Properties

Label 130.3.r.a.17.6
Level $130$
Weight $3$
Character 130.17
Analytic conductor $3.542$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,3,Mod(17,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.17"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 130.r (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.54224343668\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(7\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.6
Character \(\chi\) \(=\) 130.17
Dual form 130.3.r.a.23.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.366025 + 1.36603i) q^{2} +(0.957104 + 3.57196i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(4.99095 - 0.300686i) q^{5} +(-4.52907 + 2.61486i) q^{6} +(9.12999 + 2.44637i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-4.04863 + 2.33748i) q^{9} +(2.23756 + 6.70771i) q^{10} +(-15.1474 - 8.74538i) q^{11} +(-5.22971 - 5.22971i) q^{12} +(-6.39487 + 11.3184i) q^{13} +13.3672i q^{14} +(5.85090 + 17.5397i) q^{15} +(2.00000 - 3.46410i) q^{16} +(1.68190 - 6.27694i) q^{17} +(-4.67495 - 4.67495i) q^{18} +(-16.0822 - 27.8552i) q^{19} +(-8.34389 + 5.51175i) q^{20} +34.9534i q^{21} +(6.40206 - 23.8928i) q^{22} +(-6.59332 - 24.6066i) q^{23} +(5.22971 - 9.05813i) q^{24} +(24.8192 - 3.00142i) q^{25} +(-17.8019 - 4.59275i) q^{26} +(11.3094 + 11.3094i) q^{27} +(-18.2600 + 4.89274i) q^{28} +(43.3970 + 25.0552i) q^{29} +(-21.8181 + 14.4124i) q^{30} +31.1266i q^{31} +(5.46410 + 1.46410i) q^{32} +(16.7405 - 62.4763i) q^{33} +9.19008 q^{34} +(46.3029 + 9.46447i) q^{35} +(4.67495 - 8.09726i) q^{36} +(-2.27781 - 8.50091i) q^{37} +(32.1644 - 32.1644i) q^{38} +(-46.5493 - 12.0094i) q^{39} +(-10.5833 - 9.38053i) q^{40} +(3.28961 + 1.89926i) q^{41} +(-47.7472 + 12.7938i) q^{42} +(-40.7964 - 10.9313i) q^{43} +34.9815 q^{44} +(-19.5037 + 12.8836i) q^{45} +(31.1999 - 18.0133i) q^{46} +(34.7841 - 34.7841i) q^{47} +(14.2878 + 3.82842i) q^{48} +(34.9367 + 20.1707i) q^{49} +(13.1845 + 32.8050i) q^{50} +24.0307 q^{51} +(-0.242126 - 25.9989i) q^{52} +(-26.8795 + 26.8795i) q^{53} +(-11.3094 + 19.5884i) q^{54} +(-78.2297 - 39.0931i) q^{55} +(-13.3672 - 23.1527i) q^{56} +(84.1054 - 84.1054i) q^{57} +(-18.3417 + 68.4522i) q^{58} +(-32.8679 - 56.9288i) q^{59} +(-27.6737 - 24.5287i) q^{60} +(-22.4306 - 38.8509i) q^{61} +(-42.5197 + 11.3931i) q^{62} +(-42.6823 + 11.4367i) q^{63} +8.00000i q^{64} +(-28.5132 + 58.4123i) q^{65} +91.4717 q^{66} +(11.6697 + 43.5518i) q^{67} +(3.36380 + 12.5539i) q^{68} +(81.5833 - 47.1022i) q^{69} +(4.01933 + 66.7152i) q^{70} +(29.4767 - 17.0184i) q^{71} +(12.7722 + 3.42230i) q^{72} +(6.68149 + 6.68149i) q^{73} +(10.7787 - 6.22309i) q^{74} +(34.4755 + 85.7805i) q^{75} +(55.7104 + 32.1644i) q^{76} +(-116.901 - 116.901i) q^{77} +(-0.633125 - 67.9833i) q^{78} +137.747i q^{79} +(8.94030 - 17.8905i) q^{80} +(-50.6097 + 87.6586i) q^{81} +(-1.39035 + 5.18887i) q^{82} +(-29.6651 - 29.6651i) q^{83} +(-34.9534 - 60.5410i) q^{84} +(6.50690 - 31.8336i) q^{85} -59.7300i q^{86} +(-47.9610 + 178.993i) q^{87} +(12.8041 + 47.7856i) q^{88} +(5.93029 - 10.2716i) q^{89} +(-24.7382 - 21.9268i) q^{90} +(-86.0741 + 87.6923i) q^{91} +(36.0266 + 36.0266i) q^{92} +(-111.183 + 29.7914i) q^{93} +(60.2478 + 34.7841i) q^{94} +(-88.6412 - 134.188i) q^{95} +20.9189i q^{96} +(40.0013 + 10.7183i) q^{97} +(-14.7660 + 55.1073i) q^{98} +81.7685 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 14 q^{2} + 8 q^{5} + 4 q^{7} - 56 q^{8} - 48 q^{9} - 12 q^{10} - 12 q^{11} - 24 q^{13} + 10 q^{15} + 56 q^{16} + 50 q^{17} - 92 q^{18} - 36 q^{19} + 8 q^{20} + 12 q^{22} + 68 q^{23} - 6 q^{25} + 42 q^{26}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 + 1.36603i 0.183013 + 0.683013i
\(3\) 0.957104 + 3.57196i 0.319035 + 1.19065i 0.920174 + 0.391509i \(0.128047\pi\)
−0.601139 + 0.799144i \(0.705286\pi\)
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) 4.99095 0.300686i 0.998190 0.0601372i
\(6\) −4.52907 + 2.61486i −0.754844 + 0.435809i
\(7\) 9.12999 + 2.44637i 1.30428 + 0.349482i 0.843068 0.537806i \(-0.180747\pi\)
0.461215 + 0.887288i \(0.347414\pi\)
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) −4.04863 + 2.33748i −0.449848 + 0.259720i
\(10\) 2.23756 + 6.70771i 0.223756 + 0.670771i
\(11\) −15.1474 8.74538i −1.37704 0.795035i −0.385238 0.922817i \(-0.625881\pi\)
−0.991802 + 0.127783i \(0.959214\pi\)
\(12\) −5.22971 5.22971i −0.435809 0.435809i
\(13\) −6.39487 + 11.3184i −0.491913 + 0.870644i
\(14\) 13.3672i 0.954802i
\(15\) 5.85090 + 17.5397i 0.390060 + 1.16931i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 1.68190 6.27694i 0.0989353 0.369232i −0.898651 0.438664i \(-0.855452\pi\)
0.997587 + 0.0694319i \(0.0221187\pi\)
\(18\) −4.67495 4.67495i −0.259720 0.259720i
\(19\) −16.0822 27.8552i −0.846433 1.46606i −0.884371 0.466784i \(-0.845412\pi\)
0.0379387 0.999280i \(-0.487921\pi\)
\(20\) −8.34389 + 5.51175i −0.417195 + 0.275588i
\(21\) 34.9534i 1.66445i
\(22\) 6.40206 23.8928i 0.291003 1.08604i
\(23\) −6.59332 24.6066i −0.286666 1.06985i −0.947613 0.319420i \(-0.896512\pi\)
0.660947 0.750432i \(-0.270155\pi\)
\(24\) 5.22971 9.05813i 0.217905 0.377422i
\(25\) 24.8192 3.00142i 0.992767 0.120057i
\(26\) −17.8019 4.59275i −0.684687 0.176644i
\(27\) 11.3094 + 11.3094i 0.418866 + 0.418866i
\(28\) −18.2600 + 4.89274i −0.652142 + 0.174741i
\(29\) 43.3970 + 25.0552i 1.49645 + 0.863974i 0.999992 0.00408808i \(-0.00130128\pi\)
0.496455 + 0.868062i \(0.334635\pi\)
\(30\) −21.8181 + 14.4124i −0.727270 + 0.480415i
\(31\) 31.1266i 1.00408i 0.864844 + 0.502041i \(0.167417\pi\)
−0.864844 + 0.502041i \(0.832583\pi\)
\(32\) 5.46410 + 1.46410i 0.170753 + 0.0457532i
\(33\) 16.7405 62.4763i 0.507287 1.89322i
\(34\) 9.19008 0.270296
\(35\) 46.3029 + 9.46447i 1.32294 + 0.270413i
\(36\) 4.67495 8.09726i 0.129860 0.224924i
\(37\) −2.27781 8.50091i −0.0615625 0.229754i 0.928289 0.371859i \(-0.121280\pi\)
−0.989852 + 0.142105i \(0.954613\pi\)
\(38\) 32.1644 32.1644i 0.846433 0.846433i
\(39\) −46.5493 12.0094i −1.19357 0.307933i
\(40\) −10.5833 9.38053i −0.264582 0.234513i
\(41\) 3.28961 + 1.89926i 0.0802344 + 0.0463233i 0.539580 0.841934i \(-0.318583\pi\)
−0.459346 + 0.888257i \(0.651916\pi\)
\(42\) −47.7472 + 12.7938i −1.13684 + 0.304615i
\(43\) −40.7964 10.9313i −0.948752 0.254217i −0.248920 0.968524i \(-0.580075\pi\)
−0.699833 + 0.714307i \(0.746742\pi\)
\(44\) 34.9815 0.795035
\(45\) −19.5037 + 12.8836i −0.433415 + 0.286302i
\(46\) 31.1999 18.0133i 0.678259 0.391593i
\(47\) 34.7841 34.7841i 0.740087 0.740087i −0.232508 0.972595i \(-0.574693\pi\)
0.972595 + 0.232508i \(0.0746931\pi\)
\(48\) 14.2878 + 3.82842i 0.297663 + 0.0797587i
\(49\) 34.9367 + 20.1707i 0.712993 + 0.411647i
\(50\) 13.1845 + 32.8050i 0.263689 + 0.656101i
\(51\) 24.0307 0.471191
\(52\) −0.242126 25.9989i −0.00465627 0.499978i
\(53\) −26.8795 + 26.8795i −0.507161 + 0.507161i −0.913654 0.406493i \(-0.866752\pi\)
0.406493 + 0.913654i \(0.366752\pi\)
\(54\) −11.3094 + 19.5884i −0.209433 + 0.362748i
\(55\) −78.2297 39.0931i −1.42236 0.710784i
\(56\) −13.3672 23.1527i −0.238700 0.413441i
\(57\) 84.1054 84.1054i 1.47553 1.47553i
\(58\) −18.3417 + 68.4522i −0.316236 + 1.18021i
\(59\) −32.8679 56.9288i −0.557082 0.964895i −0.997738 0.0672187i \(-0.978587\pi\)
0.440656 0.897676i \(-0.354746\pi\)
\(60\) −27.6737 24.5287i −0.461229 0.408812i
\(61\) −22.4306 38.8509i −0.367715 0.636901i 0.621493 0.783420i \(-0.286526\pi\)
−0.989208 + 0.146519i \(0.953193\pi\)
\(62\) −42.5197 + 11.3931i −0.685801 + 0.183760i
\(63\) −42.6823 + 11.4367i −0.677496 + 0.181535i
\(64\) 8.00000i 0.125000i
\(65\) −28.5132 + 58.4123i −0.438665 + 0.898651i
\(66\) 91.4717 1.38593
