Properties

Label 132.12.a.b.1.1
Level 132132
Weight 1212
Character 132.1
Self dual yes
Analytic conductor 101.421101.421
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [132,12,Mod(1,132)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("132.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(132, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 12, names="a")
 
Level: N N == 132=22311 132 = 2^{2} \cdot 3 \cdot 11
Weight: k k == 12 12
Character orbit: [χ][\chi] == 132.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,972] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 101.421299834101.421299834
Analytic rank: 11
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3243453x2+8521201x+11492037452 x^{4} - x^{3} - 243453x^{2} + 8521201x + 11492037452 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2535 2^{5}\cdot 3\cdot 5
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 453.854-453.854 of defining polynomial
Character χ\chi == 132.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+243.000q310438.7q5+22390.8q7+59049.0q9+161051.q11+378099.q132.53661e6q158.44623e6q17+1.03187e7q19+5.44097e6q21+6.71020e6q23+6.01392e7q25+1.43489e7q27+5.25055e7q29+5.56053e7q31+3.91354e7q332.33732e8q35+1.06153e8q37+9.18781e7q39+4.48381e8q414.06725e8q436.16397e8q45+5.05987e8q471.47598e9q492.05243e9q515.92170e9q531.68117e9q55+2.50744e9q577.40580e9q594.22853e8q61+1.32216e9q633.94688e9q65+1.42882e10q67+1.63058e9q699.01648e9q71+1.28539e10q73+1.46138e10q75+3.60606e9q771.54192e10q79+3.48678e9q815.96607e10q83+8.81680e10q85+1.27588e10q87+6.43244e10q89+8.46595e9q91+1.35121e10q931.07714e11q951.23779e11q97+9.50990e9q99+O(q100)q+243.000 q^{3} -10438.7 q^{5} +22390.8 q^{7} +59049.0 q^{9} +161051. q^{11} +378099. q^{13} -2.53661e6 q^{15} -8.44623e6 q^{17} +1.03187e7 q^{19} +5.44097e6 q^{21} +6.71020e6 q^{23} +6.01392e7 q^{25} +1.43489e7 q^{27} +5.25055e7 q^{29} +5.56053e7 q^{31} +3.91354e7 q^{33} -2.33732e8 q^{35} +1.06153e8 q^{37} +9.18781e7 q^{39} +4.48381e8 q^{41} -4.06725e8 q^{43} -6.16397e8 q^{45} +5.05987e8 q^{47} -1.47598e9 q^{49} -2.05243e9 q^{51} -5.92170e9 q^{53} -1.68117e9 q^{55} +2.50744e9 q^{57} -7.40580e9 q^{59} -4.22853e8 q^{61} +1.32216e9 q^{63} -3.94688e9 q^{65} +1.42882e10 q^{67} +1.63058e9 q^{69} -9.01648e9 q^{71} +1.28539e10 q^{73} +1.46138e10 q^{75} +3.60606e9 q^{77} -1.54192e10 q^{79} +3.48678e9 q^{81} -5.96607e10 q^{83} +8.81680e10 q^{85} +1.27588e10 q^{87} +6.43244e10 q^{89} +8.46595e9 q^{91} +1.35121e10 q^{93} -1.07714e11 q^{95} -1.23779e11 q^{97} +9.50990e9 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+972q37020q510934q7+236196q9+644204q112559568q131705860q151606814q175621902q192656962q21+19030288q23+14585700q25+57395628q27++38039601996q99+O(q100) 4 q + 972 q^{3} - 7020 q^{5} - 10934 q^{7} + 236196 q^{9} + 644204 q^{11} - 2559568 q^{13} - 1705860 q^{15} - 1606814 q^{17} - 5621902 q^{19} - 2656962 q^{21} + 19030288 q^{23} + 14585700 q^{25} + 57395628 q^{27}+ \cdots + 38039601996 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 243.000 0.577350
44 0 0
55 −10438.7 −1.49387 −0.746935 0.664897i 0.768476π-0.768476\pi
−0.746935 + 0.664897i 0.768476π0.768476\pi
66 0 0
77 22390.8 0.503536 0.251768 0.967788i 0.418988π-0.418988\pi
0.251768 + 0.967788i 0.418988π0.418988\pi
88 0 0
99 59049.0 0.333333
1010 0 0
1111 161051. 0.301511
1212 0 0
1313 378099. 0.282434 0.141217 0.989979i 0.454898π-0.454898\pi
0.141217 + 0.989979i 0.454898π0.454898\pi
1414 0 0
1515 −2.53661e6 −0.862487
1616 0 0
1717 −8.44623e6 −1.44276 −0.721380 0.692540i 0.756492π-0.756492\pi
−0.721380 + 0.692540i 0.756492π0.756492\pi
1818 0 0
1919 1.03187e7 0.956048 0.478024 0.878347i 0.341353π-0.341353\pi
0.478024 + 0.878347i 0.341353π0.341353\pi
2020 0 0
2121 5.44097e6 0.290717
2222 0 0
2323 6.71020e6 0.217386 0.108693 0.994075i 0.465333π-0.465333\pi
0.108693 + 0.994075i 0.465333π0.465333\pi
2424 0 0
2525 6.01392e7 1.23165
2626 0 0
2727 1.43489e7 0.192450
2828 0 0
2929 5.25055e7 0.475352 0.237676 0.971344i 0.423614π-0.423614\pi
0.237676 + 0.971344i 0.423614π0.423614\pi
3030 0 0
3131 5.56053e7 0.348840 0.174420 0.984671i 0.444195π-0.444195\pi
0.174420 + 0.984671i 0.444195π0.444195\pi
3232 0 0
3333 3.91354e7 0.174078
3434 0 0
3535 −2.33732e8 −0.752218
3636 0 0
3737 1.06153e8 0.251666 0.125833 0.992051i 0.459840π-0.459840\pi
0.125833 + 0.992051i 0.459840π0.459840\pi
3838 0 0
3939 9.18781e7 0.163063
4040 0 0
4141 4.48381e8 0.604416 0.302208 0.953242i 0.402276π-0.402276\pi
0.302208 + 0.953242i 0.402276π0.402276\pi
4242 0 0
4343 −4.06725e8 −0.421915 −0.210957 0.977495i 0.567658π-0.567658\pi
