Properties

Label 1305.2.f.l.289.3
Level $1305$
Weight $2$
Character 1305.289
Analytic conductor $10.420$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1305,2,Mod(289,1305)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1305.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1305, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,16,6,0,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} - 11 x^{9} + 55 x^{8} - 66 x^{7} + 328 x^{6} - 214 x^{5} + 207 x^{4} + 383 x^{3} + \cdots + 209 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 435)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.3
Root \(2.44773 + 1.33046i\) of defining polynomial
Character \(\chi\) \(=\) 1305.289
Dual form 1305.2.f.l.289.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.97264 q^{2} +1.89129 q^{4} +(-1.38075 - 1.75885i) q^{5} -0.520254i q^{7} +0.214447 q^{8} +(2.72371 + 3.46956i) q^{10} +2.16411i q^{11} -1.53375i q^{13} +1.02627i q^{14} -4.20560 q^{16} +2.47957 q^{17} +4.70989i q^{19} +(-2.61139 - 3.32649i) q^{20} -4.26900i q^{22} -1.46369i q^{23} +(-1.18708 + 4.85704i) q^{25} +3.02552i q^{26} -0.983951i q^{28} +(-2.29579 + 4.87128i) q^{29} -4.64210i q^{31} +7.86723 q^{32} -4.89129 q^{34} +(-0.915047 + 0.718339i) q^{35} -1.77536 q^{37} -9.29090i q^{38} +(-0.296097 - 0.377179i) q^{40} +9.71408i q^{41} -5.39269 q^{43} +4.09296i q^{44} +2.88733i q^{46} +3.68312 q^{47} +6.72934 q^{49} +(2.34168 - 9.58117i) q^{50} -2.90076i q^{52} -7.74965i q^{53} +(3.80634 - 2.98808i) q^{55} -0.111567i q^{56} +(4.52876 - 9.60925i) q^{58} +1.91288 q^{59} -7.66501i q^{61} +9.15717i q^{62} -7.10796 q^{64} +(-2.69763 + 2.11771i) q^{65} +7.88749i q^{67} +4.68959 q^{68} +(1.80505 - 1.41702i) q^{70} +9.78001 q^{71} +4.70676 q^{73} +3.50215 q^{74} +8.90777i q^{76} +1.12589 q^{77} +12.3714i q^{79} +(5.80687 + 7.39701i) q^{80} -19.1623i q^{82} -7.32647i q^{83} +(-3.42366 - 4.36119i) q^{85} +10.6378 q^{86} +0.464086i q^{88} -7.66235i q^{89} -0.797938 q^{91} -2.76827i q^{92} -7.26545 q^{94} +(8.28397 - 6.50316i) q^{95} +1.64507 q^{97} -13.2745 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 16 q^{4} + 6 q^{5} + 2 q^{10} + 32 q^{16} + 8 q^{17} + 20 q^{20} + 12 q^{25} - 8 q^{29} + 40 q^{32} - 52 q^{34} - 14 q^{35} + 20 q^{37} - 22 q^{40} + 44 q^{43} + 32 q^{47} - 4 q^{49} - 24 q^{50}+ \cdots + 112 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.97264 −1.39486 −0.697432 0.716651i \(-0.745674\pi\)
−0.697432 + 0.716651i \(0.745674\pi\)
\(3\) 0 0
\(4\) 1.89129 0.945645
\(5\) −1.38075 1.75885i −0.617488 0.786580i
\(6\) 0 0
\(7\) 0.520254i 0.196638i −0.995155 0.0983188i \(-0.968654\pi\)
0.995155 0.0983188i \(-0.0313465\pi\)
\(8\) 0.214447 0.0758184
\(9\) 0 0
\(10\) 2.72371 + 3.46956i 0.861312 + 1.09717i
\(11\) 2.16411i 0.652504i 0.945283 + 0.326252i \(0.105786\pi\)
−0.945283 + 0.326252i \(0.894214\pi\)
\(12\) 0 0
\(13\) 1.53375i 0.425385i −0.977119 0.212692i \(-0.931777\pi\)
0.977119 0.212692i \(-0.0682232\pi\)
\(14\) 1.02627i 0.274283i
\(15\) 0 0
\(16\) −4.20560 −1.05140
\(17\) 2.47957 0.601384 0.300692 0.953721i \(-0.402782\pi\)
0.300692 + 0.953721i \(0.402782\pi\)
\(18\) 0 0
\(19\) 4.70989i 1.08052i 0.841497 + 0.540262i \(0.181675\pi\)
−0.841497 + 0.540262i \(0.818325\pi\)
\(20\) −2.61139 3.32649i −0.583924 0.743825i
\(21\) 0 0
\(22\) 4.26900i 0.910153i
\(23\) 1.46369i 0.305201i −0.988288 0.152600i \(-0.951235\pi\)
0.988288 0.152600i \(-0.0487648\pi\)
\(24\) 0 0
\(25\) −1.18708 + 4.85704i −0.237416 + 0.971408i
\(26\) 3.02552i 0.593354i
\(27\) 0 0
\(28\) 0.983951i 0.185949i
\(29\) −2.29579 + 4.87128i −0.426318 + 0.904573i
\(30\) 0 0
\(31\) 4.64210i 0.833746i −0.908965 0.416873i \(-0.863126\pi\)
0.908965 0.416873i \(-0.136874\pi\)
\(32\) 7.86723 1.39074
\(33\) 0 0
\(34\) −4.89129 −0.838849
\(35\) −0.915047 + 0.718339i −0.154671 + 0.121421i
\(36\) 0 0
\(37\) −1.77536 −0.291868 −0.145934 0.989294i \(-0.546619\pi\)
−0.145934 + 0.989294i \(0.546619\pi\)
\(38\) 9.29090i 1.50718i
\(39\) 0 0
\(40\) −0.296097 0.377179i −0.0468170 0.0596372i
\(41\) 9.71408i 1.51708i 0.651624 + 0.758542i \(0.274088\pi\)
−0.651624 + 0.758542i \(0.725912\pi\)
\(42\) 0 0
\(43\) −5.39269 −0.822377 −0.411188 0.911550i \(-0.634886\pi\)
−0.411188 + 0.911550i \(0.634886\pi\)
\(44\) 4.09296i 0.617036i
\(45\) 0 0
\(46\) 2.88733i 0.425714i
\(47\) 3.68312 0.537238 0.268619 0.963246i \(-0.413433\pi\)
0.268619 + 0.963246i \(0.413433\pi\)
\(48\) 0 0
\(49\) 6.72934 0.961334
\(50\) 2.34168 9.58117i 0.331163 1.35498i
\(51\) 0 0
\(52\) 2.90076i 0.402263i
\(53\) 7.74965i 1.06450i −0.846588 0.532248i \(-0.821347\pi\)
0.846588 0.532248i \(-0.178653\pi\)
\(54\) 0 0
\(55\) 3.80634 2.98808i 0.513246 0.402913i
\(56\) 0.111567i 0.0149087i
\(57\) 0 0
\(58\) 4.52876 9.60925i 0.594655 1.26176i
\(59\) 1.91288 0.249035 0.124518 0.992217i \(-0.460262\pi\)
0.124518 + 0.992217i \(0.460262\pi\)
\(60\) 0 0
\(61\) 7.66501i 0.981404i −0.871328 0.490702i \(-0.836740\pi\)
0.871328 0.490702i \(-0.163260\pi\)
\(62\) 9.15717i 1.16296i
\(63\) 0 0
\(64\) −7.10796 −0.888495
\(65\) −2.69763 + 2.11771i −0.334599 + 0.262670i