\(67\) 11.6697 + 43.5518i 0.174174 + 0.650027i 0.996691 + 0.0812859i \(0.0259027\pi\)
−0.822517 + 0.568741i \(0.807431\pi\)
\(68\) 3.36380 + 12.5539i 0.0494677 + 0.184616i
\(69\) 81.5833 47.1022i 1.18237 0.682640i
\(70\) 4.01933 + 66.7152i 0.0574191 + 0.953074i
\(71\) 29.4767 17.0184i 0.415165 0.239696i −0.277841 0.960627i \(-0.589619\pi\)
0.693007 + 0.720931i \(0.256286\pi\)
\(72\) 12.7722 + 3.42230i 0.177392 + 0.0475320i
\(73\) 6.68149 + 6.68149i 0.0915273 + 0.0915273i 0.751388 0.659861i \(-0.229385\pi\)
−0.659861 + 0.751388i \(0.729385\pi\)
\(74\) 10.7787 6.22309i 0.145658 0.0840959i
\(75\) 34.4755 + 85.7805i 0.459673 + 1.14374i
\(76\) 55.7104 + 32.1644i 0.733032 + 0.423216i
\(77\) −116.901 116.901i −1.51820 1.51820i
\(78\) −0.633125 67.9833i −0.00811698 0.871581i
\(79\) 137.747i 1.74363i 0.489838 + 0.871814i \(0.337056\pi\)
−0.489838 + 0.871814i \(0.662944\pi\)
\(80\) 8.94030 17.8905i 0.111754 0.223632i
\(81\) −50.6097 + 87.6586i −0.624811 + 1.08220i
\(82\) −1.39035 + 5.18887i −0.0169555 + 0.0632789i
\(83\) −29.6651 29.6651i −0.357410 0.357410i 0.505447 0.862858i \(-0.331328\pi\)
−0.862858 + 0.505447i \(0.831328\pi\)
\(84\) −34.9534 60.5410i −0.416112 0.720727i
\(85\) 6.50690 31.8336i 0.0765517 0.374513i
\(86\) 59.7300i 0.694535i
\(87\) −47.9610 + 178.993i −0.551275 + 2.05739i
\(88\) 12.8041 + 47.7856i 0.145501 + 0.543019i
\(89\) 5.93029 10.2716i 0.0666325 0.115411i −0.830784 0.556594i \(-0.812108\pi\)
0.897417 + 0.441183i \(0.145441\pi\)
\(90\) −24.7382 21.9268i −0.274868 0.243631i
\(91\) −86.0741 + 87.6923i −0.945869 + 0.963652i
\(92\) 36.0266 + 36.0266i 0.391593 + 0.391593i
\(93\) −111.183 + 29.7914i −1.19551 + 0.320337i
\(94\) 60.2478 + 34.7841i 0.640934 + 0.370043i
\(95\) −88.6412 134.188i −0.933066 1.41251i
\(96\) 20.9189i 0.217905i
\(97\) 40.0013 + 10.7183i 0.412385 + 0.110498i 0.459046 0.888413i \(-0.348191\pi\)
−0.0466609 + 0.998911i \(0.514858\pi\)
\(98\) −14.7660 + 55.1073i −0.150673 + 0.562320i
\(99\) 81.7685 0.825944
\(100\) −39.9867 + 30.0178i −0.399867 + 0.300178i
\(101\) 27.6675 47.9215i 0.273935 0.474470i −0.695931 0.718109i \(-0.745008\pi\)
0.969866 + 0.243639i \(0.0783412\pi\)
\(102\) 8.79586 + 32.8266i 0.0862339 + 0.321829i
\(103\) −44.1479 + 44.1479i −0.428621 + 0.428621i −0.888158 0.459538i \(-0.848015\pi\)
0.459538 + 0.888158i \(0.348015\pi\)
\(104\) 35.4265 9.84700i 0.340639 0.0946827i
\(105\) 10.5100 + 174.451i 0.100095 + 1.66143i
\(106\) −46.5567 26.8795i −0.439214 0.253580i
\(107\) 43.6938 11.7077i 0.408353 0.109418i −0.0487943 0.998809i \(-0.515538\pi\)
0.457147 + 0.889391i \(0.348871\pi\)
\(108\) −30.8978 8.27904i −0.286091 0.0766578i
\(109\) −31.2382 −0.286589 −0.143294 0.989680i \(-0.545770\pi\)
−0.143294 + 0.989680i \(0.545770\pi\)
\(110\) 24.7681 121.173i 0.225165 1.10157i
\(111\) 28.1848 16.2725i 0.253917 0.146599i
\(112\) 26.7345 26.7345i 0.238700 0.238700i
\(113\) 3.02470 + 0.810466i 0.0267673 + 0.00717227i 0.272178 0.962247i \(-0.412256\pi\)
−0.245411 + 0.969419i \(0.578923\pi\)
\(114\) 145.675 + 84.1054i 1.27785 + 0.737767i
\(115\) −40.3058 120.828i −0.350485 1.05068i
\(116\) −100.221 −0.863974
\(117\) −0.565964 60.7718i −0.00483730 0.519417i
\(118\) 65.7357 65.7357i 0.557082 0.557082i
\(119\) 30.7115 53.1938i 0.258079 0.447007i
\(120\) 23.3776 46.7812i 0.194813 0.389843i
\(121\) 92.4633 + 160.151i 0.764160 + 1.32356i
\(122\) 44.8612 44.8612i 0.367715 0.367715i
\(123\) −3.63557 + 13.5681i −0.0295575 + 0.110310i
\(124\) −31.1266 53.9128i −0.251021 0.434780i
\(125\) 122.969 22.4427i 0.983750 0.179542i
\(126\) −31.2456 54.1189i −0.247981 0.429515i
\(127\) 5.19550 1.39213i 0.0409095 0.0109617i −0.238306 0.971190i \(-0.576592\pi\)
0.279216 + 0.960228i \(0.409926\pi\)
\(128\) −10.9282 + 2.92820i −0.0853766 + 0.0228766i
\(129\) 156.185i 1.21074i
\(130\) −90.2292 17.5694i −0.694071 0.135149i
\(131\) −153.628 −1.17273 −0.586365 0.810047i \(-0.699442\pi\)
−0.586365 + 0.810047i \(0.699442\pi\)
\(132\) 33.4810 + 124.953i 0.253644 + 0.946611i
\(133\) −78.6862 293.661i −0.591625 2.20798i
\(134\) −55.2215 + 31.8821i −0.412101 + 0.237926i
\(135\) 59.8451 + 53.0440i 0.443297 + 0.392918i
\(136\) −15.9177 + 9.19008i −0.117042 + 0.0675741i
\(137\) 19.3710 + 5.19046i 0.141395 + 0.0378865i 0.328822 0.944392i \(-0.393348\pi\)
−0.187428 + 0.982278i \(0.560015\pi\)
\(138\) 94.2043 + 94.2043i 0.682640 + 0.682640i
\(139\) −170.158 + 98.2408i −1.22416 + 0.706768i −0.965802 0.259281i \(-0.916514\pi\)
−0.258357 + 0.966050i \(0.583181\pi\)
\(140\) −89.6634 + 29.9100i −0.640453 + 0.213643i
\(141\) 157.539 + 90.9554i 1.11730 + 0.645074i
\(142\) 34.0368 + 34.0368i 0.239696 + 0.239696i
\(143\) 195.849 115.519i 1.36958 0.807824i
\(144\) 18.6998i 0.129860i
\(145\) 224.126 + 112.001i 1.54570 + 0.772418i
\(146\) −6.68149 + 11.5727i −0.0457637 + 0.0792650i
\(147\) −38.6109 + 144.098i −0.262659 + 0.980257i
\(148\) 12.4462 + 12.4462i 0.0840959 + 0.0840959i
\(149\) −32.4564 56.2161i −0.217828 0.377289i 0.736316 0.676638i \(-0.236564\pi\)
−0.954144 + 0.299349i \(0.903231\pi\)
\(150\) −104.559 + 78.4922i −0.697063 + 0.523281i
\(151\) 87.7534i 0.581148i 0.956852 + 0.290574i \(0.0938463\pi\)
−0.956852 + 0.290574i \(0.906154\pi\)
\(152\) −23.5460 + 87.8749i −0.154908 + 0.578124i
\(153\) 7.86281 + 29.3444i 0.0513909 + 0.191793i
\(154\) 116.901 202.479i 0.759101 1.31480i
\(155\) 9.35931 + 155.351i 0.0603827 + 1.00227i
\(156\) 92.6352 25.7485i 0.593816 0.165054i
\(157\) −53.8086 53.8086i −0.342730 0.342730i 0.514663 0.857393i \(-0.327917\pi\)
−0.857393 + 0.514663i \(0.827917\pi\)
\(158\) −188.165 + 50.4187i −1.19092 + 0.319106i
\(159\) −121.739 70.2861i −0.765655 0.442051i
\(160\) 27.7113 + 5.66428i 0.173196 + 0.0354018i
\(161\) 240.788i 1.49558i
\(162\) −138.268 37.0489i −0.853508 0.228697i
\(163\) 15.0912 56.3212i 0.0925842 0.345529i −0.904058 0.427410i \(-0.859426\pi\)
0.996642 + 0.0818810i \(0.0260928\pi\)
\(164\) −7.59703 −0.0463233
\(165\) 64.7652 316.850i 0.392516 1.92030i
\(166\) 29.6651 51.3814i 0.178705 0.309527i
\(167\) −49.7377 185.624i −0.297831 1.11152i −0.938943 0.344072i \(-0.888193\pi\)
0.641112 0.767447i \(-0.278473\pi\)
\(168\) 69.9068 69.9068i 0.416112 0.416112i
\(169\) −87.2112 144.759i −0.516042 0.856563i
\(170\) 45.8672 2.76332i 0.269807 0.0162549i
\(171\) 130.222 + 75.1836i 0.761531 + 0.439670i
\(172\) 81.5927 21.8627i 0.474376 0.127109i
\(173\) 198.617 + 53.2192i 1.14807 + 0.307625i 0.782193 0.623037i \(-0.214101\pi\)
0.365880 + 0.930662i \(0.380768\pi\)
\(174\) −262.064 −1.50611
\(175\) 233.941 + 33.3141i 1.33681 + 0.190366i
\(176\) −60.5898 + 34.9815i −0.344260 + 0.198759i
\(177\) 171.889 171.889i 0.971127 0.971127i
\(178\) 16.2019 + 4.34127i 0.0910217 + 0.0243892i
\(179\) −152.430 88.0056i −0.851565 0.491651i 0.00961348 0.999954i \(-0.496940\pi\)
−0.861179 + 0.508302i \(0.830273\pi\)
\(180\) 20.8977 41.8187i 0.116099 0.232326i
\(181\) −89.9927 −0.497197 −0.248599 0.968607i \(-0.579970\pi\)
−0.248599 + 0.968607i \(0.579970\pi\)
\(182\) −151.295 85.4817i −0.831293 0.469680i
\(183\) 117.306 117.306i 0.641014 0.641014i
\(184\) −36.0266 + 62.3998i −0.195797 + 0.339130i
\(185\) −13.9245 41.7427i −0.0752678 0.225636i
\(186\) −81.3915 140.974i −0.437589 0.757926i
\(187\) −80.3707 + 80.3707i −0.429790 + 0.429790i
\(188\) −25.4637 + 95.0319i −0.135445 + 0.505489i
\(189\) 75.5875 + 130.921i 0.399934 + 0.692706i
\(190\) 150.860 170.203i 0.793999 0.895803i
\(191\) −42.7010 73.9603i −0.223565 0.387227i 0.732323 0.680958i \(-0.238436\pi\)
−0.955888 + 0.293731i \(0.905103\pi\)
\(192\) −28.5757 + 7.65683i −0.148832 + 0.0398793i
\(193\) 36.3198 9.73187i 0.188186 0.0504242i −0.163495 0.986544i \(-0.552277\pi\)
0.351681 + 0.936120i \(0.385610\pi\)