−0.210957 + 0.977495i 0.567658π0.567658\pi
4444 0 0
4545 −6.16397e8 −0.497957
4646 0 0
4747 5.05987e8 0.321812 0.160906 0.986970i 0.448558π-0.448558\pi
0.160906 + 0.986970i 0.448558π0.448558\pi
4848 0 0
4949 −1.47598e9 −0.746451
5050 0 0
5151 −2.05243e9 −0.832978
5252 0 0
5353 −5.92170e9 −1.94504 −0.972521 0.232817i 0.925206π-0.925206\pi
−0.972521 + 0.232817i 0.925206π0.925206\pi
5454 0 0
5555 −1.68117e9 −0.450419
5656 0 0
5757 2.50744e9 0.551975
5858 0 0
5959 −7.40580e9 −1.34861 −0.674304 0.738454i 0.735556π-0.735556\pi
−0.674304 + 0.738454i 0.735556π0.735556\pi
6060 0 0
6161 −4.22853e8 −0.0641026 −0.0320513 0.999486i 0.510204π-0.510204\pi
−0.0320513 + 0.999486i 0.510204π0.510204\pi
6262 0 0
6363 1.32216e9 0.167845
6464 0 0
6565 −3.94688e9 −0.421920
6666 0 0
6767 1.42882e10 1.29291 0.646453 0.762954i 0.276252π-0.276252\pi
0.646453 + 0.762954i 0.276252π0.276252\pi
6868 0 0
6969 1.63058e9 0.125508
7070 0 0
7171 −9.01648e9 −0.593084 −0.296542 0.955020i 0.595833π-0.595833\pi
−0.296542 + 0.955020i 0.595833π0.595833\pi
7272 0 0
7373 1.28539e10 0.725703 0.362851 0.931847i 0.381803π-0.381803\pi
0.362851 + 0.931847i 0.381803π0.381803\pi
7474 0 0
7575 1.46138e10 0.711094
7676 0 0
7777 3.60606e9 0.151822
7878 0 0
7979 −1.54192e10 −0.563785 −0.281892 0.959446i 0.590962π-0.590962\pi
−0.281892 + 0.959446i 0.590962π0.590962\pi
8080 0 0
8181 3.48678e9 0.111111
8282 0 0
8383 −5.96607e10 −1.66249 −0.831244 0.555908i 0.812371π-0.812371\pi
−0.831244 + 0.555908i 0.812371π0.812371\pi
8484 0 0
8585 8.81680e10 2.15530
8686 0 0
8787 1.27588e10 0.274445
8888 0 0
8989 6.43244e10 1.22104 0.610521 0.792000i 0.290960π-0.290960\pi
0.610521 + 0.792000i 0.290960π0.290960\pi
9090 0 0
9191 8.46595e9 0.142216
9292 0 0
9393 1.35121e10 0.201403
9494 0 0
9595 −1.07714e11 −1.42821
9696 0 0
9797 −1.23779e11 −1.46353 −0.731767 0.681555i 0.761304π-0.761304\pi
−0.731767 + 0.681555i 0.761304π0.761304\pi
9898 0 0
9999 9.50990e9 0.100504
100100 0 0
101101 1.52226e9 0.0144119 0.00720594 0.999974i 0.497706π-0.497706\pi
0.00720594 + 0.999974i 0.497706π0.497706\pi
102102 0 0
103103 −9.60602e10 −0.816467 −0.408234 0.912878i 0.633855π-0.633855\pi
−0.408234 + 0.912878i 0.633855π0.633855\pi
104104 0 0
105105 −5.67968e10 −0.434293
106106 0 0
107107 −2.10323e11 −1.44969 −0.724847 0.688910i 0.758089π-0.758089\pi
−0.724847 + 0.688910i 0.758089π0.758089\pi
108108 0 0
109109 −4.12468e10 −0.256770 −0.128385 0.991724i 0.540979π-0.540979\pi
−0.128385 + 0.991724i 0.540979π0.540979\pi
110110 0 0
111111 2.57952e10 0.145299
112112 0 0
113113 −1.50432e11 −0.768084 −0.384042 0.923316i 0.625468π-0.625468\pi
−0.384042 + 0.923316i 0.625468π0.625468\pi
114114 0 0
115115 −7.00460e10 −0.324747
116116 0 0
117117 2.23264e10 0.0941447
118118 0 0
119119 −1.89118e11 −0.726482
120120 0 0
121121 2.59374e10 0.0909091
122122 0 0
123123 1.08957e11 0.348960
124124 0 0
125125 −1.18073e11 −0.346056
126126 0 0
127127 −5.52674e11 −1.48439 −0.742196 0.670183i 0.766215π-0.766215\pi
−0.742196 + 0.670183i 0.766215π0.766215\pi
128128 0 0
129129 −9.88342e10 −0.243593
130130 0 0
131131 −2.36207e11 −0.534935 −0.267467 0.963567i 0.586187π-0.586187\pi
−0.267467 + 0.963567i 0.586187π0.586187\pi
132132 0 0
133133 2.31044e11 0.481405
134134 0 0
135135 −1.49785e11 −0.287496
136136 0 0
137137 3.36516e10 0.0595720 0.0297860 0.999556i 0.490517π-0.490517\pi
0.0297860 + 0.999556i 0.490517π0.490517\pi
138138 0 0
139139 −2.84016e11 −0.464261 −0.232130 0.972685i 0.574570π-0.574570\pi
−0.232130 + 0.972685i 0.574570π0.574570\pi
140140 0 0
141141 1.22955e11 0.185798
142142 0 0
143143 6.08932e10 0.0851571
144144 0 0
145145 −5.48091e11 −0.710115
146146 0 0
147147 −3.58663e11 −0.430964
148148 0 0
149149 1.23946e12 1.38264 0.691319 0.722550i 0.257030π-0.257030\pi
0.691319 + 0.722550i 0.257030π0.257030\pi
150150 0 0
151151 −1.50322e12 −1.55830 −0.779148 0.626840i 0.784348π-0.784348\pi
−0.779148 + 0.626840i 0.784348π0.784348\pi
152152 0 0
153153 −4.98742e11 −0.480920
154154 0 0
155155 −5.80449e11 −0.521123
156156 0 0
157157 −3.36324e11 −0.281391 −0.140695 0.990053i 0.544934π-0.544934\pi
−0.140695 + 0.990053i 0.544934π0.544934\pi
158158 0 0
159159 −1.43897e12 −1.12297
160160 0 0
161161 1.50247e11 0.109462
162162 0 0
163163 3.12389e11 0.212649 0.106325 0.994331i 0.466092π-0.466092\pi
0.106325 + 0.994331i 0.466092π0.466092\pi
164164 0 0
165165 −4.08524e11 −0.260050
166166 0 0
167167 −2.22401e12 −1.32494 −0.662471 0.749087i 0.730492π-0.730492\pi
−0.662471 + 0.749087i 0.730492π0.730492\pi
168168 0 0
169169 −1.64920e12 −0.920231
170170 0 0