\(66\) 0 0
\(67\) 7.88749i 0.963611i 0.876278 + 0.481805i \(0.160019\pi\)
−0.876278 + 0.481805i \(0.839981\pi\)
\(68\) 4.68959 0.568696
\(69\) 0 0
\(70\) 1.80505 1.41702i 0.215745 0.169366i
\(71\) 9.78001 1.16067 0.580337 0.814376i \(-0.302921\pi\)
0.580337 + 0.814376i \(0.302921\pi\)
\(72\) 0 0
\(73\) 4.70676 0.550885 0.275442 0.961318i \(-0.411176\pi\)
0.275442 + 0.961318i \(0.411176\pi\)
\(74\) 3.50215 0.407116
\(75\) 0 0
\(76\) 8.90777i 1.02179i
\(77\) 1.12589 0.128307
\(78\) 0 0
\(79\) 12.3714i 1.39189i 0.718093 + 0.695947i \(0.245015\pi\)
−0.718093 + 0.695947i \(0.754985\pi\)
\(80\) 5.80687 + 7.39701i 0.649228 + 0.827011i
\(81\) 0 0
\(82\) 19.1623i 2.11613i
\(83\) 7.32647i 0.804184i −0.915599 0.402092i \(-0.868283\pi\)
0.915599 0.402092i \(-0.131717\pi\)
\(84\) 0 0
\(85\) −3.42366 4.36119i −0.371348 0.473037i
\(86\) 10.6378 1.14710
\(87\) 0 0
\(88\) 0.464086i 0.0494718i
\(89\) 7.66235i 0.812207i −0.913827 0.406104i \(-0.866887\pi\)
0.913827 0.406104i \(-0.133113\pi\)
\(90\) 0 0
\(91\) −0.797938 −0.0836466
\(92\) 2.76827i 0.288612i
\(93\) 0 0
\(94\) −7.26545 −0.749374
\(95\) 8.28397 6.50316i 0.849918 0.667210i
\(96\) 0 0
\(97\) 1.64507 0.167031 0.0835156 0.996506i \(-0.473385\pi\)
0.0835156 + 0.996506i \(0.473385\pi\)
\(98\) −13.2745 −1.34093
\(99\) 0 0
\(100\) −2.24512 + 9.18607i −0.224512 + 0.918607i
\(101\) 3.20388i 0.318798i −0.987214 0.159399i \(-0.949044\pi\)
0.987214 0.159399i \(-0.0509556\pi\)
\(102\) 0 0
\(103\) 7.80019i 0.768575i 0.923213 + 0.384288i \(0.125553\pi\)
−0.923213 + 0.384288i \(0.874447\pi\)
\(104\) 0.328907i 0.0322520i
\(105\) 0 0
\(106\) 15.2872i 1.48483i
\(107\) 18.4094i 1.77971i 0.456246 + 0.889854i \(0.349194\pi\)
−0.456246 + 0.889854i \(0.650806\pi\)
\(108\) 0 0
\(109\) 17.4302 1.66951 0.834755 0.550621i \(-0.185609\pi\)
0.834755 + 0.550621i \(0.185609\pi\)
\(110\) −7.50851 + 5.89440i −0.715909 + 0.562009i
\(111\) 0 0
\(112\) 2.18798i 0.206745i
\(113\) −6.78282 −0.638074 −0.319037 0.947742i \(-0.603359\pi\)
−0.319037 + 0.947742i \(0.603359\pi\)
\(114\) 0 0
\(115\) −2.57441 + 2.02099i −0.240065 + 0.188458i
\(116\) −4.34201 + 9.21299i −0.403145 + 0.855405i
\(117\) 0 0
\(118\) −3.77341 −0.347370
\(119\) 1.29001i 0.118255i
\(120\) 0 0
\(121\) 6.31663 0.574239
\(122\) 15.1203i 1.36892i
\(123\) 0 0
\(124\) 8.77956i 0.788428i
\(125\) 10.1818 4.61844i 0.910692 0.413086i
\(126\) 0 0
\(127\) 14.0473 1.24649 0.623247 0.782025i \(-0.285813\pi\)
0.623247 + 0.782025i \(0.285813\pi\)
\(128\) −1.71304 −0.151413
\(129\) 0 0
\(130\) 5.32143 4.17748i 0.466720 0.366389i
\(131\) 9.19950i 0.803764i 0.915692 + 0.401882i \(0.131644\pi\)
−0.915692 + 0.401882i \(0.868356\pi\)
\(132\) 0 0
\(133\) 2.45034 0.212471
\(134\) 15.5591i 1.34411i
\(135\) 0 0
\(136\) 0.531736 0.0455960
\(137\) 16.6227 1.42017 0.710086 0.704115i \(-0.248656\pi\)
0.710086 + 0.704115i \(0.248656\pi\)
\(138\) 0 0
\(139\) 1.13775 0.0965027 0.0482514 0.998835i \(-0.484635\pi\)
0.0482514 + 0.998835i \(0.484635\pi\)
\(140\) −1.73062 + 1.35859i −0.146264 + 0.114821i
\(141\) 0 0
\(142\) −19.2924 −1.61898
\(143\) 3.31920 0.277565
\(144\) 0 0
\(145\) 11.7377 2.68805i 0.974766 0.223230i
\(146\) −9.28472 −0.768409
\(147\) 0 0
\(148\) −3.35773 −0.276003
\(149\) −0.981478 −0.0804058 −0.0402029 0.999192i \(-0.512800\pi\)
−0.0402029 + 0.999192i \(0.512800\pi\)
\(150\) 0 0
\(151\) 11.4798 0.934214 0.467107 0.884201i \(-0.345296\pi\)
0.467107 + 0.884201i \(0.345296\pi\)
\(152\) 1.01002i 0.0819235i
\(153\) 0 0
\(154\) −2.22096 −0.178970
\(155\) −8.16475 + 6.40956i −0.655808 + 0.514829i
\(156\) 0 0
\(157\) 8.00465 0.638841 0.319420 0.947613i \(-0.396512\pi\)
0.319420 + 0.947613i \(0.396512\pi\)
\(158\) 24.4043i 1.94150i
\(159\) 0 0
\(160\) −10.8626 13.8372i −0.858767 1.09393i
\(161\) −0.761492 −0.0600140
\(162\) 0 0
\(163\) 2.46129 0.192783 0.0963915 0.995344i \(-0.469270\pi\)
0.0963915 + 0.995344i \(0.469270\pi\)
\(164\) 18.3721i 1.43462i
\(165\) 0 0
\(166\) 14.4524i 1.12173i
\(167\) 4.98139i 0.385471i 0.981251 + 0.192736i \(0.0617360\pi\)
−0.981251 + 0.192736i \(0.938264\pi\)
\(168\) 0 0
\(169\) 10.6476 0.819048
\(170\) 6.75363 + 8.60303i 0.517980 + 0.659822i
\(171\) 0 0
\(172\) −10.1991 −0.777676
\(173\) 15.0543i 1.14456i −0.820058 0.572280i \(-0.806059\pi\)
0.820058 0.572280i \(-0.193941\pi\)
\(174\) 0 0
\(175\) 2.52689 + 0.617584i 0.191015 + 0.0466850i
\(176\) 9.10139i 0.686043i
\(177\) 0 0
\(178\) 15.1150i 1.13292i
\(179\) 25.1991 1.88347 0.941736 0.336352i \(-0.109193\pi\)
0.941736 + 0.336352i \(0.109193\pi\)
\(180\) 0 0
\(181\) 5.27495 0.392084 0.196042 0.980595i \(-0.437191\pi\)
0.196042 + 0.980595i \(0.437191\pi\)
\(182\) 1.57404 0.116676
\(183\) 0 0
\(184\) 0.313884i 0.0231398i
\(185\) 2.45133 + 3.12259i 0.180225 + 0.229578i
\(186\) 0 0
\(187\) 5.36606i 0.392405i
\(188\) 6.96585 0.508037
\(189\) 0 0
\(190\) −16.3413 + 12.8284i −1.18552 + 0.930667i
\(191\) 3.31544i 0.239897i −0.992780 0.119949i \(-0.961727\pi\)
0.992780 0.119949i \(-0.0382730\pi\)
\(192\) 0 0
\(193\) −5.69128 −0.409667 −0.204834 0.978797i \(-0.565665\pi\)
−0.204834 + 0.978797i \(0.565665\pi\)
