Properties

Label 13.11.d
Level $13$
Weight $11$
Character orbit 13.d
Rep. character $\chi_{13}(5,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $20$
Newform subspaces $1$
Sturm bound $12$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 13 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 13.d (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(12\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(13, [\chi])\).

Total New Old
Modular forms 24 24 0
Cusp forms 20 20 0
Eisenstein series 4 4 0

Trace form

\( 20 q - 34 q^{2} - 4 q^{3} - 7792 q^{5} - 19264 q^{6} - 38312 q^{7} - 1200 q^{8} + 236192 q^{9} + 331856 q^{11} - 445380 q^{13} + 2007244 q^{14} + 379412 q^{15} - 1736492 q^{16} - 5990914 q^{18} - 2277428 q^{19}+ \cdots + 64175005436 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(13, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
13.11.d.a 13.d 13.d $20$ $8.260$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 13.11.d.a \(-34\) \(-4\) \(-7792\) \(-38312\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-2-2\beta _{2}+\beta _{3})q^{2}+(-\beta _{1}-\beta _{3}+\cdots)q^{3}+\cdots\)