Properties

Label 13.14.b.a.12.7
Level $13$
Weight $14$
Character 13.12
Analytic conductor $13.940$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [13,14,Mod(12,13)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(13, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 14, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("13.12"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Level: \( N \) \(=\) \( 13 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 13.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.9400207637\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 81921 x^{12} + 2522899104 x^{10} + 37246030694192 x^{8} + \cdots + 56\!\cdots\!64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{6}\cdot 13^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 12.7
Root \(-10.5212i\) of defining polynomial
Character \(\chi\) \(=\) 13.12
Dual form 13.14.b.a.12.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-10.5212i q^{2} -1591.09 q^{3} +8081.30 q^{4} -9424.40i q^{5} +16740.2i q^{6} +484840. i q^{7} -171215. i q^{8} +937259. q^{9} -99156.0 q^{10} -8.93854e6i q^{11} -1.28581e7 q^{12} +(4.96535e6 - 1.66799e7i) q^{13} +5.10109e6 q^{14} +1.49951e7i q^{15} +6.44007e7 q^{16} -1.57696e8 q^{17} -9.86109e6i q^{18} -3.07483e8i q^{19} -7.61615e7i q^{20} -7.71426e8i q^{21} -9.40441e7 q^{22} -6.52271e8 q^{23} +2.72419e8i q^{24} +1.13188e9 q^{25} +(-1.75493e8 - 5.22414e7i) q^{26} +1.04545e9 q^{27} +3.91814e9i q^{28} -1.77749e9 q^{29} +1.57767e8 q^{30} -5.73027e9i q^{31} -2.08016e9i q^{32} +1.42221e10i q^{33} +1.65915e9i q^{34} +4.56932e9 q^{35} +7.57428e9 q^{36} +4.96227e9i q^{37} -3.23509e9 q^{38} +(-7.90034e9 + 2.65394e10i) q^{39} -1.61360e9 q^{40} -1.33251e10i q^{41} -8.11632e9 q^{42} +3.47041e10 q^{43} -7.22350e10i q^{44} -8.83311e9i q^{45} +6.86267e9i q^{46} -5.71534e10i q^{47} -1.02468e11 q^{48} -1.38180e11 q^{49} -1.19088e10i q^{50} +2.50909e11 q^{51} +(4.01265e10 - 1.34796e11i) q^{52} -8.98677e10 q^{53} -1.09994e10i q^{54} -8.42404e10 q^{55} +8.30116e10 q^{56} +4.89235e11i q^{57} +1.87013e10i q^{58} -2.02674e11i q^{59} +1.21180e11i q^{60} +9.24532e10 q^{61} -6.02893e10 q^{62} +4.54420e11i q^{63} +5.05684e11 q^{64} +(-1.57198e11 - 4.67955e10i) q^{65} +1.49633e11 q^{66} -2.80350e11i q^{67} -1.27439e12 q^{68} +1.03782e12 q^{69} -4.80748e10i q^{70} +1.45170e12i q^{71} -1.60473e11i q^{72} +6.04461e11i q^{73} +5.22090e10 q^{74} -1.80093e12 q^{75} -2.48487e12i q^{76} +4.33376e12 q^{77} +(2.79226e11 + 8.31211e10i) q^{78} -2.70387e12 q^{79} -6.06938e11i q^{80} -3.15770e12 q^{81} -1.40196e11 q^{82} -3.96858e12i q^{83} -6.23413e12i q^{84} +1.48619e12i q^{85} -3.65129e11i q^{86} +2.82815e12 q^{87} -1.53041e12 q^{88} +5.41762e12i q^{89} -9.29349e10 q^{90} +(8.08710e12 + 2.40740e12i) q^{91} -5.27120e12 q^{92} +9.11740e12i q^{93} -6.01322e11 q^{94} -2.89785e12 q^{95} +3.30974e12i q^{96} +4.83182e12i q^{97} +1.45382e12i q^{98} -8.37773e12i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 1456 q^{3} - 49154 q^{4} + 5149262 q^{9} - 3968358 q^{10} - 21959110 q^{12} - 14362478 q^{13} + 72843942 q^{14} + 243447170 q^{16} - 178512492 q^{17} + 1330288056 q^{22} - 1641693744 q^{23} + 1601386654 q^{25}+ \cdots + 11940434574336 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/13\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 10.5212i 0.116244i −0.998309 0.0581220i \(-0.981489\pi\)
0.998309 0.0581220i \(-0.0185112\pi\)
\(3\) −1591.09 −1.26011 −0.630054 0.776551i \(-0.716967\pi\)
−0.630054 + 0.776551i \(0.716967\pi\)
\(4\) 8081.30 0.986487
\(5\) 9424.40i 0.269742i −0.990863 0.134871i \(-0.956938\pi\)
0.990863 0.134871i \(-0.0430620\pi\)
\(6\) 16740.2i 0.146480i
\(7\) 484840.i 1.55762i 0.627261 + 0.778809i \(0.284176\pi\)
−0.627261 + 0.778809i \(0.715824\pi\)
\(8\) 171215.i 0.230917i
\(9\) 937259. 0.587873
\(10\) −99156.0 −0.0313559
\(11\) 8.93854e6i 1.52130i −0.649164 0.760649i \(-0.724881\pi\)
0.649164 0.760649i \(-0.275119\pi\)
\(12\) −1.28581e7 −1.24308
\(13\) 4.96535e6 1.66799e7i 0.285311 0.958435i
\(14\) 5.10109e6 0.181064
\(15\) 1.49951e7i 0.339904i
\(16\) 6.44007e7 0.959645
\(17\) −1.57696e8 −1.58453 −0.792267 0.610174i \(-0.791099\pi\)
−0.792267 + 0.610174i \(0.791099\pi\)
\(18\) 9.86109e6i 0.0683366i
\(19\) 3.07483e8i 1.49942i −0.661767 0.749709i \(-0.730193\pi\)
0.661767 0.749709i \(-0.269807\pi\)
\(20\) 7.61615e7i 0.266097i
\(21\) 7.71426e8i 1.96277i
\(22\) −9.40441e7 −0.176842
\(23\) −6.52271e8 −0.918749 −0.459374 0.888243i \(-0.651926\pi\)
−0.459374 + 0.888243i \(0.651926\pi\)
\(24\) 2.72419e8i 0.290980i
\(25\) 1.13188e9 0.927239
\(26\) −1.75493e8 5.22414e7i −0.111412 0.0331656i
\(27\) 1.04545e9 0.519325
\(28\) 3.91814e9i 1.53657i
\(29\) −1.77749e9 −0.554906 −0.277453 0.960739i \(-0.589490\pi\)
−0.277453 + 0.960739i \(0.589490\pi\)
\(30\) 1.57767e8 0.0395118
\(31\) 5.73027e9i 1.15964i −0.814744 0.579821i \(-0.803122\pi\)
0.814744 0.579821i \(-0.196878\pi\)
\(32\) 2.08016e9i 0.342470i
\(33\) 1.42221e10i 1.91700i
\(34\) 1.65915e9i 0.184192i
\(35\) 4.56932e9 0.420155
\(36\) 7.57428e9 0.579929
\(37\) 4.96227e9i 0.317957i 0.987282 + 0.158979i \(0.0508201\pi\)
−0.987282 + 0.158979i \(0.949180\pi\)
\(38\) −3.23509e9 −0.174298
\(39\) −7.90034e9 + 2.65394e10i −0.359522 + 1.20773i
\(40\) −1.61360e9 −0.0622881
\(41\) 1.33251e10i 0.438101i −0.975714 0.219050i \(-0.929704\pi\)
0.975714 0.219050i \(-0.0702959\pi\)
\(42\) −8.11632e9 −0.228160
\(43\) 3.47041e10 0.837213 0.418606 0.908168i \(-0.362519\pi\)
0.418606 + 0.908168i \(0.362519\pi\)
\(44\) 7.22350e10i 1.50074i
\(45\) 8.83311e9i 0.158574i
\(46\) 6.86267e9i 0.106799i
\(47\) 5.71534e10i 0.773403i −0.922205 0.386701i \(-0.873614\pi\)
0.922205 0.386701i \(-0.126386\pi\)
\(48\) −1.02468e11 −1.20926
\(49\) −1.38180e11 −1.42617
\(50\) 1.19088e10i 0.107786i
\(51\) 2.50909e11 1.99668
\(52\) 4.01265e10 1.34796e11i 0.281455 0.945484i
\(53\) −8.98677e10 −0.556943 −0.278471 0.960445i \(-0.589828\pi\)
−0.278471 + 0.960445i \(0.589828\pi\)
