Properties

Label 1296.3.g.d.1135.1
Level $1296$
Weight $3$
Character 1296.1135
Analytic conductor $35.313$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1296,3,Mod(1135,1296)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1296.1135"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1296, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1296 = 2^{4} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1296.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-6,0,0,0,0,0,0,0,10,0,0,0,-30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(35.3134422611\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-7}, \sqrt{-15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 11x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1135.1
Root \(-3.25937i\) of defining polynomial
Character \(\chi\) \(=\) 1296.1135
Dual form 1296.3.g.d.1135.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.62348 q^{5} -9.77810i q^{7} -11.6190i q^{11} +17.8704 q^{13} -2.37652 q^{17} +14.0337i q^{19} -41.5271i q^{23} +18.8704 q^{25} -11.3765 q^{29} +20.8232i q^{31} +64.7650i q^{35} +35.7409 q^{37} -5.25915 q^{41} -62.9242i q^{43} -4.94868i q^{47} -46.6113 q^{49} -75.7409 q^{53} +76.9578i q^{55} +58.0948i q^{59} -11.8704 q^{61} -118.364 q^{65} +23.8118i q^{67} +46.4758i q^{71} -104.352 q^{73} -113.611 q^{77} -20.8232i q^{79} +28.1866i q^{83} +15.7409 q^{85} -73.0122 q^{89} -174.739i q^{91} -92.9516i q^{95} -142.223 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{5} + 10 q^{13} - 30 q^{17} + 14 q^{25} - 66 q^{29} + 20 q^{37} - 144 q^{41} - 2 q^{49} - 180 q^{53} + 14 q^{61} - 330 q^{65} - 110 q^{73} - 270 q^{77} - 60 q^{85} - 456 q^{89} - 200 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1296\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1217\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −6.62348 −1.32470 −0.662348 0.749197i \(-0.730440\pi\)
−0.662348 + 0.749197i \(0.730440\pi\)
\(6\) 0 0
\(7\) − 9.77810i − 1.39687i −0.715673 0.698436i \(-0.753880\pi\)
0.715673 0.698436i \(-0.246120\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 11.6190i − 1.05627i −0.849161 0.528134i \(-0.822892\pi\)
0.849161 0.528134i \(-0.177108\pi\)
\(12\) 0 0
\(13\) 17.8704 1.37465 0.687324 0.726351i \(-0.258785\pi\)
0.687324 + 0.726351i \(0.258785\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.37652 −0.139796 −0.0698978 0.997554i \(-0.522267\pi\)
−0.0698978 + 0.997554i \(0.522267\pi\)
\(18\) 0 0
\(19\) 14.0337i 0.738614i 0.929308 + 0.369307i \(0.120405\pi\)
−0.929308 + 0.369307i \(0.879595\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 41.5271i − 1.80553i −0.430137 0.902763i \(-0.641535\pi\)
0.430137 0.902763i \(-0.358465\pi\)
\(24\) 0 0
\(25\) 18.8704 0.754817
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −11.3765 −0.392294 −0.196147 0.980575i \(-0.562843\pi\)
−0.196147 + 0.980575i \(0.562843\pi\)
\(30\) 0 0
\(31\) 20.8232i 0.671716i 0.941913 + 0.335858i \(0.109026\pi\)
−0.941913 + 0.335858i \(0.890974\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 64.7650i 1.85043i
\(36\) 0 0
\(37\) 35.7409 0.965969 0.482984 0.875629i \(-0.339553\pi\)
0.482984 + 0.875629i \(0.339553\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.25915 −0.128272 −0.0641359 0.997941i \(-0.520429\pi\)
−0.0641359 + 0.997941i \(0.520429\pi\)
\(42\) 0 0
\(43\) − 62.9242i − 1.46335i −0.681652 0.731676i \(-0.738738\pi\)
0.681652 0.731676i \(-0.261262\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 4.94868i − 0.105291i −0.998613 0.0526456i \(-0.983235\pi\)
0.998613 0.0526456i \(-0.0167654\pi\)
\(48\) 0 0
\(49\) −46.6113 −0.951251
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −75.7409 −1.42907 −0.714536 0.699598i \(-0.753362\pi\)
−0.714536 + 0.699598i \(0.753362\pi\)
