Properties

Label 130.4.a.g.1.2
Level $130$
Weight $4$
Character 130.1
Self dual yes
Analytic conductor $7.670$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,4,Mod(1,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 130.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4,12,8,10,24,4,16,38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.67024830075\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{10}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.16228\) of defining polynomial
Character \(\chi\) \(=\) 130.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +9.16228 q^{3} +4.00000 q^{4} +5.00000 q^{5} +18.3246 q^{6} -10.6491 q^{7} +8.00000 q^{8} +56.9473 q^{9} +10.0000 q^{10} -59.4342 q^{11} +36.6491 q^{12} -13.0000 q^{13} -21.2982 q^{14} +45.8114 q^{15} +16.0000 q^{16} +58.2719 q^{17} +113.895 q^{18} -95.0569 q^{19} +20.0000 q^{20} -97.5701 q^{21} -118.868 q^{22} -186.355 q^{23} +73.2982 q^{24} +25.0000 q^{25} -26.0000 q^{26} +274.386 q^{27} -42.5964 q^{28} +257.737 q^{29} +91.6228 q^{30} +173.653 q^{31} +32.0000 q^{32} -544.552 q^{33} +116.544 q^{34} -53.2456 q^{35} +227.789 q^{36} -88.2719 q^{37} -190.114 q^{38} -119.110 q^{39} +40.0000 q^{40} +174.272 q^{41} -195.140 q^{42} +481.179 q^{43} -237.737 q^{44} +284.737 q^{45} -372.710 q^{46} -303.737 q^{47} +146.596 q^{48} -229.596 q^{49} +50.0000 q^{50} +533.903 q^{51} -52.0000 q^{52} -403.570 q^{53} +548.772 q^{54} -297.171 q^{55} -85.1929 q^{56} -870.938 q^{57} +515.473 q^{58} +9.98649 q^{59} +183.246 q^{60} -245.088 q^{61} +347.307 q^{62} -606.438 q^{63} +64.0000 q^{64} -65.0000 q^{65} -1089.10 q^{66} +312.325 q^{67} +233.088 q^{68} -1707.44 q^{69} -106.491 q^{70} +25.0484 q^{71} +455.579 q^{72} -232.483 q^{73} -176.544 q^{74} +229.057 q^{75} -380.228 q^{76} +632.921 q^{77} -238.219 q^{78} -827.623 q^{79} +80.0000 q^{80} +976.421 q^{81} +348.544 q^{82} -466.228 q^{83} -390.280 q^{84} +291.359 q^{85} +962.359 q^{86} +2361.45 q^{87} -475.473 q^{88} +1297.72 q^{89} +569.473 q^{90} +138.438 q^{91} -745.421 q^{92} +1591.06 q^{93} -607.473 q^{94} -475.285 q^{95} +293.193 q^{96} +1001.77 q^{97} -459.193 q^{98} -3384.62 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 12 q^{3} + 8 q^{4} + 10 q^{5} + 24 q^{6} + 4 q^{7} + 16 q^{8} + 38 q^{9} + 20 q^{10} - 24 q^{11} + 48 q^{12} - 26 q^{13} + 8 q^{14} + 60 q^{15} + 32 q^{16} + 28 q^{17} + 76 q^{18} - 32 q^{19}+ \cdots - 4056 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 9.16228 1.76328 0.881641 0.471921i \(-0.156439\pi\)
0.881641 + 0.471921i \(0.156439\pi\)
\(4\) 4.00000 0.500000
\(5\) 5.00000 0.447214
\(6\) 18.3246 1.24683
\(7\) −10.6491 −0.574998 −0.287499 0.957781i \(-0.592824\pi\)
−0.287499 + 0.957781i \(0.592824\pi\)
\(8\) 8.00000 0.353553
\(9\) 56.9473 2.10916
\(10\) 10.0000 0.316228
\(11\) −59.4342 −1.62910 −0.814549 0.580095i \(-0.803015\pi\)
−0.814549 + 0.580095i \(0.803015\pi\)
\(12\) 36.6491 0.881641
\(13\) −13.0000 −0.277350
\(14\) −21.2982 −0.406585
\(15\) 45.8114 0.788563
\(16\) 16.0000 0.250000
\(17\) 58.2719 0.831353 0.415677 0.909512i \(-0.363545\pi\)
0.415677 + 0.909512i \(0.363545\pi\)
\(18\) 113.895 1.49140
\(19\) −95.0569 −1.14777 −0.573883 0.818937i \(-0.694564\pi\)
−0.573883 + 0.818937i \(0.694564\pi\)
\(20\) 20.0000 0.223607
\(21\) −97.5701 −1.01388
\(22\) −118.868 −1.15195
\(23\) −186.355 −1.68947 −0.844733 0.535187i \(-0.820241\pi\)
−0.844733 + 0.535187i \(0.820241\pi\)
\(24\) 73.2982 0.623414
\(25\) 25.0000 0.200000
\(26\) −26.0000 −0.196116
\(27\) 274.386 1.95576
\(28\) −42.5964 −0.287499
\(29\) 257.737 1.65036 0.825181 0.564868i \(-0.191073\pi\)
0.825181 + 0.564868i \(0.191073\pi\)
\(30\) 91.6228 0.557598
\(31\) 173.653 1.00610 0.503049 0.864258i \(-0.332211\pi\)
0.503049 + 0.864258i \(0.332211\pi\)
\(32\) 32.0000 0.176777
\(33\) −544.552 −2.87256
\(34\) 116.544 0.587856
\(35\) −53.2456 −0.257147
\(36\) 227.789 1.05458
\(37\) −88.2719 −0.392211 −0.196106 0.980583i \(-0.562830\pi\)
−0.196106 + 0.980583i \(0.562830\pi\)
\(38\) −190.114 −0.811593
\(39\) −119.110 −0.489046
\(40\) 40.0000 0.158114
\(41\) 174.272 0.663822 0.331911 0.943311i \(-0.392307\pi\)
0.331911 + 0.943311i \(0.392307\pi\)
\(42\) −195.140 −0.716924
\(43\) 481.179 1.70649 0.853246 0.521508i \(-0.174630\pi\)
0.853246 + 0.521508i \(0.174630\pi\)
\(44\) −237.737 −0.814549
\(45\) 284.737 0.943245
\(46\) −372.710 −1.19463
\(47\) −303.737 −0.942650 −0.471325 0.881960i \(-0.656224\pi\)
−0.471325 + 0.881960i \(0.656224\pi\)
\(48\) 146.596 0.440820
\(49\) −229.596 −0.669377
\(50\) 50.0000 0.141421
\(51\) 533.903 1.46591
\(52\) −52.0000 −0.138675
\(53\) −403.570 −1.04594 −0.522968 0.852352i \(-0.675175\pi\)
−0.522968 + 0.852352i \(0.675175\pi\)
\(54\) 548.772 1.38293
\(55\) −297.171 −0.728555
\(56\) −85.1929 −0.203292
\(57\) −870.938 −2.02383
\(58\) 515.473 1.16698
\(59\) 9.98649 0.0220361 0.0110180 0.999939i \(-0.496493\pi\)
0.0110180 + 0.999939i \(0.496493\pi\)
\(60\) 183.246 0.394282
\(61\) −245.088 −0.514430 −0.257215 0.966354i \(-0.582805\pi\)
−0.257215 + 0.966354i \(0.582805\pi\)
\(62\) 347.307 0.711419
\(63\) −606.438 −1.21276
\(64\) 64.0000 0.125000
\(65\) −65.0000 −0.124035