\(54\) 1.09994e10i 0.0603683i
\(55\) −8.42404e10 −0.410358
\(56\) 8.30116e10 0.359680
\(57\) 4.89235e11i 1.88943i
\(58\) 1.87013e10i 0.0645044i
\(59\) 2.02674e11i 0.625548i −0.949828 0.312774i \(-0.898742\pi\)
0.949828 0.312774i \(-0.101258\pi\)
\(60\) 1.21180e11i 0.335311i
\(61\) 9.24532e10 0.229762 0.114881 0.993379i \(-0.463351\pi\)
0.114881 + 0.993379i \(0.463351\pi\)
\(62\) −6.02893e10 −0.134801
\(63\) 4.54420e11i 0.915681i
\(64\) 5.05684e11 0.919835
\(65\) −1.57198e11 4.67955e10i −0.258530 0.0769604i
\(66\) 1.49633e11 0.222839
\(67\) 2.80350e11i 0.378629i −0.981917 0.189314i \(-0.939373\pi\)
0.981917 0.189314i \(-0.0606266\pi\)
\(68\) −1.27439e12 −1.56312
\(69\) 1.03782e12 1.15772
\(70\) 4.80748e10i 0.0488405i
\(71\) 1.45170e12i 1.34492i 0.740132 + 0.672461i \(0.234763\pi\)
−0.740132 + 0.672461i \(0.765237\pi\)
\(72\) 1.60473e11i 0.135750i
\(73\) 6.04461e11i 0.467487i 0.972298 + 0.233744i \(0.0750976\pi\)
−0.972298 + 0.233744i \(0.924902\pi\)
\(74\) 5.22090e10 0.0369606
\(75\) −1.80093e12 −1.16842
\(76\) 2.48487e12i 1.47916i
\(77\) 4.33376e12 2.36960
\(78\) 2.79226e11 + 8.31211e10i 0.140391 + 0.0417923i
\(79\) −2.70387e12 −1.25144 −0.625719 0.780048i \(-0.715194\pi\)
−0.625719 + 0.780048i \(0.715194\pi\)
\(80\) 6.06938e11i 0.258857i
\(81\) −3.15770e12 −1.24228
\(82\) −1.40196e11 −0.0509266
\(83\) 3.96858e12i 1.33238i −0.745783 0.666189i \(-0.767925\pi\)
0.745783 0.666189i \(-0.232075\pi\)
\(84\) 6.23413e12i 1.93624i
\(85\) 1.48619e12i 0.427416i
\(86\) 3.65129e11i 0.0973209i
\(87\) 2.82815e12 0.699242
\(88\) −1.53041e12 −0.351293
\(89\) 5.41762e12i 1.15551i 0.816211 + 0.577755i \(0.196071\pi\)
−0.816211 + 0.577755i \(0.803929\pi\)
\(90\) −9.29349e10 −0.0184333
\(91\) 8.08710e12 + 2.40740e12i 1.49288 + 0.444405i
\(92\) −5.27120e12 −0.906334
\(93\) 9.11740e12i 1.46127i
\(94\) −6.01322e11 −0.0899034
\(95\) −2.89785e12 −0.404457
\(96\) 3.30974e12i 0.431549i
\(97\) 4.83182e12i 0.588971i 0.955656 + 0.294486i \(0.0951483\pi\)
−0.955656 + 0.294486i \(0.904852\pi\)
\(98\) 1.45382e12i 0.165784i
\(99\) 8.37773e12i 0.894329i
\(100\) 9.14710e12 0.914710
\(101\) 3.49579e12 0.327685 0.163842 0.986487i \(-0.447611\pi\)
0.163842 + 0.986487i \(0.447611\pi\)
\(102\) 2.63986e12i 0.232102i
\(103\) 1.10612e12 0.0912764 0.0456382 0.998958i \(-0.485468\pi\)
0.0456382 + 0.998958i \(0.485468\pi\)
\(104\) −2.85585e12 8.50141e11i −0.221319 0.0658831i
\(105\) −7.27023e12 −0.529441
\(106\) 9.45516e11i 0.0647412i
\(107\) −1.27698e13 −0.822601 −0.411300 0.911500i \(-0.634925\pi\)
−0.411300 + 0.911500i \(0.634925\pi\)
\(108\) 8.44860e12 0.512307
\(109\) 2.66370e12i 0.152130i 0.997103 + 0.0760648i \(0.0242356\pi\)
−0.997103 + 0.0760648i \(0.975764\pi\)
\(110\) 8.86310e11i 0.0477016i
\(111\) 7.89544e12i 0.400661i
\(112\) 3.12240e13i 1.49476i
\(113\) 2.11333e13 0.954898 0.477449 0.878659i \(-0.341562\pi\)
0.477449 + 0.878659i \(0.341562\pi\)
\(114\) 5.14734e12 0.219635
\(115\) 6.14726e12i 0.247825i
\(116\) −1.43644e13 −0.547408
\(117\) 4.65382e12 1.56334e13i 0.167726 0.563438i
\(118\) −2.13238e12 −0.0727162
\(119\) 7.64571e13i 2.46810i
\(120\) 2.56738e12 0.0784897
\(121\) −4.53747e13 −1.31434
\(122\) 9.72719e11i 0.0267084i
\(123\) 2.12014e13i 0.552055i
\(124\) 4.63080e13i 1.14397i
\(125\) 2.21717e13i 0.519858i
\(126\) 4.78105e12 0.106442
\(127\) −1.62029e13 −0.342665 −0.171332 0.985213i \(-0.554807\pi\)
−0.171332 + 0.985213i \(0.554807\pi\)
\(128\) 2.23611e13i 0.449395i
\(129\) −5.52175e13 −1.05498
\(130\) −4.92344e11 + 1.65392e12i −0.00894617 + 0.0300526i
\(131\) 3.39907e13 0.587620 0.293810 0.955864i \(-0.405077\pi\)
0.293810 + 0.955864i \(0.405077\pi\)
\(132\) 1.14933e14i 1.89110i
\(133\) 1.49080e14 2.33552
\(134\) −2.94961e12 −0.0440133
\(135\) 9.85275e12i 0.140084i
\(136\) 2.69998e13i 0.365896i
\(137\) 1.05808e14i 1.36720i 0.729855 + 0.683602i \(0.239587\pi\)
−0.729855 + 0.683602i \(0.760413\pi\)
\(138\) 1.09192e13i 0.134578i
\(139\) −1.00309e14 −1.17963 −0.589813 0.807540i \(-0.700799\pi\)
−0.589813 + 0.807540i \(0.700799\pi\)
\(140\) 3.69261e13 0.414478
\(141\) 9.09364e13i 0.974571i
\(142\) 1.52736e13 0.156339
\(143\) −1.49094e14 4.43830e13i −1.45806 0.434042i
\(144\) 6.03601e13 0.564149
\(145\) 1.67518e13i 0.149682i
\(146\) 6.35965e12 0.0543425
\(147\) 2.19858e14 1.79713
\(148\) 4.01016e13i 0.313661i
\(149\) 2.26562e14i 1.69619i −0.529840 0.848097i \(-0.677748\pi\)
0.529840 0.848097i \(-0.322252\pi\)
\(150\) 1.89480e13i 0.135822i
\(151\) 3.54725e13i 0.243524i 0.992559 + 0.121762i \(0.0388544\pi\)
−0.992559 + 0.121762i \(0.961146\pi\)
\(152\) −5.26456e13 −0.346241
\(153\) −1.47802e14 −0.931505
\(154\) 4.55963e13i 0.275451i
\(155\) −5.40044e13 −0.312804
\(156\) −6.38451e13 + 2.14473e14i −0.354664 + 1.19141i
\(157\) 2.09005e13 0.111381 0.0556903 0.998448i \(-0.482264\pi\)
0.0556903 + 0.998448i \(0.482264\pi\)
\(158\) 2.84479e13i 0.145472i
\(159\) 1.42988e14 0.701808
\(160\) −1.96043e13 −0.0923786
\(161\) 3.16247e14i 1.43106i
\(162\) 3.32228e13i 0.144407i
\(163\) 3.97849e11i 0.00166149i 1.00000 0.000830746i \(0.000264435\pi\)
−1.00000 0.000830746i \(0.999736\pi\)
\(164\) 1.07684e14i 0.432181i
\(165\) 1.34034e14 0.517095
\(166\) −4.17542e13 −0.154881
\(167\) 8.60410e13i 0.306936i −0.988154 0.153468i \(-0.950956\pi\)
0.988154 0.153468i \(-0.0490442\pi\)
\(168\) −1.32079e14 −0.453236
\(169\) −2.53566e14 1.65644e14i −0.837196 0.546904i
\(170\) 1.56365e13 0.0496845
\(171\) 2.88191e14i 0.881468i
\(172\) 2.80454e14 0.825900
\(173\) −1.16395e14 −0.330092 −0.165046 0.986286i \(-0.552777\pi\)
−0.165046 + 0.986286i \(0.552777\pi\)
\(174\) 2.97555e13i 0.0812826i
\(175\) 5.48782e14i 1.44428i
\(176\) 5.75648e14i 1.45990i
\(177\) 3.22474e14i 0.788258i
\(178\) 5.69998e13 0.134321
\(179\) −3.69710e14 −0.840071 −0.420036 0.907508i \(-0.637982\pi\)
−0.420036 + 0.907508i \(0.637982\pi\)
\(180\) 7.13830e13i 0.156431i
\(181\) 4.63653e14 0.980126 0.490063 0.871687i \(-0.336974\pi\)
0.490063 + 0.871687i \(0.336974\pi\)