\(194\) 58.5660i 0.301887i
\(195\) −235.937 45.9415i −1.20993 0.235597i
\(196\) −80.6828 −0.411647
\(197\) 36.5358 + 136.353i 0.185461 + 0.692149i 0.994531 + 0.104437i \(0.0333042\pi\)
−0.809071 + 0.587711i \(0.800029\pi\)
\(198\) 29.9293 + 111.698i 0.151158 + 0.564130i
\(199\) −271.836 + 156.944i −1.36601 + 0.788665i −0.990416 0.138119i \(-0.955894\pi\)
−0.375593 + 0.926785i \(0.622561\pi\)
\(200\) −55.6412 43.6355i −0.278206 0.218178i
\(201\) −144.396 + 83.3672i −0.718389 + 0.414762i
\(202\) 75.5890 + 20.2540i 0.374203 + 0.100267i
\(203\) 334.919 + 334.919i 1.64985 + 1.64985i
\(204\) −41.6224 + 24.0307i −0.204032 + 0.117798i
\(205\) 16.9894 + 8.48996i 0.0828749 + 0.0414144i
\(206\) −76.4664 44.1479i −0.371196 0.214310i
\(207\) 84.2113 + 84.2113i 0.406818 + 0.406818i
\(208\) 26.4182 + 44.7892i 0.127011 + 0.215333i
\(209\) 562.580i 2.69177i
\(210\) −234.457 + 78.2103i −1.11646 + 0.372430i
\(211\) 42.4591 73.5412i 0.201228 0.348537i −0.747697 0.664041i \(-0.768840\pi\)
0.948924 + 0.315504i \(0.102174\pi\)
\(212\) 19.6772 73.4362i 0.0928169 0.346397i
\(213\) 89.0014 + 89.0014i 0.417847 + 0.417847i
\(214\) 31.9861 + 55.4015i 0.149468 + 0.258885i
\(215\) −206.899 42.2909i −0.962323 0.196702i
\(216\) 45.2375i 0.209433i
\(217\) −76.1471 + 284.185i −0.350908 + 1.30961i
\(218\) −11.4340 42.6721i −0.0524494 0.195744i
\(219\) −17.4711 + 30.2609i −0.0797769 + 0.138178i
\(220\) 174.591 10.5184i 0.793596 0.0478111i
\(221\) 60.2892 + 59.1766i 0.272802 + 0.267767i
\(222\) 32.5450 + 32.5450i 0.146599 + 0.146599i
\(223\) 172.234 46.1500i 0.772351 0.206951i 0.148941 0.988846i \(-0.452414\pi\)
0.623410 + 0.781895i \(0.285747\pi\)
\(224\) 46.3054 + 26.7345i 0.206721 + 0.119350i
\(225\) −93.4679 + 70.1659i −0.415413 + 0.311848i
\(226\) 4.42847i 0.0195950i
\(227\) −226.448 60.6765i −0.997567 0.267297i −0.277141 0.960829i \(-0.589387\pi\)
−0.720426 + 0.693532i \(0.756054\pi\)
\(228\) −61.5694 + 229.780i −0.270041 + 1.00781i
\(229\) 60.3824 0.263678 0.131839 0.991271i \(-0.457912\pi\)
0.131839 + 0.991271i \(0.457912\pi\)
\(230\) 150.301 99.2848i 0.653482 0.431673i
\(231\) 305.681 529.454i 1.32329 2.29201i
\(232\) −36.6834 136.904i −0.158118 0.590105i
\(233\) −200.345 + 200.345i −0.859852 + 0.859852i −0.991320 0.131469i \(-0.958031\pi\)
0.131469 + 0.991320i \(0.458031\pi\)
\(234\) 82.8086 23.0171i 0.353883 0.0983638i
\(235\) 163.147 184.065i 0.694241 0.783254i
\(236\) 113.858 + 65.7357i 0.482447 + 0.278541i
\(237\) −492.025 + 131.838i −2.07606 + 0.556278i
\(238\) 83.9053 + 22.4823i 0.352543 + 0.0944636i
\(239\) 409.344 1.71274 0.856369 0.516365i \(-0.172715\pi\)
0.856369 + 0.516365i \(0.172715\pi\)
\(240\) 72.4611 + 14.8113i 0.301921 + 0.0617137i
\(241\) −304.085 + 175.563i −1.26176 + 0.728479i −0.973415 0.229047i \(-0.926439\pi\)
−0.288348 + 0.957526i \(0.593106\pi\)
\(242\) −184.927 + 184.927i −0.764160 + 0.764160i
\(243\) −222.512 59.6218i −0.915686 0.245357i
\(244\) 77.7019 + 44.8612i 0.318450 + 0.183857i
\(245\) 180.432 + 90.1660i 0.736458 + 0.368024i
\(246\) −19.8651 −0.0807526
\(247\) 418.120 3.89392i 1.69279 0.0157649i
\(248\) 62.2531 62.2531i 0.251021 0.251021i
\(249\) 77.5699 134.355i 0.311526 0.539578i
\(250\) 75.6670 + 159.764i 0.302668 + 0.639056i
\(251\) 62.1942 + 107.724i 0.247786 + 0.429177i 0.962911 0.269819i \(-0.0869638\pi\)
−0.715125 + 0.698996i \(0.753630\pi\)
\(252\) 62.4912 62.4912i 0.247981 0.247981i
\(253\) −115.322 + 430.388i −0.455819 + 1.70114i
\(254\) 3.80337 + 6.58764i 0.0149739 + 0.0259356i
\(255\) 119.936 7.22570i 0.470338 0.0283361i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 209.360 56.0979i 0.814632 0.218280i 0.172633 0.984986i \(-0.444772\pi\)
0.641998 + 0.766706i \(0.278106\pi\)
\(258\) 213.353 57.1678i 0.826951 0.221581i
\(259\) 83.1855i 0.321180i
\(260\) −9.02593 129.686i −0.0347151 0.498793i
\(261\) −234.264 −0.897564
\(262\) −56.2316 209.859i −0.214624 0.800989i
\(263\) −36.3137 135.524i −0.138075 0.515302i −0.999966 0.00820946i \(-0.997387\pi\)
0.861891 0.507093i \(-0.169280\pi\)
\(264\) −158.434 + 91.4717i −0.600127 + 0.346484i
\(265\) −126.072 + 142.237i −0.475744 + 0.536742i
\(266\) 372.347 214.975i 1.39980 0.808175i
\(267\) 42.3655 + 11.3518i 0.158672 + 0.0425161i
\(268\) −63.7643 63.7643i −0.237926 0.237926i
\(269\) −414.112 + 239.088i −1.53945 + 0.888802i −0.540580 + 0.841293i \(0.681795\pi\)
−0.998871 + 0.0475099i \(0.984871\pi\)
\(270\) −50.5546 + 101.165i −0.187239 + 0.374687i
\(271\) −198.029 114.332i −0.730735 0.421890i 0.0879561 0.996124i \(-0.471966\pi\)
−0.818691 + 0.574234i \(0.805300\pi\)
\(272\) −18.3802 18.3802i −0.0675741 0.0675741i
\(273\) −395.615 223.523i −1.44914 0.818764i
\(274\) 28.3612i 0.103508i
\(275\) −402.196 171.589i −1.46253 0.623961i
\(276\) −94.2043 + 163.167i −0.341320 + 0.591184i
\(277\) 25.7815 96.2178i 0.0930740 0.347357i −0.903646 0.428279i \(-0.859120\pi\)
0.996720 + 0.0809225i \(0.0257866\pi\)
\(278\) −196.482 196.482i −0.706768 0.706768i
\(279\) −72.7576 126.020i −0.260780 0.451684i
\(280\) −73.6769 111.535i −0.263132 0.398338i
\(281\) 238.944i 0.850336i −0.905114 0.425168i \(-0.860215\pi\)
0.905114 0.425168i \(-0.139785\pi\)
\(282\) −66.5840 + 248.495i −0.236113 + 0.881187i
\(283\) 138.823 + 518.096i 0.490542 + 1.83073i 0.553689 + 0.832724i \(0.313220\pi\)
−0.0631469 + 0.998004i \(0.520114\pi\)
\(284\) −34.0368 + 58.9535i −0.119848 + 0.207583i
\(285\) 394.477 445.055i 1.38413 1.56160i
\(286\) 229.488 + 225.253i 0.802404 + 0.787596i
\(287\) 25.3878 + 25.3878i 0.0884592 + 0.0884592i
\(288\) −25.5444 + 6.84461i −0.0886959 + 0.0237660i
\(289\) 213.710 + 123.386i 0.739482 + 0.426940i
\(290\) −70.9600 + 347.157i −0.244690 + 1.19709i
\(291\) 153.142i 0.526260i
\(292\) −18.2542 4.89119i −0.0625143 0.0167507i
\(293\) 56.2709 210.006i 0.192051 0.716743i −0.800960 0.598718i \(-0.795677\pi\)
0.993011 0.118025i \(-0.0376564\pi\)
\(294\) −210.974 −0.717598
\(295\) −181.160 274.246i −0.614100 0.929647i
\(296\) −12.4462 + 21.5574i −0.0420479 + 0.0728292i
\(297\) −72.4033 270.213i −0.243782 0.909808i
\(298\) 64.9128 64.9128i 0.217828 0.217828i
\(299\) 320.670 + 82.7305i 1.07248 + 0.276691i
\(300\) −145.494 114.101i −0.484979 0.380335i
\(301\) −345.728 199.606i −1.14860 0.663143i
\(302\) −119.873 + 32.1200i −0.396932 + 0.106358i
\(303\) 197.654 + 52.9613i 0.652325 + 0.174790i
\(304\) −128.658 −0.423216
\(305\) −123.632 187.159i −0.405351 0.613635i
\(306\) −37.2072 + 21.4816i −0.121592 + 0.0702013i
\(307\) 79.9309 79.9309i 0.260361 0.260361i −0.564840 0.825201i \(-0.691062\pi\)
0.825201 + 0.564840i \(0.191062\pi\)
\(308\) 319.381 + 85.5778i 1.03695 + 0.277850i
\(309\) −199.949 115.440i −0.647083 0.373594i
\(310\) −208.788 + 69.6475i −0.673509 + 0.224669i
\(311\) 397.946 1.27957 0.639785 0.768554i \(-0.279023\pi\)
0.639785 + 0.768554i \(0.279023\pi\)
\(312\) 69.0799 + 117.117i 0.221410 + 0.375376i
\(313\) 171.241 171.241i 0.547097 0.547097i −0.378503 0.925600i \(-0.623561\pi\)
0.925600 + 0.378503i \(0.123561\pi\)
\(314\) 53.8086 93.1993i 0.171365 0.296813i
\(315\) −209.586 + 69.9138i −0.665353 + 0.221949i
\(316\) −137.747 238.584i −0.435907 0.755013i
\(317\) −252.091 + 252.091i −0.795238 + 0.795238i −0.982340 0.187102i \(-0.940091\pi\)
0.187102 + 0.982340i \(0.440091\pi\)
\(318\) 51.4530 192.025i 0.161802 0.603853i
\(319\) −438.235 759.046i −1.37378 2.37945i
\(320\) 2.40549 + 39.9276i 0.00751714 + 0.124774i
\(321\) 83.6390 + 144.867i 0.260558 + 0.451299i
\(322\) 328.922 88.1344i 1.02150 0.273709i
\(323\) −201.894 + 54.0974i −0.625059 + 0.167484i
\(324\) 202.439i 0.624811i
\(325\) −124.744 + 300.106i −0.383829 + 0.923404i
\(326\) 82.4600 0.252945
\(327\) −29.8982 111.581i −0.0914317 0.341228i
