(810\) −8.28509 + 2.11934i −0.291108 + 0.0744659i
\(811\) 34.3284i 1.20543i 0.797956 + 0.602716i \(0.205915\pi\)
−0.797956 + 0.602716i \(0.794085\pi\)
\(812\) 4.81904 15.2570i 0.169115 0.535417i
\(813\) 1.86923 1.54243i 0.0655568 0.0540953i
\(814\) −10.0201 13.6730i −0.351205 0.479239i
\(815\) −4.59635 −0.161003
\(816\) −30.4571 + 2.38105i −1.06621 + 0.0833534i
\(817\) −40.9387 −1.43227
\(818\) −7.00613 9.56024i −0.244964 0.334266i
\(819\) −26.8789 5.19717i −0.939224 0.181604i
\(820\) −1.99709 + 6.32275i −0.0697412 + 0.220800i
\(821\) 12.5248i 0.437117i 0.975824 + 0.218558i \(0.0701354\pi\)
−0.975824 + 0.218558i \(0.929865\pi\)
\(822\) −20.3676 5.16750i −0.710401 0.180237i
\(823\) 38.9976i 1.35937i −0.733504 0.679685i \(-0.762117\pi\)
0.733504 0.679685i \(-0.237883\pi\)
\(824\) 12.0456 + 35.5742i 0.419629 + 1.23929i
\(825\) −5.01423 6.07663i −0.174573 0.211561i
\(826\) 16.7234 12.2556i 0.581881 0.426426i
\(827\) −2.80283 −0.0974638 −0.0487319 0.998812i \(-0.515518\pi\)
−0.0487319 + 0.998812i \(0.515518\pi\)
\(828\) 18.0578 + 9.79337i 0.627553 + 0.340343i
\(829\) −6.71435 −0.233199 −0.116599 0.993179i \(-0.537199\pi\)
−0.116599 + 0.993179i \(0.537199\pi\)
\(830\) −9.74598 + 7.14225i −0.338288 + 0.247911i
\(831\) −5.89822 7.14792i −0.204607 0.247959i
\(832\) 28.9930 22.1771i 1.00515 0.768851i
\(833\) 13.2286i 0.458342i
\(834\) 48.3034 + 12.2552i 1.67261 + 0.424361i
\(835\) 12.6847i 0.438971i
\(836\) −8.70182 2.74853i −0.300959 0.0950600i
\(837\) 3.30187 + 6.05985i 0.114129 + 0.209459i
\(838\) −10.9247 14.9074i −0.377388 0.514966i
\(839\) 11.3399 0.391497 0.195748 0.980654i \(-0.437286\pi\)
0.195748 + 0.980654i \(0.437286\pi\)
\(840\) −5.59713 3.46568i −0.193119 0.119577i
\(841\) 13.0000 0.448276
\(842\) −23.3603 31.8763i −0.805048 1.09853i
\(843\) −12.1494 + 10.0253i −0.418447 + 0.345288i
\(844\) 5.24944 + 1.65807i 0.180693 + 0.0570732i
\(845\) 5.25359i 0.180729i
\(846\) 20.0198 9.45992i 0.688295 0.325239i
\(847\) 2.00000i 0.0687208i
\(848\) 6.38973 9.10578i 0.219424 0.312694i
\(849\) −4.08677 + 3.37226i −0.140258 + 0.115736i
\(850\) −22.8789 + 16.7666i −0.784739 + 0.575089i
\(851\) 41.0390 1.40680
\(852\) −31.1611 + 12.5894i −1.06756 + 0.431305i
\(853\) −29.2264 −1.00069 −0.500346 0.865826i \(-0.666794\pi\)
−0.500346 + 0.865826i \(0.666794\pi\)
\(854\) −8.27807 + 6.06650i −0.283270 + 0.207591i
\(855\) −1.74598 + 9.02993i −0.0597114 + 0.308817i
\(856\) −44.4738 + 15.0591i −1.52008 + 0.514709i
\(857\) 5.56201i 0.189995i −0.995478 0.0949974i \(-0.969716\pi\)
0.995478 0.0949974i \(-0.0302843\pi\)
\(858\) −2.74853 + 10.8333i −0.0938333 + 0.369842i