171171 6.09308e11 0.318683
172172 0 0
173173 −1.58618e12 −0.778212 −0.389106 0.921193i 0.627216π-0.627216\pi
−0.389106 + 0.921193i 0.627216π0.627216\pi
174174 0 0
175175 1.34657e12 0.620180
176176 0 0
177177 −1.79961e12 −0.778619
178178 0 0
179179 1.75536e12 0.713963 0.356981 0.934112i 0.383806π-0.383806\pi
0.356981 + 0.934112i 0.383806π0.383806\pi
180180 0 0
181181 4.17813e11 0.159864 0.0799318 0.996800i 0.474530π-0.474530\pi
0.0799318 + 0.996800i 0.474530π0.474530\pi
182182 0 0
183183 −1.02753e11 −0.0370097
184184 0 0
185185 −1.10811e12 −0.375956
186186 0 0
187187 −1.36027e12 −0.435008
188188 0 0
189189 3.21284e11 0.0969056
190190 0 0
191191 1.26664e12 0.360555 0.180277 0.983616i 0.442300π-0.442300\pi
0.180277 + 0.983616i 0.442300π0.442300\pi
192192 0 0
193193 8.96872e10 0.0241082 0.0120541 0.999927i 0.496163π-0.496163\pi
0.0120541 + 0.999927i 0.496163π0.496163\pi
194194 0 0
195195 −9.59092e11 −0.243596
196196 0 0
197197 −6.61977e11 −0.158957 −0.0794784 0.996837i 0.525325π-0.525325\pi
−0.0794784 + 0.996837i 0.525325π0.525325\pi
198198 0 0
199199 1.43435e12 0.325809 0.162904 0.986642i 0.447914π-0.447914\pi
0.162904 + 0.986642i 0.447914π0.447914\pi
200200 0 0
201201 3.47204e12 0.746459
202202 0 0
203203 1.17564e12 0.239357
204204 0 0
205205 −4.68053e12 −0.902919
206206 0 0
207207 3.96230e11 0.0724621
208208 0 0
209209 1.66184e12 0.288259
210210 0 0
211211 2.40720e12 0.396241 0.198120 0.980178i 0.436516π-0.436516\pi
0.198120 + 0.980178i 0.436516π0.436516\pi
212212 0 0
213213 −2.19100e12 −0.342417
214214 0 0
215215 4.24570e12 0.630286
216216 0 0
217217 1.24505e12 0.175654
218218 0 0
219219 3.12349e12 0.418985
220220 0 0
221221 −3.19351e12 −0.407485
222222 0 0
223223 6.09097e12 0.739621 0.369811 0.929107i 0.379423π-0.379423\pi
0.369811 + 0.929107i 0.379423π0.379423\pi
224224 0 0
225225 3.55116e12 0.410550
226226 0 0
227227 −1.11126e13 −1.22369 −0.611847 0.790976i 0.709573π-0.709573\pi
−0.611847 + 0.790976i 0.709573π0.709573\pi
228228 0 0
229229 1.15305e13 1.20991 0.604954 0.796260i 0.293191π-0.293191\pi
0.604954 + 0.796260i 0.293191π0.293191\pi
230230 0 0
231231 8.76273e11 0.0876544
232232 0 0
233233 −3.26716e12 −0.311683 −0.155841 0.987782i 0.549809π-0.549809\pi
−0.155841 + 0.987782i 0.549809π0.549809\pi
234234 0 0
235235 −5.28187e12 −0.480745
236236 0 0
237237 −3.74687e12 −0.325501
238238 0 0
239239 −5.36323e12 −0.444875 −0.222438 0.974947i 0.571401π-0.571401\pi
−0.222438 + 0.974947i 0.571401π0.571401\pi
240240 0 0
241241 9.10400e12 0.721337 0.360669 0.932694i 0.382549π-0.382549\pi
0.360669 + 0.932694i 0.382549π0.382549\pi
242242 0 0
243243 8.47289e11 0.0641500
244244 0 0
245245 1.54074e13 1.11510
246246 0 0
247247 3.90149e12 0.270021
248248 0 0
249249 −1.44975e13 −0.959838
250250 0 0
251251 −2.38054e13 −1.50824 −0.754120 0.656736i 0.771936π-0.771936\pi
−0.754120 + 0.656736i 0.771936π0.771936\pi
252252 0 0
253253 1.08068e12 0.0655444
254254 0 0
255255 2.14248e13 1.24436
256256 0 0
257257 −2.51861e13 −1.40129 −0.700647 0.713508i 0.747105π-0.747105\pi
−0.700647 + 0.713508i 0.747105π0.747105\pi
258258 0 0
259259 2.37686e12 0.126723
260260 0 0
261261 3.10039e12 0.158451
262262 0 0
263263 1.62806e13 0.797836 0.398918 0.916987i 0.369386π-0.369386\pi
0.398918 + 0.916987i 0.369386π0.369386\pi
264264 0 0
265265 6.18150e13 2.90564
266266 0 0
267267 1.56308e13 0.704969
268268 0 0
269269 1.96610e13 0.851075 0.425537 0.904941i 0.360085π-0.360085\pi
0.425537 + 0.904941i 0.360085π0.360085\pi
270270 0 0
271271 3.65342e12 0.151834 0.0759169 0.997114i 0.475812π-0.475812\pi
0.0759169 + 0.997114i 0.475812π0.475812\pi
272272 0 0
273273 2.05723e12 0.0821083
274274 0 0
275275 9.68547e12 0.371357
276276 0 0
277277 −4.51525e13 −1.66358 −0.831788 0.555093i 0.812683π-0.812683\pi
−0.831788 + 0.555093i 0.812683π0.812683\pi
278278 0 0
279279 3.28344e12 0.116280
280280 0 0
281281 2.36882e13 0.806579 0.403289 0.915073i 0.367867π-0.367867\pi
0.403289 + 0.915073i 0.367867π0.367867\pi
282282 0 0
283283 −2.64951e12 −0.0867641 −0.0433820 0.999059i 0.513813π-0.513813\pi
−0.0433820 + 0.999059i 0.513813π0.513813\pi
284284 0 0
285285 −2.61745e13 −0.824579
286286 0 0
287287 1.00396e13 0.304345
288288 0 0
289289 3.70669e13 1.08155
290290 0 0
291291 −3.00783e13 −0.844971
292292 0 0
293293 2.05989e13 0.557280 0.278640 0.960396i 0.410116π-0.410116\pi
0.278640 + 0.960396i 0.410116π0.410116\pi
294294 0 0
295295 7.73072e13 2.01465
296296 0 0
297297 2.31091e12 0.0580259
298298 0 0
299299 2.53712e12 0.0613973
300300 0 0
301301 −9.10691e12 −0.212449
302302 0 0
303303 3.69908e11 0.00832070
304304 0 0