\(54\) 0 0
\(55\) 76.9578i 1.39923i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 58.0948i 0.984657i 0.870410 + 0.492328i \(0.163854\pi\)
−0.870410 + 0.492328i \(0.836146\pi\)
\(60\) 0 0
\(61\) −11.8704 −0.194597 −0.0972986 0.995255i \(-0.531020\pi\)
−0.0972986 + 0.995255i \(0.531020\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −118.364 −1.82099
\(66\) 0 0
\(67\) 23.8118i 0.355399i 0.984085 + 0.177700i \(0.0568656\pi\)
−0.984085 + 0.177700i \(0.943134\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 46.4758i 0.654589i 0.944922 + 0.327294i \(0.106137\pi\)
−0.944922 + 0.327294i \(0.893863\pi\)
\(72\) 0 0
\(73\) −104.352 −1.42948 −0.714741 0.699390i \(-0.753455\pi\)
−0.714741 + 0.699390i \(0.753455\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −113.611 −1.47547
\(78\) 0 0
\(79\) − 20.8232i − 0.263585i −0.991277 0.131792i \(-0.957927\pi\)
0.991277 0.131792i \(-0.0420732\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 28.1866i 0.339597i 0.985479 + 0.169799i \(0.0543117\pi\)
−0.985479 + 0.169799i \(0.945688\pi\)
\(84\) 0 0
\(85\) 15.7409 0.185186
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −73.0122 −0.820362 −0.410181 0.912004i \(-0.634534\pi\)
−0.410181 + 0.912004i \(0.634534\pi\)
\(90\) 0 0
\(91\) − 174.739i − 1.92021i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 92.9516i − 0.978438i
\(96\) 0 0
\(97\) −142.223 −1.46621 −0.733106 0.680114i \(-0.761930\pi\)
−0.733106 + 0.680114i \(0.761930\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 27.3521 0.270813 0.135407 0.990790i \(-0.456766\pi\)
0.135407 + 0.990790i \(0.456766\pi\)
\(102\) 0 0
\(103\) − 146.672i − 1.42400i −0.702182 0.711998i \(-0.747791\pi\)
0.702182 0.711998i \(-0.252209\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 192.573i − 1.79975i −0.436146 0.899876i \(-0.643657\pi\)
0.436146 0.899876i \(-0.356343\pi\)
\(108\) 0 0
\(109\) 0.259148 0.00237750 0.00118875 0.999999i \(-0.499622\pi\)
0.00118875 + 0.999999i \(0.499622\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −198.858 −1.75981 −0.879904 0.475152i \(-0.842393\pi\)
−0.879904 + 0.475152i \(0.842393\pi\)
\(114\) 0 0
\(115\) 275.054i 2.39177i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 23.2379i 0.195276i
\(120\) 0 0
\(121\) −14.0000 −0.115702
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 40.5991 0.324793
\(126\) 0 0
\(127\) 72.2477i 0.568879i 0.958694 + 0.284440i \(0.0918075\pi\)
−0.958694 + 0.284440i \(0.908192\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 184.398i 1.40762i 0.710390 + 0.703808i \(0.248518\pi\)
−0.710390 + 0.703808i \(0.751482\pi\)
\(132\) 0 0
\(133\) 137.223 1.03175
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −139.753 −1.02010 −0.510048 0.860146i \(-0.670372\pi\)
−0.510048 + 0.860146i \(0.670372\pi\)
\(138\) 0 0
\(139\) 175.193i 1.26038i 0.776439 + 0.630192i \(0.217024\pi\)
−0.776439 + 0.630192i \(0.782976\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 207.636i − 1.45200i
\(144\) 0 0
\(145\) 75.3521 0.519670
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 191.069 1.28234 0.641170 0.767399i \(-0.278449\pi\)
0.641170 + 0.767399i \(0.278449\pi\)
\(150\) 0 0
\(151\) 7.24413i 0.0479744i 0.999712 + 0.0239872i \(0.00763609\pi\)
−0.999712 + 0.0239872i \(0.992364\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 137.922i − 0.889819i
\(156\) 0 0
\(157\) 72.1296 0.459424 0.229712 0.973259i \(-0.426222\pi\)
0.229712 + 0.973259i \(0.426222\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −406.056 −2.52209
\(162\) 0 0
\(163\) − 112.269i − 0.688769i −0.938829 0.344384i \(-0.888088\pi\)
0.938829 0.344384i \(-0.111912\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.2892i 0.109516i 0.998500 + 0.0547581i \(0.0174388\pi\)