\(328\) −2.78071 10.3777i −0.00847776 0.0316394i
\(329\) 402.673 232.483i 1.22393 0.706636i
\(330\) 456.531 27.5042i 1.38343 0.0833461i
\(331\) 339.553 196.041i 1.02584 0.592268i 0.110049 0.993926i \(-0.464899\pi\)
0.915790 + 0.401658i \(0.131566\pi\)
\(332\) 81.0465 + 21.7163i 0.244116 + 0.0654106i
\(333\) 29.0927 + 29.0927i 0.0873654 + 0.0873654i
\(334\) 235.361 135.886i 0.704675 0.406844i
\(335\) 71.3382 + 213.856i 0.212950 + 0.638376i
\(336\) 121.082 + 69.9068i 0.360363 + 0.208056i
\(337\) 63.1684 + 63.1684i 0.187443 + 0.187443i 0.794590 0.607146i \(-0.207686\pi\)
−0.607146 + 0.794590i \(0.707686\pi\)
\(338\) 165.823 172.118i 0.490601 0.509225i
\(339\) 11.5798i 0.0341588i
\(340\) 20.5633 + 61.6443i 0.0604804 + 0.181307i
\(341\) 272.214 471.488i 0.798280 1.38266i
\(342\) −55.0382 + 205.405i −0.160931 + 0.600601i
\(343\) −57.8709 57.8709i −0.168720 0.168720i
\(344\) 59.7300 + 103.455i 0.173634 + 0.300742i
\(345\) 393.015 259.615i 1.13918 0.752509i
\(346\) 290.795i 0.840448i
\(347\) −39.7590 + 148.382i −0.114579 + 0.427615i −0.999255 0.0385914i \(-0.987713\pi\)
0.884676 + 0.466206i \(0.154380\pi\)
\(348\) −95.9219 357.985i −0.275638 1.02869i
\(349\) −311.759 + 539.982i −0.893291 + 1.54723i −0.0573854 + 0.998352i \(0.518276\pi\)
−0.835906 + 0.548873i \(0.815057\pi\)
\(350\) 40.1206 + 331.764i 0.114630 + 0.947896i
\(351\) −200.326 + 55.6817i −0.570729 + 0.158637i
\(352\) −69.9630 69.9630i −0.198759 0.198759i
\(353\) 221.908 59.4601i 0.628635 0.168442i 0.0695849 0.997576i \(-0.477833\pi\)
0.559050 + 0.829134i \(0.311166\pi\)
\(354\) 297.721 + 171.889i 0.841021 + 0.485563i
\(355\) 142.000 93.8013i 0.399999 0.264229i
\(356\) 23.7212i 0.0666325i
\(357\) 219.400 + 58.7881i 0.614567 + 0.164673i
\(358\) 64.4246 240.436i 0.179957 0.671608i
\(359\) −140.268 −0.390719 −0.195360 0.980732i \(-0.562587\pi\)
−0.195360 + 0.980732i \(0.562587\pi\)
\(360\) 64.7745 + 13.2401i 0.179929 + 0.0367781i
\(361\) −336.776 + 583.312i −0.932896 + 1.61582i
\(362\) −32.9396 122.932i −0.0909934 0.339592i
\(363\) −483.557 + 483.557i −1.33211 + 1.33211i
\(364\) 61.3923 237.962i 0.168660 0.653741i
\(365\) 35.3560 + 31.3380i 0.0968658 + 0.0858575i
\(366\) 203.179 + 117.306i 0.555135 + 0.320507i
\(367\) 345.102 92.4697i 0.940331 0.251961i 0.244077 0.969756i \(-0.421515\pi\)
0.696255 + 0.717795i \(0.254848\pi\)
\(368\) −98.4264 26.3733i −0.267463 0.0716665i
\(369\) −17.7579 −0.0481243
\(370\) 51.9248 34.3002i 0.140337 0.0927031i
\(371\) −311.167 + 179.652i −0.838725 + 0.484238i
\(372\) 162.783 162.783i 0.437589 0.437589i
\(373\) 443.794 + 118.914i 1.18980 + 0.318805i 0.798805 0.601590i \(-0.205466\pi\)
0.390991 + 0.920395i \(0.372132\pi\)
\(374\) −139.206 80.3707i −0.372209 0.214895i
\(375\) 197.858 + 417.760i 0.527622 + 1.11403i
\(376\) −139.136 −0.370043
\(377\) −561.103 + 330.958i −1.48834 + 0.877872i
\(378\) −151.175 + 151.175i −0.399934 + 0.399934i
\(379\) 164.712 285.289i 0.434595 0.752741i −0.562667 0.826683i \(-0.690225\pi\)
0.997263 + 0.0739425i \(0.0235581\pi\)
\(380\) 287.719 + 143.780i 0.757156 + 0.378368i
\(381\) 9.94528 + 17.2257i 0.0261031 + 0.0452119i
\(382\) 85.4020 85.4020i 0.223565 0.223565i
\(383\) −64.4543 + 240.547i −0.168288 + 0.628059i 0.829310 + 0.558789i \(0.188734\pi\)
−0.997598 + 0.0692705i \(0.977933\pi\)
\(384\) −20.9189 36.2325i −0.0544762 0.0943555i
\(385\) −618.600 548.299i −1.60675 1.42415i
\(386\) 26.5880 + 46.0517i 0.0688808 + 0.119305i
\(387\) 190.721 51.1035i 0.492819 0.132051i
\(388\) −80.0027 + 21.4367i −0.206192 + 0.0552491i
\(389\) 155.086i 0.398679i −0.979931 0.199339i \(-0.936120\pi\)
0.979931 0.199339i \(-0.0638796\pi\)
\(390\) −23.6015 339.111i −0.0605167 0.869516i
\(391\) −165.543 −0.423385
\(392\) −29.5319 110.215i −0.0753366 0.281160i
\(393\) −147.038 548.752i −0.374142 1.39632i
\(394\) −172.889 + 99.8175i −0.438805 + 0.253344i
\(395\) 41.4184 + 687.486i 0.104857 + 1.74047i
\(396\) −141.627 + 81.7685i −0.357644 + 0.206486i
\(397\) 619.115 + 165.891i 1.55948 + 0.417862i 0.932500 0.361170i \(-0.117623\pi\)
0.626984 + 0.779032i \(0.284289\pi\)
\(398\) −313.889 313.889i −0.788665 0.788665i
\(399\) 973.634 562.128i 2.44019 1.40884i
\(400\) 39.2411 91.9790i 0.0981029 0.229947i
\(401\) 284.878 + 164.474i 0.710419 + 0.410161i 0.811216 0.584746i \(-0.198806\pi\)
−0.100797 + 0.994907i \(0.532139\pi\)
\(402\) −166.734 166.734i −0.414762 0.414762i
\(403\) −352.302 199.050i −0.874198 0.493922i
\(404\) 110.670i 0.273935i
\(405\) −226.233 + 452.717i −0.558600 + 1.11782i
\(406\) −334.919 + 580.097i −0.824924 + 1.42881i
\(407\) −39.8406 + 148.687i −0.0978886 + 0.365325i
\(408\) −48.0615 48.0615i −0.117798 0.117798i
\(409\) −124.816 216.188i −0.305174 0.528576i 0.672126 0.740436i \(-0.265381\pi\)
−0.977300 + 0.211860i \(0.932048\pi\)
\(410\) −5.37896 + 26.3154i −0.0131194 + 0.0641840i
\(411\) 74.1604i 0.180439i
\(412\) 32.3185 120.614i 0.0784430 0.292753i
\(413\) −160.814 600.166i −0.389380 1.45319i
\(414\) −84.2113 + 145.858i −0.203409 + 0.352314i
\(415\) −156.977 139.137i −0.378257 0.335270i
\(416\) −51.5135 + 52.4820i −0.123831 + 0.126159i
\(417\) −513.771 513.771i −1.23207 1.23207i
\(418\) −768.499 + 205.919i −1.83851 + 0.492629i
\(419\) 320.679 + 185.144i 0.765343 + 0.441871i 0.831211 0.555958i \(-0.187648\pi\)
−0.0658681 + 0.997828i \(0.520982\pi\)
\(420\) −192.654 291.647i −0.458701 0.694398i
\(421\) 161.740i 0.384180i −0.981377 0.192090i \(-0.938474\pi\)
0.981377 0.192090i \(-0.0615265\pi\)
\(422\) 116.000 + 31.0822i 0.274882 + 0.0736545i
\(423\) −59.5208 + 222.135i −0.140711 + 0.525141i
\(424\) 107.518 0.253580
\(425\) 22.9037 160.837i 0.0538910 0.378439i
\(426\) −89.0014 + 154.155i −0.208923 + 0.361866i
\(427\) −109.747 409.582i −0.257019 0.959209i
\(428\) −63.9721 + 63.9721i −0.149468 + 0.149468i
\(429\) 600.077 + 589.003i 1.39878 + 1.37297i
\(430\) −17.9600 298.109i −0.0417674 0.693278i
\(431\) 542.607 + 313.274i 1.25895 + 0.726855i 0.972870 0.231351i \(-0.0743146\pi\)
0.286079 + 0.958206i \(0.407648\pi\)
\(432\) 61.7956 16.5581i 0.143045 0.0383289i
\(433\) −277.369 74.3207i −0.640574 0.171641i −0.0761107 0.997099i \(-0.524250\pi\)
−0.564464 + 0.825458i \(0.690917\pi\)
\(434\) −416.076 −0.958700
\(435\) −185.550 + 907.765i −0.426552 + 2.08682i
\(436\) 54.1061 31.2382i 0.124096 0.0716471i
\(437\) −579.387 + 579.387i −1.32583 + 1.32583i
\(438\) −47.7321 12.7898i −0.108977 0.0292004i
\(439\) 233.856 + 135.017i 0.532702 + 0.307556i 0.742116 0.670271i \(-0.233822\pi\)
−0.209414 + 0.977827i \(0.567156\pi\)
\(440\) 78.2732 + 234.646i 0.177894 + 0.533286i
\(441\) −188.594 −0.427651
\(442\) −58.7694 + 104.017i −0.132962 + 0.235332i
\(443\) 160.688 160.688i 0.362726 0.362726i −0.502089 0.864816i \(-0.667435\pi\)
0.864816 + 0.502089i \(0.167435\pi\)
\(444\) −32.5450 + 56.3696i −0.0732996 + 0.126959i
\(445\) 26.5093 53.0480i 0.0595714 0.119209i
\(446\) 126.084 + 218.384i 0.282700 + 0.489651i
\(447\) 169.738 169.738i 0.379726 0.379726i
\(448\) −19.5710 + 73.0399i −0.0436852 + 0.163035i
\(449\) 150.462 + 260.607i 0.335104 + 0.580416i 0.983505 0.180882i \(-0.0578953\pi\)
−0.648401 + 0.761299i \(0.724562\pi\)
\(450\) −130.060 101.997i −0.289022 0.226660i
\(451\) −33.2194 57.5378i −0.0736573 0.127578i
\(452\) −6.04940 + 1.62093i −0.0133836 + 0.00358613i
\(453\) −313.452 + 83.9891i −0.691946 + 0.185406i
\(454\) 331.543i 0.730270i
\(455\) −403.224 + 463.549i −0.886206 + 1.01879i
\(456\) −336.422 −0.737767
\(457\) −125.976 470.150i −0.275659 1.02877i −0.955398 0.295320i \(-0.904574\pi\)
0.679739 0.733454i \(-0.262093\pi\)
\(458\) 22.1015 + 82.4839i 0.0482565 + 0.180096i
\(459\) 90.0095 51.9670i 0.196099 0.113218i
\(460\) 190.639 + 168.974i 0.414434 + 0.367335i