305305 4.41406e12 0.0957610
306306 0 0
307307 8.90777e13 1.86427 0.932133 0.362117i 0.117946π-0.117946\pi
0.932133 + 0.362117i 0.117946π0.117946\pi
308308 0 0
309309 −2.33426e13 −0.471387
310310 0 0
311311 9.51670e13 1.85483 0.927415 0.374034i 0.122026π-0.122026\pi
0.927415 + 0.374034i 0.122026π0.122026\pi
312312 0 0
313313 2.25209e13 0.423733 0.211867 0.977299i 0.432046π-0.432046\pi
0.211867 + 0.977299i 0.432046π0.432046\pi
314314 0 0
315315 −1.38016e13 −0.250739
316316 0 0
317317 8.31665e13 1.45923 0.729613 0.683860i 0.239700π-0.239700\pi
0.729613 + 0.683860i 0.239700π0.239700\pi
318318 0 0
319319 8.45606e12 0.143324
320320 0 0
321321 −5.11085e13 −0.836981
322322 0 0
323323 −8.71540e13 −1.37935
324324 0 0
325325 2.27386e13 0.347860
326326 0 0
327327 −1.00230e13 −0.148246
328328 0 0
329329 1.13295e13 0.162044
330330 0 0
331331 −3.05096e13 −0.422068 −0.211034 0.977479i 0.567683π-0.567683\pi
−0.211034 + 0.977479i 0.567683π0.567683\pi
332332 0 0
333333 6.26825e12 0.0838885
334334 0 0
335335 −1.49151e14 −1.93143
336336 0 0
337337 −7.81104e13 −0.978914 −0.489457 0.872027i 0.662805π-0.662805\pi
−0.489457 + 0.872027i 0.662805π0.662805\pi
338338 0 0
339339 −3.65550e13 −0.443453
340340 0 0
341341 8.95529e12 0.105179
342342 0 0
343343 −7.73223e13 −0.879401
344344 0 0
345345 −1.70212e13 −0.187493
346346 0 0
347347 −3.82809e13 −0.408479 −0.204240 0.978921i 0.565472π-0.565472\pi
−0.204240 + 0.978921i 0.565472π0.565472\pi
348348 0 0
349349 −1.49220e14 −1.54272 −0.771360 0.636399i 0.780423π-0.780423\pi
−0.771360 + 0.636399i 0.780423π0.780423\pi
350350 0 0
351351 5.42531e12 0.0543545
352352 0 0
353353 −5.79312e13 −0.562537 −0.281269 0.959629i 0.590755π-0.590755\pi
−0.281269 + 0.959629i 0.590755π0.590755\pi
354354 0 0
355355 9.41206e13 0.885990
356356 0 0
357357 −4.59557e13 −0.419434
358358 0 0
359359 −8.27326e13 −0.732246 −0.366123 0.930566i 0.619315π-0.619315\pi
−0.366123 + 0.930566i 0.619315π0.619315\pi
360360 0 0
361361 −1.00149e13 −0.0859719
362362 0 0
363363 6.30279e12 0.0524864
364364 0 0
365365 −1.34178e14 −1.08411
366366 0 0
367367 1.12200e14 0.879688 0.439844 0.898074i 0.355034π-0.355034\pi
0.439844 + 0.898074i 0.355034π0.355034\pi
368368 0 0
369369 2.64764e13 0.201472
370370 0 0
371371 −1.32592e14 −0.979399
372372 0 0
373373 8.99382e13 0.644979 0.322489 0.946573i 0.395480π-0.395480\pi
0.322489 + 0.946573i 0.395480π0.395480\pi
374374 0 0
375375 −2.86918e13 −0.199795
376376 0 0
377377 1.98523e13 0.134256
378378 0 0
379379 1.16348e14 0.764264 0.382132 0.924108i 0.375190π-0.375190\pi
0.382132 + 0.924108i 0.375190π0.375190\pi
380380 0 0
381381 −1.34300e14 −0.857014
382382 0 0
383383 7.22004e13 0.447658 0.223829 0.974628i 0.428144π-0.428144\pi
0.223829 + 0.974628i 0.428144π0.428144\pi
384384 0 0
385385 −3.76428e13 −0.226802
386386 0 0
387387 −2.40167e13 −0.140638
388388 0 0
389389 −1.92782e14 −1.09735 −0.548673 0.836037i 0.684867π-0.684867\pi
−0.548673 + 0.836037i 0.684867π0.684867\pi
390390 0 0
391391 −5.66759e13 −0.313636
392392 0 0
393393 −5.73983e13 −0.308845
394394 0 0
395395 1.60957e14 0.842222
396396 0 0
397397 1.21840e14 0.620073 0.310036 0.950725i 0.399659π-0.399659\pi
0.310036 + 0.950725i 0.399659π0.399659\pi
398398 0 0
399399 5.61437e13 0.277939
400400 0 0
401401 −7.13186e12 −0.0343486 −0.0171743 0.999853i 0.505467π-0.505467\pi
−0.0171743 + 0.999853i 0.505467π0.505467\pi
402402 0 0
403403 2.10243e13 0.0985245
404404 0 0
405405 −3.63976e13 −0.165986
406406 0 0
407407 1.70961e13 0.0758800
408408 0 0
409409 −1.10009e14 −0.475280 −0.237640 0.971353i 0.576374π-0.576374\pi
−0.237640 + 0.971353i 0.576374π0.576374\pi
410410 0 0
411411 8.17734e12 0.0343939
412412 0 0
413413 −1.65822e14 −0.679073
414414 0 0
415415 6.22782e14 2.48354
416416 0 0
417417 −6.90160e13 −0.268041
418418 0 0
419419 −3.50326e14 −1.32524 −0.662622 0.748954i 0.730556π-0.730556\pi
−0.662622 + 0.748954i 0.730556π0.730556\pi
420420 0 0
421421 2.48364e14 0.915245 0.457623 0.889146i 0.348701π-0.348701\pi
0.457623 + 0.889146i 0.348701π0.348701\pi
422422 0 0
423423 2.98781e13 0.107271
424424 0 0
425425 −5.07949e14 −1.77698
426426 0 0
427427 −9.46803e12 −0.0322780
428428 0 0
429429 1.47971e13 0.0491655
430430 0 0
431431 −3.46773e13 −0.112310 −0.0561552 0.998422i 0.517884π-0.517884\pi
−0.0561552 + 0.998422i 0.517884π0.517884\pi
432432 0 0
433433 −2.19214e14 −0.692125 −0.346062 0.938211i 0.612481π-0.612481\pi
−0.346062 + 0.938211i 0.612481π0.612481\pi
434434 0 0
435435 −1.33186e14 −0.409985
436436 0 0
437437 6.92404e13 0.207832
438438 0 0
439439 3.99626e14 1.16977 0.584883 0.811118i 0.301140π-0.301140\pi
