Properties

Label 12996.2.a
Level $12996$
Weight $2$
Character orbit 12996.a
Rep. character $\chi_{12996}(1,\cdot)$
Character field $\Q$
Dimension $142$
Newform subspaces $48$
Sturm bound $4560$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 12996 = 2^{2} \cdot 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 12996.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 48 \)
Sturm bound: \(4560\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(12996))\).

Total New Old
Modular forms 2400 142 2258
Cusp forms 2161 142 2019
Eisenstein series 239 0 239

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(19\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(300\)\(0\)\(300\)\(261\)\(0\)\(261\)\(39\)\(0\)\(39\)
\(+\)\(+\)\(-\)\(-\)\(310\)\(0\)\(310\)\(270\)\(0\)\(270\)\(40\)\(0\)\(40\)
\(+\)\(-\)\(+\)\(-\)\(310\)\(0\)\(310\)\(270\)\(0\)\(270\)\(40\)\(0\)\(40\)
\(+\)\(-\)\(-\)\(+\)\(300\)\(0\)\(300\)\(260\)\(0\)\(260\)\(40\)\(0\)\(40\)
\(-\)\(+\)\(+\)\(-\)\(300\)\(33\)\(267\)\(280\)\(33\)\(247\)\(20\)\(0\)\(20\)
\(-\)\(+\)\(-\)\(+\)\(290\)\(24\)\(266\)\(270\)\(24\)\(246\)\(20\)\(0\)\(20\)
\(-\)\(-\)\(+\)\(+\)\(290\)\(40\)\(250\)\(270\)\(40\)\(230\)\(20\)\(0\)\(20\)
\(-\)\(-\)\(-\)\(-\)\(300\)\(45\)\(255\)\(280\)\(45\)\(235\)\(20\)\(0\)\(20\)
Plus space\(+\)\(1180\)\(64\)\(1116\)\(1061\)\(64\)\(997\)\(119\)\(0\)\(119\)
Minus space\(-\)\(1220\)\(78\)\(1142\)\(1100\)\(78\)\(1022\)\(120\)\(0\)\(120\)