\(66\) −1089.10 −2.03120
\(67\) 312.325 0.569500 0.284750 0.958602i \(-0.408089\pi\)
0.284750 + 0.958602i \(0.408089\pi\)
\(68\) 233.088 0.415677
\(69\) −1707.44 −2.97901
\(70\) −106.491 −0.181830
\(71\) 25.0484 0.0418690 0.0209345 0.999781i \(-0.493336\pi\)
0.0209345 + 0.999781i \(0.493336\pi\)
\(72\) 455.579 0.745701
\(73\) −232.483 −0.372740 −0.186370 0.982480i \(-0.559672\pi\)
−0.186370 + 0.982480i \(0.559672\pi\)
\(74\) −176.544 −0.277335
\(75\) 229.057 0.352656
\(76\) −380.228 −0.573883
\(77\) 632.921 0.936728
\(78\) −238.219 −0.345808
\(79\) −827.623 −1.17867 −0.589334 0.807889i \(-0.700610\pi\)
−0.589334 + 0.807889i \(0.700610\pi\)
\(80\) 80.0000 0.111803
\(81\) 976.421 1.33940
\(82\) 348.544 0.469393
\(83\) −466.228 −0.616568 −0.308284 0.951294i \(-0.599755\pi\)
−0.308284 + 0.951294i \(0.599755\pi\)
\(84\) −390.280 −0.506942
\(85\) 291.359 0.371793
\(86\) 962.359 1.20667
\(87\) 2361.45 2.91005
\(88\) −475.473 −0.575973
\(89\) 1297.72 1.54559 0.772797 0.634653i \(-0.218857\pi\)
0.772797 + 0.634653i \(0.218857\pi\)
\(90\) 569.473 0.666975
\(91\) 138.438 0.159476
\(92\) −745.421 −0.844733
\(93\) 1591.06 1.77404
\(94\) −607.473 −0.666554
\(95\) −475.285 −0.513297
\(96\) 293.193 0.311707
\(97\) 1001.77 1.04860 0.524302 0.851532i \(-0.324326\pi\)
0.524302 + 0.851532i \(0.324326\pi\)
\(98\) −459.193 −0.473321
\(99\) −3384.62 −3.43603
\(100\) 100.000 0.100000
\(101\) 793.667 0.781909 0.390954 0.920410i \(-0.372145\pi\)
0.390954 + 0.920410i \(0.372145\pi\)
\(102\) 1067.81 1.03655
\(103\) −991.310 −0.948318 −0.474159 0.880439i \(-0.657248\pi\)
−0.474159 + 0.880439i \(0.657248\pi\)
\(104\) −104.000 −0.0980581
\(105\) −487.851 −0.453422
\(106\) −807.140 −0.739589
\(107\) 1629.60 1.47233 0.736166 0.676801i \(-0.236634\pi\)
0.736166 + 0.676801i \(0.236634\pi\)
\(108\) 1097.54 0.977881
\(109\) −480.491 −0.422227 −0.211113 0.977462i \(-0.567709\pi\)
−0.211113 + 0.977462i \(0.567709\pi\)
\(110\) −594.342 −0.515166
\(111\) −808.772 −0.691578
\(112\) −170.386 −0.143749
\(113\) 785.167 0.653649 0.326824 0.945085i \(-0.394021\pi\)
0.326824 + 0.945085i \(0.394021\pi\)
\(114\) −1741.88 −1.43107
\(115\) −931.776 −0.755553
\(116\) 1030.95 0.825181
\(117\) −740.315 −0.584976
\(118\) 19.9730 0.0155819
\(119\) −620.544 −0.478027
\(120\) 366.491 0.278799
\(121\) 2201.42 1.65396
\(122\) −490.175 −0.363757
\(123\) 1596.73 1.17050
\(124\) 694.614 0.503049
\(125\) 125.000 0.0894427
\(126\) −1212.88 −0.857553
\(127\) 2562.75 1.79061 0.895304 0.445455i \(-0.146958\pi\)
0.895304 + 0.445455i \(0.146958\pi\)
\(128\) 128.000 0.0883883
\(129\) 4408.70 3.00903
\(130\) −130.000 −0.0877058
\(131\) −700.772 −0.467379 −0.233690 0.972311i \(-0.575080\pi\)
−0.233690 + 0.972311i \(0.575080\pi\)
\(132\) −2178.21 −1.43628
\(133\) 1012.27 0.659963
\(134\) 624.649 0.402697
\(135\) 1371.93 0.874643
\(136\) 466.175 0.293928
\(137\) 339.685 0.211834 0.105917 0.994375i \(-0.466222\pi\)
0.105917 + 0.994375i \(0.466222\pi\)
\(138\) −3414.88 −2.10647
\(139\) −562.763 −0.343402 −0.171701 0.985149i \(-0.554926\pi\)
−0.171701 + 0.985149i \(0.554926\pi\)
\(140\) −212.982 −0.128573
\(141\) −2782.92 −1.66216
\(142\) 50.0968 0.0296058
\(143\) 772.644 0.451830
\(144\) 911.157 0.527290
\(145\) 1288.68 0.738064
\(146\) −464.965 −0.263567
\(147\) −2103.63 −1.18030
\(148\) −353.088 −0.196106
\(149\) −860.893 −0.473336 −0.236668 0.971591i \(-0.576055\pi\)
−0.236668 + 0.971591i \(0.576055\pi\)
\(150\) 458.114 0.249366
\(151\) −1172.15 −0.631712 −0.315856 0.948807i \(-0.602292\pi\)
−0.315856 + 0.948807i \(0.602292\pi\)
\(152\) −760.456 −0.405797
\(153\) 3318.43 1.75346
\(154\) 1265.84 0.662367
\(155\) 868.267 0.449941
\(156\) −476.438 −0.244523
\(157\) 240.070 0.122036 0.0610180 0.998137i \(-0.480565\pi\)
0.0610180 + 0.998137i \(0.480565\pi\)
\(158\) −1655.25 −0.833445
\(159\) −3697.62 −1.84428
\(160\) 160.000 0.0790569
\(161\) 1984.52 0.971440
\(162\) 1952.84 0.947097
\(163\) 1008.04 0.484393 0.242196 0.970227i \(-0.422132\pi\)
0.242196 + 0.970227i \(0.422132\pi\)
\(164\) 697.088 0.331911
\(165\) −2722.76 −1.28465
\(166\) −932.456 −0.435979
\(167\) 1175.77 0.544814 0.272407 0.962182i \(-0.412180\pi\)
0.272407 + 0.962182i \(0.412180\pi\)
\(168\) −780.561 −0.358462
\(169\) 169.000 0.0769231
\(170\) 582.719 0.262897
\(171\) −5413.24 −2.42082
\(172\) 1924.72 0.853246
\(173\) 510.167 0.224204 0.112102 0.993697i \(-0.464242\pi\)
0.112102 + 0.993697i \(0.464242\pi\)
\(174\) 4722.91 2.05772
\(175\) −266.228 −0.115000
\(176\) −950.947 −0.407274
\(177\) 91.4990 0.0388558
\(178\) 2595.44 1.09290
\(179\) 2693.68 1.12478 0.562389 0.826873i \(-0.309882\pi\)
0.562389 + 0.826873i \(0.309882\pi\)
\(180\) 1138.95 0.471623
\(181\) −4193.93 −1.72228 −0.861139 0.508370i \(-0.830248\pi\)
−0.861139 + 0.508370i \(0.830248\pi\)
\(182\) 276.877 0.112766
\(183\) −2245.56 −0.907085
\(184\) −1490.84 −0.597317
\(185\) −441.359 −0.175402
\(186\) 3182.12 1.25443
\(187\) −3463.34 −1.35436
\(188\) −1214.95 −0.471325
\(189\) −2921.96 −1.12456
\(190\) −950.569 −0.362956
\(191\) −180.194 −0.0682636 −0.0341318 0.999417i \(-0.510867\pi\)
−0.0341318 + 0.999417i \(0.510867\pi\)
\(192\) 586.386 0.220410