\(859\) 21.0529i 0.718317i −0.933277 0.359159i \(-0.883064\pi\)
0.933277 0.359159i \(-0.116936\pi\)
\(860\) −3.63143 + 11.4971i −0.123831 + 0.392047i
\(861\) 10.8789 + 13.1839i 0.370752 + 0.449305i
\(862\) −2.95272 4.02915i −0.100570 0.137233i
\(863\) 53.2279 1.81190 0.905950 0.423385i \(-0.139158\pi\)
0.905950 + 0.423385i \(0.139158\pi\)
\(864\) −14.5912 25.5166i −0.496401 0.868093i
\(865\) 0.146620 0.00498522
\(866\) −4.68590 6.39417i −0.159233 0.217283i
\(867\) −2.69406 3.26487i −0.0914952 0.110881i
\(868\) −1.60004 + 5.06572i −0.0543091 + 0.171942i
\(869\) 5.37226i 0.182242i
\(870\) −1.61895 + 6.38105i −0.0548875 + 0.216338i
\(871\) 3.66550i 0.124201i
\(872\) 8.62373 2.92004i 0.292036 0.0988851i
\(873\) −0.881928 + 4.56118i −0.0298488 + 0.154373i
\(874\) 17.8198 13.0591i 0.602764 0.441730i
\(875\) −12.8313 −0.433777
\(876\) −4.73830 + 1.91432i −0.160092 + 0.0646790i
\(877\) 17.3058 0.584374 0.292187 0.956361i \(-0.405617\pi\)
0.292187 + 0.956361i \(0.405617\pi\)
\(878\) −27.4960 + 20.1502i −0.927944 + 0.680035i
\(879\) −18.4498 + 15.2241i −0.622296 + 0.513498i
\(880\) −1.54377 + 2.19998i −0.0520405 + 0.0741612i
\(881\) 52.5124i 1.76919i 0.466362 + 0.884594i \(0.345564\pi\)
−0.466362 + 0.884594i \(0.654436\pi\)
\(882\) 11.5078 5.43778i 0.387489 0.183100i
\(883\) 23.4672i 0.789735i −0.918738 0.394868i \(-0.870790\pi\)
0.918738 0.394868i \(-0.129210\pi\)
\(884\) 38.3709 + 12.1197i 1.29055 + 0.407630i
\(885\) −6.57986 + 5.42948i −0.221180 + 0.182510i
\(886\) 29.0358 + 39.6210i 0.975478 + 1.33109i
\(887\) −50.4169 −1.69283 −0.846417 0.532521i \(-0.821245\pi\)
−0.846417 + 0.532521i \(0.821245\pi\)
\(888\) −49.9260 30.9136i −1.67541 1.03739i
\(889\) 10.9505 0.367268
\(890\) −8.55689 11.6763i −0.286828 0.391392i
\(891\) 8.35130 + 3.35496i 0.279779 + 0.112396i
\(892\) −10.1614 3.20954i −0.340228 0.107463i
\(893\) 23.8132i 0.796877i
\(894\) 26.3475 + 6.68467i 0.881192 + 0.223569i
\(895\) 0.156706i 0.00523809i
\(896\) 6.37040 21.7122i 0.212820 0.725352i
\(897\) −17.2212 20.8700i −0.575000 0.696829i
\(898\) 17.7138 12.9814i 0.591119 0.433196i
\(899\) 5.31241 0.177179
\(900\) −23.9903 13.0108i −0.799678 0.433692i
\(901\) 12.2629 0.408536
\(902\) 5.62851 4.12480i 0.187409 0.137341i
\(903\) 19.7818 + 23.9731i 0.658297 + 0.797774i
\(904\) 17.2504 + 50.9454i 0.573739 + 1.69442i
\(905\) 9.37839i 0.311748i
\(906\) −38.1304 9.67413i −1.26680 0.321401i
\(907\) 35.1038i 1.16560i 0.812615 + 0.582801i \(0.198043\pi\)
−0.812615 + 0.582801i \(0.801957\pi\)
\(908\) −6.30654 + 19.9664i −0.209290 + 0.662609i
\(909\) −39.8669 7.70847i −1.32230 0.255674i