0.584883 + 0.811118i 0.301140π0.301140\pi
440440 0 0
441441 −8.71550e13 −0.248817
442442 0 0
443443 −3.21705e14 −0.895853 −0.447926 0.894070i 0.647837π-0.647837\pi
−0.447926 + 0.894070i 0.647837π0.647837\pi
444444 0 0
445445 −6.71465e14 −1.82408
446446 0 0
447447 3.01189e14 0.798266
448448 0 0
449449 −4.53471e14 −1.17272 −0.586361 0.810050i 0.699440π-0.699440\pi
−0.586361 + 0.810050i 0.699440π0.699440\pi
450450 0 0
451451 7.22122e13 0.182238
452452 0 0
453453 −3.65283e14 −0.899682
454454 0 0
455455 −8.83738e13 −0.212452
456456 0 0
457457 7.64224e14 1.79342 0.896709 0.442620i 0.145951π-0.145951\pi
0.896709 + 0.442620i 0.145951π0.145951\pi
458458 0 0
459459 −1.21194e14 −0.277659
460460 0 0
461461 −3.22239e14 −0.720814 −0.360407 0.932795i 0.617362π-0.617362\pi
−0.360407 + 0.932795i 0.617362π0.617362\pi
462462 0 0
463463 1.60826e14 0.351285 0.175643 0.984454i 0.443800π-0.443800\pi
0.175643 + 0.984454i 0.443800π0.443800\pi
464464 0 0
465465 −1.41049e14 −0.300870
466466 0 0
467467 −8.56388e14 −1.78414 −0.892068 0.451902i 0.850746π-0.850746\pi
−0.892068 + 0.451902i 0.850746π0.850746\pi
468468 0 0
469469 3.19925e14 0.651025
470470 0 0
471471 −8.17268e13 −0.162461
472472 0 0
473473 −6.55035e13 −0.127212
474474 0 0
475475 6.20558e14 1.17752
476476 0 0
477477 −3.49670e14 −0.648347
478478 0 0
479479 1.98704e14 0.360048 0.180024 0.983662i 0.442382π-0.442382\pi
0.180024 + 0.983662i 0.442382π0.442382\pi
480480 0 0
481481 4.01365e13 0.0710790
482482 0 0
483483 3.65100e13 0.0631978
484484 0 0
485485 1.29210e15 2.18633
486486 0 0
487487 6.13525e14 1.01490 0.507449 0.861682i 0.330588π-0.330588\pi
0.507449 + 0.861682i 0.330588π0.330588\pi
488488 0 0
489489 7.59105e13 0.122773
490490 0 0
491491 7.59527e14 1.20114 0.600572 0.799571i 0.294940π-0.294940\pi
0.600572 + 0.799571i 0.294940π0.294940\pi
492492 0 0
493493 −4.43473e14 −0.685819
494494 0 0
495495 −9.92714e13 −0.150140
496496 0 0
497497 −2.01886e14 −0.298639
498498 0 0
499499 2.19010e14 0.316892 0.158446 0.987368i 0.449352π-0.449352\pi
0.158446 + 0.987368i 0.449352π0.449352\pi
500500 0 0
501501 −5.40436e14 −0.764956
502502 0 0
503503 1.14520e15 1.58584 0.792920 0.609326i 0.208560π-0.208560\pi
0.792920 + 0.609326i 0.208560π0.208560\pi
504504 0 0
505505 −1.58904e13 −0.0215295
506506 0 0
507507 −4.00756e14 −0.531296
508508 0 0
509509 −4.32106e14 −0.560586 −0.280293 0.959914i 0.590432π-0.590432\pi
−0.280293 + 0.959914i 0.590432π0.590432\pi
510510 0 0
511511 2.87809e14 0.365417
512512 0 0
513513 1.48062e14 0.183992
514514 0 0
515515 1.00275e15 1.21970
516516 0 0
517517 8.14898e13 0.0970298
518518 0 0
519519 −3.85441e14 −0.449301
520520 0 0
521521 8.60763e14 0.982372 0.491186 0.871055i 0.336564π-0.336564\pi
0.491186 + 0.871055i 0.336564π0.336564\pi
522522 0 0
523523 4.03592e14 0.451007 0.225503 0.974242i 0.427597π-0.427597\pi
0.225503 + 0.974242i 0.427597π0.427597\pi
524524 0 0
525525 3.27215e14 0.358061
526526 0 0
527527 −4.69655e14 −0.503293
528528 0 0
529529 −9.07783e14 −0.952743
530530 0 0
531531 −4.37305e14 −0.449536
532532 0 0
533533 1.69532e14 0.170708
534534 0 0
535535 2.19551e15 2.16565
536536 0 0
537537 4.26553e14 0.412207
538538 0 0
539539 −2.37708e14 −0.225064
540540 0 0
541541 1.76236e15 1.63497 0.817487 0.575948i 0.195367π-0.195367\pi
0.817487 + 0.575948i 0.195367π0.195367\pi
542542 0 0
543543 1.01529e14 0.0922973
544544 0 0
545545 4.30564e14 0.383581
546546 0 0
547547 −1.08828e15 −0.950192 −0.475096 0.879934i 0.657587π-0.657587\pi
−0.475096 + 0.879934i 0.657587π0.657587\pi
548548 0 0
549549 −2.49691e13 −0.0213675
550550 0 0
551551 5.41788e14 0.454460
552552 0 0
553553 −3.45249e14 −0.283886
554554 0 0
555555 −2.69270e14 −0.217058
556556 0 0
557557 3.51566e14 0.277846 0.138923 0.990303i 0.455636π-0.455636\pi
0.138923 + 0.990303i 0.455636π0.455636\pi
558558 0 0
559559 −1.53782e14 −0.119163
560560 0 0
561561 −3.30547e14 −0.251152
562562 0 0
563563 −8.68064e14 −0.646779 −0.323389 0.946266i 0.604822π-0.604822\pi
−0.323389 + 0.946266i 0.604822π0.604822\pi
564564 0 0
565565 1.57032e15 1.14742
566566 0 0
567567 7.80719e13 0.0559485
568568 0 0
569569 3.16339e14 0.222349 0.111174 0.993801i 0.464539π-0.464539\pi
0.111174 + 0.993801i 0.464539π0.464539\pi
570570 0 0
571571 −8.87299e14 −0.611747 −0.305873 0.952072i 0.598948π-0.598948\pi
−0.305873 + 0.952072i 0.598948π0.598948\pi
572572 0 0
573573 3.07795e14 0.208166
574574 0 0
575575 4.03546e14 0.267744
576576 0 0
577577 −1.51333e14 −0.0985072 −0.0492536 0.998786i 0.515684π-0.515684\pi
−0.0492536 + 0.998786i 0.515684π0.515684\pi
578578 0 0
