Properties

Label 12996.2.a.p
Level $12996$
Weight $2$
Character orbit 12996.a
Self dual yes
Analytic conductor $103.774$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [12996,2,Mod(1,12996)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(12996, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("12996.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 12996 = 2^{2} \cdot 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 12996.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,0,0,4,0,-3,0,0,0,4,0,5,0,0,0,0,0,0,0,0,0,4,0,11,0,0,0,8, 0,1,0,0,0,-12,0,-5,0,0,0,8,0,-5,0,0,0,-8,0,2,0,0,0,4,0,16,0,0,0,12,0,-1, 0,0,0,20,0,3,0,0,0,16,0,-15,0,0,0,-12,0,-7,0,0,0,0,0,0,0,0,0,-12,0,-15, 0,0,0,0,0,-2,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(103.773582467\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 4 q^{5} - 3 q^{7} + 4 q^{11} + 5 q^{13} + 4 q^{23} + 11 q^{25} + 8 q^{29} + q^{31} - 12 q^{35} - 5 q^{37} + 8 q^{41} - 5 q^{43} - 8 q^{47} + 2 q^{49} + 4 q^{53} + 16 q^{55} + 12 q^{59} - q^{61} + 20 q^{65}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(19\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.