\(910\) 5.12558 + 6.99413i 0.169911 + 0.231853i
\(911\) 3.78688 0.125465 0.0627324 0.998030i \(-0.480019\pi\)
0.0627324 + 0.998030i \(0.480019\pi\)
\(912\) −31.5158 + 2.46381i −1.04359 + 0.0815850i
\(913\) 12.7161 0.420840
\(914\) −13.4514 18.3552i −0.444934 0.607137i
\(915\) 3.25703 2.68759i 0.107674 0.0888489i
\(916\) 8.83940 27.9855i 0.292062 0.924665i
\(917\) 10.6876i 0.352935i
\(918\) 13.7862 29.3242i 0.455012 0.967843i
\(919\) 25.3914i 0.837585i 0.908082 + 0.418792i \(0.137546\pi\)
−0.908082 + 0.418792i \(0.862454\pi\)
\(920\) −2.08677 6.16283i −0.0687987 0.203183i
\(921\) 2.83862 2.34234i 0.0935358 0.0771826i
\(922\) −12.5410 + 9.19053i −0.413015 + 0.302674i
\(923\) 44.2674 1.45708
\(924\) 2.59526 + 6.42375i 0.0853779 + 0.211326i
\(925\) −54.5214 −1.79265
\(926\) 42.1538 30.8920i 1.38526 1.01517i
\(927\) −39.1121 7.56253i −1.28461 0.248386i
\(928\) −22.6226 + 0.464904i −0.742625 + 0.0152612i
\(929\) 22.8073i 0.748283i −0.927372 0.374142i \(-0.877937\pi\)
0.927372 0.374142i \(-0.122063\pi\)
\(930\) 0.537533 2.11867i 0.0176264 0.0694740i
\(931\) 13.6884i 0.448618i
\(932\) 5.48189 + 1.73149i 0.179565 + 0.0567170i
\(933\) −10.7759 13.0591i −0.352787 0.427535i
\(934\) −15.9394 21.7502i −0.521553 0.711687i
\(935\) −2.96274 −0.0968921
\(936\) 5.22965 + 38.3617i 0.170936 + 1.25389i
\(937\) 35.9760 1.17528 0.587642 0.809121i \(-0.300056\pi\)
0.587642 + 0.809121i \(0.300056\pi\)
\(938\) 1.34311 + 1.83275i 0.0438542 + 0.0598415i
\(939\) 5.66517 + 6.86549i 0.184876 + 0.224047i
\(940\) −6.68759 2.11232i −0.218125 0.0688963i
\(941\) 7.73814i 0.252256i −0.992014 0.126128i \(-0.959745\pi\)
0.992014 0.126128i \(-0.0402551\pi\)
\(942\) −9.96498 + 39.2767i −0.324677 + 1.27970i
\(943\) 16.8937i 0.550136i
\(944\) −24.0016 16.8424i −0.781184 0.548174i
\(945\) 6.13145 3.34088i 0.199456 0.108679i
\(946\) 10.2347 7.50039i 0.332758 0.243859i
\(947\) −11.6369 −0.378148 −0.189074 0.981963i \(-0.560549\pi\)
−0.189074 + 0.981963i \(0.560549\pi\)
\(948\) 6.97122 + 17.2550i 0.226415 + 0.560418i
\(949\) 6.73123 0.218505
\(950\) −23.6741 + 17.3494i −0.768090 + 0.562887i
\(951\) 29.1203 24.0291i 0.944291 0.779197i
\(952\) 23.6263 8.00000i 0.765734 0.259281i
\(953\) 5.59203i 0.181144i −0.995890 0.0905719i \(-0.971131\pi\)
0.995890 0.0905719i \(-0.0288695\pi\)
\(954\) 5.04084 + 10.6678i 0.163203 + 0.345383i
\(955\) 10.0880i 0.326441i
\(956\) −7.47524 + 23.6665i −0.241767 + 0.765431i
\(957\) 5.34379 4.40952i 0.172740 0.142540i
\(958\) 14.0636 + 19.1905i 0.454374 + 0.620018i
\(959\) 17.1570 0.554027
\(960\) −2.10365 + 9.06930i −0.0678949 + 0.292711i
\(961\) 29.2361 0.943101