579579 2.17940e13 0.0139189
580580 0 0
581581 −1.33585e15 −0.837123
582582 0 0
583583 −9.53695e14 −0.586452
584584 0 0
585585 −2.33059e14 −0.140640
586586 0 0
587587 3.31226e13 0.0196162 0.00980809 0.999952i 0.496878π-0.496878\pi
0.00980809 + 0.999952i 0.496878π0.496878\pi
588588 0 0
589589 5.73774e14 0.333508
590590 0 0
591591 −1.60861e14 −0.0917737
592592 0 0
593593 −1.69874e15 −0.951319 −0.475660 0.879629i 0.657791π-0.657791\pi
−0.475660 + 0.879629i 0.657791π0.657791\pi
594594 0 0
595595 1.97415e15 1.08527
596596 0 0
597597 3.48546e14 0.188106
598598 0 0
599599 1.92371e15 1.01927 0.509637 0.860389i 0.329780π-0.329780\pi
0.509637 + 0.860389i 0.329780π0.329780\pi
600600 0 0
601601 1.23456e15 0.642246 0.321123 0.947037i 0.395940π-0.395940\pi
0.321123 + 0.947037i 0.395940π0.395940\pi
602602 0 0
603603 8.43705e14 0.430969
604604 0 0
605605 −2.70754e14 −0.135806
606606 0 0
607607 8.68452e14 0.427768 0.213884 0.976859i 0.431389π-0.431389\pi
0.213884 + 0.976859i 0.431389π0.431389\pi
608608 0 0
609609 2.85681e14 0.138193
610610 0 0
611611 1.91313e14 0.0908906
612612 0 0
613613 3.38779e15 1.58083 0.790414 0.612574i 0.209866π-0.209866\pi
0.790414 + 0.612574i 0.209866π0.209866\pi
614614 0 0
615615 −1.13737e15 −0.521301
616616 0 0
617617 −3.21326e15 −1.44670 −0.723348 0.690483i 0.757398π-0.757398\pi
−0.723348 + 0.690483i 0.757398π0.757398\pi
618618 0 0
619619 −2.96780e14 −0.131261 −0.0656306 0.997844i 0.520906π-0.520906\pi
−0.0656306 + 0.997844i 0.520906π0.520906\pi
620620 0 0
621621 9.62840e13 0.0418360
622622 0 0
623623 1.44027e15 0.614839
624624 0 0
625625 −1.70395e15 −0.714688
626626 0 0
627627 4.03826e14 0.166427
628628 0 0
629629 −8.96595e14 −0.363093
630630 0 0
631631 5.79336e14 0.230552 0.115276 0.993333i 0.463225π-0.463225\pi
0.115276 + 0.993333i 0.463225π0.463225\pi
632632 0 0
633633 5.84950e14 0.228770
634634 0 0
635635 5.76922e15 2.21749
636636 0 0
637637 −5.58066e14 −0.210823
638638 0 0
639639 −5.32414e14 −0.197695
640640 0 0
641641 −4.02969e15 −1.47080 −0.735398 0.677636i 0.763005π-0.763005\pi
−0.735398 + 0.677636i 0.763005π0.763005\pi
642642 0 0
643643 −1.48626e15 −0.533255 −0.266627 0.963800i 0.585909π-0.585909\pi
−0.266627 + 0.963800i 0.585909π0.585909\pi
644644 0 0
645645 1.03170e15 0.363896
646646 0 0
647647 −1.19732e15 −0.415179 −0.207589 0.978216i 0.566562π-0.566562\pi
−0.207589 + 0.978216i 0.566562π0.566562\pi
648648 0 0
649649 −1.19271e15 −0.406621
650650 0 0
651651 3.02547e14 0.101414
652652 0 0
653653 −5.78485e15 −1.90664 −0.953322 0.301956i 0.902361π-0.902361\pi
−0.953322 + 0.301956i 0.902361π0.902361\pi
654654 0 0
655655 2.46570e15 0.799123
656656 0 0
657657 7.59009e14 0.241901
658658 0 0
659659 −1.94159e15 −0.608538 −0.304269 0.952586i 0.598412π-0.598412\pi
−0.304269 + 0.952586i 0.598412π0.598412\pi
660660 0 0
661661 −3.84086e15 −1.18392 −0.591958 0.805969i 0.701645π-0.701645\pi
−0.591958 + 0.805969i 0.701645π0.701645\pi
662662 0 0
663663 −7.76024e14 −0.235261
664664 0 0
665665 −2.41181e15 −0.719157
666666 0 0
667667 3.52322e14 0.103335
668668 0 0
669669 1.48011e15 0.427021
670670 0 0
671671 −6.81010e13 −0.0193277
672672 0 0
673673 −3.75645e15 −1.04881 −0.524403 0.851470i 0.675711π-0.675711\pi
−0.524403 + 0.851470i 0.675711π0.675711\pi
674674 0 0
675675 8.62931e14 0.237031
676676 0 0
677677 −5.28022e15 −1.42697 −0.713485 0.700671i 0.752884π-0.752884\pi
−0.713485 + 0.700671i 0.752884π0.752884\pi
678678 0 0
679679 −2.77151e15 −0.736942
680680 0 0
681681 −2.70036e15 −0.706500
682682 0 0
683683 2.81860e15 0.725637 0.362818 0.931860i 0.381815π-0.381815\pi
0.362818 + 0.931860i 0.381815π0.381815\pi
684684 0 0
685685 −3.51280e14 −0.0889929
686686 0 0
687687 2.80191e15 0.698541
688688 0 0
689689 −2.23899e15 −0.549346
690690 0 0
691691 −6.58716e15 −1.59063 −0.795315 0.606196i 0.792695π-0.792695\pi
−0.795315 + 0.606196i 0.792695π0.792695\pi
692692 0 0
693693 2.12934e14 0.0506073
694694 0 0
695695 2.96477e15 0.693545
696696 0 0
697697 −3.78713e15 −0.872026
698698 0 0
699699 −7.93920e14 −0.179950
700700 0 0
701701 1.77328e15 0.395666 0.197833 0.980236i 0.436610π-0.436610\pi
0.197833 + 0.980236i 0.436610π0.436610\pi
702702 0 0
703703 1.09536e15 0.240604
704704 0 0
705705 −1.28349e15 −0.277558
706706 0 0
707707 3.40846e13 0.00725690
708708 0 0
709709 −7.55761e15 −1.58427 −0.792137 0.610344i 0.791031π-0.791031\pi
−0.792137 + 0.610344i 0.791031π0.791031\pi
710710 0 0
711711 −9.10489e14 −0.187928
712712 0 0
713713 3.73122e14 0.0758331
714714 0 0
715715 −6.35649e14 −0.127214
716716 0 0
717717 −1.30327e15 −0.256849
718718 0 0