\(182\) 2.53287e13 8.50859e13i 0.0516594 0.173538i
\(183\) −1.47102e14 −0.289525
\(184\) 1.11678e14i 0.212155i
\(185\) 4.67664e13 0.0857665
\(186\) 9.59260e13 0.169864
\(187\) 1.40957e15i 2.41055i
\(188\) 4.61874e14i 0.762952i
\(189\) 5.06876e14i 0.808909i
\(190\) 3.04888e13i 0.0470156i
\(191\) 1.07831e15 1.60705 0.803524 0.595273i \(-0.202956\pi\)
0.803524 + 0.595273i \(0.202956\pi\)
\(192\) −8.04592e14 −1.15909
\(193\) 3.07847e14i 0.428759i 0.976750 + 0.214379i \(0.0687729\pi\)
−0.976750 + 0.214379i \(0.931227\pi\)
\(194\) 5.08365e13 0.0684643
\(195\) 2.50118e14 + 7.44560e13i 0.325776 + 0.0969784i
\(196\) −1.11668e15 −1.40690
\(197\) 2.82605e14i 0.344468i 0.985056 + 0.172234i \(0.0550985\pi\)
−0.985056 + 0.172234i \(0.944901\pi\)
\(198\) −8.81437e13 −0.103960
\(199\) 8.39524e14 0.958270 0.479135 0.877741i \(-0.340950\pi\)
0.479135 + 0.877741i \(0.340950\pi\)
\(200\) 1.93795e14i 0.214115i
\(201\) 4.46063e14i 0.477113i
\(202\) 3.67799e13i 0.0380914i
\(203\) 8.61796e14i 0.864331i
\(204\) 2.02767e15 1.96970
\(205\) −1.25581e14 −0.118174
\(206\) 1.16377e13i 0.0106103i
\(207\) −6.11347e14 −0.540108
\(208\) 3.19772e14 1.07420e15i 0.273797 0.919757i
\(209\) −2.74845e15 −2.28106
\(210\) 7.64915e13i 0.0615443i
\(211\) −5.03465e14 −0.392765 −0.196383 0.980527i \(-0.562919\pi\)
−0.196383 + 0.980527i \(0.562919\pi\)
\(212\) −7.26248e14 −0.549417
\(213\) 2.30979e15i 1.69475i
\(214\) 1.34353e14i 0.0956223i
\(215\) 3.27065e14i 0.225832i
\(216\) 1.78996e14i 0.119921i
\(217\) 2.77826e15 1.80628
\(218\) 2.80253e13 0.0176841
\(219\) 9.61755e14i 0.589084i
\(220\) −6.80772e14 −0.404813
\(221\) −7.83014e14 + 2.63035e15i −0.452085 + 1.51867i
\(222\) −8.30694e13 −0.0465744
\(223\) 1.00251e15i 0.545891i −0.962029 0.272946i \(-0.912002\pi\)
0.962029 0.272946i \(-0.0879979\pi\)
\(224\) 1.00855e15 0.533437
\(225\) 1.06087e15 0.545099
\(226\) 2.22347e14i 0.111001i
\(227\) 3.07498e15i 1.49168i −0.666127 0.745838i \(-0.732049\pi\)
0.666127 0.745838i \(-0.267951\pi\)
\(228\) 3.95366e15i 1.86390i
\(229\) 1.07094e15i 0.490722i 0.969432 + 0.245361i \(0.0789066\pi\)
−0.969432 + 0.245361i \(0.921093\pi\)
\(230\) 6.46766e13 0.0288082
\(231\) −6.89542e15 −2.98595
\(232\) 3.04332e14i 0.128137i
\(233\) 2.93496e15 1.20168 0.600839 0.799370i \(-0.294833\pi\)
0.600839 + 0.799370i \(0.294833\pi\)
\(234\) −1.64482e14 4.89638e13i −0.0654962 0.0194972i
\(235\) −5.38636e14 −0.208619
\(236\) 1.63787e15i 0.617095i
\(237\) 4.30211e15 1.57695
\(238\) −8.04420e14 −0.286901
\(239\) 1.17148e15i 0.406581i 0.979119 + 0.203290i \(0.0651635\pi\)
−0.979119 + 0.203290i \(0.934836\pi\)
\(240\) 9.65696e14i 0.326187i
\(241\) 3.11024e15i 1.02255i −0.859418 0.511273i \(-0.829174\pi\)
0.859418 0.511273i \(-0.170826\pi\)
\(242\) 4.77397e14i 0.152785i
\(243\) 3.35742e15 1.04608
\(244\) 7.47143e14 0.226657
\(245\) 1.30227e15i 0.384699i
\(246\) 2.23064e14 0.0641730
\(247\) −5.12880e15 1.52676e15i −1.43710 0.427800i
\(248\) −9.81106e14 −0.267781
\(249\) 6.31438e15i 1.67894i
\(250\) −2.33273e14 −0.0604303
\(251\) 4.91205e15 1.23989 0.619946 0.784645i \(-0.287155\pi\)
0.619946 + 0.784645i \(0.287155\pi\)
\(252\) 3.67231e15i 0.903308i
\(253\) 5.83035e15i 1.39769i
\(254\) 1.70474e14i 0.0398327i
\(255\) 2.36466e15i 0.538590i
\(256\) 3.90730e15 0.867595
\(257\) −5.04425e15 −1.09202 −0.546011 0.837778i \(-0.683854\pi\)
−0.546011 + 0.837778i \(0.683854\pi\)
\(258\) 5.80954e14i 0.122635i
\(259\) −2.40590e15 −0.495256
\(260\) −1.27037e15 3.78168e14i −0.255037 0.0759204i
\(261\) −1.66597e15 −0.326214
\(262\) 3.57623e14i 0.0683072i
\(263\) 8.92638e15 1.66327 0.831635 0.555322i \(-0.187405\pi\)
0.831635 + 0.555322i \(0.187405\pi\)
\(264\) 2.43502e15 0.442668
\(265\) 8.46949e14i 0.150231i
\(266\) 1.56850e15i 0.271490i
\(267\) 8.61994e15i 1.45607i
\(268\) 2.26559e15i 0.373513i
\(269\) −3.73207e15 −0.600565 −0.300283 0.953850i \(-0.597081\pi\)
−0.300283 + 0.953850i \(0.597081\pi\)
\(270\) −1.03663e14 −0.0162839
\(271\) 8.73516e15i 1.33959i −0.742548 0.669793i \(-0.766383\pi\)
0.742548 0.669793i \(-0.233617\pi\)
\(272\) −1.01557e16 −1.52059
\(273\) −1.28673e16 3.83040e15i −1.88118 0.559999i
\(274\) 1.11322e15 0.158929
\(275\) 1.01174e16i 1.41061i
\(276\) 8.38697e15 1.14208
\(277\) 6.78204e15 0.902073 0.451037 0.892505i \(-0.351054\pi\)
0.451037 + 0.892505i \(0.351054\pi\)
\(278\) 1.05537e15i 0.137124i
\(279\) 5.37075e15i 0.681722i
\(280\) 7.82335e14i 0.0970210i
\(281\) 1.06581e16i 1.29149i 0.763554 + 0.645744i \(0.223453\pi\)
−0.763554 + 0.645744i \(0.776547\pi\)
\(282\) 9.56760e14 0.113288
\(283\) −1.38154e16 −1.59864 −0.799320 0.600906i \(-0.794807\pi\)
−0.799320 + 0.600906i \(0.794807\pi\)
\(284\) 1.17316e16i 1.32675i
\(285\) 4.61075e15 0.509659
\(286\) −4.66962e14 + 1.56865e15i −0.0504548 + 0.169491i
\(287\) 6.46052e15 0.682394
\(288\) 1.94965e15i 0.201329i
\(289\) 1.49633e16 1.51075
\(290\) 1.76249e14 0.0173996
\(291\) 7.68788e15i 0.742168i
\(292\) 4.88483e15i 0.461170i
\(293\) 1.55600e16i 1.43671i 0.695676 + 0.718356i \(0.255105\pi\)
−0.695676 + 0.718356i \(0.744895\pi\)
\(294\) 2.31317e15i 0.208906i
\(295\) −1.91008e15 −0.168737
\(296\) 8.49613e14 0.0734218
\(297\) 9.34480e15i 0.790047i
\(298\) −2.38370e15 −0.197172
\(299\) −3.23875e15 + 1.08798e16i −0.262129 + 0.880561i
\(300\) −1.45539e16 −1.15263
\(301\) 1.68259e16i 1.30406i
\(302\) 3.73213e14 0.0283082
\(303\) −5.56213e15 −0.412918
\(304\) 1.98021e16i 1.43891i
\(305\) 8.71317e14i 0.0619765i
\(306\) 1.55505e15i 0.108282i
\(307\) 6.49159e15i 0.442539i −0.975213 0.221269i \(-0.928980\pi\)
0.975213 0.221269i \(-0.0710200\pi\)
\(308\) 3.50224e16 2.33758
\(309\) −1.75993e15 −0.115018
\(310\) 5.68190e14i 0.0363616i
\(311\) −3.81669e15 −0.239191 −0.119595 0.992823i \(-0.538160\pi\)
−0.119595 + 0.992823i \(0.538160\pi\)
\(312\) 4.54393e15 + 1.35265e15i 0.278886 + 0.0830199i
\(313\) −2.89419e15 −0.173976 −0.0869879 0.996209i \(-0.527724\pi\)
−0.0869879 + 0.996209i \(0.527724\pi\)
\(314\) 2.19899e14i 0.0129473i
\(315\) 4.28264e15 0.246998
\(316\) −2.18508e16 −1.23453