\(461\) 161.057 92.9865i 0.349365 0.201706i −0.315040 0.949078i \(-0.602018\pi\)
0.664406 + 0.747372i \(0.268685\pi\)
\(462\) 835.135 + 223.774i 1.80765 + 0.484359i
\(463\) −461.114 461.114i −0.995926 0.995926i 0.00406556 0.999992i \(-0.498706\pi\)
−0.999992 + 0.00406556i \(0.998706\pi\)
\(464\) 173.588 100.221i 0.374112 0.215994i
\(465\) −545.950 + 182.118i −1.17409 + 0.391652i
\(466\) −347.008 200.345i −0.744653 0.429926i
\(467\) 304.019 + 304.019i 0.651004 + 0.651004i 0.953235 0.302231i \(-0.0977313\pi\)
−0.302231 + 0.953235i \(0.597731\pi\)
\(468\) 61.7520 + 104.694i 0.131949 + 0.223705i
\(469\) 426.176i 0.908690i
\(470\) 311.153 + 155.490i 0.662027 + 0.330830i
\(471\) 140.702 243.703i 0.298730 0.517416i
\(472\) −48.1219 + 179.593i −0.101953 + 0.380494i
\(473\) 522.362 + 522.362i 1.10436 + 1.10436i
\(474\) −360.188 623.863i −0.759889 1.31617i
\(475\) −482.753 643.074i −1.01632 1.35384i
\(476\) 122.846i 0.258079i
\(477\) 45.9950 171.656i 0.0964255 0.359865i
\(478\) 149.830 + 559.175i 0.313453 + 1.16982i
\(479\) −9.56574 + 16.5684i −0.0199702 + 0.0345895i −0.875838 0.482606i \(-0.839690\pi\)
0.855868 + 0.517195i \(0.173024\pi\)
\(480\) 6.29000 + 104.405i 0.0131042 + 0.217510i
\(481\) 110.783 + 28.5811i 0.230318 + 0.0594202i
\(482\) −351.127 351.127i −0.728479 0.728479i
\(483\) 860.084 230.459i 1.78071 0.477140i
\(484\) −320.302 184.927i −0.661782 0.382080i
\(485\) 202.868 + 41.4668i 0.418284 + 0.0854986i
\(486\) 325.780i 0.670329i
\(487\) 319.367 + 85.5740i 0.655784 + 0.175717i 0.571342 0.820712i \(-0.306423\pi\)
0.0844412 + 0.996428i \(0.473089\pi\)
\(488\) −32.8407 + 122.563i −0.0672965 + 0.251154i
\(489\) 215.621 0.440943
\(490\) −57.1262 + 279.478i −0.116584 + 0.570363i
\(491\) −109.202 + 189.143i −0.222407 + 0.385221i −0.955538 0.294867i \(-0.904725\pi\)
0.733131 + 0.680087i \(0.238058\pi\)
\(492\) −7.27115 27.1363i −0.0147788 0.0551551i
\(493\) 230.260 230.260i 0.467058 0.467058i
\(494\) 158.362 + 569.737i 0.320570 + 1.15331i
\(495\) 408.102 24.5866i 0.824449 0.0496699i
\(496\) 107.826 + 62.2531i 0.217390 + 0.125510i
\(497\) 310.756 83.2667i 0.625263 0.167539i
\(498\) 211.925 + 56.7851i 0.425552 + 0.114026i
\(499\) −256.760 −0.514550 −0.257275 0.966338i \(-0.582825\pi\)
−0.257275 + 0.966338i \(0.582825\pi\)
\(500\) −190.546 + 161.841i −0.381091 + 0.323681i
\(501\) 615.436 355.322i 1.22842 0.709226i
\(502\) −124.388 + 124.388i −0.247786 + 0.247786i
\(503\) −626.540 167.881i −1.24561 0.333759i −0.424969 0.905208i \(-0.639715\pi\)
−0.820638 + 0.571449i \(0.806382\pi\)
\(504\) 108.238 + 62.4912i 0.214758 + 0.123990i
\(505\) 123.678 247.493i 0.244906 0.490085i
\(506\) −630.132 −1.24532
\(507\) 433.604 450.064i 0.855235 0.887701i
\(508\) −7.60675 + 7.60675i −0.0149739 + 0.0149739i
\(509\) −18.5630 + 32.1521i −0.0364696 + 0.0631672i −0.883684 0.468084i \(-0.844945\pi\)
0.847215 + 0.531251i \(0.178278\pi\)
\(510\) 53.7702 + 161.191i 0.105432 + 0.316061i
\(511\) 44.6565 + 77.3474i 0.0873904 + 0.151365i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 133.145 496.905i 0.259543 0.968626i
\(514\) 153.262 + 265.458i 0.298176 + 0.516456i
\(515\) −207.065 + 233.615i −0.402069 + 0.453621i
\(516\) 156.185 + 270.521i 0.302685 + 0.524266i
\(517\) −831.090 + 222.690i −1.60752 + 0.430735i
\(518\) 113.634 30.4480i 0.219370 0.0587799i
\(519\) 760.387i 1.46510i
\(520\) 173.851 59.7981i 0.334329 0.114996i
\(521\) 306.347 0.587998 0.293999 0.955806i \(-0.405014\pi\)
0.293999 + 0.955806i \(0.405014\pi\)
\(522\) −85.7467 320.011i −0.164266 0.613048i
\(523\) 200.278 + 747.447i 0.382940 + 1.42915i 0.841388 + 0.540431i \(0.181739\pi\)
−0.458448 + 0.888721i \(0.651594\pi\)
\(524\) 266.091 153.628i 0.507807 0.293182i
\(525\) 104.910 + 867.514i 0.199828 + 1.65241i
\(526\) 171.838 99.2108i 0.326689 0.188614i
\(527\) 195.379 + 52.3518i 0.370739 + 0.0993392i
\(528\) −182.943 182.943i −0.346484 0.346484i
\(529\) −103.886 + 59.9783i −0.196381 + 0.113381i
\(530\) −240.445 120.155i −0.453669 0.226708i
\(531\) 266.139 + 153.656i 0.501204 + 0.289370i
\(532\) 429.949 + 429.949i 0.808175 + 0.808175i
\(533\) −42.5331 + 25.0875i −0.0797995 + 0.0470685i
\(534\) 62.0274i 0.116156i
\(535\) 214.553 71.5707i 0.401034 0.133777i
\(536\) 63.7643 110.443i 0.118963 0.206050i
\(537\) 168.461 628.705i 0.313708 1.17077i
\(538\) −478.176 478.176i −0.888802 0.888802i
\(539\) −352.801 611.069i −0.654547 1.13371i
\(540\) −156.699 32.0297i −0.290183 0.0593143i
\(541\) 407.027i 0.752360i 0.926547 + 0.376180i \(0.122763\pi\)
−0.926547 + 0.376180i \(0.877237\pi\)
\(542\) 83.6970 312.361i 0.154422 0.576312i
\(543\) −86.1323 321.450i −0.158623 0.591989i
\(544\) 18.3802 31.8354i 0.0337870 0.0585209i
\(545\) −155.908 + 9.39287i −0.286070 + 0.0172346i
\(546\) 160.532 622.236i 0.294015 1.13963i
\(547\) 80.1695 + 80.1695i 0.146562 + 0.146562i 0.776580 0.630018i \(-0.216953\pi\)
−0.630018 + 0.776580i \(0.716953\pi\)
\(548\) −38.7421 + 10.3809i −0.0706973 + 0.0189433i
\(549\) 181.626 + 104.862i 0.330831 + 0.191005i
\(550\) 87.1816 612.215i 0.158512 1.11312i
\(551\) 1611.78i 2.92518i
\(552\) −257.371 68.9623i −0.466252 0.124932i
\(553\) −336.979 + 1257.62i −0.609366 + 2.27418i
\(554\) 140.873 0.254283
\(555\) 135.776 89.6900i 0.244642 0.161604i
\(556\) 196.482 340.316i 0.353384 0.612079i
\(557\) −43.1606 161.077i −0.0774876 0.289187i 0.916298 0.400496i \(-0.131162\pi\)
−0.993786 + 0.111309i \(0.964496\pi\)
\(558\) 145.515 145.515i 0.260780 0.260780i
\(559\) 384.613 391.844i 0.688037 0.700973i
\(560\) 125.392 141.469i 0.223914 0.252623i
\(561\) −364.004 210.158i −0.648849 0.374613i
\(562\) 326.404 87.4597i 0.580790 0.155622i
\(563\) −1020.80 273.522i −1.81314 0.485830i −0.817242 0.576295i \(-0.804498\pi\)
−0.995900 + 0.0904650i \(0.971165\pi\)
\(564\) −363.822 −0.645074
\(565\) 15.3398 + 3.13551i 0.0271501 + 0.00554958i
\(566\) −656.919 + 379.273i −1.16063 + 0.670093i
\(567\) −676.511 + 676.511i −1.19314 + 1.19314i
\(568\) −92.9903 24.9167i −0.163715 0.0438674i
\(569\) −942.817 544.336i −1.65697 0.956654i −0.974100 0.226116i \(-0.927397\pi\)
−0.682872 0.730538i \(-0.739269\pi\)
\(570\) 752.345 + 375.964i 1.31990 + 0.659585i
\(571\) 561.397 0.983182 0.491591 0.870826i \(-0.336415\pi\)
0.491591 + 0.870826i \(0.336415\pi\)
\(572\) −223.702 + 395.934i −0.391088 + 0.692192i
\(573\) 223.314 223.314i 0.389728 0.389728i
\(574\) −25.3878 + 43.9730i −0.0442296 + 0.0766079i
\(575\) −237.495 590.926i −0.413035 1.02770i
\(576\) −18.6998 32.3890i −0.0324650 0.0562310i
\(577\) 426.261 426.261i 0.738754 0.738754i −0.233583 0.972337i \(-0.575045\pi\)
0.972337 + 0.233583i \(0.0750449\pi\)
\(578\) −90.3245 + 337.096i −0.156271 + 0.583211i
\(579\) 69.5237 + 120.419i 0.120076 + 0.207977i
\(580\) −500.198 + 30.1350i −0.862410 + 0.0519569i
\(581\) −198.270 343.413i −0.341256 0.591073i
\(582\) −209.196 + 56.0538i −0.359443 + 0.0963123i
\(583\) 642.228 172.084i 1.10159 0.295171i
\(584\) 26.7260i 0.0457637i
\(585\) −21.0979 303.139i −0.0360648 0.518186i
\(586\) 307.470 0.524693
\(587\) −72.7637 271.558i −0.123959 0.462620i 0.875842 0.482598i \(-0.160307\pi\)
−0.999800 + 0.0199785i \(0.993640\pi\)
\(588\) −77.2218 288.196i −0.131330 0.490129i
\(589\) 867.037 500.584i 1.47205 0.849888i
\(590\) 308.318 347.849i 0.522573 0.589575i
\(591\) −452.080 + 261.009i −0.764941 + 0.441639i
\(592\) −34.0036 9.11124i −0.0574386 0.0153906i
\(593\) 567.870 + 567.870i 0.957622 + 0.957622i 0.999138 0.0415159i \(-0.0132187\pi\)
−0.0415159 + 0.999138i \(0.513219\pi\)
\(594\) 342.616 197.810i 0.576795 0.333013i
\(595\) 137.285 274.722i 0.230731 0.461718i
\(596\) 112.432 + 64.9128i 0.188645 + 0.108914i
\(597\) −820.774 820.774i −1.37483 1.37483i