\(194\) −3.24512 −0.232986
\(195\) 0 0
\(196\) 12.7271 0.909080
\(197\) 0.314623i 0.0224160i 0.999937 + 0.0112080i \(0.00356769\pi\)
−0.999937 + 0.0112080i \(0.996432\pi\)
\(198\) 0 0
\(199\) 2.94247 0.208586 0.104293 0.994547i \(-0.466742\pi\)
0.104293 + 0.994547i \(0.466742\pi\)
\(200\) −0.254566 + 1.04158i −0.0180005 + 0.0736506i
\(201\) 0 0
\(202\) 6.32008i 0.444679i
\(203\) 2.53430 + 1.19440i 0.177873 + 0.0838301i
\(204\) 0 0
\(205\) 17.0856 13.4127i 1.19331 0.936782i
\(206\) 15.3869i 1.07206i
\(207\) 0 0
\(208\) 6.45033i 0.447250i
\(209\) −10.1927 −0.705045
\(210\) 0 0
\(211\) 6.92301i 0.476600i 0.971192 + 0.238300i \(0.0765901\pi\)
−0.971192 + 0.238300i \(0.923410\pi\)
\(212\) 14.6568i 1.00664i
\(213\) 0 0
\(214\) 36.3151i 2.48245i
\(215\) 7.44593 + 9.48491i 0.507808 + 0.646865i
\(216\) 0 0
\(217\) −2.41507 −0.163946
\(218\) −34.3834 −2.32874
\(219\) 0 0
\(220\) 7.19888 5.65133i 0.485349 0.381013i
\(221\) 3.80303i 0.255820i
\(222\) 0 0
\(223\) 28.4693i 1.90644i −0.302272 0.953222i \(-0.597745\pi\)
0.302272 0.953222i \(-0.402255\pi\)
\(224\) 4.09296i 0.273472i
\(225\) 0 0
\(226\) 13.3800 0.890026
\(227\) 7.15024i 0.474578i −0.971439 0.237289i \(-0.923741\pi\)
0.971439 0.237289i \(-0.0762589\pi\)
\(228\) 0 0
\(229\) 9.94406i 0.657122i 0.944483 + 0.328561i \(0.106564\pi\)
−0.944483 + 0.328561i \(0.893436\pi\)
\(230\) 5.07837 3.98667i 0.334858 0.262873i
\(231\) 0 0
\(232\) −0.492325 + 1.04463i −0.0323227 + 0.0685833i
\(233\) 13.5734i 0.889222i 0.895724 + 0.444611i \(0.146658\pi\)
−0.895724 + 0.444611i \(0.853342\pi\)
\(234\) 0 0
\(235\) −5.08545 6.47804i −0.331738 0.422581i
\(236\) 3.61780 0.235499
\(237\) 0 0
\(238\) 2.54471i 0.164949i
\(239\) −15.5469 −1.00564 −0.502821 0.864390i \(-0.667705\pi\)
−0.502821 + 0.864390i \(0.667705\pi\)
\(240\) 0 0
\(241\) −18.2171 −1.17346 −0.586732 0.809781i \(-0.699586\pi\)
−0.586732 + 0.809781i \(0.699586\pi\)
\(242\) −12.4604 −0.800985
\(243\) 0 0
\(244\) 14.4967i 0.928059i
\(245\) −9.29150 11.8359i −0.593612 0.756166i
\(246\) 0 0
\(247\) 7.22378 0.459638
\(248\) 0.995484i 0.0632133i
\(249\) 0 0
\(250\) −20.0851 + 9.11050i −1.27029 + 0.576199i
\(251\) 5.16558i 0.326048i 0.986622 + 0.163024i \(0.0521248\pi\)
−0.986622 + 0.163024i \(0.947875\pi\)
\(252\) 0 0
\(253\) 3.16759 0.199145
\(254\) −27.7102 −1.73869
\(255\) 0 0
\(256\) 17.5951 1.09970
\(257\) 19.6922i 1.22837i 0.789163 + 0.614184i \(0.210515\pi\)
−0.789163 + 0.614184i \(0.789485\pi\)
\(258\) 0 0
\(259\) 0.923640i 0.0573922i
\(260\) −5.10199 + 4.00521i −0.316412 + 0.248393i
\(261\) 0 0
\(262\) 18.1472i 1.12114i
\(263\) 11.9634 0.737697 0.368848 0.929490i \(-0.379752\pi\)
0.368848 + 0.929490i \(0.379752\pi\)
\(264\) 0 0
\(265\) −13.6304 + 10.7003i −0.837312 + 0.657314i
\(266\) −4.83363 −0.296369
\(267\) 0 0
\(268\) 14.9175i 0.911233i
\(269\) 16.5561i 1.00945i −0.863282 0.504723i \(-0.831595\pi\)
0.863282 0.504723i \(-0.168405\pi\)
\(270\) 0 0
\(271\) 25.4539i 1.54621i 0.634277 + 0.773106i \(0.281298\pi\)
−0.634277 + 0.773106i \(0.718702\pi\)
\(272\) −10.4281 −0.632296
\(273\) 0 0
\(274\) −32.7905 −1.98095
\(275\) −10.5112 2.56897i −0.633847 0.154915i
\(276\) 0 0
\(277\) 30.7150i 1.84549i 0.385415 + 0.922743i \(0.374058\pi\)
−0.385415 + 0.922743i \(0.625942\pi\)
\(278\) −2.24437 −0.134608
\(279\) 0 0
\(280\) −0.196229 + 0.154045i −0.0117269 + 0.00920597i
\(281\) −22.7775 −1.35879 −0.679395 0.733773i \(-0.737758\pi\)
−0.679395 + 0.733773i \(0.737758\pi\)
\(282\) 0 0
\(283\) 30.6646i 1.82282i −0.411499 0.911410i \(-0.634995\pi\)
0.411499 0.911410i \(-0.365005\pi\)
\(284\) 18.4968 1.09759
\(285\) 0 0
\(286\) −6.54756 −0.387165
\(287\) 5.05379 0.298316
\(288\) 0 0
\(289\) −10.8517 −0.638337
\(290\) −23.1543 + 5.30254i −1.35967 + 0.311376i
\(291\) 0 0
\(292\) 8.90185 0.520941
\(293\) −0.956588 −0.0558845 −0.0279422 0.999610i \(-0.508895\pi\)
−0.0279422 + 0.999610i \(0.508895\pi\)
\(294\) 0 0
\(295\) −2.64120 3.36446i −0.153776 0.195886i
\(296\) −0.380721 −0.0221290
\(297\) 0 0
\(298\) 1.93610 0.112155
\(299\) −2.24493 −0.129828
\(300\) 0 0
\(301\) 2.80557i 0.161710i
\(302\) −22.6455 −1.30310
\(303\) 0 0
\(304\) 19.8079i 1.13606i
\(305\) −13.4816 + 10.5834i −0.771953 + 0.606005i
\(306\) 0 0
\(307\) −31.8260 −1.81641 −0.908203 0.418530i \(-0.862545\pi\)
−0.908203 + 0.418530i \(0.862545\pi\)
\(308\) 2.12938 0.121333
\(309\) 0 0
\(310\) 16.1061 12.6437i 0.914763 0.718116i
\(311\) 1.83226i 0.103898i −0.998650 0.0519489i \(-0.983457\pi\)
0.998650 0.0519489i \(-0.0165433\pi\)
\(312\) 0 0
\(313\) 16.8539i 0.952639i −0.879272 0.476320i \(-0.841971\pi\)
0.879272 0.476320i \(-0.158029\pi\)
\(314\) −15.7903 −0.891095
\(315\) 0 0
\(316\) 23.3979i 1.31624i
\(317\) −29.0897 −1.63384 −0.816920 0.576751i \(-0.804320\pi\)
−0.816920 + 0.576751i \(0.804320\pi\)
\(318\) 0 0
\(319\) −10.5420 4.96835i −0.590237 0.278174i
\(320\) 9.81429 + 12.5018i 0.548635 + 0.698873i
\(321\) 0 0
\(322\) 1.50215 0.0837113
\(323\) 11.6785i 0.649810i
\(324\) 0 0
\(325\) 7.44947 + 1.82068i 0.413222 + 0.100993i
\(326\) −4.85522 −0.268906
\(327\) 0 0