\(317\) 2.55802e16i 1.41586i 0.706285 + 0.707928i \(0.250370\pi\)
−0.706285 + 0.707928i \(0.749630\pi\)
\(318\) 1.50441e15i 0.0815809i
\(319\) 1.58881e16i 0.844177i
\(320\) 4.76577e15i 0.248118i
\(321\) 2.03179e16 1.03657
\(322\) −3.32729e15 −0.166352
\(323\) 4.84888e16i 2.37588i
\(324\) −2.55184e16 −1.22549
\(325\) 5.62020e15 1.88798e16i 0.264551 0.888699i
\(326\) 4.18584e12 0.000193138
\(327\) 4.23820e15i 0.191700i
\(328\) −2.28145e15 −0.101165
\(329\) 2.77102e16 1.20467
\(330\) 1.41020e15i 0.0601092i
\(331\) 3.12279e16i 1.30515i −0.757724 0.652576i \(-0.773688\pi\)
0.757724 0.652576i \(-0.226312\pi\)
\(332\) 3.20713e16i 1.31437i
\(333\) 4.65093e15i 0.186918i
\(334\) −9.05254e14 −0.0356795
\(335\) −2.64213e15 −0.102132
\(336\) 4.96803e16i 1.88356i
\(337\) 2.78440e16 1.03547 0.517734 0.855541i \(-0.326776\pi\)
0.517734 + 0.855541i \(0.326776\pi\)
\(338\) −1.74277e15 + 2.66781e15i −0.0635742 + 0.0973189i
\(339\) −3.36250e16 −1.20327
\(340\) 1.20103e16i 0.421640i
\(341\) −5.12202e16 −1.76416
\(342\) −3.03212e15 −0.102465
\(343\) 2.00197e16i 0.663813i
\(344\) 5.94185e15i 0.193327i
\(345\) 9.78087e15i 0.312287i
\(346\) 1.22461e15i 0.0383712i
\(347\) −1.94815e15 −0.0599075 −0.0299538 0.999551i \(-0.509536\pi\)
−0.0299538 + 0.999551i \(0.509536\pi\)
\(348\) 2.28551e16 0.689793
\(349\) 1.33538e16i 0.395585i −0.980244 0.197792i \(-0.936623\pi\)
0.980244 0.197792i \(-0.0633772\pi\)
\(350\) 5.77384e15 0.167889
\(351\) 5.19103e15 1.74381e16i 0.148169 0.497739i
\(352\) −1.85936e16 −0.520998
\(353\) 4.75413e16i 1.30778i −0.756589 0.653891i \(-0.773136\pi\)
0.756589 0.653891i \(-0.226864\pi\)
\(354\) 3.39281e15 0.0916302
\(355\) 1.36814e16 0.362782
\(356\) 4.37814e16i 1.13990i
\(357\) 1.21650e17i 3.11007i
\(358\) 3.88979e15i 0.0976531i
\(359\) 7.29791e15i 0.179922i −0.995945 0.0899610i \(-0.971326\pi\)
0.995945 0.0899610i \(-0.0286742\pi\)
\(360\) −1.51236e15 −0.0366175
\(361\) −5.24929e16 −1.24826
\(362\) 4.87818e15i 0.113934i
\(363\) 7.21955e16 1.65622
\(364\) 6.53543e16 + 1.94549e16i 1.47270 + 0.438400i
\(365\) 5.69668e15 0.126101
\(366\) 1.54769e15i 0.0336555i
\(367\) −1.64056e16 −0.350480 −0.175240 0.984526i \(-0.556070\pi\)
−0.175240 + 0.984526i \(0.556070\pi\)
\(368\) −4.20067e16 −0.881673
\(369\) 1.24890e16i 0.257548i
\(370\) 4.92039e14i 0.00996983i
\(371\) 4.35714e16i 0.867504i
\(372\) 7.36805e16i 1.44153i
\(373\) −2.44029e16 −0.469174 −0.234587 0.972095i \(-0.575374\pi\)
−0.234587 + 0.972095i \(0.575374\pi\)
\(374\) 1.48303e16 0.280211
\(375\) 3.52773e16i 0.655077i
\(376\) −9.78549e15 −0.178592
\(377\) −8.82585e15 + 2.96484e16i −0.158321 + 0.531841i
\(378\) 5.33294e15 0.0940308
\(379\) 3.31354e16i 0.574298i 0.957886 + 0.287149i \(0.0927075\pi\)
−0.957886 + 0.287149i \(0.907292\pi\)
\(380\) −2.34184e16 −0.398991
\(381\) 2.57804e16 0.431794
\(382\) 1.13452e16i 0.186809i
\(383\) 1.10336e17i 1.78617i −0.449885 0.893087i \(-0.648535\pi\)
0.449885 0.893087i \(-0.351465\pi\)
\(384\) 3.55786e16i 0.566286i
\(385\) 4.08431e16i 0.639181i
\(386\) 3.23892e15 0.0498406
\(387\) 3.25267e16 0.492175
\(388\) 3.90474e16i 0.581013i
\(389\) 3.38919e16 0.495934 0.247967 0.968768i \(-0.420238\pi\)
0.247967 + 0.968768i \(0.420238\pi\)
\(390\) 7.83367e14 2.63154e15i 0.0112731 0.0378695i
\(391\) 1.02860e17 1.45579
\(392\) 2.36585e16i 0.329328i
\(393\) −5.40824e16 −0.740464
\(394\) 2.97334e15 0.0400423
\(395\) 2.54824e16i 0.337566i
\(396\) 6.77030e16i 0.882245i
\(397\) 9.19933e16i 1.17928i 0.807665 + 0.589641i \(0.200731\pi\)
−0.807665 + 0.589641i \(0.799269\pi\)
\(398\) 8.83280e15i 0.111393i
\(399\) −2.37200e17 −2.94301
\(400\) 7.28941e16 0.889820
\(401\) 9.31194e16i 1.11841i −0.829029 0.559206i \(-0.811106\pi\)
0.829029 0.559206i \(-0.188894\pi\)
\(402\) 4.69312e15 0.0554615
\(403\) −9.55805e16 2.84528e16i −1.11144 0.330858i
\(404\) 2.82505e16 0.323257
\(405\) 2.97595e16i 0.335095i
\(406\) −9.06713e15 −0.100473
\(407\) 4.43554e16 0.483708
\(408\) 4.29592e16i 0.461069i
\(409\) 3.59137e16i 0.379366i 0.981845 + 0.189683i \(0.0607460\pi\)
−0.981845 + 0.189683i \(0.939254\pi\)
\(410\) 1.32126e15i 0.0137370i
\(411\) 1.68350e17i 1.72282i
\(412\) 8.93886e15 0.0900430
\(413\) 9.82645e16 0.974365
\(414\) 6.43210e15i 0.0627842i
\(415\) −3.74015e16 −0.359398
\(416\) −3.46970e16 1.03287e16i −0.328235 0.0977104i
\(417\) 1.59601e17 1.48646
\(418\) 2.89170e16i 0.265160i
\(419\) −4.75608e16 −0.429396 −0.214698 0.976681i \(-0.568877\pi\)
−0.214698 + 0.976681i \(0.568877\pi\)
\(420\) −5.87529e16 −0.522287
\(421\) 9.27249e16i 0.811638i −0.913953 0.405819i \(-0.866986\pi\)
0.913953 0.405819i \(-0.133014\pi\)
\(422\) 5.29705e15i 0.0456566i
\(423\) 5.35675e16i 0.454663i
\(424\) 1.53867e16i 0.128608i
\(425\) −1.78493e17 −1.46924
\(426\) −2.43018e16 −0.197004
\(427\) 4.48250e16i 0.357881i
\(428\) −1.03197e17 −0.811485
\(429\) 2.37223e17 + 7.06175e16i 1.83732 + 0.546940i
\(430\) −3.44112e15 −0.0262515
\(431\) 1.37175e17i 1.03080i −0.856951 0.515398i \(-0.827644\pi\)
0.856951 0.515398i \(-0.172356\pi\)
\(432\) 6.73277e16 0.498367
\(433\) −1.71417e17 −1.24992 −0.624960 0.780657i \(-0.714885\pi\)
−0.624960 + 0.780657i \(0.714885\pi\)
\(434\) 2.92306e16i 0.209969i
\(435\) 2.66536e16i 0.188615i
\(436\) 2.15262e16i 0.150074i
\(437\) 2.00562e17i 1.37759i
\(438\) −1.01188e16 −0.0684775
\(439\) 2.77445e17 1.84994 0.924969 0.380043i \(-0.124091\pi\)
0.924969 + 0.380043i \(0.124091\pi\)
\(440\) 1.44232e16i 0.0947587i
\(441\) −1.29511e17 −0.838408
\(442\) 2.76745e16 + 8.23825e15i 0.176537 + 0.0525521i
\(443\) 6.85915e16 0.431168 0.215584 0.976485i \(-0.430835\pi\)
0.215584 + 0.976485i \(0.430835\pi\)
\(444\) 6.38054e16i 0.395247i
\(445\) 5.10578e16 0.311690
\(446\) −1.05476e16 −0.0634565
\(447\) 3.60481e17i 2.13739i
\(448\) 2.45176e17i 1.43275i
\(449\) 1.23361e16i 0.0710523i −0.999369 0.0355262i \(-0.988689\pi\)
0.999369 0.0355262i \(-0.0113107\pi\)
\(450\) 1.11616e16i 0.0633644i
\(451\) −1.19107e17 −0.666482
\(452\) 1.70784e17 0.941995