\(962\) 45.7197 + 62.3871i 1.47406 + 2.01144i
\(963\) 9.45446 48.8968i 0.304666 1.57568i
\(964\) 0.325869 1.03170i 0.0104955 0.0332287i
\(965\) 8.79991i 0.283279i
\(966\) −16.2578 4.12480i −0.523086 0.132713i
\(967\) 58.0491i 1.86673i 0.358922 + 0.933367i \(0.383144\pi\)
−0.358922 + 0.933367i \(0.616856\pi\)
\(968\) 2.67901 0.907128i 0.0861068 0.0291562i
\(969\) −22.1796 26.8789i −0.712510 0.863474i
\(970\) 1.18686 0.869779i 0.0381078 0.0279269i
\(971\) 56.4290 1.81089 0.905446 0.424461i \(-0.139536\pi\)
0.905446 + 0.424461i \(0.139536\pi\)
\(972\) 31.1769 0.0611740i 0.999998 0.00196216i
\(973\) −40.6891 −1.30443
\(974\) −21.8976 + 16.0474i −0.701643 + 0.514192i
\(975\) 22.8789 + 27.7264i 0.732711 + 0.887955i
\(976\) 11.8808 + 8.33699i 0.380294 + 0.266860i
\(977\) 31.9552i 1.02234i −0.859480 0.511169i \(-0.829213\pi\)
0.859480 0.511169i \(-0.170787\pi\)
\(978\) 16.2420 + 4.12079i 0.519362 + 0.131768i
\(979\) 15.2347i 0.486903i
\(980\) −3.84418 1.21421i −0.122798 0.0387866i
\(981\) −1.83327 + 9.48137i −0.0585319 + 0.302717i
\(982\) 28.2198 + 38.5074i 0.900529 + 1.22882i
\(983\) 5.75876 0.183676 0.0918380 0.995774i \(-0.470726\pi\)
0.0918380 + 0.995774i \(0.470726\pi\)
\(984\) 12.7256 20.5521i 0.405678 0.655177i
\(985\) 18.1673 0.578858
\(986\) −14.7445 20.1197i −0.469561 0.640742i
\(987\) −13.9446 + 11.5066i −0.443862 + 0.366260i
\(988\) 39.7046 + 12.5410i 1.26317 + 0.398981i
\(989\) 30.7190i 0.976806i
\(990\) −1.21788 2.57736i −0.0387067 0.0819140i
\(991\) 26.4805i 0.841180i −0.907251 0.420590i \(-0.861823\pi\)
0.907251 0.420590i \(-0.138177\pi\)
\(992\) 7.51130 0.154360i 0.238484 0.00490093i
\(993\) 26.4484 21.8243i 0.839315 0.692574i
\(994\) 22.1337 16.2205i 0.702038 0.514481i
\(995\) −9.59786 −0.304273
\(996\) 40.8424 16.5008i 1.29414 0.522846i
\(997\) 16.1533 0.511579 0.255790 0.966732i \(-0.417665\pi\)
0.255790 + 0.966732i \(0.417665\pi\)
\(998\) −31.3384 + 22.9661i −0.992001 + 0.726978i
\(999\) 54.6921 29.8004i 1.73038 0.942843i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 132.2.c.d.23.3 yes 8
3.2 odd 2 132.2.c.c.23.6 yes 8
4.3 odd 2 132.2.c.c.23.5 8
8.3 odd 2 2112.2.d.l.1343.6 8
8.5 even 2 2112.2.d.k.1343.3 8
12.11 even 2 inner 132.2.c.d.23.4 yes 8
24.5 odd 2 2112.2.d.l.1343.5 8
24.11 even 2 2112.2.d.k.1343.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.c.c.23.5 8 4.3 odd 2
132.2.c.c.23.6 yes 8 3.2 odd 2
132.2.c.d.23.3 yes 8 1.1 even 1 trivial
132.2.c.d.23.4 yes 8 12.11 even 2 inner
2112.2.d.k.1343.3 8 8.5 even 2
2112.2.d.k.1343.4 8 24.11 even 2
2112.2.d.l.1343.5 8 24.5 odd 2
2112.2.d.l.1343.6 8 8.3 odd 2