\(328\) 2.08315i 0.115023i
\(329\) 1.91616i 0.105641i
\(330\) 0 0
\(331\) 15.3405i 0.843191i 0.906784 + 0.421596i \(0.138530\pi\)
−0.906784 + 0.421596i \(0.861470\pi\)
\(332\) 13.8565i 0.760472i
\(333\) 0 0
\(334\) 9.82646i 0.537680i
\(335\) 13.8729 10.8906i 0.757957 0.595018i
\(336\) 0 0
\(337\) 21.0799 1.14830 0.574148 0.818751i \(-0.305333\pi\)
0.574148 + 0.818751i \(0.305333\pi\)
\(338\) −21.0039 −1.14246
\(339\) 0 0
\(340\) −6.47513 8.24826i −0.351163 0.447325i
\(341\) 10.0460 0.544022
\(342\) 0 0
\(343\) 7.14274i 0.385672i
\(344\) −1.15644 −0.0623513
\(345\) 0 0
\(346\) 29.6967i 1.59650i
\(347\) 24.5985i 1.32051i −0.751040 0.660257i \(-0.770447\pi\)
0.751040 0.660257i \(-0.229553\pi\)
\(348\) 0 0
\(349\) −22.7037 −1.21530 −0.607649 0.794205i \(-0.707887\pi\)
−0.607649 + 0.794205i \(0.707887\pi\)
\(350\) −4.98464 1.21827i −0.266440 0.0651192i
\(351\) 0 0
\(352\) 17.0255i 0.907464i
\(353\) 1.38426i 0.0736769i −0.999321 0.0368385i \(-0.988271\pi\)
0.999321 0.0368385i \(-0.0117287\pi\)
\(354\) 0 0
\(355\) −13.5037 17.2015i −0.716703 0.912963i
\(356\) 14.4917i 0.768059i
\(357\) 0 0
\(358\) −49.7087 −2.62719
\(359\) 21.6876i 1.14463i −0.820035 0.572313i \(-0.806046\pi\)
0.820035 0.572313i \(-0.193954\pi\)
\(360\) 0 0
\(361\) −3.18307 −0.167530
\(362\) −10.4056 −0.546904
\(363\) 0 0
\(364\) −1.50913 −0.0791000
\(365\) −6.49884 8.27847i −0.340165 0.433315i
\(366\) 0 0
\(367\) −0.210815 −0.0110044 −0.00550222 0.999985i \(-0.501751\pi\)
−0.00550222 + 0.999985i \(0.501751\pi\)
\(368\) 6.15571i 0.320889i
\(369\) 0 0
\(370\) −4.83557 6.15974i −0.251389 0.320229i
\(371\) −4.03179 −0.209320
\(372\) 0 0
\(373\) 5.66464i 0.293304i −0.989188 0.146652i \(-0.953150\pi\)
0.989188 0.146652i \(-0.0468498\pi\)
\(374\) 10.5853i 0.547352i
\(375\) 0 0
\(376\) 0.789833 0.0407325
\(377\) 7.47131 + 3.52116i 0.384792 + 0.181349i
\(378\) 0 0
\(379\) 12.5695i 0.645650i −0.946459 0.322825i \(-0.895367\pi\)
0.946459 0.322825i \(-0.104633\pi\)
\(380\) 15.6674 12.2994i 0.803720 0.630944i
\(381\) 0 0
\(382\) 6.54016i 0.334624i
\(383\) 23.0968i 1.18019i 0.807333 + 0.590096i \(0.200910\pi\)
−0.807333 + 0.590096i \(0.799090\pi\)
\(384\) 0 0
\(385\) −1.55456 1.98026i −0.0792279 0.100923i
\(386\) 11.2268 0.571430
\(387\) 0 0
\(388\) 3.11130 0.157952
\(389\) 20.5826i 1.04358i 0.853074 + 0.521789i \(0.174735\pi\)
−0.853074 + 0.521789i \(0.825265\pi\)
\(390\) 0 0
\(391\) 3.62933i 0.183543i
\(392\) 1.44308 0.0728868
\(393\) 0 0
\(394\) 0.620637i 0.0312672i
\(395\) 21.7594 17.0818i 1.09484 0.859479i
\(396\) 0 0
\(397\) 26.2539i 1.31764i −0.752298 0.658822i \(-0.771055\pi\)
0.752298 0.658822i \(-0.228945\pi\)
\(398\) −5.80441 −0.290949
\(399\) 0 0
\(400\) 4.99240 20.4268i 0.249620 1.02134i
\(401\) 17.1621 0.857034 0.428517 0.903534i \(-0.359036\pi\)
0.428517 + 0.903534i \(0.359036\pi\)
\(402\) 0 0
\(403\) −7.11981 −0.354663
\(404\) 6.05946i 0.301469i
\(405\) 0 0
\(406\) −4.99925 2.35611i −0.248109 0.116932i
\(407\) 3.84208i 0.190445i
\(408\) 0 0
\(409\) 14.9034i 0.736925i 0.929643 + 0.368462i \(0.120116\pi\)
−0.929643 + 0.368462i \(0.879884\pi\)
\(410\) −33.7036 + 26.4583i −1.66450 + 1.30668i
\(411\) 0 0
\(412\) 14.7524i 0.726799i
\(413\) 0.995181i 0.0489697i
\(414\) 0 0
\(415\) −12.8861 + 10.1160i −0.632555 + 0.496574i
\(416\) 12.0663i 0.591601i
\(417\) 0 0
\(418\) 20.1065 0.983442
\(419\) 19.5741 0.956259 0.478129 0.878289i \(-0.341315\pi\)
0.478129 + 0.878289i \(0.341315\pi\)
\(420\) 0 0
\(421\) 8.71742i 0.424861i 0.977176 + 0.212431i \(0.0681379\pi\)
−0.977176 + 0.212431i \(0.931862\pi\)
\(422\) 13.6566i 0.664792i
\(423\) 0 0
\(424\) 1.66189i 0.0807084i
\(425\) −2.94345 + 12.0434i −0.142778 + 0.584190i
\(426\) 0 0
\(427\) −3.98775 −0.192981
\(428\) 34.8176i 1.68297i
\(429\) 0 0
\(430\) −14.6881 18.7103i −0.708323 0.902289i
\(431\) 26.7125 1.28669 0.643347 0.765574i \(-0.277545\pi\)
0.643347 + 0.765574i \(0.277545\pi\)
\(432\) 0 0
\(433\) −34.3298 −1.64978 −0.824892 0.565290i \(-0.808764\pi\)
−0.824892 + 0.565290i \(0.808764\pi\)
\(434\) 4.76406 0.228682
\(435\) 0 0
\(436\) 32.9655 1.57876
\(437\) 6.89383 0.329777
\(438\) 0 0
\(439\) −30.4762 −1.45455 −0.727274 0.686347i \(-0.759213\pi\)
−0.727274 + 0.686347i \(0.759213\pi\)
\(440\) 0.816257 0.640785i 0.0389135 0.0305482i
\(441\) 0 0
\(442\) 7.50200i 0.356834i
\(443\) 17.3948 0.826451 0.413225 0.910629i \(-0.364402\pi\)
0.413225 + 0.910629i \(0.364402\pi\)
\(444\) 0 0
\(445\) −13.4769 + 10.5798i −0.638866 + 0.501528i
\(446\) 56.1595i 2.65923i
\(447\) 0 0
\(448\) 3.69795i 0.174712i
\(449\) 1.06526i 0.0502726i −0.999684 0.0251363i \(-0.991998\pi\)
0.999684 0.0251363i \(-0.00800197\pi\)
\(450\) 0 0
\(451\) −21.0223 −0.989903
\(452\) −12.8283 −0.603391
\(453\) 0 0
\(454\) 14.1048i 0.661972i
\(455\) 1.10175 + 1.40345i 0.0516508 + 0.0657948i
\(456\) 0 0
\(457\) 1.01761i 0.0476020i −0.999717 0.0238010i \(-0.992423\pi\)
0.999717 0.0238010i \(-0.00757681\pi\)
\(458\) 19.6160i 0.916596i
\(459\) 0 0
\(460\) −4.86895 + 3.82227i −0.227016 + 0.178214i
\(461\) 3.17621i 0.147931i 0.997261 + 0.0739655i \(0.0235655\pi\)
