Defining parameters
Level: | \( N \) | \(=\) | \( 12996 = 2^{2} \cdot 3^{2} \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 12996.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 48 \) | ||
Sturm bound: | \(4560\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(12996))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2400 | 142 | 2258 |
Cusp forms | 2161 | 142 | 2019 |
Eisenstein series | 239 | 0 | 239 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(300\) | \(0\) | \(300\) | \(261\) | \(0\) | \(261\) | \(39\) | \(0\) | \(39\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(310\) | \(0\) | \(310\) | \(270\) | \(0\) | \(270\) | \(40\) | \(0\) | \(40\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(310\) | \(0\) | \(310\) | \(270\) | \(0\) | \(270\) | \(40\) | \(0\) | \(40\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(300\) | \(0\) | \(300\) | \(260\) | \(0\) | \(260\) | \(40\) | \(0\) | \(40\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(300\) | \(33\) | \(267\) | \(280\) | \(33\) | \(247\) | \(20\) | \(0\) | \(20\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(290\) | \(24\) | \(266\) | \(270\) | \(24\) | \(246\) | \(20\) | \(0\) | \(20\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(290\) | \(40\) | \(250\) | \(270\) | \(40\) | \(230\) | \(20\) | \(0\) | \(20\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(300\) | \(45\) | \(255\) | \(280\) | \(45\) | \(235\) | \(20\) | \(0\) | \(20\) | |||
Plus space | \(+\) | \(1180\) | \(64\) | \(1116\) | \(1061\) | \(64\) | \(997\) | \(119\) | \(0\) | \(119\) | |||||
Minus space | \(-\) | \(1220\) | \(78\) | \(1142\) | \(1100\) | \(78\) | \(1022\) | \(120\) | \(0\) | \(120\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(12996))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 19 | |||||||
12996.2.a.a | $1$ | $103.774$ | \(\Q\) | None | \(0\) | \(0\) | \(-4\) | \(-3\) | $-$ | $+$ | $-$ | \(q-4q^{5}-3q^{7}-4q^{11}-5q^{13}-4q^{23}+\cdots\) | |
12996.2.a.b | $1$ | $103.774$ | \(\Q\) | None | \(0\) | \(0\) | \(-4\) | \(-3\) | $-$ | $+$ | $+$ | \(q-4q^{5}-3q^{7}-4q^{11}+5q^{13}-4q^{23}+\cdots\) | |
12996.2.a.c | $1$ | $103.774$ | \(\Q\) | None | \(0\) | \(0\) | \(-2\) | \(0\) | $-$ | $-$ | $-$ | \(q-2q^{5}-2q^{11}-2q^{13}-6q^{17}-2q^{23}+\cdots\) | |
12996.2.a.d | $1$ | $103.774$ | \(\Q\) | not computed | \(0\) | \(0\) | \(0\) | \(-4\) | $-$ | $+$ | $-$ | \(q-4q^{7}-2q^{13}-5q^{25}+4q^{31}+10q^{37}+\cdots\) | |
12996.2.a.e | $1$ | $103.774$ | \(\Q\) | not computed | \(0\) | \(0\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | \(q-q^{7}-7q^{13}-5q^{25}+11q^{31}-q^{37}+\cdots\) | |
12996.2.a.f | $1$ | $103.774$ | \(\Q\) | not computed | \(0\) | \(0\) | \(0\) | \(-1\) | $-$ | $+$ | $-$ | \(q-q^{7}+7q^{13}-5q^{25}-11q^{31}+q^{37}+\cdots\) | |
12996.2.a.g | $1$ | $103.774$ | \(\Q\) | not computed | \(0\) | \(0\) | \(0\) | \(5\) | $-$ | $+$ | $-$ | \(q+5q^{7}-5q^{13}-5q^{25}+7q^{31}-11q^{37}+\cdots\) | |
