Properties

Label 12996.2.a.s
Level $12996$
Weight $2$
Character orbit 12996.a
Self dual yes
Analytic conductor $103.774$
Dimension $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [12996,2,Mod(1,12996)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(12996, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("12996.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 12996 = 2^{2} \cdot 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 12996.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-2,0,4,0,0,0,-6,0,2,0,0,0,-4,0,0,0,0,0,6,0,6,0,0,0,-4, 0,4,0,0,0,-18,0,-10,0,0,0,-8,0,16,0,0,0,0,0,8,0,0,0,2,0,-8,0,0,0,-10,0, 10,0,0,0,26,0,12,0,0,0,20,0,-2,0,0,0,2,0,12,0,0,0,-20,0,-24,0,0,0,-22, 0,-24,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(103.773582467\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 2 q - 2 q^{5} + 4 q^{7} - 6 q^{11} + 2 q^{13} - 4 q^{17} + 6 q^{23} + 6 q^{25} - 4 q^{29} + 4 q^{31} - 18 q^{35} - 10 q^{37} - 8 q^{41} + 16 q^{43} + 8 q^{49} + 2 q^{53} - 8 q^{55} - 10 q^{59} + 10 q^{61}+ \cdots - 24 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(19\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.