−0.997261 + 0.0739655i \(0.976435\pi\)
\(462\) 0 0
\(463\) 1.75704i 0.0816565i 0.999166 + 0.0408283i \(0.0129997\pi\)
−0.999166 + 0.0408283i \(0.987000\pi\)
\(464\) 9.65519 20.4867i 0.448231 0.951069i
\(465\) 0 0
\(466\) 26.7753i 1.24034i
\(467\) 35.9537 1.66374 0.831870 0.554970i \(-0.187270\pi\)
0.831870 + 0.554970i \(0.187270\pi\)
\(468\) 0 0
\(469\) 4.10350 0.189482
\(470\) 10.0317 + 12.7788i 0.462730 + 0.589443i
\(471\) 0 0
\(472\) 0.410210 0.0188815
\(473\) 11.6704i 0.536604i
\(474\) 0 0
\(475\) −22.8761 5.59103i −1.04963 0.256534i
\(476\) 2.43978i 0.111827i
\(477\) 0 0
\(478\) 30.6683 1.40273
\(479\) 41.1172i 1.87869i 0.342969 + 0.939347i \(0.388567\pi\)
−0.342969 + 0.939347i \(0.611433\pi\)
\(480\) 0 0
\(481\) 2.72296i 0.124156i
\(482\) 35.9356 1.63682
\(483\) 0 0
\(484\) 11.9466 0.543026
\(485\) −2.27142 2.89342i −0.103140 0.131383i
\(486\) 0 0
\(487\) 9.80926i 0.444500i −0.974990 0.222250i \(-0.928660\pi\)
0.974990 0.222250i \(-0.0713401\pi\)
\(488\) 1.64374i 0.0744085i
\(489\) 0 0
\(490\) 18.3287 + 23.3478i 0.828008 + 1.05475i
\(491\) 41.7524i 1.88426i 0.335245 + 0.942131i \(0.391181\pi\)
−0.335245 + 0.942131i \(0.608819\pi\)
\(492\) 0 0
\(493\) −5.69258 + 12.0787i −0.256381 + 0.543996i
\(494\) −14.2499 −0.641132
\(495\) 0 0
\(496\) 19.5228i 0.876602i
\(497\) 5.08809i 0.228232i
\(498\) 0 0
\(499\) 2.50030 0.111929 0.0559644 0.998433i \(-0.482177\pi\)
0.0559644 + 0.998433i \(0.482177\pi\)
\(500\) 19.2568 8.73481i 0.861191 0.390633i
\(501\) 0 0
\(502\) 10.1898i 0.454793i
\(503\) 23.3850 1.04268 0.521342 0.853348i \(-0.325431\pi\)
0.521342 + 0.853348i \(0.325431\pi\)
\(504\) 0 0
\(505\) −5.63513 + 4.42374i −0.250760 + 0.196854i
\(506\) −6.24850 −0.277780
\(507\) 0 0
\(508\) 26.5675 1.17874
\(509\) −19.8085 −0.877997 −0.438999 0.898488i \(-0.644667\pi\)
−0.438999 + 0.898488i \(0.644667\pi\)
\(510\) 0 0
\(511\) 2.44871i 0.108325i
\(512\) −31.2827 −1.38251
\(513\) 0 0
\(514\) 38.8456i 1.71340i
\(515\) 13.7193 10.7701i 0.604546 0.474586i
\(516\) 0 0
\(517\) 7.97068i 0.350550i
\(518\) 1.82200i 0.0800543i
\(519\) 0 0
\(520\) −0.578497 + 0.454137i −0.0253688 + 0.0199152i
\(521\) 26.0978 1.14337 0.571684 0.820474i \(-0.306291\pi\)
0.571684 + 0.820474i \(0.306291\pi\)
\(522\) 0 0
\(523\) 20.8084i 0.909888i 0.890520 + 0.454944i \(0.150341\pi\)
−0.890520 + 0.454944i \(0.849659\pi\)
\(524\) 17.3989i 0.760075i
\(525\) 0 0
\(526\) −23.5995 −1.02899
\(527\) 11.5104i 0.501402i
\(528\) 0 0
\(529\) 20.8576 0.906852
\(530\) 26.8879 21.1078i 1.16794 0.916863i
\(531\) 0 0
\(532\) 4.63430 0.200922
\(533\) 14.8989 0.645345
\(534\) 0 0
\(535\) 32.3794 25.4188i 1.39988 1.09895i
\(536\) 1.69145i 0.0730594i
\(537\) 0 0
\(538\) 32.6592i 1.40804i
\(539\) 14.5630i 0.627274i
\(540\) 0 0
\(541\) 46.2267i 1.98744i −0.111881 0.993722i \(-0.535688\pi\)
0.111881 0.993722i \(-0.464312\pi\)
\(542\) 50.2112i 2.15676i
\(543\) 0 0
\(544\) 19.5074 0.836371
\(545\) −24.0667 30.6570i −1.03090 1.31320i
\(546\) 0 0
\(547\) 24.3321i 1.04037i 0.854055 + 0.520183i \(0.174136\pi\)
−0.854055 + 0.520183i \(0.825864\pi\)
\(548\) 31.4383 1.34298
\(549\) 0 0
\(550\) 20.7347 + 5.06765i 0.884130 + 0.216085i
\(551\) −22.9432 10.8129i −0.977412 0.460646i
\(552\) 0 0
\(553\) 6.43628 0.273699
\(554\) 60.5895i 2.57420i
\(555\) 0 0
\(556\) 2.15181 0.0912573
\(557\) 32.6439i 1.38316i 0.722298 + 0.691582i \(0.243086\pi\)
−0.722298 + 0.691582i \(0.756914\pi\)
\(558\) 0 0
\(559\) 8.27101i 0.349827i
\(560\) 3.84832 3.02105i 0.162621 0.127663i
\(561\) 0 0
\(562\) 44.9316 1.89533
\(563\) −5.69605 −0.240060 −0.120030 0.992770i \(-0.538299\pi\)
−0.120030 + 0.992770i \(0.538299\pi\)
\(564\) 0 0
\(565\) 9.36535 + 11.9299i 0.394003 + 0.501896i
\(566\) 60.4900i 2.54259i
\(567\) 0 0
\(568\) 2.09729 0.0880004
\(569\) 23.0314i 0.965526i −0.875751 0.482763i \(-0.839633\pi\)
0.875751 0.482763i \(-0.160367\pi\)
\(570\) 0 0
\(571\) 12.1948 0.510336 0.255168 0.966897i \(-0.417869\pi\)
0.255168 + 0.966897i \(0.417869\pi\)
\(572\) 6.27756 0.262478
\(573\) 0 0
\(574\) −9.96928 −0.416110
\(575\) 7.10921 + 1.73752i 0.296475 + 0.0724597i
\(576\) 0 0
\(577\) −23.1192 −0.962466 −0.481233 0.876593i \(-0.659811\pi\)
−0.481233 + 0.876593i \(0.659811\pi\)
\(578\) 21.4065 0.890393
\(579\) 0 0
\(580\) 22.1994 5.08388i 0.921782 0.211096i
\(581\) −3.81162 −0.158133
\(582\) 0 0
\(583\) 16.7711 0.694588
\(584\) 1.00935 0.0417672
\(585\) 0 0
\(586\) 1.88700 0.0779512
\(587\) 16.0091i 0.660767i 0.943847 + 0.330384i \(0.107178\pi\)
−0.943847 + 0.330384i \(0.892822\pi\)
\(588\) 0 0
\(589\) 21.8638 0.900882
\(590\) 5.21012 + 6.63684i 0.214497 + 0.273235i
\(591\) 0 0
\(592\) 7.46648 0.306870
\(593\) 20.9155i 0.858896i 0.903092 + 0.429448i \(0.141292\pi\)
−0.903092 + 0.429448i \(0.858708\pi\)
\(594\) 0 0
\(595\) −2.26892 + 1.78117i −0.0930168 + 0.0730209i
\(596\) −1.85626 −0.0760353
\(597\) 0 0
\(598\) 4.42843 0.181092
\(599\) 39.3957i 1.60967i 0.593502 + 0.804833i \(0.297745\pi\)
−0.593502 + 0.804833i \(0.702255\pi\)
\(600\) 0 0
\(601\) 18.3996i 0.750533i −0.926917 0.375267i \(-0.877551\pi\)
0.926917 0.375267i \(-0.122449\pi\)