\(193\) −4986.96 −1.85995 −0.929973 0.367629i \(-0.880170\pi\)
−0.929973 + 0.367629i \(0.880170\pi\)
\(194\) 2003.54 0.741475
\(195\) −595.548 −0.218708
\(196\) −918.386 −0.334689
\(197\) 3947.77 1.42775 0.713875 0.700273i \(-0.246938\pi\)
0.713875 + 0.700273i \(0.246938\pi\)
\(198\) −6769.23 −2.42964
\(199\) −3419.67 −1.21816 −0.609080 0.793109i \(-0.708461\pi\)
−0.609080 + 0.793109i \(0.708461\pi\)
\(200\) 200.000 0.0707107
\(201\) 2861.60 1.00419
\(202\) 1587.33 0.552893
\(203\) −2744.67 −0.948955
\(204\) 2135.61 0.732955
\(205\) 871.359 0.296870
\(206\) −1982.62 −0.670562
\(207\) −10612.4 −3.56336
\(208\) −208.000 −0.0693375
\(209\) 5649.63 1.86982
\(210\) −975.701 −0.320618
\(211\) 2061.21 0.672509 0.336254 0.941771i \(-0.390840\pi\)
0.336254 + 0.941771i \(0.390840\pi\)
\(212\) −1614.28 −0.522968
\(213\) 229.500 0.0738268
\(214\) 3259.20 1.04110
\(215\) 2405.90 0.763167
\(216\) 2195.09 0.691466
\(217\) −1849.25 −0.578505
\(218\) −960.982 −0.298559
\(219\) −2130.07 −0.657246
\(220\) −1188.68 −0.364277
\(221\) −757.535 −0.230576
\(222\) −1617.54 −0.489020
\(223\) −4838.61 −1.45299 −0.726496 0.687170i \(-0.758853\pi\)
−0.726496 + 0.687170i \(0.758853\pi\)
\(224\) −340.772 −0.101646
\(225\) 1423.68 0.421832
\(226\) 1570.33 0.462200
\(227\) 4544.22 1.32868 0.664340 0.747430i \(-0.268713\pi\)
0.664340 + 0.747430i \(0.268713\pi\)
\(228\) −3483.75 −1.01192
\(229\) 1231.44 0.355354 0.177677 0.984089i \(-0.443142\pi\)
0.177677 + 0.984089i \(0.443142\pi\)
\(230\) −1863.55 −0.534256
\(231\) 5799.00 1.65171
\(232\) 2061.89 0.583491
\(233\) 6276.45 1.76474 0.882369 0.470557i \(-0.155947\pi\)
0.882369 + 0.470557i \(0.155947\pi\)
\(234\) −1480.63 −0.413640
\(235\) −1518.68 −0.421566
\(236\) 39.9459 0.0110180
\(237\) −7582.91 −2.07832
\(238\) −1241.09 −0.338016
\(239\) 1087.40 0.294301 0.147151 0.989114i \(-0.452990\pi\)
0.147151 + 0.989114i \(0.452990\pi\)
\(240\) 732.982 0.197141
\(241\) −4092.46 −1.09385 −0.546927 0.837181i \(-0.684202\pi\)
−0.546927 + 0.837181i \(0.684202\pi\)
\(242\) 4402.84 1.16953
\(243\) 1537.82 0.405972
\(244\) −980.350 −0.257215
\(245\) −1147.98 −0.299355
\(246\) 3193.45 0.827672
\(247\) 1235.74 0.318333
\(248\) 1389.23 0.355710
\(249\) −4271.71 −1.08718
\(250\) 250.000 0.0632456
\(251\) −7261.62 −1.82609 −0.913046 0.407856i \(-0.866276\pi\)
−0.913046 + 0.407856i \(0.866276\pi\)
\(252\) −2425.75 −0.606381
\(253\) 11075.9 2.75231
\(254\) 5125.50 1.26615
\(255\) 2669.52 0.655575
\(256\) 256.000 0.0625000
\(257\) 1307.67 0.317393 0.158697 0.987327i \(-0.449271\pi\)
0.158697 + 0.987327i \(0.449271\pi\)
\(258\) 8817.40 2.12770
\(259\) 940.017 0.225521
\(260\) −260.000 −0.0620174
\(261\) 14677.4 3.48088
\(262\) −1401.54 −0.330487
\(263\) 5854.52 1.37264 0.686321 0.727298i \(-0.259224\pi\)
0.686321 + 0.727298i \(0.259224\pi\)
\(264\) −4356.42 −1.01560
\(265\) −2017.85 −0.467757
\(266\) 2024.54 0.466664
\(267\) 11890.1 2.72532
\(268\) 1249.30 0.284750
\(269\) 1854.91 0.420432 0.210216 0.977655i \(-0.432583\pi\)
0.210216 + 0.977655i \(0.432583\pi\)
\(270\) 2743.86 0.618466
\(271\) 2584.18 0.579253 0.289626 0.957140i \(-0.406469\pi\)
0.289626 + 0.957140i \(0.406469\pi\)
\(272\) 932.350 0.207838
\(273\) 1268.41 0.281201
\(274\) 679.371 0.149789
\(275\) −1485.85 −0.325820
\(276\) −6829.75 −1.48950
\(277\) −7177.57 −1.55689 −0.778445 0.627713i \(-0.783991\pi\)
−0.778445 + 0.627713i \(0.783991\pi\)
\(278\) −1125.53 −0.242822
\(279\) 9889.10 2.12202
\(280\) −425.964 −0.0909152
\(281\) −3841.18 −0.815464 −0.407732 0.913102i \(-0.633680\pi\)
−0.407732 + 0.913102i \(0.633680\pi\)
\(282\) −5565.84 −1.17532
\(283\) −6120.73 −1.28565 −0.642826 0.766012i \(-0.722238\pi\)
−0.642826 + 0.766012i \(0.722238\pi\)
\(284\) 100.194 0.0209345
\(285\) −4354.69 −0.905086
\(286\) 1545.29 0.319492
\(287\) −1855.84 −0.381696
\(288\) 1822.31 0.372850
\(289\) −1517.39 −0.308851
\(290\) 2577.37 0.521890
\(291\) 9178.52 1.84898
\(292\) −929.930 −0.186370
\(293\) 3922.74 0.782147 0.391074 0.920359i \(-0.372104\pi\)
0.391074 + 0.920359i \(0.372104\pi\)
\(294\) −4207.25 −0.834599
\(295\) 49.9324 0.00985484
\(296\) −706.175 −0.138668
\(297\) −16307.9 −3.18613
\(298\) −1721.79 −0.334699
\(299\) 2422.62 0.468574
\(300\) 916.228 0.176328
\(301\) −5124.13 −0.981229
\(302\) −2344.31 −0.446688
\(303\) 7271.80 1.37873
\(304\) −1520.91 −0.286942
\(305\) −1225.44 −0.230060
\(306\) 6636.86 1.23988
\(307\) 6318.56 1.17466 0.587328 0.809349i \(-0.300180\pi\)
0.587328 + 0.809349i \(0.300180\pi\)
\(308\) 2531.68 0.468364
\(309\) −9082.66 −1.67215
\(310\) 1736.53 0.318156
\(311\) 496.850 0.0905909 0.0452955 0.998974i \(-0.485577\pi\)
0.0452955 + 0.998974i \(0.485577\pi\)
\(312\) −952.877 −0.172904
\(313\) 3554.43 0.641879 0.320940 0.947100i \(-0.396001\pi\)
0.320940 + 0.947100i \(0.396001\pi\)
\(314\) 480.140 0.0862925
\(315\) −3032.19 −0.542364
\(316\) −3310.49 −0.589334
\(317\) −9393.59 −1.66434 −0.832171 0.554519i \(-0.812902\pi\)
−0.832171 + 0.554519i \(0.812902\pi\)
\(318\) −7395.24 −1.30410
\(319\) −15318.4 −2.68860
\(320\) 320.000 0.0559017
\(321\) 14930.9 2.59613
\(322\) 3969.03 0.686912
\(323\) −5539.15 −0.954199
\(324\) 3905.68 0.669699
\(325\) −325.000 −0.0554700