12996.2.a.h | $1$ | $103.774$ | \(\Q\) | not computed | \(0\) | \(0\) | \(0\) | \(5\) | $-$ | $+$ | $+$ | \(q+5q^{7}+5q^{13}-5q^{25}-7q^{31}+11q^{37}+\cdots\) | |
12996.2.a.i | $1$ | $103.774$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(-3\) | $-$ | $-$ | $-$ | \(q+q^{5}-3q^{7}-5q^{11}+4q^{13}+3q^{17}+\cdots\) | |
12996.2.a.j | $1$ | $103.774$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(0\) | $-$ | $-$ | $+$ | \(q+q^{5}+4q^{11}-q^{13}-3q^{17}-5q^{23}+\cdots\) | |
12996.2.a.k | $1$ | $103.774$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | \(q+q^{5}+4q^{11}+q^{13}-3q^{17}-5q^{23}+\cdots\) | |
12996.2.a.l | $1$ | $103.774$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(1\) | $-$ | $-$ | $+$ | \(q+q^{5}+q^{7}-q^{11}-4q^{13}+3q^{17}+\cdots\) | |
12996.2.a.m | $1$ | $103.774$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(1\) | $-$ | $-$ | $+$ | \(q+q^{5}+q^{7}-q^{11}+4q^{13}+3q^{17}+\cdots\) | |
12996.2.a.n | $1$ | $103.774$ | \(\Q\) | None | \(0\) | \(0\) | \(3\) | \(1\) | $-$ | $-$ | $-$ | \(q+3q^{5}+q^{7}+5q^{11}+6q^{13}+5q^{17}+\cdots\) | |
12996.2.a.o | $1$ | $103.774$ | \(\Q\) | None | \(0\) | \(0\) | \(4\) | \(-3\) | $-$ | $+$ | $-$ | \(q+4q^{5}-3q^{7}+4q^{11}-5q^{13}+4q^{23}+\cdots\) | |
12996.2.a.p | $1$ | $103.774$ | \(\Q\) | None | \(0\) | \(0\) | \(4\) | \(-3\) | $-$ | $+$ | $+$ | \(q+4q^{5}-3q^{7}+4q^{11}+5q^{13}+4q^{23}+\cdots\) | |
12996.2.a.q | $2$ | $103.774$ | \(\Q(\sqrt{33}) \) | None | \(0\) | \(0\) | \(-3\) | \(1\) | $-$ | $-$ | $-$ | ||
12996.2.a.r | $2$ | $103.774$ | \(\Q(\sqrt{7}) \) | None | \(0\) | \(0\) | \(-2\) | \(4\) | $-$ | $-$ | $-$ | ||
12996.2.a.s | $2$ | $103.774$ | \(\Q(\sqrt{7}) \) | None | \(0\) | \(0\) | \(-2\) | \(4\) | $-$ | $-$ | $+$ | ||
12996.2.a.t | $2$ | $103.774$ | \(\Q(\sqrt{57}) \) | not computed | \(0\) | \(0\) | \(-1\) | \(-3\) | $-$ | $-$ | $+$ | ||
12996.2.a.u | $2$ | $103.774$ | \(\Q(\sqrt{6}) \) | None | \(0\) | \(0\) | \(0\) | \(-2\) | $-$ | $-$ | $+$ | ||
12996.2.a.v | $2$ | $103.774$ | \(\Q(\sqrt{6}) \) | None | \(0\) | \(0\) | \(0\) | \(-2\) | $-$ | $-$ | $-$ | ||
12996.2.a.w | $2$ | $103.774$ | \(\Q(\sqrt{7}) \) | not computed | \(0\) | \(0\) | \(0\) | \(6\) | $-$ | $+$ | $-$ | ||
12996.2.a.x | $2$ | $103.774$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(0\) | \(1\) | \(-3\) | $-$ | $-$ | $-$ | ||
12996.2.a.y | $2$ | $103.774$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(0\) | \(1\) | \(-3\) | $-$ | $-$ | $-$ | ||
12996.2.a.z | $2$ | $103.774$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(0\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | ||
12996.2.a.ba | $2$ | $103.774$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(0\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | ||
12996.2.a.bb | $2$ | $103.774$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(0\) | \(2\) | \(4\) | $-$ | $-$ | $-$ | ||
12996.2.a.bc | $2$ | $103.774$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(0\) | \(2\) | \(4\) | $-$ | $-$ | $-$ | ||