\(453\) 5.64401e16i 0.306866i
\(454\) −3.23525e16 −0.173398
\(455\) 2.26883e16 7.62160e16i 0.119875 0.402691i
\(456\) 8.37642e16 0.436302
\(457\) 5.59570e16i 0.287342i −0.989626 0.143671i \(-0.954109\pi\)
0.989626 0.143671i \(-0.0458907\pi\)
\(458\) 1.12676e16 0.0570435
\(459\) −1.64863e17 −0.822888
\(460\) 4.96779e16i 0.244477i
\(461\) 8.94329e16i 0.433951i 0.976177 + 0.216976i \(0.0696192\pi\)
−0.976177 + 0.216976i \(0.930381\pi\)
\(462\) 7.25481e16i 0.347099i
\(463\) 3.48225e17i 1.64280i 0.570355 + 0.821399i \(0.306806\pi\)
−0.570355 + 0.821399i \(0.693194\pi\)
\(464\) −1.14471e17 −0.532513
\(465\) 8.59260e16 0.394167
\(466\) 3.08793e16i 0.139688i
\(467\) −1.04214e17 −0.464906 −0.232453 0.972608i \(-0.574675\pi\)
−0.232453 + 0.972608i \(0.574675\pi\)
\(468\) 3.76089e16 1.26338e17i 0.165460 0.555824i
\(469\) 1.35925e17 0.589759
\(470\) 5.66710e15i 0.0242507i
\(471\) −3.32547e16 −0.140352
\(472\) −3.47008e16 −0.144450
\(473\) 3.10204e17i 1.27365i
\(474\) 4.52634e16i 0.183311i
\(475\) 3.48035e17i 1.39032i
\(476\) 6.17873e17i 2.43475i
\(477\) −8.42293e16 −0.327411
\(478\) 1.23253e16 0.0472625
\(479\) 2.52054e16i 0.0953481i −0.998863 0.0476741i \(-0.984819\pi\)
0.998863 0.0476741i \(-0.0151809\pi\)
\(480\) 3.11923e16 0.116407
\(481\) 8.27703e16 + 2.46394e16i 0.304741 + 0.0907167i
\(482\) −3.27235e16 −0.118865
\(483\) 5.03178e17i 1.80329i
\(484\) −3.66687e17 −1.29658
\(485\) 4.55370e16 0.158870
\(486\) 3.53241e16i 0.121600i
\(487\) 2.44127e17i 0.829235i −0.909996 0.414618i \(-0.863915\pi\)
0.909996 0.414618i \(-0.136085\pi\)
\(488\) 1.58293e16i 0.0530560i
\(489\) 6.33015e14i 0.00209366i
\(490\) 1.37014e16 0.0447189
\(491\) 1.89093e17 0.609039 0.304520 0.952506i \(-0.401504\pi\)
0.304520 + 0.952506i \(0.401504\pi\)
\(492\) 1.71335e17i 0.544595i
\(493\) 2.80302e17 0.879268
\(494\) −1.60634e16 + 5.39611e16i −0.0497292 + 0.167054i
\(495\) −7.89551e16 −0.241238
\(496\) 3.69033e17i 1.11284i
\(497\) −7.03841e17 −2.09488
\(498\) 6.64349e16 0.195167
\(499\) 3.67156e17i 1.06462i 0.846548 + 0.532312i \(0.178677\pi\)
−0.846548 + 0.532312i \(0.821323\pi\)
\(500\) 1.79176e17i 0.512833i
\(501\) 1.36899e17i 0.386773i
\(502\) 5.16807e16i 0.144130i
\(503\) 5.79880e17 1.59642 0.798208 0.602382i \(-0.205781\pi\)
0.798208 + 0.602382i \(0.205781\pi\)
\(504\) 7.78034e16 0.211446
\(505\) 3.29457e16i 0.0883904i
\(506\) 6.13422e16 0.162473
\(507\) 4.03447e17 + 2.63555e17i 1.05496 + 0.689158i
\(508\) −1.30941e17 −0.338034
\(509\) 1.01334e17i 0.258280i 0.991626 + 0.129140i \(0.0412216\pi\)
−0.991626 + 0.129140i \(0.958778\pi\)
\(510\) −2.48791e16 −0.0626078
\(511\) −2.93067e17 −0.728166
\(512\) 2.24292e17i 0.550248i
\(513\) 3.21458e17i 0.778685i
\(514\) 5.30715e16i 0.126941i
\(515\) 1.04245e16i 0.0246211i
\(516\) −4.46230e17 −1.04072
\(517\) −5.10867e17 −1.17658
\(518\) 2.53130e16i 0.0575705i
\(519\) 1.85195e17 0.415951
\(520\) −8.01207e15 + 2.69147e16i −0.0177715 + 0.0596991i
\(521\) −3.30472e17 −0.723917 −0.361959 0.932194i \(-0.617892\pi\)
−0.361959 + 0.932194i \(0.617892\pi\)
\(522\) 1.75280e16i 0.0379204i
\(523\) 3.43602e17 0.734166 0.367083 0.930188i \(-0.380356\pi\)
0.367083 + 0.930188i \(0.380356\pi\)
\(524\) 2.74689e17 0.579679
\(525\) 8.73164e17i 1.81995i
\(526\) 9.39162e16i 0.193345i
\(527\) 9.03638e17i 1.83749i
\(528\) 9.15910e17i 1.83964i
\(529\) −7.85794e16 −0.155900
\(530\) 8.91092e15 0.0174634
\(531\) 1.89958e17i 0.367743i
\(532\) 1.20476e18 2.30396
\(533\) −2.22261e17 6.61636e16i −0.419891 0.124995i
\(534\) −9.06921e16 −0.169259
\(535\) 1.20348e17i 0.221890i
\(536\) −4.80000e16 −0.0874319
\(537\) 5.88243e17 1.05858
\(538\) 3.92659e16i 0.0698121i
\(539\) 1.23513e18i 2.16963i
\(540\) 7.96231e16i 0.138191i
\(541\) 1.83938e16i 0.0315420i 0.999876 + 0.0157710i \(0.00502027\pi\)
−0.999876 + 0.0157710i \(0.994980\pi\)
\(542\) −9.19043e16 −0.155719
\(543\) −7.37715e17 −1.23506
\(544\) 3.28033e17i 0.542655i
\(545\) 2.51038e16 0.0410357
\(546\) −4.03004e16 + 1.35380e17i −0.0650964 + 0.218676i
\(547\) 2.41353e17 0.385243 0.192621 0.981273i \(-0.438301\pi\)
0.192621 + 0.981273i \(0.438301\pi\)
\(548\) 8.55063e17i 1.34873i
\(549\) 8.66527e16 0.135071
\(550\) −1.06447e17 −0.163974
\(551\) 5.46547e17i 0.832037i
\(552\) 1.77691e17i 0.267338i
\(553\) 1.31094e18i 1.94926i
\(554\) 7.13552e16i 0.104861i
\(555\) −7.44098e16 −0.108075
\(556\) −8.10629e17 −1.16369
\(557\) 1.57109e17i 0.222916i −0.993769 0.111458i \(-0.964448\pi\)
0.993769 0.111458i \(-0.0355521\pi\)
\(558\) −5.65067e16 −0.0792460
\(559\) 1.72318e17 5.78862e17i 0.238866 0.802414i
\(560\) 2.94267e17 0.403200
\(561\) 2.24276e18i 3.03755i
\(562\) 1.12136e17 0.150128
\(563\) 7.27362e17 0.962601 0.481300 0.876556i \(-0.340165\pi\)
0.481300 + 0.876556i \(0.340165\pi\)
\(564\) 7.34885e17i 0.961402i
\(565\) 1.99169e17i 0.257576i
\(566\) 1.45354e17i 0.185832i
\(567\) 1.53098e18i 1.93499i
\(568\) 2.48552e17 0.310566
\(569\) 1.04594e18 1.29205 0.646024 0.763318i \(-0.276431\pi\)
0.646024 + 0.763318i \(0.276431\pi\)
\(570\) 4.85106e16i 0.0592448i
\(571\) −1.18728e18 −1.43356 −0.716782 0.697297i \(-0.754386\pi\)
−0.716782 + 0.697297i \(0.754386\pi\)
\(572\) −1.20488e18 3.58672e17i −1.43836 0.428177i
\(573\) −1.71570e18 −2.02505
\(574\) 6.79724e16i 0.0793241i
\(575\) −7.38294e17 −0.851900
\(576\) 4.73957e17 0.540746
\(577\) 2.53500e17i 0.285980i 0.989724 + 0.142990i \(0.0456716\pi\)
−0.989724 + 0.142990i \(0.954328\pi\)
\(578\) 1.57432e17i 0.175615i
\(579\) 4.89814e17i 0.540282i
\(580\) 1.35376e17i 0.147659i
\(581\) 1.92412e18 2.07533
\(582\) −8.08857e16 −0.0862725
\(583\) 8.03286e17i 0.847275i
\(584\) 1.03493e17 0.107951
\(585\) −1.47336e17 4.38595e16i −0.151983 0.0452429i
\(586\) 1.63710e17 0.167009
\(587\) 1.71807e18i 1.73338i 0.498851 + 0.866688i \(0.333756\pi\)
−0.498851 + 0.866688i \(0.666244\pi\)
\(588\) 1.77674e18 1.77285
\(589\) −1.76196e18 −1.73879
\(590\) 2.00964e16i 0.0196146i
\(591\) 4.49651e17i 0.434067i
\(592\) 3.19573e17i 0.305126i
\(593\) 1.35319e18i 1.27792i 0.769239 + 0.638962i \(0.220636\pi\)