\(326\) 2016.09 0.342517
\(327\) −4402.39 −0.744504
\(328\) 1394.18 0.234696
\(329\) 3234.53 0.542022
\(330\) −5445.52 −0.908382
\(331\) −8593.86 −1.42707 −0.713536 0.700618i \(-0.752908\pi\)
−0.713536 + 0.700618i \(0.752908\pi\)
\(332\) −1864.91 −0.308284
\(333\) −5026.85 −0.827236
\(334\) 2351.54 0.385241
\(335\) 1561.62 0.254688
\(336\) −1561.12 −0.253471
\(337\) 3533.25 0.571122 0.285561 0.958360i \(-0.407820\pi\)
0.285561 + 0.958360i \(0.407820\pi\)
\(338\) 338.000 0.0543928
\(339\) 7193.92 1.15257
\(340\) 1165.44 0.185896
\(341\) −10320.9 −1.63903
\(342\) −10826.5 −1.71178
\(343\) 6097.64 0.959889
\(344\) 3849.43 0.603336
\(345\) −8537.19 −1.33225
\(346\) 1020.33 0.158536
\(347\) 6949.13 1.07507 0.537535 0.843242i \(-0.319356\pi\)
0.537535 + 0.843242i \(0.319356\pi\)
\(348\) 9445.82 1.45503
\(349\) 3478.53 0.533529 0.266764 0.963762i \(-0.414045\pi\)
0.266764 + 0.963762i \(0.414045\pi\)
\(350\) −532.456 −0.0813170
\(351\) −3567.02 −0.542431
\(352\) −1901.89 −0.287987
\(353\) −9083.23 −1.36955 −0.684776 0.728754i \(-0.740100\pi\)
−0.684776 + 0.728754i \(0.740100\pi\)
\(354\) 182.998 0.0274752
\(355\) 125.242 0.0187244
\(356\) 5190.87 0.772797
\(357\) −5685.59 −0.842895
\(358\) 5387.37 0.795338
\(359\) −10489.1 −1.54205 −0.771024 0.636806i \(-0.780255\pi\)
−0.771024 + 0.636806i \(0.780255\pi\)
\(360\) 2277.89 0.333488
\(361\) 2176.82 0.317367
\(362\) −8387.85 −1.21783
\(363\) 20170.0 2.91640
\(364\) 553.754 0.0797379
\(365\) −1162.41 −0.166694
\(366\) −4491.12 −0.641406
\(367\) −5707.20 −0.811753 −0.405877 0.913928i \(-0.633034\pi\)
−0.405877 + 0.913928i \(0.633034\pi\)
\(368\) −2981.68 −0.422367
\(369\) 9924.32 1.40011
\(370\) −882.719 −0.124028
\(371\) 4297.66 0.601411
\(372\) 6364.24 0.887018
\(373\) −5006.69 −0.695005 −0.347502 0.937679i \(-0.612970\pi\)
−0.347502 + 0.937679i \(0.612970\pi\)
\(374\) −6926.68 −0.957674
\(375\) 1145.28 0.157713
\(376\) −2429.89 −0.333277
\(377\) −3350.58 −0.457728
\(378\) −5843.93 −0.795183
\(379\) −520.522 −0.0705472 −0.0352736 0.999378i \(-0.511230\pi\)
−0.0352736 + 0.999378i \(0.511230\pi\)
\(380\) −1901.14 −0.256648
\(381\) 23480.6 3.15735
\(382\) −360.387 −0.0482697
\(383\) −11192.5 −1.49324 −0.746621 0.665249i \(-0.768325\pi\)
−0.746621 + 0.665249i \(0.768325\pi\)
\(384\) 1172.77 0.155854
\(385\) 3164.60 0.418917
\(386\) −9973.92 −1.31518
\(387\) 27401.9 3.59927
\(388\) 4007.09 0.524302
\(389\) −3479.85 −0.453562 −0.226781 0.973946i \(-0.572820\pi\)
−0.226781 + 0.973946i \(0.572820\pi\)
\(390\) −1191.10 −0.154650
\(391\) −10859.3 −1.40454
\(392\) −1836.77 −0.236661
\(393\) −6420.66 −0.824121
\(394\) 7895.54 1.00957
\(395\) −4138.11 −0.527117
\(396\) −13538.5 −1.71801
\(397\) 562.658 0.0711309 0.0355655 0.999367i \(-0.488677\pi\)
0.0355655 + 0.999367i \(0.488677\pi\)
\(398\) −6839.33 −0.861369
\(399\) 9274.72 1.16370
\(400\) 400.000 0.0500000
\(401\) 15097.0 1.88007 0.940036 0.341076i \(-0.110791\pi\)
0.940036 + 0.341076i \(0.110791\pi\)
\(402\) 5723.21 0.710069
\(403\) −2257.49 −0.279042
\(404\) 3174.67 0.390954
\(405\) 4882.10 0.598997
\(406\) −5489.33 −0.671012
\(407\) 5246.37 0.638950
\(408\) 4271.23 0.518277
\(409\) 1990.99 0.240705 0.120352 0.992731i \(-0.461598\pi\)
0.120352 + 0.992731i \(0.461598\pi\)
\(410\) 1742.72 0.209919
\(411\) 3112.29 0.373523
\(412\) −3965.24 −0.474159
\(413\) −106.347 −0.0126707
\(414\) −21224.9 −2.51967
\(415\) −2331.14 −0.275738
\(416\) −416.000 −0.0490290
\(417\) −5156.19 −0.605515
\(418\) 11299.3 1.32216
\(419\) 13151.0 1.53334 0.766670 0.642041i \(-0.221912\pi\)
0.766670 + 0.642041i \(0.221912\pi\)
\(420\) −1951.40 −0.226711
\(421\) −12795.8 −1.48130 −0.740652 0.671889i \(-0.765483\pi\)
−0.740652 + 0.671889i \(0.765483\pi\)
\(422\) 4122.41 0.475536
\(423\) −17297.0 −1.98820
\(424\) −3228.56 −0.369794
\(425\) 1456.80 0.166271
\(426\) 459.001 0.0522034
\(427\) 2609.96 0.295796
\(428\) 6518.40 0.736166
\(429\) 7079.18 0.796704
\(430\) 4811.79 0.539640
\(431\) −3751.97 −0.419318 −0.209659 0.977775i \(-0.567235\pi\)
−0.209659 + 0.977775i \(0.567235\pi\)
\(432\) 4390.17 0.488940
\(433\) 2135.29 0.236987 0.118493 0.992955i \(-0.462194\pi\)
0.118493 + 0.992955i \(0.462194\pi\)
\(434\) −3698.51 −0.409065
\(435\) 11807.3 1.30141
\(436\) −1921.96 −0.211113
\(437\) 17714.4 1.93911
\(438\) −4260.14 −0.464743
\(439\) −6983.59 −0.759245 −0.379623 0.925141i \(-0.623946\pi\)
−0.379623 + 0.925141i \(0.623946\pi\)
\(440\) −2377.37 −0.257583
\(441\) −13074.9 −1.41182
\(442\) −1515.07 −0.163042
\(443\) −7418.03 −0.795579 −0.397789 0.917477i \(-0.630223\pi\)
−0.397789 + 0.917477i \(0.630223\pi\)
\(444\) −3235.09 −0.345789
\(445\) 6488.59 0.691211
\(446\) −9677.22 −1.02742
\(447\) −7887.74 −0.834625
\(448\) −681.543 −0.0718747
\(449\) −15399.2 −1.61856 −0.809278 0.587426i \(-0.800141\pi\)
−0.809278 + 0.587426i \(0.800141\pi\)
\(450\) 2847.37 0.298280
\(451\) −10357.7 −1.08143
\(452\) 3140.67 0.326824
\(453\) −10739.6 −1.11389
\(454\) 9088.44 0.939519
\(455\) 692.192 0.0713197
\(456\) −6967.50 −0.715534
\(457\) 2888.53 0.295667 0.147833 0.989012i \(-0.452770\pi\)
0.147833 + 0.989012i \(0.452770\pi\)
\(458\) 2462.89 0.251274
\(459\) 15989.0 1.62593