\(598\) 4.36148 + 468.325i 0.00729345 + 0.783152i
\(599\) 1001.31i 1.67163i −0.549008 0.835817i \(-0.684994\pi\)
0.549008 0.835817i \(-0.315006\pi\)
\(600\) 102.610 240.512i 0.171017 0.400853i
\(601\) −222.873 + 386.027i −0.370837 + 0.642308i −0.989694 0.143195i \(-0.954262\pi\)
0.618858 + 0.785503i \(0.287596\pi\)
\(602\) 146.122 545.334i 0.242727 0.905871i
\(603\) −149.047 149.047i −0.247177 0.247177i
\(604\) −87.7534 151.993i −0.145287 0.251645i
\(605\) 509.635 + 771.504i 0.842372 + 1.27521i
\(606\) 289.386i 0.477535i
\(607\) −273.374 + 1020.25i −0.450370 + 1.68080i 0.250985 + 0.967991i \(0.419245\pi\)
−0.701355 + 0.712812i \(0.747421\pi\)
\(608\) −47.0920 175.750i −0.0774540 0.289062i
\(609\) −875.766 + 1516.87i −1.43804 + 2.49076i
\(610\) 210.411 237.389i 0.344936 0.389163i
\(611\) 171.259 + 616.139i 0.280294 + 1.00841i
\(612\) −42.9632 42.9632i −0.0702013 0.0702013i
\(613\) 608.358 163.009i 0.992428 0.265920i 0.274158 0.961685i \(-0.411601\pi\)
0.718270 + 0.695764i \(0.244934\pi\)
\(614\) 138.444 + 79.9309i 0.225479 + 0.130181i
\(615\) −14.0652 + 68.8111i −0.0228703 + 0.111888i
\(616\) 467.606i 0.759101i
\(617\) 1121.83 + 300.594i 1.81820 + 0.487186i 0.996564 0.0828220i \(-0.0263933\pi\)
0.821639 + 0.570008i \(0.193060\pi\)
\(618\) 84.5083 315.389i 0.136745 0.510339i
\(619\) −343.534 −0.554983 −0.277491 0.960728i \(-0.589503\pi\)
−0.277491 + 0.960728i \(0.589503\pi\)
\(620\) −171.562 259.717i −0.276713 0.418898i
\(621\) 203.719 352.852i 0.328050 0.568199i
\(622\) 145.659 + 543.605i 0.234178 + 0.873963i
\(623\) 79.2715 79.2715i 0.127242 0.127242i
\(624\) −134.700 + 137.233i −0.215866 + 0.219925i
\(625\) 606.983 148.985i 0.971173 0.238377i
\(626\) 296.598 + 171.241i 0.473799 + 0.273548i
\(627\) −2009.52 + 538.448i −3.20497 + 0.858769i
\(628\) 147.008 + 39.3907i 0.234089 + 0.0627240i
\(629\) −57.1907 −0.0909232
\(630\) −172.218 260.710i −0.273362 0.413825i
\(631\) 668.388 385.894i 1.05925 0.611560i 0.134027 0.990978i \(-0.457209\pi\)
0.925225 + 0.379418i \(0.123876\pi\)
\(632\) 275.493 275.493i 0.435907 0.435907i
\(633\) 303.324 + 81.2755i 0.479185 + 0.128397i
\(634\) −436.634 252.091i −0.688697 0.397619i
\(635\) 25.5119 8.51027i 0.0401762 0.0134020i
\(636\) 281.145 0.442051
\(637\) −451.715 + 266.437i −0.709129 + 0.418269i
\(638\) 876.471 876.471i 1.37378 1.37378i
\(639\) −79.5603 + 137.802i −0.124507 + 0.215653i
\(640\) −53.6617 + 17.9005i −0.0838463 + 0.0279695i
\(641\) −7.30475 12.6522i −0.0113959 0.0197382i 0.860271 0.509837i \(-0.170294\pi\)
−0.871667 + 0.490098i \(0.836961\pi\)
\(642\) −167.278 + 167.278i −0.260558 + 0.260558i
\(643\) −86.6236 + 323.284i −0.134718 + 0.502774i 0.865281 + 0.501287i \(0.167140\pi\)
−0.999999 + 0.00148702i \(0.999527\pi\)
\(644\) 240.788 + 417.056i 0.373894 + 0.647603i
\(645\) −46.9627 779.514i −0.0728104 1.20855i
\(646\) −147.797 255.992i −0.228788 0.396272i
\(647\) 270.270 72.4186i 0.417728 0.111930i −0.0438320 0.999039i \(-0.513957\pi\)
0.461560 + 0.887109i \(0.347290\pi\)
\(648\) 276.537 74.0977i 0.426754 0.114348i
\(649\) 1149.77i 1.77160i
\(650\) −455.613 60.5574i −0.700942 0.0931653i
\(651\) −1087.98 −1.67124
\(652\) 30.1825 + 112.642i 0.0462921 + 0.172764i
\(653\) −165.312 616.953i −0.253158 0.944798i −0.969106 0.246645i \(-0.920672\pi\)
0.715948 0.698153i \(-0.245995\pi\)
\(654\) 141.480 81.6833i 0.216330 0.124898i
\(655\) −766.748 + 46.1936i −1.17061 + 0.0705246i
\(656\) 13.1584 7.59703i 0.0200586 0.0115808i
\(657\) −42.6687 11.4330i −0.0649448 0.0174019i
\(658\) 464.967 + 464.967i 0.706636 + 0.706636i
\(659\) 131.955 76.1841i 0.200235 0.115606i −0.396530 0.918022i \(-0.629786\pi\)
0.596765 + 0.802416i \(0.296452\pi\)
\(660\) 204.673 + 613.565i 0.310111 + 0.929644i
\(661\) −1072.17 619.016i −1.62204 0.936484i −0.986374 0.164519i \(-0.947393\pi\)
−0.635665 0.771965i \(-0.719274\pi\)
\(662\) 392.082 + 392.082i 0.592268 + 0.592268i
\(663\) −153.674 + 271.989i −0.231785 + 0.410240i
\(664\) 118.660i 0.178705i
\(665\) −481.019 1441.99i −0.723336 2.16840i
\(666\) −29.0927 + 50.3900i −0.0436827 + 0.0756607i
\(667\) 330.395 1233.05i 0.495344 1.84865i
\(668\) 271.772 + 271.772i 0.406844 + 0.406844i
\(669\) 329.692 + 571.044i 0.492813 + 0.853578i
\(670\) −266.021 + 175.726i −0.397047 + 0.262278i
\(671\) 784.656i 1.16938i
\(672\) −51.1753 + 190.989i −0.0761537 + 0.284210i
\(673\) 132.439 + 494.268i 0.196789 + 0.734425i 0.991797 + 0.127826i \(0.0408000\pi\)
−0.795008 + 0.606599i \(0.792533\pi\)
\(674\) −63.1684 + 109.411i −0.0937217 + 0.162331i
\(675\) 314.634 + 246.745i 0.466124 + 0.365549i
\(676\) 295.813 + 163.519i 0.437594 + 0.241892i
\(677\) −67.6239 67.6239i −0.0998876 0.0998876i 0.655397 0.755285i \(-0.272501\pi\)
−0.755285 + 0.655397i \(0.772501\pi\)
\(678\) −15.8183 + 4.23851i −0.0233309 + 0.00625149i
\(679\) 338.991 + 195.716i 0.499250 + 0.288242i
\(680\) −76.6810 + 50.6534i −0.112766 + 0.0744903i
\(681\) 866.936i 1.27303i
\(682\) 743.701 + 199.274i 1.09047 + 0.292191i
\(683\) −275.294 + 1027.41i −0.403066 + 1.50426i 0.404530 + 0.914525i \(0.367435\pi\)
−0.807596 + 0.589736i \(0.799232\pi\)
\(684\) −300.735 −0.439670
\(685\) 98.2406 + 20.0807i 0.143417 + 0.0293149i
\(686\) 57.8709 100.235i 0.0843599 0.146116i
\(687\) 57.7922 + 215.683i 0.0841226 + 0.313950i
\(688\) −119.460 + 119.460i −0.173634 + 0.173634i
\(689\) −132.341 476.124i −0.192077 0.691036i
\(690\) 498.495 + 441.843i 0.722456 + 0.640352i
\(691\) 388.292 + 224.180i 0.561928 + 0.324429i 0.753919 0.656968i \(-0.228161\pi\)
−0.191991 + 0.981397i \(0.561495\pi\)
\(692\) −397.233 + 106.438i −0.574036 + 0.153813i
\(693\) 746.545 + 200.036i 1.07727 + 0.288652i
\(694\) −217.247 −0.313036
\(695\) −819.711 + 541.479i −1.17944 + 0.779106i
\(696\) 453.907 262.064i 0.652166 0.376528i
\(697\) 17.4543 17.4543i 0.0250421 0.0250421i
\(698\) −851.740 228.223i −1.22026 0.326967i
\(699\) −907.377 523.875i −1.29811 0.749463i
\(700\) −438.512 + 176.240i −0.626446 + 0.251771i
\(701\) −914.172 −1.30410 −0.652049 0.758177i \(-0.726090\pi\)
−0.652049 + 0.758177i \(0.726090\pi\)
\(702\) −149.387 253.269i −0.212802 0.360782i
\(703\) −200.162 + 200.162i −0.284726 + 0.284726i
\(704\) 69.9630 121.180i 0.0993793 0.172130i
\(705\) 813.620 + 406.584i 1.15407 + 0.576715i
\(706\) 162.448 + 281.368i 0.230096 + 0.398539i
\(707\) 369.838 369.838i 0.523108 0.523108i
\(708\) −125.832 + 469.611i −0.177729 + 0.663292i
\(709\) −219.284 379.812i −0.309287 0.535700i 0.668920 0.743335i \(-0.266757\pi\)
−0.978207 + 0.207634i \(0.933424\pi\)
\(710\) 180.110 + 159.642i 0.253677 + 0.224847i
\(711\) −321.979 557.685i −0.452854 0.784367i
\(712\) −32.4037 + 8.68255i −0.0455108 + 0.0121946i
\(713\) 765.919 205.227i 1.07422 0.287836i
\(714\) 321.224i 0.449894i
\(715\) 942.740 635.438i 1.31852 0.888724i
\(716\) 352.022 0.491651
\(717\) 391.785 + 1462.16i 0.546423 + 2.03928i
\(718\) −51.3417 191.610i −0.0715066 0.266866i
\(719\) −434.435 + 250.821i −0.604222 + 0.348847i −0.770701 0.637198i \(-0.780094\pi\)
0.166479 + 0.986045i \(0.446760\pi\)
\(720\) 5.62277 + 93.3299i 0.00780940 + 0.129625i
\(721\) −511.072 + 295.068i −0.708838 + 0.409248i
\(722\) −920.088 246.537i −1.27436 0.341464i
\(723\) −918.147 918.147i −1.26991 1.26991i
\(724\) 155.872 89.9927i 0.215293 0.124299i
\(725\) 1152.28 + 491.598i 1.58935 + 0.678067i
\(726\) −837.545 483.557i −1.15364 0.666056i
\(727\) 113.132 + 113.132i 0.155614 + 0.155614i 0.780620 0.625006i \(-0.214903\pi\)
−0.625006 + 0.780620i \(0.714903\pi\)
\(728\) 347.533 3.23655i 0.477380 0.00444581i
\(729\) 59.1073i 0.0810800i
\(730\) −29.8673 + 59.7677i −0.0409141 + 0.0818736i
\(731\) −137.231 + 237.691i −0.187730 + 0.325158i
\(732\) −85.8737 + 320.485i −0.117314 + 0.437821i