−0.769239 + 0.638962i \(0.779364\pi\)
\(594\) −9.83185e16 −0.0918382
\(595\) −7.20562e17 −0.665750
\(596\) 1.83091e18i 1.67327i
\(597\) −1.33576e18 −1.20752
\(598\) 1.14469e17 + 3.40756e16i 0.102360 + 0.0304709i
\(599\) 1.59111e18 1.40743 0.703714 0.710484i \(-0.251524\pi\)
0.703714 + 0.710484i \(0.251524\pi\)
\(600\) 3.08346e17i 0.269809i
\(601\) 1.95821e18 1.69502 0.847510 0.530779i \(-0.178100\pi\)
0.847510 + 0.530779i \(0.178100\pi\)
\(602\) 1.77029e17 0.151589
\(603\) 2.62760e17i 0.222586i
\(604\) 2.86664e17i 0.240233i
\(605\) 4.27630e17i 0.354534i
\(606\) 5.85203e16i 0.0479992i
\(607\) 1.19586e18 0.970407 0.485203 0.874401i \(-0.338746\pi\)
0.485203 + 0.874401i \(0.338746\pi\)
\(608\) −6.39615e17 −0.513506
\(609\) 1.37120e18i 1.08915i
\(610\) −9.16729e15 −0.00720439
\(611\) −9.53315e17 2.83787e17i −0.741256 0.220660i
\(612\) −1.19443e18 −0.918918
\(613\) 1.29101e18i 0.982736i −0.870952 0.491368i \(-0.836497\pi\)
0.870952 0.491368i \(-0.163503\pi\)
\(614\) −6.82993e16 −0.0514425
\(615\) 1.99811e17 0.148912
\(616\) 7.42003e17i 0.547181i
\(617\) 1.31171e18i 0.957157i 0.878045 + 0.478579i \(0.158848\pi\)
−0.878045 + 0.478579i \(0.841152\pi\)
\(618\) 1.85166e16i 0.0133702i
\(619\) 1.04438e18i 0.746227i −0.927786 0.373114i \(-0.878290\pi\)
0.927786 0.373114i \(-0.121710\pi\)
\(620\) −4.36426e17 −0.308578
\(621\) −6.81917e17 −0.477129
\(622\) 4.01562e16i 0.0278045i
\(623\) −2.62668e18 −1.79984
\(624\) −5.08787e17 + 1.70915e18i −0.345014 + 1.15899i
\(625\) 1.17274e18 0.787012
\(626\) 3.04503e16i 0.0202236i
\(627\) 4.37304e18 2.87438
\(628\) 1.68904e17 0.109876
\(629\) 7.82528e17i 0.503814i
\(630\) 4.50585e16i 0.0287120i
\(631\) 2.69060e18i 1.69691i 0.529270 + 0.848454i \(0.322466\pi\)
−0.529270 + 0.848454i \(0.677534\pi\)
\(632\) 4.62942e17i 0.288979i
\(633\) 8.01060e17 0.494927
\(634\) 2.69135e17 0.164585
\(635\) 1.52703e17i 0.0924311i
\(636\) 1.15553e18 0.692325
\(637\) −6.86114e17 + 2.30484e18i −0.406902 + 1.36689i
\(638\) 1.67162e17 0.0981304
\(639\) 1.36062e18i 0.790644i
\(640\) −2.10740e17 −0.121221
\(641\) 2.11037e17 0.120166 0.0600830 0.998193i \(-0.480863\pi\)
0.0600830 + 0.998193i \(0.480863\pi\)
\(642\) 2.13769e17i 0.120494i
\(643\) 2.90287e18i 1.61978i −0.586582 0.809890i \(-0.699527\pi\)
0.586582 0.809890i \(-0.300473\pi\)
\(644\) 2.55569e18i 1.41172i
\(645\) 5.20392e17i 0.284572i
\(646\) 5.10160e17 0.276182
\(647\) −1.40372e18 −0.752318 −0.376159 0.926555i \(-0.622755\pi\)
−0.376159 + 0.926555i \(0.622755\pi\)
\(648\) 5.40645e17i 0.286863i
\(649\) −1.81161e18 −0.951644
\(650\) −1.98638e17 5.91312e16i −0.103306 0.0307525i
\(651\) −4.42048e18 −2.27611
\(652\) 3.21514e15i 0.00163904i
\(653\) −2.10572e17 −0.106283 −0.0531415 0.998587i \(-0.516923\pi\)
−0.0531415 + 0.998587i \(0.516923\pi\)
\(654\) −4.45910e16 −0.0222839
\(655\) 3.20342e17i 0.158506i
\(656\) 8.58143e17i 0.420421i
\(657\) 5.66537e17i 0.274823i
\(658\) 2.91545e17i 0.140035i
\(659\) 3.91215e18 1.86063 0.930315 0.366762i \(-0.119534\pi\)
0.930315 + 0.366762i \(0.119534\pi\)
\(660\) 1.08317e18 0.510108
\(661\) 3.04004e18i 1.41765i −0.705382 0.708827i \(-0.749225\pi\)
0.705382 0.708827i \(-0.250775\pi\)
\(662\) −3.28555e17 −0.151716
\(663\) 1.24585e18 4.18514e18i 0.569676 1.91369i
\(664\) −6.79479e17 −0.307669
\(665\) 1.40499e18i 0.629989i
\(666\) 4.89334e16 0.0217281
\(667\) 1.15940e18 0.509819
\(668\) 6.95323e17i 0.302789i
\(669\) 1.59508e18i 0.687882i
\(670\) 2.77984e16i 0.0118722i
\(671\) 8.26397e17i 0.349536i
\(672\) −1.60469e18 −0.672189
\(673\) −2.30373e18 −0.955727 −0.477863 0.878434i \(-0.658589\pi\)
−0.477863 + 0.878434i \(0.658589\pi\)
\(674\) 2.92952e17i 0.120367i
\(675\) 1.18333e18 0.481538
\(676\) −2.04914e18 1.33862e18i −0.825883 0.539514i
\(677\) 1.02215e18 0.408028 0.204014 0.978968i \(-0.434601\pi\)
0.204014 + 0.978968i \(0.434601\pi\)
\(678\) 3.53776e17i 0.139873i
\(679\) −2.34266e18 −0.917392
\(680\) 2.54457e17 0.0986976
\(681\) 4.89259e18i 1.87967i
\(682\) 5.38898e17i 0.205073i
\(683\) 4.36365e17i 0.164481i −0.996613 0.0822404i \(-0.973792\pi\)
0.996613 0.0822404i \(-0.0262075\pi\)
\(684\) 2.32896e18i 0.869557i
\(685\) 9.97173e17 0.368792
\(686\) −2.10631e17 −0.0771643
\(687\) 1.70397e18i 0.618363i
\(688\) 2.23497e18 0.803427
\(689\) −4.46225e17 + 1.49899e18i −0.158902 + 0.533793i
\(690\) −1.02907e17 −0.0363014
\(691\) 3.72116e18i 1.30038i 0.759770 + 0.650192i \(0.225312\pi\)
−0.759770 + 0.650192i \(0.774688\pi\)
\(692\) −9.40623e17 −0.325631
\(693\) 4.06185e18 1.39302
\(694\) 2.04969e16i 0.00696388i
\(695\) 9.45354e17i 0.318195i
\(696\) 4.84221e17i 0.161467i
\(697\) 2.10130e18i 0.694186i
\(698\) −1.40498e17 −0.0459843
\(699\) −4.66980e18 −1.51425
\(700\) 4.43487e18i 1.42477i
\(701\) 4.34458e18 1.38287 0.691435 0.722439i \(-0.256979\pi\)
0.691435 + 0.722439i \(0.256979\pi\)
\(702\) −1.83469e17 5.46158e16i −0.0578591 0.0172237i
\(703\) 1.52581e18 0.476751
\(704\) 4.52008e18i 1.39934i
\(705\) 8.57021e17 0.262883
\(706\) −5.00191e17 −0.152022
\(707\) 1.69490e18i 0.510408i
\(708\) 2.60601e18i 0.777607i
\(709\) 2.53785e18i 0.750352i −0.926954 0.375176i \(-0.877582\pi\)
0.926954 0.375176i \(-0.122418\pi\)
\(710\) 1.43945e17i 0.0421712i
\(711\) −2.53423e18 −0.735687
\(712\) 9.27576e17 0.266827
\(713\) 3.73769e18i 1.06542i
\(714\) 1.27991e18 0.361527
\(715\) −4.18283e17 + 1.40512e18i −0.117080 + 0.393301i
\(716\) −2.98774e18 −0.828719
\(717\) 1.86393e18i 0.512336i
\(718\) −7.67827e16 −0.0209148
\(719\) −1.35407e18 −0.365515 −0.182757 0.983158i \(-0.558502\pi\)
−0.182757 + 0.983158i \(0.558502\pi\)
\(720\) 5.68858e17i 0.152175i
\(721\) 5.36289e17i 0.142174i
\(722\) 5.52289e17i 0.145102i
\(723\) 4.94869e18i 1.28852i
\(724\) 3.74692e18 0.966882
\(725\) −2.01191e18 −0.514531
\(726\) 7.59583e17i 0.192525i
\(727\) 7.18735e18 1.80549 0.902745 0.430175i \(-0.141548\pi\)
0.902745 + 0.430175i \(0.141548\pi\)
\(728\) 4.12182e17 1.38463e18i 0.102621 0.344730i
\(729\) −3.07574e17 −0.0758963