\(602\) 5.53436i 0.225564i
\(603\) 0 0
\(604\) 21.7116 0.883434
\(605\) −8.72166 11.1100i −0.354586 0.451685i
\(606\) 0 0
\(607\) 34.8854 1.41596 0.707978 0.706235i \(-0.249608\pi\)
0.707978 + 0.706235i \(0.249608\pi\)
\(608\) 37.0538i 1.50273i
\(609\) 0 0
\(610\) 26.5942 20.8772i 1.07677 0.845295i
\(611\) 5.64897i 0.228533i
\(612\) 0 0
\(613\) 34.3711i 1.38824i 0.719861 + 0.694118i \(0.244205\pi\)
−0.719861 + 0.694118i \(0.755795\pi\)
\(614\) 62.7811 2.53364
\(615\) 0 0
\(616\) 0.241443 0.00972801
\(617\) −32.4140 −1.30494 −0.652469 0.757815i \(-0.726267\pi\)
−0.652469 + 0.757815i \(0.726267\pi\)
\(618\) 0 0
\(619\) 37.2406i 1.49683i 0.663232 + 0.748414i \(0.269184\pi\)
−0.663232 + 0.748414i \(0.730816\pi\)
\(620\) −15.4419 + 12.1223i −0.620161 + 0.486845i
\(621\) 0 0
\(622\) 3.61437i 0.144923i
\(623\) −3.98637 −0.159710
\(624\) 0 0
\(625\) −22.1817 11.5314i −0.887267 0.461256i
\(626\) 33.2466i 1.32880i
\(627\) 0 0
\(628\) 15.1391 0.604116
\(629\) −4.40214 −0.175525
\(630\) 0 0
\(631\) −20.0296 −0.797366 −0.398683 0.917089i \(-0.630533\pi\)
−0.398683 + 0.917089i \(0.630533\pi\)
\(632\) 2.65301i 0.105531i
\(633\) 0 0
\(634\) 57.3834 2.27898
\(635\) −19.3957 24.7070i −0.769696 0.980468i
\(636\) 0 0
\(637\) 10.3211i 0.408937i
\(638\) 20.7955 + 9.80073i 0.823301 + 0.388015i
\(639\) 0 0
\(640\) 2.36527 + 3.01297i 0.0934956 + 0.119098i
\(641\) 30.4877i 1.20419i −0.798424 0.602096i \(-0.794332\pi\)
0.798424 0.602096i \(-0.205668\pi\)
\(642\) 0 0
\(643\) 9.71287i 0.383038i −0.981489 0.191519i \(-0.938659\pi\)
0.981489 0.191519i \(-0.0613414\pi\)
\(644\) −1.44020 −0.0567519
\(645\) 0 0
\(646\) 23.0374i 0.906396i
\(647\) 26.7628i 1.05215i −0.850437 0.526077i \(-0.823663\pi\)
0.850437 0.526077i \(-0.176337\pi\)
\(648\) 0 0
\(649\) 4.13967i 0.162496i
\(650\) −14.6951 3.59154i −0.576389 0.140872i
\(651\) 0 0
\(652\) 4.65501 0.182304
\(653\) −47.1066 −1.84342 −0.921712 0.387875i \(-0.873209\pi\)
−0.921712 + 0.387875i \(0.873209\pi\)
\(654\) 0 0
\(655\) 16.1805 12.7022i 0.632224 0.496315i
\(656\) 40.8536i 1.59506i
\(657\) 0 0
\(658\) 3.77988i 0.147355i
\(659\) 18.2896i 0.712460i −0.934398 0.356230i \(-0.884062\pi\)
0.934398 0.356230i \(-0.115938\pi\)
\(660\) 0 0
\(661\) 27.5526 1.07167 0.535836 0.844322i \(-0.319997\pi\)
0.535836 + 0.844322i \(0.319997\pi\)
\(662\) 30.2613i 1.17614i
\(663\) 0 0
\(664\) 1.57114i 0.0609719i
\(665\) −3.38330 4.30977i −0.131199 0.167126i
\(666\) 0 0
\(667\) 7.13005 + 3.36033i 0.276077 + 0.130113i
\(668\) 9.42124i 0.364519i
\(669\) 0 0
\(670\) −27.3661 + 21.4832i −1.05725 + 0.829969i
\(671\) 16.5879 0.640369
\(672\) 0 0
\(673\) 23.9569i 0.923472i −0.887017 0.461736i \(-0.847227\pi\)
0.887017 0.461736i \(-0.152773\pi\)
\(674\) −41.5830 −1.60172
\(675\) 0 0
\(676\) 20.1377 0.774528
\(677\) 22.9391 0.881620 0.440810 0.897600i \(-0.354691\pi\)
0.440810 + 0.897600i \(0.354691\pi\)
\(678\) 0 0
\(679\) 0.855852i 0.0328446i
\(680\) −0.734192 0.935242i −0.0281550 0.0358649i
\(681\) 0 0
\(682\) −19.8171 −0.758837
\(683\) 34.1942i 1.30840i 0.756320 + 0.654202i \(0.226995\pi\)
−0.756320 + 0.654202i \(0.773005\pi\)
\(684\) 0 0
\(685\) −22.9517 29.2367i −0.876939 1.11708i
\(686\) 14.0900i 0.537960i
\(687\) 0 0
\(688\) 22.6795 0.864648
\(689\) −11.8860 −0.452821
\(690\) 0 0
\(691\) 3.83582 0.145922 0.0729608 0.997335i \(-0.476755\pi\)
0.0729608 + 0.997335i \(0.476755\pi\)
\(692\) 28.4721i 1.08235i
\(693\) 0 0
\(694\) 48.5238i 1.84194i
\(695\) −1.57094 2.00113i −0.0595893 0.0759071i
\(696\) 0 0
\(697\) 24.0868i 0.912351i
\(698\) 44.7860 1.69518
\(699\) 0 0
\(700\) 4.77909 + 1.16803i 0.180633 + 0.0441474i
\(701\) −49.0619 −1.85304 −0.926522 0.376241i \(-0.877217\pi\)
−0.926522 + 0.376241i \(0.877217\pi\)
\(702\) 0 0
\(703\) 8.36177i 0.315370i
\(704\) 15.3824i 0.579746i
\(705\) 0 0
\(706\) 2.73065i 0.102769i
\(707\) −1.66683 −0.0626876
\(708\) 0 0
\(709\) −9.68605 −0.363767 −0.181884 0.983320i \(-0.558219\pi\)
−0.181884 + 0.983320i \(0.558219\pi\)
\(710\) 26.6379 + 33.9324i 0.999702 + 1.27346i
\(711\) 0 0
\(712\) 1.64317i 0.0615802i
\(713\) −6.79461 −0.254460
\(714\) 0 0
\(715\) −4.58297 5.83796i −0.171393 0.218327i
\(716\) 47.6589 1.78110
\(717\) 0 0
\(718\) 42.7817i 1.59660i
\(719\) 34.8915 1.30123 0.650617 0.759406i \(-0.274510\pi\)
0.650617 + 0.759406i \(0.274510\pi\)
\(720\) 0 0
\(721\) 4.05808 0.151131
\(722\) 6.27904 0.233682
\(723\) 0 0
\(724\) 9.97646 0.370772
\(725\) −20.9347 16.9334i −0.777495 0.628889i
\(726\) 0 0
\(727\) 26.3086 0.975731 0.487866 0.872919i \(-0.337776\pi\)
0.487866 + 0.872919i \(0.337776\pi\)
\(728\) −0.171115 −0.00634195
\(729\) 0 0
\(730\) 12.8198 + 16.3304i 0.474484 + 0.604415i
\(731\) −13.3715 −0.494565
\(732\) 0 0
\(733\) 30.8872 1.14084 0.570422 0.821352i \(-0.306780\pi\)
0.570422 + 0.821352i \(0.306780\pi\)
\(734\) 0.415861 0.0153497
\(735\) 0 0
\(736\) 11.5152i 0.424456i
\(737\) −17.0694 −0.628759
\(738\) 0 0
\(739\) 7.59328i 0.279323i −0.990199 0.139662i \(-0.955398\pi\)
0.990199 0.139662i \(-0.0446015\pi\)
\(740\) 4.63617 + 5.90573i 0.170429 + 0.217099i
\(741\) 0 0
\(742\) 7.95324 0.291973