\(733\) −278.092 278.092i −0.379389 0.379389i 0.491493 0.870882i \(-0.336451\pi\)
−0.870882 + 0.491493i \(0.836451\pi\)
\(734\) 252.632 + 437.571i 0.344185 + 0.596146i
\(735\) −149.377 + 730.795i −0.203234 + 0.994279i
\(736\) 144.106i 0.195797i
\(737\) 204.111 761.754i 0.276949 1.03359i
\(738\) −6.49983 24.2577i −0.00880736 0.0328695i
\(739\) −223.070 + 386.368i −0.301853 + 0.522826i −0.976556 0.215264i \(-0.930939\pi\)
0.674702 + 0.738090i \(0.264272\pi\)
\(740\) 65.8607 + 58.3759i 0.0890010 + 0.0788864i
\(741\) 414.093 + 1489.78i 0.558830 + 2.01050i
\(742\) −359.305 359.305i −0.484238 0.484238i
\(743\) −911.785 + 244.312i −1.22717 + 0.328818i −0.813476 0.581599i \(-0.802427\pi\)
−0.413691 + 0.910417i \(0.635761\pi\)
\(744\) 281.948 + 162.783i 0.378963 + 0.218794i
\(745\) −178.892 270.813i −0.240123 0.363507i
\(746\) 649.759i 0.870991i
\(747\) 189.444 + 50.7614i 0.253607 + 0.0679537i
\(748\) 58.8354 219.577i 0.0786570 0.293552i
\(749\) 427.565 0.570848
\(750\) −498.249 + 423.190i −0.664332 + 0.564254i
\(751\) 368.361 638.020i 0.490494 0.849560i −0.509446 0.860502i \(-0.670150\pi\)
0.999940 + 0.0109424i \(0.00348315\pi\)
\(752\) −50.9274 190.064i −0.0677226 0.252744i
\(753\) −325.258 + 325.258i −0.431949 + 0.431949i
\(754\) −657.475 645.342i −0.871982 0.855891i
\(755\) 26.3862 + 437.973i 0.0349486 + 0.580097i
\(756\) −261.843 151.175i −0.346353 0.199967i
\(757\) 1151.63 308.577i 1.52130 0.407632i 0.601132 0.799150i \(-0.294717\pi\)
0.920170 + 0.391518i \(0.128050\pi\)
\(758\) 450.000 + 120.577i 0.593668 + 0.159073i
\(759\) −1647.70 −2.17089
\(760\) −91.0942 + 445.659i −0.119861 + 0.586394i
\(761\) −601.652 + 347.364i −0.790608 + 0.456458i −0.840176 0.542313i \(-0.817549\pi\)
0.0495687 + 0.998771i \(0.484215\pi\)
\(762\) −19.8906 + 19.8906i −0.0261031 + 0.0261031i
\(763\) −285.204 76.4202i −0.373793 0.100157i
\(764\) 147.921 + 85.4020i 0.193613 + 0.111783i
\(765\) 48.0663 + 144.092i 0.0628318 + 0.188356i
\(766\) −352.185 −0.459771
\(767\) 854.527 7.95816i 1.11412 0.0103757i
\(768\) 41.8377 41.8377i 0.0544762 0.0544762i
\(769\) 518.417 897.925i 0.674145 1.16765i −0.302573 0.953126i \(-0.597846\pi\)
0.976718 0.214527i \(-0.0688209\pi\)
\(770\) 522.567 1045.71i 0.678658 1.35807i
\(771\) 400.759 + 694.135i 0.519791 + 0.900305i
\(772\) −53.1759 + 53.1759i −0.0688808 + 0.0688808i
\(773\) 157.270 586.940i 0.203454 0.759301i −0.786461 0.617640i \(-0.788089\pi\)
0.989915 0.141661i \(-0.0452444\pi\)
\(774\) 139.617 + 241.825i 0.180384 + 0.312435i
\(775\) 93.4237 + 772.535i 0.120547 + 0.996820i
\(776\) −58.5660 101.439i −0.0754717 0.130721i
\(777\) 297.135 79.6172i 0.382414 0.102467i
\(778\) 211.851 56.7654i 0.272303 0.0729633i
\(779\) 122.177i 0.156838i
\(780\) 454.596 156.364i 0.582815 0.200466i
\(781\) −595.330 −0.762266
\(782\) −60.5931 226.137i −0.0774848 0.289177i
\(783\) 207.433 + 774.152i 0.264921 + 0.988700i
\(784\) 139.747 80.6828i 0.178248 0.102912i
\(785\) −284.736 252.377i −0.362721 0.321499i
\(786\) 695.789 401.714i 0.885228 0.511087i
\(787\) 1396.31 + 374.141i 1.77422 + 0.475402i 0.989511 0.144459i \(-0.0461440\pi\)
0.784712 + 0.619860i \(0.212811\pi\)
\(788\) −199.635 199.635i −0.253344 0.253344i
\(789\) 449.332 259.422i 0.569496 0.328799i
\(790\) −923.964 + 308.216i −1.16957 + 0.390147i
\(791\) 25.6328 + 14.7991i 0.0324055 + 0.0187093i
\(792\) −163.537 163.537i −0.206486 0.206486i
\(793\) 583.170 5.43103i 0.735398 0.00684871i
\(794\) 906.447i 1.14162i
\(795\) −628.728 314.189i −0.790853 0.395207i
\(796\) 313.889 543.671i 0.394333 0.683004i
\(797\) −315.082 + 1175.90i −0.395335 + 1.47541i 0.425873 + 0.904783i \(0.359967\pi\)
−0.821208 + 0.570629i \(0.806700\pi\)
\(798\) 1124.26 + 1124.26i 1.40884 + 1.40884i
\(799\) −159.834 276.841i −0.200043 0.346484i
\(800\) 140.009 + 19.9378i 0.175011 + 0.0249222i
\(801\) 55.4477i 0.0692231i
\(802\) −120.404 + 449.352i −0.150129 + 0.560290i
\(803\) −42.7753 159.640i −0.0532694 0.198804i
\(804\) 166.734 288.793i 0.207381 0.359195i
\(805\) −72.4014 1201.76i −0.0899396 1.49287i
\(806\) 142.956 554.111i 0.177365 0.687483i
\(807\) −1250.36 1250.36i −1.54939 1.54939i
\(808\) −151.178 + 40.5080i −0.187101 + 0.0501337i
\(809\) 319.941 + 184.718i 0.395477 + 0.228329i 0.684530 0.728984i \(-0.260007\pi\)
−0.289054 + 0.957313i \(0.593341\pi\)
\(810\) −701.230 143.334i −0.865716 0.176955i
\(811\) 1148.78i 1.41650i 0.705962 + 0.708250i \(0.250515\pi\)
−0.705962 + 0.708250i \(0.749485\pi\)
\(812\) −915.016 245.178i −1.12687 0.301943i
\(813\) 218.856 816.780i 0.269195 1.00465i
\(814\) −217.693 −0.267437
\(815\) 58.3846 285.634i 0.0716375 0.350471i
\(816\) 48.0615 83.2449i 0.0588989 0.102016i
\(817\) 351.601 + 1312.19i 0.430356 + 1.60611i
\(818\) 249.632 249.632i 0.305174 0.305174i
\(819\) 143.503 556.230i 0.175217 0.679157i
\(820\) −37.9164 + 2.28432i −0.0462395 + 0.00278575i
\(821\) −320.125 184.824i −0.389921 0.225121i 0.292205 0.956356i \(-0.405611\pi\)
−0.682126 + 0.731235i \(0.738944\pi\)
\(822\) −101.305 + 27.1446i −0.123242 + 0.0330226i
\(823\) 913.862 + 244.869i 1.11040 + 0.297532i 0.766994 0.641654i \(-0.221751\pi\)
0.343409 + 0.939186i \(0.388418\pi\)
\(824\) 176.592 0.214310
\(825\) 227.967 1600.86i 0.276324 1.94043i
\(826\) 760.980 439.352i 0.921283 0.531903i
\(827\) −365.329 + 365.329i −0.441752 + 0.441752i −0.892600 0.450849i \(-0.851121\pi\)
0.450849 + 0.892600i \(0.351121\pi\)
\(828\) −230.069 61.6469i −0.277862 0.0744528i
\(829\) −446.303 257.673i −0.538363 0.310824i 0.206052 0.978541i \(-0.433938\pi\)
−0.744415 + 0.667717i \(0.767272\pi\)
\(830\) 132.607 265.362i 0.159768 0.319713i
\(831\) 368.362 0.443275
\(832\) −90.5470 51.1590i −0.108831 0.0614892i
\(833\) 185.370 185.370i 0.222533 0.222533i
\(834\) 513.771 889.878i 0.616033 1.06700i
\(835\) −304.053 911.483i −0.364135 1.09160i
\(836\) −562.580 974.418i −0.672943 1.16557i
\(837\) −352.022 + 352.022i −0.420576 + 0.420576i
\(838\) −135.535 + 505.822i −0.161736 + 0.603607i
\(839\) −731.619 1267.20i −0.872014 1.51037i −0.859910 0.510445i \(-0.829481\pi\)
−0.0121034 0.999927i \(-0.503853\pi\)
\(840\) 327.881 369.921i 0.390335 0.440382i
\(841\) 835.031 + 1446.32i 0.992903 + 1.71976i
\(842\) 220.940 59.2008i 0.262400 0.0703098i
\(843\) 853.500 228.695i 1.01246 0.271287i
\(844\) 169.836i 0.201228i
\(845\) −478.794 696.263i −0.566620 0.823979i
\(846\) −325.228 −0.384430
\(847\) 452.400 + 1688.38i 0.534120 + 1.99336i
\(848\) 39.3544 + 146.872i 0.0464084 + 0.173199i
\(849\) −1717.75 + 991.744i −2.02326 + 1.16813i
\(850\) 228.090 27.5832i 0.268341 0.0324509i
\(851\) −194.160 + 112.098i −0.228155 + 0.131725i
\(852\) −243.156 65.1535i −0.285395 0.0764713i
\(853\) −349.156 349.156i −0.409327 0.409327i 0.472177 0.881504i \(-0.343468\pi\)
−0.881504 + 0.472177i \(0.843468\pi\)
\(854\) 519.329 299.835i 0.608114 0.351095i
\(855\) 672.538 + 336.082i 0.786594 + 0.393078i
\(856\) −110.803 63.9721i −0.129443 0.0747338i
\(857\) −561.853 561.853i −0.655605 0.655605i 0.298732 0.954337i \(-0.403436\pi\)
−0.954337 + 0.298732i \(0.903436\pi\)
\(858\) −584.950 + 1035.31i −0.681760 + 1.20666i
\(859\) 909.479i 1.05877i 0.848383 + 0.529383i \(0.177576\pi\)
−0.848383 + 0.529383i \(0.822424\pi\)
\(860\) 400.651 133.649i 0.465874 0.155406i
\(861\) −66.3855 + 114.983i −0.0771027 + 0.133546i
\(862\) −229.333 + 855.882i −0.266047 + 0.992902i
\(863\) 580.010 + 580.010i 0.672085 + 0.672085i 0.958196 0.286111i \(-0.0923627\pi\)
−0.286111 + 0.958196i \(0.592363\pi\)
\(864\) 45.2375 + 78.3537i 0.0523582 + 0.0906871i
\(865\) 1007.29 + 205.893i 1.16449 + 0.238027i
\(866\) 406.096i 0.468933i
\(867\) −236.186 + 881.457i −0.272417 + 1.01668i
\(868\) −152.294 568.370i −0.175454 0.654804i
