Properties

Label 13.11
Level 13
Weight 11
Dimension 64
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 154
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 13 \)
Weight: \( k \) = \( 11 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(154\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(\Gamma_1(13))\).

Total New Old
Modular forms 76 76 0
Cusp forms 64 64 0
Eisenstein series 12 12 0

Trace form

\( 64 q - 6 q^{2} - 6 q^{3} - 6 q^{4} - 6 q^{5} - 6 q^{6} - 7456 q^{7} + 147450 q^{8} - 157470 q^{9} - 37926 q^{10} + 294228 q^{11} - 1227738 q^{13} - 756108 q^{14} + 1892478 q^{15} + 5242874 q^{16} + 2121648 q^{17}+ \cdots + 98659951308 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(\Gamma_1(13))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
13.11.d \(\chi_{13}(5, \cdot)\) 13.11.d.a 20 2
13.11.f \(\chi_{13}(2, \cdot)\) 13.11.f.a 44 4