\(743\) 33.4121 1.22577 0.612886 0.790172i \(-0.290009\pi\)
0.612886 + 0.790172i \(0.290009\pi\)
\(744\) 0 0
\(745\) 1.35517 + 1.72627i 0.0496497 + 0.0632456i
\(746\) 11.1743i 0.409119i
\(747\) 0 0
\(748\) 10.1488i 0.371076i
\(749\) 9.57758 0.349957
\(750\) 0 0
\(751\) 24.7607i 0.903532i 0.892137 + 0.451766i \(0.149206\pi\)
−0.892137 + 0.451766i \(0.850794\pi\)
\(752\) −15.4897 −0.564853
\(753\) 0 0
\(754\) −14.7382 6.94597i −0.536732 0.252957i
\(755\) −15.8507 20.1912i −0.576866 0.734834i
\(756\) 0 0
\(757\) −29.8424 −1.08464 −0.542321 0.840172i \(-0.682454\pi\)
−0.542321 + 0.840172i \(0.682454\pi\)
\(758\) 24.7950i 0.900594i
\(759\) 0 0
\(760\) 1.77647 1.39458i 0.0644394 0.0505868i
\(761\) 19.7600 0.716300 0.358150 0.933664i \(-0.383408\pi\)
0.358150 + 0.933664i \(0.383408\pi\)
\(762\) 0 0
\(763\) 9.06813i 0.328288i
\(764\) 6.27046i 0.226857i
\(765\) 0 0
\(766\) 45.5616i 1.64621i
\(767\) 2.93387i 0.105936i
\(768\) 0 0
\(769\) 32.7782i 1.18201i 0.806667 + 0.591007i \(0.201269\pi\)
−0.806667 + 0.591007i \(0.798731\pi\)
\(770\) 3.06659 + 3.90633i 0.110512 + 0.140774i
\(771\) 0 0
\(772\) −10.7639 −0.387400
\(773\) −26.1210 −0.939507 −0.469753 0.882798i \(-0.655657\pi\)
−0.469753 + 0.882798i \(0.655657\pi\)
\(774\) 0 0
\(775\) 22.5469 + 5.51056i 0.809908 + 0.197945i
\(776\) 0.352779 0.0126640
\(777\) 0 0
\(778\) 40.6019i 1.45565i
\(779\) −45.7523 −1.63924
\(780\) 0 0
\(781\) 21.1650i 0.757344i
\(782\) 7.15934i 0.256018i
\(783\) 0 0
\(784\) −28.3009 −1.01075
\(785\) −11.0524 14.0789i −0.394477 0.502499i
\(786\) 0 0
\(787\) 37.7291i 1.34490i 0.740143 + 0.672449i \(0.234758\pi\)
−0.740143 + 0.672449i \(0.765242\pi\)
\(788\) 0.595044i 0.0211976i
\(789\) 0 0
\(790\) −42.9234 + 33.6962i −1.52715 + 1.19886i
\(791\) 3.52879i 0.125469i
\(792\) 0 0
\(793\) −11.7562 −0.417474
\(794\) 51.7893i 1.83793i
\(795\) 0 0
\(796\) 5.56506 0.197248
\(797\) 13.7227 0.486084 0.243042 0.970016i \(-0.421855\pi\)
0.243042 + 0.970016i \(0.421855\pi\)
\(798\) 0 0
\(799\) 9.13256 0.323087
\(800\) −9.33904 + 38.2114i −0.330185 + 1.35098i
\(801\) 0 0
\(802\) −33.8546 −1.19545
\(803\) 10.1859i 0.359454i
\(804\) 0 0
\(805\) 1.05143 + 1.33935i 0.0370579 + 0.0472058i
\(806\) 14.0448 0.494707
\(807\) 0 0
\(808\) 0.687061i 0.0241707i
\(809\) 20.1211i 0.707422i 0.935355 + 0.353711i \(0.115080\pi\)
−0.935355 + 0.353711i \(0.884920\pi\)
\(810\) 0 0
\(811\) −18.6829 −0.656044 −0.328022 0.944670i \(-0.606382\pi\)
−0.328022 + 0.944670i \(0.606382\pi\)
\(812\) 4.79310 + 2.25895i 0.168205 + 0.0792735i
\(813\) 0 0
\(814\) 7.57903i 0.265645i
\(815\) −3.39841 4.32903i −0.119041 0.151639i
\(816\) 0 0
\(817\) 25.3990i 0.888597i
\(818\) 29.3989i 1.02791i
\(819\) 0 0
\(820\) 32.3138 25.3672i 1.12845 0.885863i
\(821\) −23.2361 −0.810944 −0.405472 0.914107i \(-0.632893\pi\)
−0.405472 + 0.914107i \(0.632893\pi\)
\(822\) 0 0
\(823\) −23.2939 −0.811976 −0.405988 0.913878i \(-0.633072\pi\)
−0.405988 + 0.913878i \(0.633072\pi\)
\(824\) 1.67273i 0.0582722i
\(825\) 0 0
\(826\) 1.96313i 0.0683060i
\(827\) −7.45967 −0.259398 −0.129699 0.991553i \(-0.541401\pi\)
−0.129699 + 0.991553i \(0.541401\pi\)
\(828\) 0 0
\(829\) 13.0042i 0.451654i 0.974167 + 0.225827i \(0.0725084\pi\)
−0.974167 + 0.225827i \(0.927492\pi\)
\(830\) 25.4196 19.9552i 0.882328 0.692653i
\(831\) 0 0
\(832\) 10.9018i 0.377952i
\(833\) 16.6859 0.578131
\(834\) 0 0
\(835\) 8.76149 6.87803i 0.303204 0.238024i
\(836\) −19.2774 −0.666722
\(837\) 0 0
\(838\) −38.6126 −1.33385
\(839\) 42.3972i 1.46371i 0.681459 + 0.731857i \(0.261346\pi\)
−0.681459 + 0.731857i \(0.738654\pi\)
\(840\) 0 0
\(841\) −18.4587 22.3669i −0.636506 0.771272i
\(842\) 17.1963i 0.592623i
\(843\) 0 0
\(844\) 13.0934i 0.450694i
\(845\) −14.7017 18.7275i −0.505752 0.644247i
\(846\) 0 0
\(847\) 3.28625i 0.112917i
\(848\) 32.5920i 1.11921i
\(849\) 0 0
\(850\) 5.80636 23.7572i 0.199157 0.814865i
\(851\) 2.59859i 0.0890784i
\(852\) 0 0
\(853\) −33.8135 −1.15775 −0.578876 0.815416i \(-0.696508\pi\)
−0.578876 + 0.815416i \(0.696508\pi\)
\(854\) 7.86638 0.269182
\(855\) 0 0
\(856\) 3.94784i 0.134935i
\(857\) 39.2819i 1.34184i 0.741528 + 0.670922i \(0.234102\pi\)
−0.741528 + 0.670922i \(0.765898\pi\)
\(858\) 0 0
\(859\) 11.9843i 0.408900i −0.978877 0.204450i \(-0.934459\pi\)
0.978877 0.204450i \(-0.0655406\pi\)
\(860\) 14.0824 + 17.9387i 0.480206 + 0.611705i
\(861\) 0 0
\(862\) −52.6940 −1.79476
\(863\) 36.8424i 1.25413i −0.778967 0.627065i \(-0.784256\pi\)
0.778967 0.627065i \(-0.215744\pi\)
\(864\) 0 0
\(865\) −26.4783 + 20.7862i −0.900288 + 0.706752i
\(866\) 67.7202 2.30122
\(867\) 0 0
\(868\) −4.56760 −0.155034
\(869\) −26.7731 −0.908216
\(870\) 0 0
\(871\) 12.0974 0.409905
\(872\) 3.73785 0.126580
\(873\) 0 0
\(874\) −13.5990 −0.459993
\(875\) −2.40276 5.29715i −0.0812282 0.179076i
\(876\) 0 0
\(877\) 2.27276i 0.0767456i 0.999263 + 0.0383728i \(0.0122174\pi\)
−0.999263 + 0.0383728i \(0.987783\pi\)
\(878\) 60.1184 2.02890
\(879\) 0 0
\(880\) −16.0079 + 12.5667i −0.539628 + 0.423623i
\(881\) 55.3714i 1.86551i −0.360512 0.932755i \(-0.617398\pi\)
0.360512 0.932755i \(-0.382602\pi\)