719719 −4.35299e15 −0.844849 −0.422424 0.906398i 0.638821π-0.638821\pi
−0.422424 + 0.906398i 0.638821π0.638821\pi
720720 0 0
721721 −2.15087e15 −0.411121
722722 0 0
723723 2.21227e15 0.416464
724724 0 0
725725 3.15764e15 0.585468
726726 0 0
727727 1.01683e16 1.85698 0.928492 0.371354i 0.121106π-0.121106\pi
0.928492 + 0.371354i 0.121106π0.121106\pi
728728 0 0
729729 2.05891e14 0.0370370
730730 0 0
731731 3.43530e15 0.608721
732732 0 0
733733 −8.02622e15 −1.40100 −0.700502 0.713651i 0.747040π-0.747040\pi
−0.700502 + 0.713651i 0.747040π0.747040\pi
734734 0 0
735735 3.74399e15 0.643804
736736 0 0
737737 2.30113e15 0.389826
738738 0 0
739739 3.26270e14 0.0544544 0.0272272 0.999629i 0.491332π-0.491332\pi
0.0272272 + 0.999629i 0.491332π0.491332\pi
740740 0 0
741741 9.48062e14 0.155897
742742 0 0
743743 3.72057e15 0.602797 0.301398 0.953498i 0.402547π-0.402547\pi
0.301398 + 0.953498i 0.402547π0.402547\pi
744744 0 0
745745 −1.29384e16 −2.06548
746746 0 0
747747 −3.52290e15 −0.554163
748748 0 0
749749 −4.70930e15 −0.729973
750750 0 0
751751 −9.93996e15 −1.51833 −0.759163 0.650900i 0.774392π-0.774392\pi
−0.759163 + 0.650900i 0.774392π0.774392\pi
752752 0 0
753753 −5.78472e15 −0.870783
754754 0 0
755755 1.56917e16 2.32789
756756 0 0
757757 6.83176e15 0.998861 0.499431 0.866354i 0.333543π-0.333543\pi
0.499431 + 0.866354i 0.333543π0.333543\pi
758758 0 0
759759 2.62606e14 0.0378421
760760 0 0
761761 9.13669e15 1.29770 0.648848 0.760918i 0.275251π-0.275251\pi
0.648848 + 0.760918i 0.275251π0.275251\pi
762762 0 0
763763 −9.23548e14 −0.129293
764764 0 0
765765 5.20623e15 0.718432
766766 0 0
767767 −2.80013e15 −0.380893
768768 0 0
769769 5.66650e15 0.759836 0.379918 0.925020i 0.375952π-0.375952\pi
0.379918 + 0.925020i 0.375952π0.375952\pi
770770 0 0
771771 −6.12023e15 −0.809038
772772 0 0
773773 1.23541e16 1.61000 0.804998 0.593278i 0.202166π-0.202166\pi
0.804998 + 0.593278i 0.202166π0.202166\pi
774774 0 0
775775 3.34406e15 0.429649
776776 0 0
777777 5.77577e14 0.0731634
778778 0 0
779779 4.62670e15 0.577850
780780 0 0
781781 −1.45211e15 −0.178821
782782 0 0
783783 7.53396e14 0.0914816
784784 0 0
785785 3.51080e15 0.420362
786786 0 0
787787 −4.26312e15 −0.503346 −0.251673 0.967812i 0.580981π-0.580981\pi
−0.251673 + 0.967812i 0.580981π0.580981\pi
788788 0 0
789789 3.95618e15 0.460631
790790 0 0
791791 −3.36829e15 −0.386758
792792 0 0
793793 −1.59880e14 −0.0181048
794794 0 0
795795 1.50211e16 1.67757
796796 0 0
797797 6.37811e15 0.702541 0.351270 0.936274i 0.385750π-0.385750\pi
0.351270 + 0.936274i 0.385750π0.385750\pi
798798 0 0
799799 −4.27369e15 −0.464297
800800 0 0
801801 3.79829e15 0.407014
802802 0 0
803803 2.07013e15 0.218808
804804 0 0
805805 −1.56839e15 −0.163522
806806 0 0
807807 4.77762e15 0.491368
808808 0 0
809809 −9.67817e15 −0.981921 −0.490960 0.871182i 0.663354π-0.663354\pi
−0.490960 + 0.871182i 0.663354π0.663354\pi
810810 0 0
811811 −1.32716e16 −1.32833 −0.664167 0.747584i 0.731214π-0.731214\pi
−0.664167 + 0.747584i 0.731214π0.731214\pi
812812 0 0
813813 8.87781e14 0.0876613
814814 0 0
815815 −3.26095e15 −0.317671
816816 0 0
817817 −4.19687e15 −0.403371
818818 0 0
819819 4.99906e14 0.0474053
820820 0 0
821821 −1.83531e16 −1.71720 −0.858602 0.512642i 0.828667π-0.828667\pi
−0.858602 + 0.512642i 0.828667π0.828667\pi
822822 0 0
823823 −1.53641e16 −1.41843 −0.709214 0.704993i 0.750950π-0.750950\pi
−0.709214 + 0.704993i 0.750950π0.750950\pi
824824 0 0
825825 2.35357e15 0.214403
826826 0 0
827827 −1.33219e16 −1.19752 −0.598762 0.800927i 0.704341π-0.704341\pi
−0.598762 + 0.800927i 0.704341π0.704341\pi
828828 0 0
829829 3.99889e15 0.354723 0.177362 0.984146i 0.443244π-0.443244\pi
0.177362 + 0.984146i 0.443244π0.443244\pi
830830 0 0
831831 −1.09721e16 −0.960466
832832 0 0
833833 1.24665e16 1.07695
834834 0 0
835835 2.32159e16 1.97929
836836 0 0
837837 7.97875e14 0.0671344
838838 0 0
839839 1.50683e16 1.25134 0.625669 0.780089i 0.284826π-0.284826\pi
0.625669 + 0.780089i 0.284826π0.284826\pi
840840 0 0
841841 −9.44369e15 −0.774040
842842 0 0
843843 5.75623e15 0.465678
844844 0 0
845845 1.72156e16 1.37471
846846 0 0
847847 5.80760e14 0.0457760
848848 0 0
849849 −6.43830e14 −0.0500933
850850 0 0
851851 7.12309e14 0.0547087
852852 0 0
853853 4.90526e15 0.371914 0.185957 0.982558i 0.440461π-0.440461\pi
0.185957 + 0.982558i 0.440461π0.440461\pi
854854 0 0
855855 −6.36041e15 −0.476071
856856 0 0
857857 1.51583e16 1.12010 0.560048 0.828460i 0.310783π-0.310783\pi
0.560048 + 0.828460i 0.310783π0.310783\pi
858858 0 0
859859 −1.34328e15 −0.0979948 −0.0489974 0.998799i 0.515603π-0.515603\pi