\(460\) −3727.10 −0.377776
\(461\) 5682.27 0.574077 0.287039 0.957919i \(-0.407329\pi\)
0.287039 + 0.957919i \(0.407329\pi\)
\(462\) 11598.0 1.16794
\(463\) 71.9859 0.00722563 0.00361282 0.999993i \(-0.498850\pi\)
0.00361282 + 0.999993i \(0.498850\pi\)
\(464\) 4123.79 0.412590
\(465\) 7955.30 0.793373
\(466\) 12552.9 1.24786
\(467\) −16031.2 −1.58852 −0.794258 0.607581i \(-0.792140\pi\)
−0.794258 + 0.607581i \(0.792140\pi\)
\(468\) −2961.26 −0.292488
\(469\) −3325.98 −0.327461
\(470\) −3037.37 −0.298092
\(471\) 2199.59 0.215184
\(472\) 79.8919 0.00779094
\(473\) −28598.5 −2.78004
\(474\) −15165.8 −1.46960
\(475\) −2376.42 −0.229553
\(476\) −2482.18 −0.239013
\(477\) −22982.2 −2.20605
\(478\) 2174.80 0.208103
\(479\) 1148.19 0.109524 0.0547622 0.998499i \(-0.482560\pi\)
0.0547622 + 0.998499i \(0.482560\pi\)
\(480\) 1465.96 0.139400
\(481\) 1147.53 0.108780
\(482\) −8184.92 −0.773471
\(483\) 18182.7 1.71292
\(484\) 8805.68 0.826980
\(485\) 5008.86 0.468950
\(486\) 3075.64 0.287066
\(487\) 17950.9 1.67030 0.835148 0.550025i \(-0.185382\pi\)
0.835148 + 0.550025i \(0.185382\pi\)
\(488\) −1960.70 −0.181879
\(489\) 9235.97 0.854120
\(490\) −2295.96 −0.211676
\(491\) −18219.7 −1.67463 −0.837316 0.546719i \(-0.815877\pi\)
−0.837316 + 0.546719i \(0.815877\pi\)
\(492\) 6386.91 0.585252
\(493\) 15018.8 1.37203
\(494\) 2471.48 0.225095
\(495\) −16923.1 −1.53664
\(496\) 2778.45 0.251525
\(497\) −266.743 −0.0240746
\(498\) −8543.42 −0.768754
\(499\) 3287.03 0.294885 0.147443 0.989071i \(-0.452896\pi\)
0.147443 + 0.989071i \(0.452896\pi\)
\(500\) 500.000 0.0447214
\(501\) 10772.7 0.960660
\(502\) −14523.2 −1.29124
\(503\) 10961.2 0.971639 0.485820 0.874059i \(-0.338521\pi\)
0.485820 + 0.874059i \(0.338521\pi\)
\(504\) −4851.51 −0.428776
\(505\) 3968.33 0.349680
\(506\) 22151.7 1.94617
\(507\) 1548.42 0.135637
\(508\) 10251.0 0.895304
\(509\) 12986.3 1.13086 0.565429 0.824797i \(-0.308711\pi\)
0.565429 + 0.824797i \(0.308711\pi\)
\(510\) 5339.03 0.463561
\(511\) 2475.73 0.214325
\(512\) 512.000 0.0441942
\(513\) −26082.3 −2.24476
\(514\) 2615.34 0.224431
\(515\) −4956.55 −0.424101
\(516\) 17634.8 1.50451
\(517\) 18052.3 1.53567
\(518\) 1880.03 0.159467
\(519\) 4674.29 0.395334
\(520\) −520.000 −0.0438529
\(521\) −1424.49 −0.119785 −0.0598925 0.998205i \(-0.519076\pi\)
−0.0598925 + 0.998205i \(0.519076\pi\)
\(522\) 29354.8 2.46135
\(523\) 9087.18 0.759761 0.379880 0.925036i \(-0.375965\pi\)
0.379880 + 0.925036i \(0.375965\pi\)
\(524\) −2803.09 −0.233690
\(525\) −2439.25 −0.202777
\(526\) 11709.0 0.970605
\(527\) 10119.1 0.836424
\(528\) −8712.84 −0.718139
\(529\) 22561.2 1.85430
\(530\) −4035.70 −0.330754
\(531\) 568.704 0.0464777
\(532\) 4049.09 0.329982
\(533\) −2265.53 −0.184111
\(534\) 23780.1 1.92709
\(535\) 8148.00 0.658447
\(536\) 2498.60 0.201349
\(537\) 24680.3 1.98330
\(538\) 3709.83 0.297290
\(539\) 13645.9 1.09048
\(540\) 5487.72 0.437322
\(541\) 1506.21 0.119699 0.0598493 0.998207i \(-0.480938\pi\)
0.0598493 + 0.998207i \(0.480938\pi\)
\(542\) 5168.35 0.409594
\(543\) −38425.9 −3.03686
\(544\) 1864.70 0.146964
\(545\) −2402.46 −0.188825
\(546\) 2536.82 0.198839
\(547\) −1897.52 −0.148322 −0.0741608 0.997246i \(-0.523628\pi\)
−0.0741608 + 0.997246i \(0.523628\pi\)
\(548\) 1358.74 0.105917
\(549\) −13957.1 −1.08502
\(550\) −2971.71 −0.230389
\(551\) −24499.7 −1.89423
\(552\) −13659.5 −1.05324
\(553\) 8813.45 0.677732
\(554\) −14355.1 −1.10089
\(555\) −4043.86 −0.309283
\(556\) −2251.05 −0.171701
\(557\) 2287.55 0.174015 0.0870076 0.996208i \(-0.472270\pi\)
0.0870076 + 0.996208i \(0.472270\pi\)
\(558\) 19778.2 1.50050
\(559\) −6255.33 −0.473296
\(560\) −851.929 −0.0642867
\(561\) −31732.1 −2.38811
\(562\) −7682.36 −0.576620
\(563\) 739.713 0.0553733 0.0276867 0.999617i \(-0.491186\pi\)
0.0276867 + 0.999617i \(0.491186\pi\)
\(564\) −11131.7 −0.831078
\(565\) 3925.84 0.292321
\(566\) −12241.5 −0.909093
\(567\) −10398.0 −0.770151
\(568\) 200.387 0.0148029
\(569\) −4683.37 −0.345057 −0.172528 0.985005i \(-0.555194\pi\)
−0.172528 + 0.985005i \(0.555194\pi\)
\(570\) −8709.38 −0.639993
\(571\) −8385.89 −0.614604 −0.307302 0.951612i \(-0.599426\pi\)
−0.307302 + 0.951612i \(0.599426\pi\)
\(572\) 3090.58 0.225915
\(573\) −1650.98 −0.120368
\(574\) −3711.68 −0.269900
\(575\) −4658.88 −0.337893
\(576\) 3644.63 0.263645
\(577\) −389.573 −0.0281077 −0.0140538 0.999901i \(-0.504474\pi\)
−0.0140538 + 0.999901i \(0.504474\pi\)
\(578\) −3034.77 −0.218391
\(579\) −45691.9 −3.27961
\(580\) 5154.73 0.369032
\(581\) 4964.91 0.354525
\(582\) 18357.0 1.30743
\(583\) 23985.9 1.70393
\(584\) −1859.86 −0.131784
\(585\) −3701.58 −0.261609
\(586\) 7845.49 0.553062
\(587\) 19046.3 1.33922 0.669612 0.742711i \(-0.266460\pi\)
0.669612 + 0.742711i \(0.266460\pi\)
\(588\) −8414.51 −0.590150
\(589\) −16507.0 −1.15477
\(590\) 99.8649 0.00696843
\(591\) 36170.5 2.51753
\(592\) −1412.35 −0.0980528
\(593\) 5956.37 0.412477 0.206239 0.978502i \(-0.433878\pi\)
0.206239 + 0.978502i \(0.433878\pi\)
\(594\) −32615.8 −2.25293
\(595\) −3102.72 −0.213780
\(596\) −3443.57 −0.236668
\(597\) −31331.9 −2.14796
\(598\) 4845.23 0.331332