\(882\) 0 0
\(883\) 7.65846i 0.257728i 0.991662 + 0.128864i \(0.0411330\pi\)
−0.991662 + 0.128864i \(0.958867\pi\)
\(884\) 7.19264i 0.241915i
\(885\) 0 0
\(886\) −34.3136 −1.15279
\(887\) 3.86090 0.129636 0.0648181 0.997897i \(-0.479353\pi\)
0.0648181 + 0.997897i \(0.479353\pi\)
\(888\) 0 0
\(889\) 7.30815i 0.245108i
\(890\) 26.5850 20.8700i 0.891131 0.699564i
\(891\) 0 0
\(892\) 53.8436i 1.80282i
\(893\) 17.3471i 0.580498i
\(894\) 0 0
\(895\) −34.7936 44.3214i −1.16302 1.48150i
\(896\) 0.891216i 0.0297734i
\(897\) 0 0
\(898\) 2.10136i 0.0701234i
\(899\) 22.6130 + 10.6573i 0.754185 + 0.355441i
\(900\) 0 0
\(901\) 19.2158i 0.640171i
\(902\) 41.4694 1.38078
\(903\) 0 0
\(904\) −1.45455 −0.0483777
\(905\) −7.28337 9.27784i −0.242107 0.308406i
\(906\) 0 0
\(907\) 4.71465 0.156547 0.0782737 0.996932i \(-0.475059\pi\)
0.0782737 + 0.996932i \(0.475059\pi\)
\(908\) 13.5232i 0.448782i
\(909\) 0 0
\(910\) −2.17335 2.76850i −0.0720458 0.0917747i
\(911\) 6.38523i 0.211552i −0.994390 0.105776i \(-0.966267\pi\)
0.994390 0.105776i \(-0.0337326\pi\)
\(912\) 0 0
\(913\) 15.8553 0.524733
\(914\) 2.00738i 0.0663983i
\(915\) 0 0
\(916\) 18.8071i 0.621404i
\(917\) 4.78607 0.158050
\(918\) 0 0
\(919\) 40.2376 1.32732 0.663658 0.748036i \(-0.269003\pi\)
0.663658 + 0.748036i \(0.269003\pi\)
\(920\) −0.552074 + 0.433394i −0.0182013 + 0.0142886i
\(921\) 0 0
\(922\) 6.26551i 0.206344i
\(923\) 15.0001i 0.493733i
\(924\) 0 0
\(925\) 2.10750 8.62301i 0.0692943 0.283523i
\(926\) 3.46600i 0.113900i
\(927\) 0 0
\(928\) −18.0615 + 38.3234i −0.592899 + 1.25803i
\(929\) 56.7497 1.86190 0.930949 0.365149i \(-0.118982\pi\)
0.930949 + 0.365149i \(0.118982\pi\)
\(930\) 0 0
\(931\) 31.6944i 1.03874i
\(932\) 25.6712i 0.840888i
\(933\) 0 0
\(934\) −70.9236 −2.32069
\(935\) 9.43808 7.40917i 0.308658 0.242306i
\(936\) 0 0
\(937\) 42.7198i 1.39559i −0.716296 0.697797i \(-0.754164\pi\)
0.716296 0.697797i \(-0.245836\pi\)
\(938\) −8.09471 −0.264302
\(939\) 0 0
\(940\) −9.61806 12.2519i −0.313707 0.399611i
\(941\) −32.3400 −1.05425 −0.527127 0.849787i \(-0.676731\pi\)
−0.527127 + 0.849787i \(0.676731\pi\)
\(942\) 0 0
\(943\) 14.2184 0.463016
\(944\) −8.04480 −0.261836
\(945\) 0 0
\(946\) 23.0214i 0.748489i
\(947\) −44.3486 −1.44114 −0.720568 0.693384i \(-0.756119\pi\)
−0.720568 + 0.693384i \(0.756119\pi\)
\(948\) 0 0
\(949\) 7.21898i 0.234338i
\(950\) 45.1263 + 11.0291i 1.46409 + 0.357830i
\(951\) 0 0
\(952\) 0.276638i 0.00896588i
\(953\) 26.0460i 0.843712i 0.906663 + 0.421856i \(0.138621\pi\)
−0.906663 + 0.421856i \(0.861379\pi\)
\(954\) 0 0
\(955\) −5.83136 + 4.57779i −0.188698 + 0.148134i
\(956\) −29.4036 −0.950981
\(957\) 0 0
\(958\) 81.1093i 2.62052i
\(959\) 8.64802i 0.279259i
\(960\) 0 0
\(961\) 9.45088 0.304867
\(962\) 5.37140i 0.173181i
\(963\) 0 0
\(964\) −34.4537 −1.10968
\(965\) 7.85821 + 10.0101i 0.252965 + 0.322236i
\(966\) 0 0
\(967\) 15.3861 0.494785 0.247392 0.968915i \(-0.420426\pi\)
0.247392 + 0.968915i \(0.420426\pi\)
\(968\) 1.35458 0.0435379
\(969\) 0 0
\(970\) 4.48068 + 5.70766i 0.143866 + 0.183262i
\(971\) 9.79636i 0.314380i −0.987568 0.157190i \(-0.949756\pi\)
0.987568 0.157190i \(-0.0502436\pi\)
\(972\) 0 0
\(973\) 0.591919i 0.0189761i
\(974\) 19.3501i 0.620017i
\(975\) 0 0
\(976\) 32.2360i 1.03185i
\(977\) 26.1850i 0.837734i 0.908048 + 0.418867i \(0.137573\pi\)
−0.908048 + 0.418867i \(0.862427\pi\)
\(978\) 0 0
\(979\) 16.5822 0.529968
\(980\) −17.5729 22.3851i −0.561346 0.715064i
\(981\) 0 0
\(982\) 82.3623i 2.62829i
\(983\) −0.127997 −0.00408247 −0.00204123 0.999998i \(-0.500650\pi\)
−0.00204123 + 0.999998i \(0.500650\pi\)
\(984\) 0 0
\(985\) 0.553374 0.434415i 0.0176320 0.0138416i
\(986\) 11.2294 23.8268i 0.357617 0.758801i
\(987\) 0 0
\(988\) 13.6623 0.434654
\(989\) 7.89323i 0.250990i
\(990\) 0 0
\(991\) 18.1627 0.576957 0.288478 0.957486i \(-0.406851\pi\)
0.288478 + 0.957486i \(0.406851\pi\)
\(992\) 36.5205i 1.15953i
\(993\) 0 0
\(994\) 10.0369i 0.318353i
\(995\) −4.06280 5.17535i −0.128799 0.164070i
\(996\) 0 0
\(997\) 51.0941 1.61817 0.809083 0.587694i \(-0.199964\pi\)
0.809083 + 0.587694i \(0.199964\pi\)
\(998\) −4.93218 −0.156125
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.f.l.289.3 12
3.2 odd 2 435.2.f.f.289.10 yes 12
5.4 even 2 1305.2.f.k.289.10 12
15.2 even 4 2175.2.d.j.376.18 24
15.8 even 4 2175.2.d.j.376.7 24
15.14 odd 2 435.2.f.e.289.3 12
29.28 even 2 1305.2.f.k.289.9 12
87.86 odd 2 435.2.f.e.289.4 yes 12
145.144 even 2 inner 1305.2.f.l.289.4 12
435.173 even 4 2175.2.d.j.376.8 24
435.347 even 4 2175.2.d.j.376.17 24
435.434 odd 2 435.2.f.f.289.9 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.f.e.289.3 12 15.14 odd 2
435.2.f.e.289.4 yes 12 87.86 odd 2
435.2.f.f.289.9 yes 12 435.434 odd 2
435.2.f.f.289.10 yes 12 3.2 odd 2
1305.2.f.k.289.9 12 29.28 even 2
1305.2.f.k.289.10 12 5.4 even 2
1305.2.f.l.289.3 12 1.1 even 1 trivial
1305.2.f.l.289.4 12 145.144 even 2 inner
2175.2.d.j.376.7 24 15.8 even 4
2175.2.d.j.376.8 24 435.173 even 4
2175.2.d.j.376.17 24 435.347 even 4
2175.2.d.j.376.18 24 15.2 even 4