12996.2.a.bd | $3$ | $103.774$ | \(\Q(\zeta_{18})^+\) | None | \(0\) | \(0\) | \(-3\) | \(-3\) | $-$ | $-$ | $+$ | ||
12996.2.a.be | $3$ | $103.774$ | \(\Q(\zeta_{18})^+\) | None | \(0\) | \(0\) | \(-3\) | \(-3\) | $-$ | $-$ | $-$ | ||
12996.2.a.bf | $3$ | $103.774$ | \(\Q(\zeta_{18})^+\) | not computed | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $+$ | $-$ | ||
12996.2.a.bg | $3$ | $103.774$ | \(\Q(\zeta_{18})^+\) | not computed | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $+$ | $+$ | ||
12996.2.a.bh | $4$ | $103.774$ | 4.4.7600.1 | not computed | \(0\) | \(0\) | \(0\) | \(2\) | $-$ | $+$ | $-$ | ||
12996.2.a.bi | $4$ | $103.774$ | 4.4.7600.1 | not computed | \(0\) | \(0\) | \(0\) | \(2\) | $-$ | $+$ | $-$ | ||
12996.2.a.bj | $4$ | $103.774$ | \(\Q(\sqrt{3}, \sqrt{19})\) | not computed | \(0\) | \(0\) | \(0\) | \(6\) | $-$ | $+$ | $+$ | ||
12996.2.a.bk | $4$ | $103.774$ | \(\Q(\zeta_{20})^+\) | None | \(0\) | \(0\) | \(4\) | \(-6\) | $-$ | $-$ | $+$ | ||
12996.2.a.bl | $4$ | $103.774$ | \(\Q(\zeta_{20})^+\) | None | \(0\) | \(0\) | \(4\) | \(-6\) | $-$ | $-$ | $+$ | ||
12996.2.a.bm | $4$ | $103.774$ | 4.4.2225.1 | None | \(0\) | \(0\) | \(4\) | \(-3\) | $-$ | $-$ | $-$ | ||
12996.2.a.bn | $4$ | $103.774$ | 4.4.2225.1 | None | \(0\) | \(0\) | \(4\) | \(-3\) | $-$ | $-$ | $-$ | ||
12996.2.a.bo | $6$ | $103.774$ | 6.6.73227321.1 | None | \(0\) | \(0\) | \(-3\) | \(9\) | $-$ | $-$ | $+$ | ||
12996.2.a.bp | $6$ | $103.774$ | 6.6.73227321.1 | None | \(0\) | \(0\) | \(-3\) | \(9\) | $-$ | $-$ | $-$ | ||
12996.2.a.bq | $6$ | $103.774$ | 6.6.53327808.1 | not computed | \(0\) | \(0\) | \(0\) | \(-6\) | $-$ | $+$ | $-$ | ||
12996.2.a.br | $6$ | $103.774$ | 6.6.53327808.1 | not computed | \(0\) | \(0\) | \(0\) | \(-6\) | $-$ | $+$ | $+$ | ||
12996.2.a.bs | $6$ | $103.774$ | 6.6.20319417.1 | None | \(0\) | \(0\) | \(3\) | \(-3\) | $-$ | $-$ | $-$ | ||
12996.2.a.bt | $6$ | $103.774$ | 6.6.20319417.1 | None | \(0\) | \(0\) | \(3\) | \(-3\) | $-$ | $-$ | $+$ | ||
12996.2.a.bu | $8$ | $103.774$ | 8.8.\(\cdots\).1 | not computed | \(0\) | \(0\) | \(-14\) | \(8\) | $-$ | $-$ | $+$ | ||
12996.2.a.bv | $16$ | $103.774$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | not computed | \(0\) | \(0\) | \(0\) | \(4\) | $-$ | $+$ | $+$ |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(12996))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(12996)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(228))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(342))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(684))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(722))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1083))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1444))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2166))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3249))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4332))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6498))\)\(^{\oplus 2}\)