\(869\) 1204.65 2086.51i 1.38624 2.40105i
\(870\) −1307.95 + 78.7988i −1.50339 + 0.0905733i
\(871\) −567.562 146.427i −0.651621 0.168113i
\(872\) 62.4763 + 62.4763i 0.0716471 + 0.0716471i
\(873\) −187.004 + 50.1077i −0.214209 + 0.0573971i
\(874\) −1003.53 579.387i −1.14820 0.662914i
\(875\) 1177.61 + 95.9260i 1.34584 + 0.109630i
\(876\) 69.8846i 0.0797769i
\(877\) −752.336 201.588i −0.857852 0.229861i −0.197024 0.980399i \(-0.563128\pi\)
−0.660827 + 0.750538i \(0.729794\pi\)
\(878\) −98.8393 + 368.873i −0.112573 + 0.420129i
\(879\) 803.990 0.914664
\(880\) −291.882 + 192.810i −0.331684 + 0.219102i
\(881\) 437.302 757.429i 0.496370 0.859738i −0.503621 0.863925i \(-0.667999\pi\)
0.999991 + 0.00418638i \(0.00133257\pi\)
\(882\) −69.0302 257.624i −0.0782656 0.292091i
\(883\) 1029.02 1029.02i 1.16537 1.16537i 0.182083 0.983283i \(-0.441716\pi\)
0.983283 0.182083i \(-0.0582839\pi\)
\(884\) −163.601 42.2077i −0.185068 0.0477463i
\(885\) 806.207 909.577i 0.910969 1.02777i
\(886\) 278.319 + 160.688i 0.314130 + 0.181363i
\(887\) −561.678 + 150.501i −0.633233 + 0.169674i −0.561137 0.827723i \(-0.689636\pi\)
−0.0720969 + 0.997398i \(0.522969\pi\)
\(888\) −88.9146 23.8246i −0.100129 0.0268295i
\(889\) 50.8406 0.0571885
\(890\) 82.1680 + 16.7954i 0.0923236 + 0.0188713i
\(891\) 1533.21 885.202i 1.72078 0.993493i
\(892\) −252.168 + 252.168i −0.282700 + 0.282700i
\(893\) −1528.32 409.513i −1.71145 0.458581i
\(894\) 293.994 + 169.738i 0.328852 + 0.189863i
\(895\) −787.233 393.398i −0.879590 0.439551i
\(896\) −106.938 −0.119350
\(897\) 11.4047 + 1224.60i 0.0127142 + 1.36522i
\(898\) −300.923 + 300.923i −0.335104 + 0.335104i
\(899\) −779.884 + 1350.80i −0.867501 + 1.50256i
\(900\) 91.7253 214.999i 0.101917 0.238887i
\(901\) 123.512 + 213.930i 0.137084 + 0.237436i
\(902\) 66.4389 66.4389i 0.0736573 0.0736573i
\(903\) 382.088 1425.97i 0.423131 1.57915i
\(904\) −4.42847 7.67034i −0.00489875 0.00848489i
\(905\) −449.149 + 27.0595i −0.496297 + 0.0299000i
\(906\) −229.463 397.441i −0.253270 0.438676i
\(907\) 61.2317 16.4070i 0.0675101 0.0180893i −0.224906 0.974380i \(-0.572207\pi\)
0.292416 + 0.956291i \(0.405541\pi\)
\(908\) 452.896 121.353i 0.498784 0.133649i
\(909\) 258.688i 0.284586i
\(910\) −780.810 381.143i −0.858033 0.418838i
\(911\) 419.896 0.460918 0.230459 0.973082i \(-0.425977\pi\)
0.230459 + 0.973082i \(0.425977\pi\)
\(912\) −123.139 459.560i −0.135021 0.503904i
\(913\) 189.918 + 708.782i 0.208015 + 0.776322i
\(914\) 596.126 344.173i 0.652216 0.376557i
\(915\) 550.194 620.739i 0.601305 0.678403i
\(916\) −104.585 + 60.3824i −0.114176 + 0.0659196i
\(917\) −1402.62 375.830i −1.52957 0.409848i
\(918\) 103.934 + 103.934i 0.113218 + 0.113218i
\(919\) 822.676 474.972i 0.895186 0.516836i 0.0195506 0.999809i \(-0.493776\pi\)
0.875635 + 0.482973i \(0.160443\pi\)
\(920\) −161.044 + 322.267i −0.175048 + 0.350290i
\(921\) 362.012 + 209.008i 0.393064 + 0.226936i
\(922\) 185.973 + 185.973i 0.201706 + 0.201706i
\(923\) 4.12060 + 442.459i 0.00446435 + 0.479371i
\(924\) 1222.72i 1.32329i
\(925\) −82.0481 204.149i −0.0887007 0.220701i
\(926\) 461.114 798.673i 0.497963 0.862497i
\(927\) 75.5438 281.933i 0.0814928 0.304135i
\(928\) 200.442 + 200.442i 0.215994 + 0.215994i
\(929\) 218.968 + 379.264i 0.235703 + 0.408249i 0.959477 0.281788i \(-0.0909274\pi\)
−0.723774 + 0.690037i \(0.757594\pi\)
\(930\) −448.610 679.122i −0.482376 0.730239i
\(931\) 1297.56i 1.39372i
\(932\) 146.663 547.354i 0.157364 0.587290i
\(933\) 380.876 + 1421.45i 0.408227 + 1.52353i
\(934\) −304.019 + 526.576i −0.325502 + 0.563786i
\(935\) −376.960 + 425.293i −0.403166 + 0.454858i
\(936\) −120.412 + 122.675i −0.128645 + 0.131064i
\(937\) −987.175 987.175i −1.05355 1.05355i −0.998483 0.0550653i \(-0.982463\pi\)
−0.0550653 0.998483i \(-0.517537\pi\)
\(938\) −582.167 + 155.991i −0.620647 + 0.166302i
\(939\) 775.563 + 447.771i 0.825945 + 0.476860i
\(940\) −98.5134 + 481.956i −0.104801 + 0.512719i
\(941\) 1057.32i 1.12361i −0.827270 0.561804i \(-0.810107\pi\)
0.827270 0.561804i \(-0.189893\pi\)
\(942\) 384.405 + 103.001i 0.408073 + 0.109343i
\(943\) 25.0448 93.4685i 0.0265587 0.0991183i
\(944\) −262.943 −0.278541
\(945\) 416.620 + 630.694i 0.440867 + 0.667401i
\(946\) −522.362 + 904.757i −0.552179 + 0.956403i
\(947\) −152.169 567.901i −0.160685 0.599684i −0.998551 0.0538088i \(-0.982864\pi\)
0.837866 0.545875i \(-0.183803\pi\)
\(948\) 720.375 720.375i 0.759889 0.759889i
\(949\) −118.351 + 32.8963i −0.124711 + 0.0346642i
\(950\) 701.756 894.834i 0.738691 0.941930i
\(951\) −1141.73 659.181i −1.20056 0.693145i
\(952\) −167.811 + 44.9647i −0.176272 + 0.0472318i
\(953\) −1248.44 334.517i −1.31001 0.351015i −0.464781 0.885426i \(-0.653867\pi\)
−0.845225 + 0.534411i \(0.820533\pi\)
\(954\) 251.321 0.263439
\(955\) −235.357 356.293i −0.246447 0.373081i
\(956\) −709.005 + 409.344i −0.741637 + 0.428184i
\(957\) 2291.85 2291.85i 2.39482 2.39482i
\(958\) −26.1341 7.00261i −0.0272798 0.00730961i
\(959\) 164.160 + 94.7776i 0.171178 + 0.0988296i
\(960\) −140.318 + 46.8072i −0.146164 + 0.0487575i
\(961\) −7.86231 −0.00818138
\(962\) 1.50677 + 161.793i 0.00156629 + 0.168184i
\(963\) −149.533 + 149.533i −0.155279 + 0.155279i
\(964\) 351.127 608.170i 0.364240 0.630881i
\(965\) 178.344 59.4922i 0.184813 0.0616499i
\(966\) 629.625 + 1090.54i 0.651786 + 1.12893i
\(967\) 1041.20 1041.20i 1.07673 1.07673i 0.0799303 0.996800i \(-0.474530\pi\)
0.996800 0.0799303i \(-0.0254698\pi\)
\(968\) 135.376 505.229i 0.139851 0.521931i
\(969\) −386.467 669.381i −0.398831 0.690796i
\(970\) 17.6100 + 292.300i 0.0181546 + 0.301340i
\(971\) 834.105 + 1444.71i 0.859017 + 1.48786i 0.872868 + 0.487956i \(0.162257\pi\)
−0.0138515 + 0.999904i \(0.504409\pi\)
\(972\) 445.023 119.244i 0.457843 0.122679i
\(973\) −1793.87 + 480.667i −1.84365 + 0.494005i
\(974\) 467.585i 0.480067i
\(975\) −1191.36 158.349i −1.22191 0.162409i
\(976\) −179.445 −0.183857
\(977\) 356.831 + 1331.71i 0.365232 + 1.36306i 0.867106 + 0.498123i \(0.165977\pi\)
−0.501874 + 0.864940i \(0.667356\pi\)
\(978\) 78.9228 + 294.544i 0.0806982 + 0.301170i
\(979\) −179.657 + 103.725i −0.183511 + 0.105950i
\(980\) −402.684 + 24.2602i −0.410902 + 0.0247553i
\(981\) 126.472 73.0185i 0.128921 0.0744327i
\(982\) −298.345 79.9414i −0.303814 0.0814067i
\(983\) 84.2583 + 84.2583i 0.0857155 + 0.0857155i 0.748665 0.662949i \(-0.230695\pi\)
−0.662949 + 0.748665i \(0.730695\pi\)
\(984\) 34.4074 19.8651i 0.0349669 0.0201882i
\(985\) 223.348 + 669.547i 0.226749 + 0.679743i
\(986\) 398.821 + 230.260i 0.404484 + 0.233529i
\(987\) 1215.82 + 1215.82i 1.23184 + 1.23184i
\(988\) −720.310 + 424.864i −0.729059 + 0.430024i
\(989\) 1075.93i 1.08790i
\(990\) 182.962 + 548.479i 0.184810 + 0.554019i
\(991\) −887.074 + 1536.46i −0.895131 + 1.55041i −0.0614876 + 0.998108i \(0.519584\pi\)
−0.833643 + 0.552304i \(0.813749\pi\)
\(992\) −45.5724 + 170.079i −0.0459400 + 0.171450i
\(993\) 1025.24 + 1025.24i 1.03246 + 1.03246i
\(994\) 227.489 + 394.022i 0.228862 + 0.396401i
\(995\) −1309.53 + 865.039i −1.31611 + 0.869386i
\(996\) 310.280i 0.311526i
\(997\) 316.062 1179.56i 0.317013 1.18311i −0.605088 0.796158i \(-0.706862\pi\)
0.922101 0.386949i \(-0.126471\pi\)
\(998\) −93.9808 350.741i −0.0941692 0.351444i
\(999\) 70.3793 121.901i 0.0704498 0.122023i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.3.r.a.17.6 28
5.3 odd 4 130.3.r.b.43.2 yes 28
13.10 even 6 130.3.r.b.127.2 yes 28
65.23 odd 12 inner 130.3.r.a.23.6 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.3.r.a.17.6 28 1.1 even 1 trivial
130.3.r.a.23.6 yes 28 65.23 odd 12 inner
130.3.r.b.43.2 yes 28 5.3 odd 4
130.3.r.b.127.2 yes 28 13.10 even 6