Properties

Label 132.10.a.b
Level $132$
Weight $10$
Character orbit 132.a
Self dual yes
Analytic conductor $67.985$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [132,10,Mod(1,132)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(132, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("132.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 132 = 2^{2} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 132.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-324] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.9847303736\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 627166x^{2} - 19147766x + 32438978088 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{7}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 81 q^{3} + (\beta_1 - 38) q^{5} + (\beta_{2} - 2 \beta_1 + 298) q^{7} + 6561 q^{9} - 14641 q^{11} + ( - 2 \beta_{3} + 8 \beta_{2} + \cdots + 4780) q^{13} + ( - 81 \beta_1 + 3078) q^{15} + (11 \beta_{3} + 6 \beta_{2} + \cdots + 44879) q^{17}+ \cdots - 96059601 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 324 q^{3} - 154 q^{5} + 1198 q^{7} + 26244 q^{9} - 58564 q^{11} + 19038 q^{13} + 12474 q^{15} + 179352 q^{17} - 267416 q^{19} - 97038 q^{21} - 2510866 q^{23} - 1432520 q^{25} - 2125764 q^{27} - 4536376 q^{29}+ \cdots - 384238404 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 627166x^{2} - 19147766x + 32438978088 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -67\nu^{3} + 28623\nu^{2} + 24096238\nu - 7992022302 ) / 7990455 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 206\nu^{3} + 150516\nu^{2} - 70270604\nu - 50232960624 ) / 7990455 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -541\nu^{3} - 7401\nu^{2} + 344168530\nu + 10258466295 ) / 1598091 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 5\beta_{2} - 25\beta _1 + 9 ) / 96 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + 196\beta_{2} + 643\beta _1 + 1881723 ) / 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 176405\beta_{3} + 1568977\beta_{2} - 8022509\beta _1 + 707101821 ) / 48 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−258.341
773.621
220.805
−735.084
0 −81.0000 0 −1433.61 0 −112.787 0 6561.00 0
1.2 0 −81.0000 0 −443.654 0 11229.5 0 6561.00 0
1.3 0 −81.0000 0 −287.951 0 −6234.62 0 6561.00 0
1.4 0 −81.0000 0 2011.22 0 −3684.12 0 6561.00 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 132.10.a.b 4
3.b odd 2 1 396.10.a.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
132.10.a.b 4 1.a even 1 1 trivial
396.10.a.d 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 154T_{5}^{3} - 3178132T_{5}^{2} - 2183228680T_{5} - 368343888000 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(132))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T + 81)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots - 368343888000 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots - 29091302463328 \) Copy content Toggle raw display
$11$ \( (T + 14641)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 17\!\cdots\!08 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 44\!\cdots\!84 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 10\!\cdots\!60 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 30\!\cdots\!24 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 31\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 29\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 33\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 88\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 26\!\cdots\!48 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 79\!\cdots\!80 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 40\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 23\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 14\!\cdots\!40 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 20\!\cdots\!64 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 56\!\cdots\!88 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 15\!\cdots\!80 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 86\!\cdots\!48 \) Copy content Toggle raw display
show more
show less