Trace form

\( 142 q + 2 q^{5} - 2 q^{13} - 4 q^{17} + 6 q^{23} + 142 q^{25} + 2 q^{29} - 16 q^{31} - 16 q^{35} + 4 q^{37} - 6 q^{41} - 12 q^{43} - 12 q^{47} + 146 q^{49} - 8 q^{55} - 2 q^{59} + 16 q^{61} + 32 q^{65}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(12996))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 19
12996.2.a.a 12996.a 1.a $1$ $103.774$ \(\Q\) None \(0\) \(0\) \(-4\) \(-3\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{5}-3q^{7}-4q^{11}-5q^{13}-4q^{23}+\cdots\)
12996.2.a.b 12996.a 1.a $1$ $103.774$ \(\Q\) None \(0\) \(0\) \(-4\) \(-3\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{5}-3q^{7}-4q^{11}+5q^{13}-4q^{23}+\cdots\)
12996.2.a.c 12996.a 1.a $1$ $103.774$ \(\Q\) None \(0\) \(0\) \(-2\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{5}-2q^{11}-2q^{13}-6q^{17}-2q^{23}+\cdots\)
12996.2.a.d 12996.a 1.a $1$ $103.774$ \(\Q\) not computed \(0\) \(0\) \(0\) \(-4\) $-$ $+$ $-$ \(q-4q^{7}-2q^{13}-5q^{25}+4q^{31}+10q^{37}+\cdots\)
12996.2.a.e 12996.a 1.a $1$ $103.774$ \(\Q\) not computed \(0\) \(0\) \(0\) \(-1\) $-$ $+$ $+$ \(q-q^{7}-7q^{13}-5q^{25}+11q^{31}-q^{37}+\cdots\)
12996.2.a.f 12996.a 1.a $1$ $103.774$ \(\Q\) not computed \(0\) \(0\) \(0\) \(-1\) $-$ $+$ $-$ \(q-q^{7}+7q^{13}-5q^{25}-11q^{31}+q^{37}+\cdots\)
12996.2.a.g 12996.a 1.a $1$ $103.774$ \(\Q\) not computed \(0\) \(0\) \(0\) \(5\) $-$ $+$ $-$ \(q+5q^{7}-5q^{13}-5q^{25}+7q^{31}-11q^{37}+\cdots\)
12996.2.a.h 12996.a 1.a $1$ $103.774$ \(\Q\) not computed \(0\) \(0\) \(0\) \(5\) $-$ $+$ $+$ \(q+5q^{7}+5q^{13}-5q^{25}-7q^{31}+11q^{37}+\cdots\)
12996.2.a.i 12996.a 1.a $1$ $103.774$ \(\Q\) None \(0\) \(0\) \(1\) \(-3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}-3q^{7}-5q^{11}+4q^{13}+3q^{17}+\cdots\)
12996.2.a.j 12996.a 1.a $1$ $103.774$ \(\Q\) None \(0\) \(0\) \(1\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}+4q^{11}-q^{13}-3q^{17}-5q^{23}+\cdots\)
12996.2.a.k 12996.a 1.a $1$ $103.774$ \(\Q\) None \(0\) \(0\) \(1\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}+4q^{11}+q^{13}-3q^{17}-5q^{23}+\cdots\)
12996.2.a.l 12996.a 1.a $1$ $103.774$ \(\Q\) None \(0\) \(0\) \(1\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}+q^{7}-q^{11}-4q^{13}+3q^{17}+\cdots\)
12996.2.a.m 12996.a 1.a $1$ $103.774$ \(\Q\) None \(0\) \(0\) \(1\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}+q^{7}-q^{11}+4q^{13}+3q^{17}+\cdots\)
12996.2.a.n 12996.a 1.a $1$ $103.774$ \(\Q\) None \(0\) \(0\) \(3\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{5}+q^{7}+5q^{11}+6q^{13}+5q^{17}+\cdots\)
12996.2.a.o 12996.a 1.a $1$ $103.774$ \(\Q\) None \(0\) \(0\) \(4\) \(-3\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{5}-3q^{7}+4q^{11}-5q^{13}+4q^{23}+\cdots\)
12996.2.a.p 12996.a 1.a $1$ $103.774$ \(\Q\) None \(0\) \(0\) \(4\) \(-3\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+4q^{5}-3q^{7}+4q^{11}+5q^{13}+4q^{23}+\cdots\)
12996.2.a.q 12996.a 1.a $2$ $103.774$ \(\Q(\sqrt{33}) \) None \(0\) \(0\) \(-3\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$
12996.2.a.r 12996.a 1.a $2$ $103.774$ \(\Q(\sqrt{7}) \) None \(0\) \(0\) \(-2\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$
12996.2.a.s 12996.a 1.a $2$ $103.774$ \(\Q(\sqrt{7}) \) None \(0\) \(0\) \(-2\) \(4\) $-$ $-$ $+$ $\mathrm{SU}(2)$
12996.2.a.t 12996.a 1.a $2$ $103.774$ \(\Q(\sqrt{57}) \) not computed \(0\) \(0\) \(-1\) \(-3\) $-$ $-$ $+$
12996.2.a.u 12996.a 1.a $2$ $103.774$ \(\Q(\sqrt{6}) \) None \(0\) \(0\) \(0\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$
12996.2.a.v 12996.a 1.a $2$ $103.774$ \(\Q(\sqrt{6}) \) None \(0\) \(0\) \(0\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$
12996.2.a.w 12996.a 1.a $2$ $103.774$ \(\Q(\sqrt{7}) \) not computed \(0\) \(0\) \(0\) \(6\) $-$ $+$ $-$