\(599\) 888.898 0.0606334 0.0303167 0.999540i \(-0.490348\pi\)
0.0303167 + 0.999540i \(0.490348\pi\)
\(600\) 1832.46 0.124683
\(601\) −3005.76 −0.204006 −0.102003 0.994784i \(-0.532525\pi\)
−0.102003 + 0.994784i \(0.532525\pi\)
\(602\) −10248.3 −0.693834
\(603\) 17786.1 1.20117
\(604\) −4688.62 −0.315856
\(605\) 11007.1 0.739673
\(606\) 14543.6 0.974906
\(607\) −13705.8 −0.916476 −0.458238 0.888829i \(-0.651519\pi\)
−0.458238 + 0.888829i \(0.651519\pi\)
\(608\) −3041.82 −0.202898
\(609\) −25147.4 −1.67327
\(610\) −2450.88 −0.162677
\(611\) 3948.58 0.261444
\(612\) 13273.7 0.876729
\(613\) 6959.76 0.458568 0.229284 0.973360i \(-0.426362\pi\)
0.229284 + 0.973360i \(0.426362\pi\)
\(614\) 12637.1 0.830607
\(615\) 7983.64 0.523466
\(616\) 5063.37 0.331183
\(617\) −20675.0 −1.34902 −0.674508 0.738268i \(-0.735644\pi\)
−0.674508 + 0.738268i \(0.735644\pi\)
\(618\) −18165.3 −1.18239
\(619\) −13759.8 −0.893460 −0.446730 0.894669i \(-0.647411\pi\)
−0.446730 + 0.894669i \(0.647411\pi\)
\(620\) 3473.07 0.224971
\(621\) −51133.2 −3.30419
\(622\) 993.700 0.0640574
\(623\) −13819.5 −0.888713
\(624\) −1905.75 −0.122262
\(625\) 625.000 0.0400000
\(626\) 7108.86 0.453877
\(627\) 51763.5 3.29702
\(628\) 960.279 0.0610180
\(629\) −5143.77 −0.326066
\(630\) −6064.38 −0.383509
\(631\) 16760.2 1.05739 0.528694 0.848813i \(-0.322682\pi\)
0.528694 + 0.848813i \(0.322682\pi\)
\(632\) −6620.98 −0.416722
\(633\) 18885.4 1.18582
\(634\) −18787.2 −1.17687
\(635\) 12813.7 0.800784
\(636\) −14790.5 −0.922140
\(637\) 2984.75 0.185652
\(638\) −30636.7 −1.90113
\(639\) 1426.44 0.0883084
\(640\) 640.000 0.0395285
\(641\) −2993.27 −0.184442 −0.0922208 0.995739i \(-0.529397\pi\)
−0.0922208 + 0.995739i \(0.529397\pi\)
\(642\) 29861.7 1.83574
\(643\) 24260.3 1.48792 0.743959 0.668225i \(-0.232946\pi\)
0.743959 + 0.668225i \(0.232946\pi\)
\(644\) 7938.07 0.485720
\(645\) 22043.5 1.34568
\(646\) −11078.3 −0.674721
\(647\) −1342.40 −0.0815691 −0.0407846 0.999168i \(-0.512986\pi\)
−0.0407846 + 0.999168i \(0.512986\pi\)
\(648\) 7811.37 0.473548
\(649\) −593.538 −0.0358990
\(650\) −650.000 −0.0392232
\(651\) −16943.4 −1.02007
\(652\) 4032.17 0.242196
\(653\) 13960.3 0.836611 0.418306 0.908306i \(-0.362624\pi\)
0.418306 + 0.908306i \(0.362624\pi\)
\(654\) −8804.79 −0.526444
\(655\) −3503.86 −0.209018
\(656\) 2788.35 0.165955
\(657\) −13239.3 −0.786169
\(658\) 6469.05 0.383267
\(659\) −26385.2 −1.55967 −0.779836 0.625984i \(-0.784697\pi\)
−0.779836 + 0.625984i \(0.784697\pi\)
\(660\) −10891.0 −0.642323
\(661\) −4699.23 −0.276519 −0.138259 0.990396i \(-0.544151\pi\)
−0.138259 + 0.990396i \(0.544151\pi\)
\(662\) −17187.7 −1.00909
\(663\) −6940.74 −0.406570
\(664\) −3729.82 −0.217990
\(665\) 5061.36 0.295145
\(666\) −10053.7 −0.584944
\(667\) −48030.6 −2.78823
\(668\) 4703.08 0.272407
\(669\) −44332.7 −2.56204
\(670\) 3123.25 0.180092
\(671\) 14566.6 0.838057
\(672\) −3122.24 −0.179231
\(673\) −9771.47 −0.559677 −0.279838 0.960047i \(-0.590281\pi\)
−0.279838 + 0.960047i \(0.590281\pi\)
\(674\) 7066.49 0.403844
\(675\) 6859.64 0.391152
\(676\) 676.000 0.0384615
\(677\) 32576.0 1.84933 0.924666 0.380778i \(-0.124344\pi\)
0.924666 + 0.380778i \(0.124344\pi\)
\(678\) 14387.8 0.814988
\(679\) −10668.0 −0.602945
\(680\) 2330.88 0.131449
\(681\) 41635.4 2.34284
\(682\) −20641.9 −1.15897
\(683\) −10007.9 −0.560677 −0.280338 0.959901i \(-0.590447\pi\)
−0.280338 + 0.959901i \(0.590447\pi\)
\(684\) −21653.0 −1.21041
\(685\) 1698.43 0.0947351
\(686\) 12195.3 0.678744
\(687\) 11282.8 0.626590
\(688\) 7698.87 0.426623
\(689\) 5246.41 0.290091
\(690\) −17074.4 −0.942044
\(691\) 15066.7 0.829472 0.414736 0.909942i \(-0.363874\pi\)
0.414736 + 0.909942i \(0.363874\pi\)
\(692\) 2040.67 0.112102
\(693\) 36043.2 1.97571
\(694\) 13898.3 0.760189
\(695\) −2813.81 −0.153574
\(696\) 18891.6 1.02886
\(697\) 10155.2 0.551871
\(698\) 6957.06 0.377262
\(699\) 57506.6 3.11173
\(700\) −1064.91 −0.0574998
\(701\) 20020.1 1.07867 0.539335 0.842091i \(-0.318676\pi\)
0.539335 + 0.842091i \(0.318676\pi\)
\(702\) −7134.03 −0.383556
\(703\) 8390.86 0.450167
\(704\) −3803.79 −0.203637
\(705\) −13914.6 −0.743339
\(706\) −18166.5 −0.968419
\(707\) −8451.85 −0.449596
\(708\) 365.996 0.0194279
\(709\) 23129.3 1.22516 0.612581 0.790408i \(-0.290131\pi\)
0.612581 + 0.790408i \(0.290131\pi\)
\(710\) 250.484 0.0132401
\(711\) −47130.9 −2.48600
\(712\) 10381.7 0.546450
\(713\) −32361.2 −1.69977
\(714\) −11371.2 −0.596017
\(715\) 3863.22 0.202065
\(716\) 10774.7 0.562389
\(717\) 9963.06 0.518936
\(718\) −20978.3 −1.09039
\(719\) 9310.55 0.482927 0.241464 0.970410i \(-0.422373\pi\)
0.241464 + 0.970410i \(0.422373\pi\)
\(720\) 4555.79 0.235811
\(721\) 10556.6 0.545281
\(722\) 4353.64 0.224413
\(723\) −37496.3 −1.92877
\(724\) −16775.7 −0.861139
\(725\) 6443.42 0.330072
\(726\) 40340.0 2.06220
\(727\) −9388.78 −0.478969 −0.239485 0.970900i \(-0.576978\pi\)
−0.239485 + 0.970900i \(0.576978\pi\)
\(728\) 1107.51 0.0563832
\(729\) −12273.4 −0.623554
\(730\) −2324.83 −0.117871
\(731\) 28039.2 1.41870
\(732\) −8982.24 −0.453543
\(733\) −19170.2 −0.965985 −0.482993 0.875624i \(-0.660450\pi\)
−0.482993 + 0.875624i \(0.660450\pi\)