−0.0489974 + 0.998799i 0.515603π0.515603\pi
860860 0 0
861861 2.43962e15 0.175714
862862 0 0
863863 −1.82817e16 −1.30004 −0.650022 0.759915i 0.725240π-0.725240\pi
−0.650022 + 0.759915i 0.725240π0.725240\pi
864864 0 0
865865 1.65577e16 1.16255
866866 0 0
867867 9.00726e15 0.624436
868868 0 0
869869 −2.48328e15 −0.169988
870870 0 0
871871 5.40237e15 0.365161
872872 0 0
873873 −7.30903e15 −0.487844
874874 0 0
875875 −2.64375e15 −0.174252
876876 0 0
877877 −2.65127e16 −1.72566 −0.862831 0.505492i 0.831311π-0.831311\pi
−0.862831 + 0.505492i 0.831311π0.831311\pi
878878 0 0
879879 5.00554e15 0.321746
880880 0 0
881881 1.16283e16 0.738154 0.369077 0.929399i 0.379674π-0.379674\pi
0.369077 + 0.929399i 0.379674π0.379674\pi
882882 0 0
883883 2.27267e16 1.42480 0.712399 0.701775i 0.247609π-0.247609\pi
0.712399 + 0.701775i 0.247609π0.247609\pi
884884 0 0
885885 1.87857e16 1.16316
886886 0 0
887887 −2.30074e16 −1.40698 −0.703491 0.710704i 0.748376π-0.748376\pi
−0.703491 + 0.710704i 0.748376π0.748376\pi
888888 0 0
889889 −1.23748e16 −0.747445
890890 0 0
891891 5.61550e14 0.0335013
892892 0 0
893893 5.22113e15 0.307667
894894 0 0
895895 −1.83238e16 −1.06657
896896 0 0
897897 6.16520e14 0.0354478
898898 0 0
899899 2.91958e15 0.165822
900900 0 0
901901 5.00160e16 2.80623
902902 0 0
903903 −2.21298e15 −0.122658
904904 0 0
905905 −4.36144e15 −0.238816
906906 0 0
907907 −4.05537e15 −0.219377 −0.109688 0.993966i 0.534985π-0.534985\pi
−0.109688 + 0.993966i 0.534985π0.534985\pi
908908 0 0
909909 8.98877e13 0.00480396
910910 0 0
911911 1.65687e16 0.874860 0.437430 0.899253i 0.355889π-0.355889\pi
0.437430 + 0.899253i 0.355889π0.355889\pi
912912 0 0
913913 −9.60841e15 −0.501259
914914 0 0
915915 1.07262e15 0.0552877
916916 0 0
917917 −5.28887e15 −0.269359
918918 0 0
919919 −1.06338e15 −0.0535120 −0.0267560 0.999642i 0.508518π-0.508518\pi
−0.0267560 + 0.999642i 0.508518π0.508518\pi
920920 0 0
921921 2.16459e16 1.07633
922922 0 0
923923 −3.40912e15 −0.167507
924924 0 0
925925 6.38397e15 0.309964
926926 0 0
927927 −5.67226e15 −0.272156
928928 0 0
929929 4.05410e16 1.92224 0.961120 0.276130i 0.0890520π-0.0890520\pi
0.961120 + 0.276130i 0.0890520π0.0890520\pi
930930 0 0
931931 −1.52302e16 −0.713643
932932 0 0
933933 2.31256e16 1.07089
934934 0 0
935935 1.41995e16 0.649846
936936 0 0
937937 2.21854e16 1.00346 0.501729 0.865025i 0.332697π-0.332697\pi
0.501729 + 0.865025i 0.332697π0.332697\pi
938938 0 0
939939 5.47259e15 0.244643
940940 0 0
941941 1.38588e16 0.612325 0.306163 0.951979i 0.400955π-0.400955\pi
0.306163 + 0.951979i 0.400955π0.400955\pi
942942 0 0
943943 3.00872e15 0.131392
944944 0 0
945945 −3.35380e15 −0.144764
946946 0 0
947947 −6.17388e15 −0.263410 −0.131705 0.991289i 0.542045π-0.542045\pi
−0.131705 + 0.991289i 0.542045π0.542045\pi
948948 0 0
949949 4.86004e15 0.204963
950950 0 0
951951 2.02095e16 0.842484
952952 0 0
953953 −1.43645e16 −0.591941 −0.295970 0.955197i 0.595643π-0.595643\pi
−0.295970 + 0.955197i 0.595643π0.595643\pi
954954 0 0
955955 −1.32222e16 −0.538622
956956 0 0
957957 2.05482e15 0.0827482
958958 0 0
959959 7.53486e14 0.0299967
960960 0 0
961961 −2.23165e16 −0.878310
962962 0 0
963963 −1.24194e16 −0.483231
964964 0 0
965965 −9.36221e14 −0.0360146
966966 0 0
967967 −4.28323e15 −0.162902 −0.0814509 0.996677i 0.525955π-0.525955\pi
−0.0814509 + 0.996677i 0.525955π0.525955\pi
968968 0 0
969969 −2.11784e16 −0.796367
970970 0 0
971971 −2.86642e16 −1.06570 −0.532850 0.846210i 0.678879π-0.678879\pi
−0.532850 + 0.846210i 0.678879π0.678879\pi
972972 0 0
973973 −6.35936e15 −0.233772
974974 0 0
975975 5.52547e15 0.200837
976976 0 0
977977 2.87970e16 1.03497 0.517484 0.855693i 0.326869π-0.326869\pi
0.517484 + 0.855693i 0.326869π0.326869\pi
978978 0 0
979979 1.03595e16 0.368158
980980 0 0
981981 −2.43558e15 −0.0855900
982982 0 0
983983 −2.16613e16 −0.752732 −0.376366 0.926471i 0.622827π-0.622827\pi
−0.376366 + 0.926471i 0.622827π0.622827\pi
984984 0 0
985985 6.91021e15 0.237461
986986 0 0
987987 2.75306e15 0.0935560
988988 0 0
989989 −2.72921e15 −0.0917184
990990 0 0
991991 6.94182e15 0.230711 0.115356 0.993324i 0.463199π-0.463199\pi
0.115356 + 0.993324i 0.463199π0.463199\pi
992992 0 0
993993 −7.41383e15 −0.243681
994994 0 0
995995 −1.49728e16 −0.486716
996996 0 0
997997 −5.11186e16 −1.64345 −0.821723 0.569887i 0.806987π-0.806987\pi
−0.821723 + 0.569887i 0.806987π0.806987\pi
998998 0 0
999999 1.52318e15 0.0484331
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 132.12.a.b.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.12.a.b.1.1 4 1.1 even 1 trivial