\(730\) 5.99359e16i 0.0146585i
\(731\) −5.47269e18 −1.32659
\(732\) −1.18877e18 −0.285613
\(733\) 3.36376e18i 0.801031i −0.916290 0.400515i \(-0.868831\pi\)
0.916290 0.400515i \(-0.131169\pi\)
\(734\) 1.72607e17i 0.0407412i
\(735\) 2.07203e18i 0.484762i
\(736\) 1.35683e18i 0.314644i
\(737\) −2.50592e18 −0.576007
\(738\) −1.31400e17 −0.0299383
\(739\) 3.62815e18i 0.819401i −0.912220 0.409700i \(-0.865633\pi\)
0.912220 0.409700i \(-0.134367\pi\)
\(740\) 3.77933e17 0.0846076
\(741\) 8.16041e18 + 2.42922e18i 1.81090 + 0.539075i
\(742\) −4.58423e17 −0.100842
\(743\) 3.41321e18i 0.744278i −0.928177 0.372139i \(-0.878624\pi\)
0.928177 0.372139i \(-0.121376\pi\)
\(744\) 1.56103e18 0.337433
\(745\) −2.13521e18 −0.457535
\(746\) 2.56748e17i 0.0545387i
\(747\) 3.71959e18i 0.783269i
\(748\) 1.13911e19i 2.37797i
\(749\) 6.19130e18i 1.28130i
\(750\) 3.71160e17 0.0761487
\(751\) 2.14113e18 0.435495 0.217748 0.976005i \(-0.430129\pi\)
0.217748 + 0.976005i \(0.430129\pi\)
\(752\) 3.68071e18i 0.742192i
\(753\) −7.81554e18 −1.56240
\(754\) 3.11936e17 + 9.28585e16i 0.0618233 + 0.0184038i
\(755\) 3.34307e17 0.0656886
\(756\) 4.09622e18i 0.797979i
\(757\) −7.70654e18 −1.48846 −0.744229 0.667925i \(-0.767183\pi\)
−0.744229 + 0.667925i \(0.767183\pi\)
\(758\) 3.48624e17 0.0667587
\(759\) 9.27663e18i 1.76124i
\(760\) 4.96154e17i 0.0933959i
\(761\) 1.20918e18i 0.225679i −0.993613 0.112840i \(-0.964005\pi\)
0.993613 0.112840i \(-0.0359946\pi\)
\(762\) 2.71241e17i 0.0501935i
\(763\) −1.29147e18 −0.236960
\(764\) 8.71419e18 1.58533
\(765\) 1.39294e18i 0.251266i
\(766\) −1.16086e18 −0.207632
\(767\) −3.38060e18 1.00635e18i −0.599547 0.178476i
\(768\) −6.21689e18 −1.09326
\(769\) 8.72057e18i 1.52063i 0.649554 + 0.760315i \(0.274955\pi\)
−0.649554 + 0.760315i \(0.725045\pi\)
\(770\) −4.29718e17 −0.0743009
\(771\) 8.02588e18 1.37607
\(772\) 2.48781e18i 0.422965i
\(773\) 1.00121e19i 1.68794i −0.536392 0.843969i \(-0.680213\pi\)
0.536392 0.843969i \(-0.319787\pi\)
\(774\) 3.42220e17i 0.0572123i
\(775\) 6.48600e18i 1.07527i
\(776\) 8.27278e17 0.136004
\(777\) 3.82802e18 0.624076
\(778\) 3.56584e17i 0.0576493i
\(779\) −4.09723e18 −0.656897
\(780\) 2.02128e18 + 6.01702e17i 0.321374 + 0.0956679i
\(781\) 1.29761e19 2.04603
\(782\) 1.08221e18i 0.169227i
\(783\) −1.85827e18 −0.288176
\(784\) −8.89891e18 −1.36862
\(785\) 1.96975e17i 0.0300441i
\(786\) 5.69011e17i 0.0860745i
\(787\) 1.12189e19i 1.68312i −0.540166 0.841558i \(-0.681639\pi\)
0.540166 0.841558i \(-0.318361\pi\)
\(788\) 2.28381e18i 0.339813i
\(789\) −1.42027e19 −2.09590
\(790\) 2.68105e17 0.0392400
\(791\) 1.02462e19i 1.48737i
\(792\) −1.43439e18 −0.206516
\(793\) 4.59063e17 1.54211e18i 0.0655536 0.220212i
\(794\) 9.67880e17 0.137084
\(795\) 1.34758e18i 0.189307i
\(796\) 6.78445e18 0.945322
\(797\) −4.70000e18 −0.649559 −0.324780 0.945790i \(-0.605290\pi\)
−0.324780 + 0.945790i \(0.605290\pi\)
\(798\) 2.49563e18i 0.342107i
\(799\) 9.01283e18i 1.22548i
\(800\) 2.35450e18i 0.317552i
\(801\) 5.07771e18i 0.679292i
\(802\) −9.79727e17 −0.130009
\(803\) 5.40300e18 0.711187
\(804\) 3.60477e18i 0.470666i
\(805\) −2.98044e18 −0.386017
\(806\) −2.99357e17 + 1.00562e18i −0.0384603 + 0.129198i
\(807\) 5.93808e18 0.756777
\(808\) 5.98530e17i 0.0756680i
\(809\) 5.07622e18 0.636612 0.318306 0.947988i \(-0.396886\pi\)
0.318306 + 0.947988i \(0.396886\pi\)
\(810\) 3.13105e17 0.0389527
\(811\) 9.93674e18i 1.22633i 0.789954 + 0.613166i \(0.210105\pi\)
−0.789954 + 0.613166i \(0.789895\pi\)
\(812\) 6.96444e18i 0.852652i
\(813\) 1.38985e19i 1.68802i
\(814\) 4.66672e17i 0.0562281i
\(815\) 3.74949e15 0.000448175
\(816\) 1.61587e19 1.91611
\(817\) 1.06709e19i 1.25533i
\(818\) 3.77855e17 0.0440990
\(819\) 7.57971e18 + 2.25636e18i 0.877621 + 0.261254i
\(820\) −1.01486e18 −0.116577
\(821\) 5.68777e18i 0.648204i 0.946022 + 0.324102i \(0.105062\pi\)
−0.946022 + 0.324102i \(0.894938\pi\)
\(822\) −1.77124e18 −0.200268
\(823\) −1.08701e19 −1.21936 −0.609681 0.792647i \(-0.708703\pi\)
−0.609681 + 0.792647i \(0.708703\pi\)
\(824\) 1.89383e17i 0.0210773i
\(825\) 1.60977e19i 1.77752i
\(826\) 1.03386e18i 0.113264i
\(827\) 1.05437e19i 1.14605i 0.819536 + 0.573027i \(0.194231\pi\)
−0.819536 + 0.573027i \(0.805769\pi\)
\(828\) −4.94048e18 −0.532809
\(829\) 8.40690e17 0.0899562 0.0449781 0.998988i \(-0.485678\pi\)
0.0449781 + 0.998988i \(0.485678\pi\)
\(830\) 3.93508e17i 0.0417779i
\(831\) −1.07909e19 −1.13671
\(832\) 2.51090e18 8.43479e18i 0.262439 0.881602i
\(833\) 2.17904e19 2.25982
\(834\) 1.67920e18i 0.172791i
\(835\) −8.10885e17 −0.0827937
\(836\) −2.22111e19 −2.25024
\(837\) 5.99071e18i 0.602231i
\(838\) 5.00396e17i 0.0499147i
\(839\) 2.41432e18i 0.238969i −0.992836 0.119484i \(-0.961876\pi\)
0.992836 0.119484i \(-0.0381242\pi\)
\(840\) 1.24477e18i 0.122257i
\(841\) −7.10117e18 −0.692079
\(842\) −9.75577e17 −0.0943480
\(843\) 1.69581e19i 1.62741i
\(844\) −4.06865e18 −0.387458
\(845\) −1.56109e18 + 2.38971e18i −0.147523 + 0.225827i
\(846\) −5.63594e17 −0.0528517
\(847\) 2.19995e19i 2.04725i
\(848\) −5.78754e18 −0.534467
\(849\) 2.19816e19 2.01446
\(850\) 1.87796e18i 0.170790i
\(851\) 3.23674e18i 0.292123i
\(852\) 1.86661e19i 1.67185i
\(853\) 1.72105e18i 0.152977i 0.997070 + 0.0764883i \(0.0243708\pi\)
−0.997070 + 0.0764883i \(0.975629\pi\)
\(854\) 4.71613e17 0.0416015
\(855\) −2.71603e18 −0.237769
\(856\) 2.18637e18i 0.189953i
\(857\) 7.99164e18 0.689066 0.344533 0.938774i \(-0.388037\pi\)
0.344533 + 0.938774i \(0.388037\pi\)
\(858\) 7.42981e17 2.49587e18i 0.0635785 0.213577i
\(859\) −1.85761e18 −0.157760 −0.0788802 0.996884i \(-0.525134\pi\)
−0.0788802 + 0.996884i \(0.525134\pi\)
\(860\) 2.64312e18i 0.222780i
\(861\) −1.02793e19 −0.859890
\(862\) −1.44325e18 −0.119824
\(863\) 7.68131e18i 0.632944i 0.948602 + 0.316472i \(0.102498\pi\)
−0.948602 + 0.316472i \(0.897502\pi\)
\(864\) 2.17471e18i 0.177853i
\(865\) 1.09695e18i 0.0890397i
\(866\) 1.80351e18i 0.145296i
\(867\) −2.38081e19 −1.90371
\(868\) 2.24520e19 1.78187