\(734\) −11414.4 −0.573996
\(735\) −10518.1 −0.527846
\(736\) −5963.37 −0.298658
\(737\) −18562.7 −0.927772
\(738\) 19848.6 0.990025
\(739\) 36531.3 1.81844 0.909220 0.416316i \(-0.136679\pi\)
0.909220 + 0.416316i \(0.136679\pi\)
\(740\) −1765.44 −0.0877011
\(741\) 11322.2 0.561311
\(742\) 8595.33 0.425262
\(743\) −24160.8 −1.19296 −0.596482 0.802627i \(-0.703435\pi\)
−0.596482 + 0.802627i \(0.703435\pi\)
\(744\) 12728.5 0.627216
\(745\) −4304.46 −0.211682
\(746\) −10013.4 −0.491443
\(747\) −26550.4 −1.30044
\(748\) −13853.4 −0.677178
\(749\) −17353.8 −0.846587
\(750\) 2290.57 0.111520
\(751\) −30100.0 −1.46254 −0.731269 0.682089i \(-0.761072\pi\)
−0.731269 + 0.682089i \(0.761072\pi\)
\(752\) −4859.79 −0.235662
\(753\) −66532.9 −3.21991
\(754\) −6701.15 −0.323663
\(755\) −5860.77 −0.282510
\(756\) −11687.9 −0.562279
\(757\) −7982.97 −0.383284 −0.191642 0.981465i \(-0.561381\pi\)
−0.191642 + 0.981465i \(0.561381\pi\)
\(758\) −1041.04 −0.0498844
\(759\) 101480. 4.85309
\(760\) −3802.28 −0.181478
\(761\) 6407.73 0.305230 0.152615 0.988286i \(-0.451231\pi\)
0.152615 + 0.988286i \(0.451231\pi\)
\(762\) 46961.2 2.23258
\(763\) 5116.80 0.242779
\(764\) −720.774 −0.0341318
\(765\) 16592.1 0.784170
\(766\) −22385.1 −1.05588
\(767\) −129.824 −0.00611171
\(768\) 2345.54 0.110205
\(769\) −9036.84 −0.423767 −0.211884 0.977295i \(-0.567960\pi\)
−0.211884 + 0.977295i \(0.567960\pi\)
\(770\) 6329.21 0.296219
\(771\) 11981.2 0.559654
\(772\) −19947.8 −0.929973
\(773\) −780.756 −0.0363284 −0.0181642 0.999835i \(-0.505782\pi\)
−0.0181642 + 0.999835i \(0.505782\pi\)
\(774\) 54803.8 2.54507
\(775\) 4341.33 0.201220
\(776\) 8014.18 0.370737
\(777\) 8612.70 0.397656
\(778\) −6959.71 −0.320717
\(779\) −16565.8 −0.761912
\(780\) −2382.19 −0.109354
\(781\) −1488.73 −0.0682087
\(782\) −21718.5 −0.993163
\(783\) 70719.3 3.22771
\(784\) −3673.54 −0.167344
\(785\) 1200.35 0.0545762
\(786\) −12841.3 −0.582742
\(787\) 10966.2 0.496701 0.248351 0.968670i \(-0.420111\pi\)
0.248351 + 0.968670i \(0.420111\pi\)
\(788\) 15791.1 0.713875
\(789\) 53640.7 2.42036
\(790\) −8276.23 −0.372728
\(791\) −8361.33 −0.375847
\(792\) −27076.9 −1.21482
\(793\) 3186.14 0.142677
\(794\) 1125.32 0.0502972
\(795\) −18488.1 −0.824787
\(796\) −13678.7 −0.609080
\(797\) 21136.3 0.939381 0.469690 0.882831i \(-0.344366\pi\)
0.469690 + 0.882831i \(0.344366\pi\)
\(798\) 18549.4 0.822861
\(799\) −17699.3 −0.783675
\(800\) 800.000 0.0353553
\(801\) 73901.6 3.25991
\(802\) 30194.0 1.32941
\(803\) 13817.4 0.607230
\(804\) 11446.4 0.502095
\(805\) 9922.58 0.434441
\(806\) −4514.99 −0.197312
\(807\) 16995.2 0.741339
\(808\) 6349.34 0.276447
\(809\) −25615.0 −1.11320 −0.556598 0.830782i \(-0.687894\pi\)
−0.556598 + 0.830782i \(0.687894\pi\)
\(810\) 9764.21 0.423555
\(811\) 17070.8 0.739134 0.369567 0.929204i \(-0.379506\pi\)
0.369567 + 0.929204i \(0.379506\pi\)
\(812\) −10978.7 −0.474477
\(813\) 23676.9 1.02139
\(814\) 10492.7 0.451806
\(815\) 5040.21 0.216627
\(816\) 8542.45 0.366477
\(817\) −45739.4 −1.95865
\(818\) 3981.98 0.170204
\(819\) 7883.70 0.336360
\(820\) 3485.44 0.148435
\(821\) −28147.4 −1.19653 −0.598264 0.801299i \(-0.704143\pi\)
−0.598264 + 0.801299i \(0.704143\pi\)
\(822\) 6224.58 0.264121
\(823\) −1728.81 −0.0732230 −0.0366115 0.999330i \(-0.511656\pi\)
−0.0366115 + 0.999330i \(0.511656\pi\)
\(824\) −7930.48 −0.335281
\(825\) −13613.8 −0.574511
\(826\) −212.694 −0.00895955
\(827\) −3827.22 −0.160926 −0.0804628 0.996758i \(-0.525640\pi\)
−0.0804628 + 0.996758i \(0.525640\pi\)
\(828\) −42449.7 −1.78168
\(829\) −21716.2 −0.909811 −0.454906 0.890540i \(-0.650327\pi\)
−0.454906 + 0.890540i \(0.650327\pi\)
\(830\) −4662.28 −0.194976
\(831\) −65762.9 −2.74523
\(832\) −832.000 −0.0346688
\(833\) −13379.0 −0.556489
\(834\) −10312.4 −0.428164
\(835\) 5878.85 0.243648
\(836\) 22598.5 0.934912
\(837\) 47648.0 1.96769
\(838\) 26302.0 1.08424
\(839\) 45771.4 1.88344 0.941719 0.336400i \(-0.109209\pi\)
0.941719 + 0.336400i \(0.109209\pi\)
\(840\) −3902.80 −0.160309
\(841\) 42039.2 1.72369
\(842\) −25591.6 −1.04744
\(843\) −35193.9 −1.43789
\(844\) 8244.83 0.336254
\(845\) 845.000 0.0344010
\(846\) −34594.0 −1.40587
\(847\) −23443.2 −0.951023
\(848\) −6457.12 −0.261484
\(849\) −56079.8 −2.26696
\(850\) 2913.59 0.117571
\(851\) 16449.9 0.662628
\(852\) 918.001 0.0369134
\(853\) 2372.68 0.0952390 0.0476195 0.998866i \(-0.484837\pi\)
0.0476195 + 0.998866i \(0.484837\pi\)
\(854\) 5219.93 0.209160
\(855\) −27066.2 −1.08262
\(856\) 13036.8 0.520548
\(857\) 22869.2 0.911550 0.455775 0.890095i \(-0.349362\pi\)
0.455775 + 0.890095i \(0.349362\pi\)
\(858\) 14158.4 0.563355
\(859\) 18742.3 0.744448 0.372224 0.928143i \(-0.378595\pi\)
0.372224 + 0.928143i \(0.378595\pi\)
\(860\) 9623.59 0.381583
\(861\) −17003.7 −0.673038
\(862\) −7503.93 −0.296502
\(863\) −20662.7 −0.815026 −0.407513 0.913199i \(-0.633604\pi\)
−0.407513 + 0.913199i \(0.633604\pi\)
\(864\) 8780.34 0.345733
\(865\) 2550.83 0.100267
\(866\) 4270.57 0.167575
\(867\) −13902.7 −0.544592
\(868\) −7397.02 −0.289252
\(869\) 49189.1 1.92017
\(870\) 23614.5 0.920239
\(871\) −4060.22 −0.157951
\(872\) −3843.93 −0.149280
\(873\) 57048.3 2.21167