12996.2.a.x 12996.a 1.a $2$ $103.774$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(1\) \(-3\) $-$ $-$ $-$ $\mathrm{SU}(2)$
12996.2.a.y 12996.a 1.a $2$ $103.774$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(1\) \(-3\) $-$ $-$ $-$ $\mathrm{SU}(2)$
12996.2.a.z 12996.a 1.a $2$ $103.774$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(1\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
12996.2.a.ba 12996.a 1.a $2$ $103.774$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(1\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
12996.2.a.bb 12996.a 1.a $2$ $103.774$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(2\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$
12996.2.a.bc 12996.a 1.a $2$ $103.774$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(2\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$
12996.2.a.bd 12996.a 1.a $3$ $103.774$ \(\Q(\zeta_{18})^+\) None \(0\) \(0\) \(-3\) \(-3\) $-$ $-$ $+$ $\mathrm{SU}(2)$
12996.2.a.be 12996.a 1.a $3$ $103.774$ \(\Q(\zeta_{18})^+\) None \(0\) \(0\) \(-3\) \(-3\) $-$ $-$ $-$ $\mathrm{SU}(2)$
12996.2.a.bf 12996.a 1.a $3$ $103.774$ \(\Q(\zeta_{18})^+\) not computed \(0\) \(0\) \(0\) \(0\) $-$ $+$ $-$
12996.2.a.bg 12996.a 1.a $3$ $103.774$ \(\Q(\zeta_{18})^+\) not computed \(0\) \(0\) \(0\) \(0\) $-$ $+$ $+$
12996.2.a.bh 12996.a 1.a $4$ $103.774$ 4.4.7600.1 not computed \(0\) \(0\) \(0\) \(2\) $-$ $+$ $-$
12996.2.a.bi 12996.a 1.a $4$ $103.774$ 4.4.7600.1 not computed \(0\) \(0\) \(0\) \(2\) $-$ $+$ $-$
12996.2.a.bj 12996.a 1.a $4$ $103.774$ \(\Q(\sqrt{3}, \sqrt{19})\) not computed \(0\) \(0\) \(0\) \(6\) $-$ $+$ $+$
12996.2.a.bk 12996.a 1.a $4$ $103.774$ \(\Q(\zeta_{20})^+\) None \(0\) \(0\) \(4\) \(-6\) $-$ $-$ $+$ $\mathrm{SU}(2)$
12996.2.a.bl 12996.a 1.a $4$ $103.774$ \(\Q(\zeta_{20})^+\) None \(0\) \(0\) \(4\) \(-6\) $-$ $-$ $+$ $\mathrm{SU}(2)$
12996.2.a.bm 12996.a 1.a $4$ $103.774$ 4.4.2225.1 None \(0\) \(0\) \(4\) \(-3\) $-$ $-$ $-$ $\mathrm{SU}(2)$
12996.2.a.bn 12996.a 1.a $4$ $103.774$ 4.4.2225.1 None \(0\) \(0\) \(4\) \(-3\) $-$ $-$ $-$ $\mathrm{SU}(2)$
12996.2.a.bo 12996.a 1.a $6$ $103.774$ 6.6.73227321.1 None \(0\) \(0\) \(-3\) \(9\) $-$ $-$ $+$ $\mathrm{SU}(2)$
12996.2.a.bp 12996.a 1.a $6$ $103.774$ 6.6.73227321.1 None \(0\) \(0\) \(-3\) \(9\) $-$ $-$ $-$ $\mathrm{SU}(2)$
12996.2.a.bq 12996.a 1.a $6$ $103.774$ 6.6.53327808.1 not computed \(0\) \(0\) \(0\) \(-6\) $-$ $+$ $-$
12996.2.a.br 12996.a 1.a $6$ $103.774$ 6.6.53327808.1 not computed \(0\) \(0\) \(0\) \(-6\) $-$ $+$ $+$
12996.2.a.bs 12996.a 1.a $6$ $103.774$ 6.6.20319417.1 None \(0\) \(0\) \(3\) \(-3\) $-$ $-$ $-$ $\mathrm{SU}(2)$
12996.2.a.bt 12996.a 1.a $6$ $103.774$ 6.6.20319417.1 None \(0\) \(0\) \(3\) \(-3\) $-$ $-$ $+$ $\mathrm{SU}(2)$
12996.2.a.bu 12996.a 1.a $8$ $103.774$ 8.8.\(\cdots\).1 not computed \(0\) \(0\) \(-14\) \(8\) $-$ $-$ $+$
12996.2.a.bv 12996.a 1.a $16$ $103.774$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) not computed \(0\) \(0\) \(0\) \(4\) $-$ $+$ $+$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(12996))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(12996)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(228))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(342))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(684))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(722))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1083))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1444))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2166))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3249))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4332))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6498))\)\(^{\oplus 2}\)