\(869\) 2.41686e19i 1.90381i
\(870\) −2.80428e17 −0.0219253
\(871\) −4.67622e18 1.39203e18i −0.362891 0.108027i
\(872\) 4.56065e17 0.0351293
\(873\) 4.52866e18i 0.346240i
\(874\) 2.11016e18 0.160136
\(875\) 1.07497e19 0.809739
\(876\) 7.77223e18i 0.581124i
\(877\) 8.04195e17i 0.0596849i −0.999555 0.0298424i \(-0.990499\pi\)
0.999555 0.0298424i \(-0.00950055\pi\)
\(878\) 2.91905e18i 0.215044i
\(879\) 2.47574e19i 1.81041i
\(880\) −5.42514e18 −0.393798
\(881\) −5.69712e18 −0.410499 −0.205249 0.978710i \(-0.565801\pi\)
−0.205249 + 0.978710i \(0.565801\pi\)
\(882\) 1.36261e18i 0.0974598i
\(883\) 1.22609e19 0.870521 0.435261 0.900304i \(-0.356656\pi\)
0.435261 + 0.900304i \(0.356656\pi\)
\(884\) −6.32778e18 + 2.12567e19i −0.445976 + 1.49815i
\(885\) 3.03913e18 0.212627
\(886\) 7.21665e17i 0.0501206i
\(887\) −5.52404e18 −0.380849 −0.190425 0.981702i \(-0.560986\pi\)
−0.190425 + 0.981702i \(0.560986\pi\)
\(888\) −1.35181e18 −0.0925194
\(889\) 7.85582e18i 0.533740i
\(890\) 5.37189e17i 0.0362320i
\(891\) 2.82253e19i 1.88987i
\(892\) 8.10157e18i 0.538515i
\(893\) −1.75737e19 −1.15965
\(894\) 3.79269e18 0.248458
\(895\) 3.48429e18i 0.226603i
\(896\) 1.08415e19 0.699986
\(897\) 5.15316e18 1.73108e19i 0.330311 1.10960i
\(898\) −1.29791e17 −0.00825940
\(899\) 1.01855e19i 0.643492i
\(900\) 8.57320e18 0.537733
\(901\) 1.41717e19 0.882495
\(902\) 1.25314e18i 0.0774744i
\(903\) 2.67716e19i 1.64325i
\(904\) 3.61833e18i 0.220502i
\(905\) 4.36965e18i 0.264381i
\(906\) −5.93817e17 −0.0356713
\(907\) −2.25630e19 −1.34570 −0.672851 0.739778i \(-0.734931\pi\)
−0.672851 + 0.739778i \(0.734931\pi\)
\(908\) 2.48499e19i 1.47152i
\(909\) 3.27646e18 0.192637
\(910\) −8.01884e17 2.38708e17i −0.0468104 0.0139347i
\(911\) 2.45982e19 1.42572 0.712858 0.701308i \(-0.247400\pi\)
0.712858 + 0.701308i \(0.247400\pi\)
\(912\) 3.15071e19i 1.81318i
\(913\) −3.54733e19 −2.02694
\(914\) −5.88734e17 −0.0334017
\(915\) 1.38635e18i 0.0780971i
\(916\) 8.65462e18i 0.484091i
\(917\) 1.64800e19i 0.915287i
\(918\) 1.73456e18i 0.0956557i
\(919\) 2.18624e19 1.19715 0.598574 0.801068i \(-0.295734\pi\)
0.598574 + 0.801068i \(0.295734\pi\)
\(920\) 1.05250e18 0.0572271
\(921\) 1.03287e19i 0.557647i
\(922\) 9.40941e17 0.0504442
\(923\) 2.42143e19 + 7.20820e18i 1.28902 + 0.383721i
\(924\) −5.57240e19 −2.94560
\(925\) 5.61671e18i 0.294822i
\(926\) 3.66375e18 0.190965
\(927\) 1.03672e18 0.0536589
\(928\) 3.69746e18i 0.190039i
\(929\) 1.92132e19i 0.980613i 0.871550 + 0.490306i \(0.163115\pi\)
−0.871550 + 0.490306i \(0.836885\pi\)
\(930\) 9.04045e17i 0.0458196i
\(931\) 4.24882e19i 2.13843i
\(932\) 2.37183e19 1.18544
\(933\) 6.07272e18 0.301406
\(934\) 1.09645e18i 0.0540425i
\(935\) 1.32843e19 0.650226
\(936\) −2.67667e18 7.96802e17i −0.130107 0.0387309i
\(937\) 5.79468e18 0.279719 0.139859 0.990171i \(-0.455335\pi\)
0.139859 + 0.990171i \(0.455335\pi\)
\(938\) 1.43009e18i 0.0685559i
\(939\) 4.60493e18 0.219228
\(940\) −4.35288e18 −0.205800
\(941\) 7.73986e18i 0.363413i −0.983353 0.181707i \(-0.941838\pi\)
0.983353 0.181707i \(-0.0581621\pi\)
\(942\) 3.49880e17i 0.0163150i
\(943\) 8.69154e18i 0.402505i
\(944\) 1.30524e19i 0.600304i
\(945\) 4.77700e18 0.218197
\(946\) −3.26372e18 −0.148054
\(947\) 5.11547e18i 0.230468i 0.993338 + 0.115234i \(0.0367618\pi\)
−0.993338 + 0.115234i \(0.963238\pi\)
\(948\) 3.47667e19 1.55564
\(949\) 1.00824e19 + 3.00136e18i 0.448056 + 0.133379i
\(950\) −3.66175e18 −0.161616
\(951\) 4.07006e19i 1.78413i
\(952\) −1.30906e19 −0.569926
\(953\) −4.16248e19 −1.79990 −0.899950 0.435993i \(-0.856397\pi\)
−0.899950 + 0.435993i \(0.856397\pi\)
\(954\) 8.86193e17i 0.0380596i
\(955\) 1.01625e19i 0.433488i
\(956\) 9.46705e18i 0.401087i
\(957\) 2.52795e19i 1.06375i
\(958\) −2.65191e17 −0.0110836
\(959\) −5.12997e19 −2.12958
\(960\) 7.58280e18i 0.312656i
\(961\) −8.41842e18 −0.344769
\(962\) 2.59236e17 8.70843e17i 0.0105453 0.0354243i
\(963\) −1.19686e19 −0.483585
\(964\) 2.51348e19i 1.00873i
\(965\) 2.90128e18 0.115654
\(966\) 5.29404e18 0.209621
\(967\) 1.03305e19i 0.406301i −0.979147 0.203151i \(-0.934882\pi\)
0.979147 0.203151i \(-0.0651181\pi\)
\(968\) 7.76882e18i 0.303505i
\(969\) 7.71502e19i 2.99387i
\(970\) 4.79104e17i 0.0184677i
\(971\) 1.84127e19 0.705007 0.352503 0.935811i \(-0.385330\pi\)
0.352503 + 0.935811i \(0.385330\pi\)
\(972\) 2.71323e19 1.03195
\(973\) 4.86338e19i 1.83741i
\(974\) −2.56851e18 −0.0963935
\(975\) −8.94227e18 + 3.00395e19i −0.333363 + 1.11986i
\(976\) 5.95405e18 0.220490
\(977\) 2.54146e18i 0.0934908i −0.998907 0.0467454i \(-0.985115\pi\)
0.998907 0.0467454i \(-0.0148849\pi\)
\(978\) −6.66007e15 −0.000243375
\(979\) 4.84256e19 1.75787
\(980\) 1.05240e19i 0.379501i
\(981\) 2.49658e18i 0.0894328i
\(982\) 1.98948e18i 0.0707971i
\(983\) 2.09604e19i 0.740970i 0.928838 + 0.370485i \(0.120809\pi\)
−0.928838 + 0.370485i \(0.879191\pi\)
\(984\) 3.63000e18 0.127479
\(985\) 2.66338e18 0.0929175
\(986\) 2.94911e18i 0.102210i
\(987\) −4.40896e19 −1.51801
\(988\) −4.14474e19 1.23382e19i −1.41768 0.422020i
\(989\) −2.26365e19 −0.769188
\(990\) 8.30702e17i 0.0280425i
\(991\) −4.12487e18 −0.138335 −0.0691674 0.997605i \(-0.522034\pi\)
−0.0691674 + 0.997605i \(0.522034\pi\)
\(992\) −1.19199e19 −0.397142
\(993\) 4.96866e19i 1.64463i
\(994\) 7.40525e18i 0.243516i
\(995\) 7.91201e18i 0.258486i
\(996\) 5.10284e19i 1.65625i
\(997\) 4.59640e19 1.48217 0.741086 0.671410i \(-0.234311\pi\)
0.741086 + 0.671410i \(0.234311\pi\)
\(998\) 3.86292e18 0.123756
\(999\) 5.18780e18i 0.165123i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 13.14.b.a.12.7 14
3.2 odd 2 117.14.b.c.64.8 14
13.5 odd 4 169.14.a.d.1.7 14
13.8 odd 4 169.14.a.d.1.8 14
13.12 even 2 inner 13.14.b.a.12.8 yes 14
39.38 odd 2 117.14.b.c.64.7 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.14.b.a.12.7 14 1.1 even 1 trivial
13.14.b.a.12.8 yes 14 13.12 even 2 inner
117.14.b.c.64.7 14 39.38 odd 2
117.14.b.c.64.8 14 3.2 odd 2
169.14.a.d.1.7 14 13.5 odd 4
169.14.a.d.1.8 14 13.8 odd 4