Properties

Label 1305.2.f
Level $1305$
Weight $2$
Character orbit 1305.f
Rep. character $\chi_{1305}(289,\cdot)$
Character field $\Q$
Dimension $72$
Newform subspaces $13$
Sturm bound $360$
Trace bound $10$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 145 \)
Character field: \(\Q\)
Newform subspaces: \( 13 \)
Sturm bound: \(360\)
Trace bound: \(10\)
Distinguishing \(T_p\): \(2\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1305, [\chi])\).

Total New Old
Modular forms 188 76 112
Cusp forms 172 72 100
Eisenstein series 16 4 12

Trace form

\( 72 q + 64 q^{4} + 6 q^{5} + 48 q^{16} + 38 q^{20} + 10 q^{25} - 32 q^{34} - 40 q^{49} + 16 q^{64} - 26 q^{65} - 56 q^{71} + 56 q^{74} + 74 q^{80} - 20 q^{86} + 8 q^{91} - 28 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1305, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1305.2.f.a 1305.f 145.d $2$ $10.420$ \(\Q(\sqrt{-1}) \) None 435.2.f.a \(-4\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2 q^{2}+2 q^{4}+(-i-2)q^{5}+4 i q^{7}+\cdots\)
1305.2.f.b 1305.f 145.d $2$ $10.420$ \(\Q(\sqrt{-1}) \) None 435.2.f.b \(-2\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}-q^{4}+(-\beta+1)q^{5}+\beta q^{7}+\cdots\)
1305.2.f.c 1305.f 145.d $2$ $10.420$ \(\Q(\sqrt{-1}) \) None 435.2.f.b \(2\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}-q^{4}+(-\beta+1)q^{5}+\beta q^{7}+\cdots\)
1305.2.f.d 1305.f 145.d $2$ $10.420$ \(\Q(\sqrt{-1}) \) None 435.2.f.a \(4\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 q^{2}+2 q^{4}+(-i-2)q^{5}+4 i q^{7}+\cdots\)
1305.2.f.e 1305.f 145.d $4$ $10.420$ \(\Q(\sqrt{-3}, \sqrt{17})\) None 145.2.d.a \(-4\) \(0\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}-q^{4}+(-1+\beta _{1})q^{5}-\beta _{3}q^{7}+\cdots\)
1305.2.f.f 1305.f 145.d $4$ $10.420$ \(\Q(\sqrt{5}, \sqrt{-6})\) None 1305.2.f.f \(-4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}-q^{4}+\beta _{2}q^{5}+\beta _{1}q^{7}+3q^{8}+\cdots\)
1305.2.f.g 1305.f 145.d $4$ $10.420$ \(\Q(\sqrt{-5}, \sqrt{-29})\) \(\Q(\sqrt{-435}) \) 1305.2.f.g \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-2q^{4}-\beta _{1}q^{5}-\beta _{2}q^{11}+4q^{16}+\cdots\)
1305.2.f.h 1305.f 145.d $4$ $10.420$ \(\Q(i, \sqrt{5})\) None 145.2.d.b \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}+3q^{4}+(1+\beta _{1})q^{5}+\beta _{1}q^{7}+\cdots\)
1305.2.f.i 1305.f 145.d $4$ $10.420$ \(\Q(\sqrt{-3}, \sqrt{17})\) None 145.2.d.a \(4\) \(0\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}-q^{4}+(-1+\beta _{1})q^{5}-\beta _{3}q^{7}+\cdots\)
1305.2.f.j 1305.f 145.d $4$ $10.420$ \(\Q(\sqrt{5}, \sqrt{-6})\) None 1305.2.f.f \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}-q^{4}-\beta _{2}q^{5}-\beta _{1}q^{7}-3q^{8}+\cdots\)
1305.2.f.k 1305.f 145.d $12$ $10.420$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 435.2.f.e \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{2}+(1-\beta _{3})q^{4}+(1-\beta _{1})q^{5}+\cdots\)
1305.2.f.l 1305.f 145.d $12$ $10.420$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 435.2.f.e \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{2}+(1-\beta _{3})q^{4}+(1-\beta _{1})q^{5}+\cdots\)
1305.2.f.m 1305.f 145.d $16$ $10.420$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1305.2.f.m \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(2+\beta _{3})q^{4}-\beta _{14}q^{5}+\beta _{5}q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1305, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1305, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 2}\)