\(874\) 35428.7 1.37116
\(875\) −1331.14 −0.0514294
\(876\) −8520.28 −0.328623
\(877\) −754.683 −0.0290580 −0.0145290 0.999894i \(-0.504625\pi\)
−0.0145290 + 0.999894i \(0.504625\pi\)
\(878\) −13967.2 −0.536868
\(879\) 35941.3 1.37915
\(880\) −4754.73 −0.182139
\(881\) −18017.4 −0.689014 −0.344507 0.938784i \(-0.611954\pi\)
−0.344507 + 0.938784i \(0.611954\pi\)
\(882\) −26149.8 −0.998311
\(883\) −22201.1 −0.846122 −0.423061 0.906101i \(-0.639044\pi\)
−0.423061 + 0.906101i \(0.639044\pi\)
\(884\) −3030.14 −0.115288
\(885\) 457.495 0.0173769
\(886\) −14836.1 −0.562559
\(887\) 541.862 0.0205118 0.0102559 0.999947i \(-0.496735\pi\)
0.0102559 + 0.999947i \(0.496735\pi\)
\(888\) −6470.17 −0.244510
\(889\) −27291.0 −1.02960
\(890\) 12977.2 0.488760
\(891\) −58032.7 −2.18201
\(892\) −19354.4 −0.726496
\(893\) 28872.3 1.08194
\(894\) −15775.5 −0.590169
\(895\) 13468.4 0.503016
\(896\) −1363.09 −0.0508231
\(897\) 22196.7 0.826227
\(898\) −30798.3 −1.14449
\(899\) 44756.8 1.66043
\(900\) 5694.73 0.210916
\(901\) −23516.8 −0.869543
\(902\) −20715.4 −0.764687
\(903\) −46948.7 −1.73018
\(904\) 6281.34 0.231100
\(905\) −20969.6 −0.770226
\(906\) −21479.2 −0.787637
\(907\) −12289.5 −0.449907 −0.224954 0.974369i \(-0.572223\pi\)
−0.224954 + 0.974369i \(0.572223\pi\)
\(908\) 18176.9 0.664340
\(909\) 45197.2 1.64917
\(910\) 1384.38 0.0504307
\(911\) −26203.0 −0.952957 −0.476479 0.879186i \(-0.658087\pi\)
−0.476479 + 0.879186i \(0.658087\pi\)
\(912\) −13935.0 −0.505959
\(913\) 27709.9 1.00445
\(914\) 5777.06 0.209068
\(915\) −11227.8 −0.405661
\(916\) 4925.78 0.177677
\(917\) 7462.59 0.268742
\(918\) 31978.0 1.14971
\(919\) −19000.1 −0.681996 −0.340998 0.940064i \(-0.610765\pi\)
−0.340998 + 0.940064i \(0.610765\pi\)
\(920\) −7454.21 −0.267128
\(921\) 57892.4 2.07125
\(922\) 11364.5 0.405934
\(923\) −325.629 −0.0116124
\(924\) 23196.0 0.825857
\(925\) −2206.80 −0.0784422
\(926\) 143.972 0.00510930
\(927\) −56452.5 −2.00015
\(928\) 8247.57 0.291746
\(929\) 8393.16 0.296416 0.148208 0.988956i \(-0.452649\pi\)
0.148208 + 0.988956i \(0.452649\pi\)
\(930\) 15910.6 0.560999
\(931\) 21824.7 0.768289
\(932\) 25105.8 0.882369
\(933\) 4552.28 0.159737
\(934\) −32062.5 −1.12325
\(935\) −17316.7 −0.605686
\(936\) −5922.52 −0.206820
\(937\) 29471.0 1.02751 0.513755 0.857937i \(-0.328254\pi\)
0.513755 + 0.857937i \(0.328254\pi\)
\(938\) −6651.96 −0.231550
\(939\) 32566.7 1.13181
\(940\) −6074.73 −0.210783
\(941\) 30380.3 1.05246 0.526232 0.850341i \(-0.323604\pi\)
0.526232 + 0.850341i \(0.323604\pi\)
\(942\) 4399.17 0.152158
\(943\) −32476.5 −1.12151
\(944\) 159.784 0.00550902
\(945\) −14609.8 −0.502918
\(946\) −57197.0 −1.96579
\(947\) −10544.9 −0.361841 −0.180921 0.983498i \(-0.557908\pi\)
−0.180921 + 0.983498i \(0.557908\pi\)
\(948\) −30331.6 −1.03916
\(949\) 3022.27 0.103379
\(950\) −4752.85 −0.162319
\(951\) −86066.7 −2.93470
\(952\) −4964.35 −0.169008
\(953\) −25902.0 −0.880429 −0.440214 0.897893i \(-0.645098\pi\)
−0.440214 + 0.897893i \(0.645098\pi\)
\(954\) −45964.5 −1.55991
\(955\) −900.968 −0.0305284
\(956\) 4349.60 0.147151
\(957\) −140351. −4.74076
\(958\) 2296.38 0.0774455
\(959\) −3617.35 −0.121804
\(960\) 2931.93 0.0985704
\(961\) 364.498 0.0122352
\(962\) 2295.07 0.0769189
\(963\) 92801.4 3.10538
\(964\) −16369.8 −0.546927
\(965\) −24934.8 −0.831793
\(966\) 36365.4 1.21122
\(967\) −18253.9 −0.607038 −0.303519 0.952825i \(-0.598162\pi\)
−0.303519 + 0.952825i \(0.598162\pi\)
\(968\) 17611.4 0.584763
\(969\) −50751.2 −1.68252
\(970\) 10017.7 0.331598
\(971\) 46566.4 1.53902 0.769509 0.638636i \(-0.220501\pi\)
0.769509 + 0.638636i \(0.220501\pi\)
\(972\) 6151.29 0.202986
\(973\) 5992.93 0.197456
\(974\) 35901.9 1.18108
\(975\) −2977.74 −0.0978092
\(976\) −3921.40 −0.128608
\(977\) 34790.8 1.13926 0.569629 0.821902i \(-0.307087\pi\)
0.569629 + 0.821902i \(0.307087\pi\)
\(978\) 18471.9 0.603954
\(979\) −77128.8 −2.51792
\(980\) −4591.93 −0.149677
\(981\) −27362.7 −0.890544
\(982\) −36439.5 −1.18414
\(983\) −4550.46 −0.147647 −0.0738236 0.997271i \(-0.523520\pi\)
−0.0738236 + 0.997271i \(0.523520\pi\)
\(984\) 12773.8 0.413836
\(985\) 19738.8 0.638509
\(986\) 30037.6 0.970175
\(987\) 29635.6 0.955737
\(988\) 4942.96 0.159167
\(989\) −89670.3 −2.88306
\(990\) −33846.2 −1.08657
\(991\) −21441.0 −0.687281 −0.343641 0.939101i \(-0.611660\pi\)
−0.343641 + 0.939101i \(0.611660\pi\)
\(992\) 5556.91 0.177855
\(993\) −78739.3 −2.51633
\(994\) −533.486 −0.0170233
\(995\) −17098.3 −0.544778
\(996\) −17086.8 −0.543591
\(997\) −10815.2 −0.343553 −0.171776 0.985136i \(-0.554951\pi\)
−0.171776 + 0.985136i \(0.554951\pi\)
\(998\) 6574.07 0.208515
\(999\) −24220.5 −0.767071
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.4.a.g.1.2 2
3.2 odd 2 1170.4.a.r.1.1 2
4.3 odd 2 1040.4.a.g.1.1 2
5.2 odd 4 650.4.b.o.599.3 4
5.3 odd 4 650.4.b.o.599.2 4
5.4 even 2 650.4.a.j.1.1 2
13.12 even 2 1690.4.a.p.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.4.a.g.1.2 2 1.1 even 1 trivial
650.4.a.j.1.1 2 5.4 even 2
650.4.b.o.599.2 4 5.3 odd 4
650.4.b.o.599.3 4 5.2 odd 4
1040.4.a.g.1.1 2 4.3 odd 2
1170.4.a.r.1.1 2 3.2 odd 2
1690.4.a.p.1.2 2 13.12 even 2