−0.998500 + 0.0547581i \(0.982561\pi\)
\(168\) 0 0
\(169\) 150.352 0.889658
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −293.303 −1.69540 −0.847698 0.530480i \(-0.822012\pi\)
−0.847698 + 0.530480i \(0.822012\pi\)
\(174\) 0 0
\(175\) − 184.517i − 1.05438i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 92.9516i − 0.519283i −0.965705 0.259641i \(-0.916396\pi\)
0.965705 0.259641i \(-0.0836043\pi\)
\(180\) 0 0
\(181\) 128.445 0.709642 0.354821 0.934934i \(-0.384542\pi\)
0.354821 + 0.934934i \(0.384542\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −236.729 −1.27961
\(186\) 0 0
\(187\) 27.6127i 0.147662i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 300.587i 1.57375i 0.617109 + 0.786877i \(0.288304\pi\)
−0.617109 + 0.786877i \(0.711696\pi\)
\(192\) 0 0
\(193\) −39.2591 −0.203415 −0.101708 0.994814i \(-0.532431\pi\)
−0.101708 + 0.994814i \(0.532431\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 94.7530 0.480980 0.240490 0.970652i \(-0.422692\pi\)
0.240490 + 0.970652i \(0.422692\pi\)
\(198\) 0 0
\(199\) − 111.360i − 0.559598i −0.960059 0.279799i \(-0.909732\pi\)
0.960059 0.279799i \(-0.0902679\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 111.241i 0.547984i
\(204\) 0 0
\(205\) 34.8338 0.169921
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 163.056 0.780174
\(210\) 0 0
\(211\) − 118.604i − 0.562105i −0.959692 0.281053i \(-0.909316\pi\)
0.959692 0.281053i \(-0.0906836\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 416.777i 1.93850i
\(216\) 0 0
\(217\) 203.611 0.938301
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −42.4695 −0.192170
\(222\) 0 0
\(223\) 24.2664i 0.108818i 0.998519 + 0.0544089i \(0.0173274\pi\)
−0.998519 + 0.0544089i \(0.982673\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 11.6190i − 0.0511848i −0.999672 0.0255924i \(-0.991853\pi\)
0.999672 0.0255924i \(-0.00814720\pi\)
\(228\) 0 0
\(229\) −18.1296 −0.0791684 −0.0395842 0.999216i \(-0.512603\pi\)
−0.0395842 + 0.999216i \(0.512603\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 219.785 0.943283 0.471642 0.881790i \(-0.343662\pi\)
0.471642 + 0.881790i \(0.343662\pi\)
\(234\) 0 0
\(235\) 32.7775i 0.139479i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 161.160i − 0.674309i −0.941449 0.337154i \(-0.890536\pi\)
0.941449 0.337154i \(-0.109464\pi\)
\(240\) 0 0
\(241\) −169.186 −0.702016 −0.351008 0.936372i \(-0.614161\pi\)
−0.351008 + 0.936372i \(0.614161\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 308.729 1.26012
\(246\) 0 0
\(247\) 250.787i 1.01533i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 219.255i 0.873524i 0.899577 + 0.436762i \(0.143875\pi\)
−0.899577 + 0.436762i \(0.856125\pi\)
\(252\) 0 0
\(253\) −482.502 −1.90712
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 177.470 0.690543 0.345271 0.938503i \(-0.387787\pi\)
0.345271 + 0.938503i \(0.387787\pi\)
\(258\) 0 0
\(259\) − 349.478i − 1.34933i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 68.2082i 0.259347i 0.991557 + 0.129673i \(0.0413929\pi\)
−0.991557 + 0.129673i \(0.958607\pi\)
\(264\) 0 0
\(265\) 501.668 1.89309
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 77.7652 0.289090 0.144545 0.989498i \(-0.453828\pi\)
0.144545 + 0.989498i \(0.453828\pi\)
\(270\) 0 0
\(271\) 447.259i 1.65040i 0.564840 + 0.825201i \(0.308938\pi\)
−0.564840 + 0.825201i \(0.691062\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 219.255i − 0.797289i
\(276\) 0 0
\(277\) −168.056 −0.606702 −0.303351 0.952879i \(-0.598105\pi\)
−0.303351 + 0.952879i \(0.598105\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −206.340 −0.734306 −0.367153 0.930161i \(-0.619667\pi\)
−0.367153 + 0.930161i \(0.619667\pi\)
\(282\) 0 0
\(283\) 199.363i 0.704463i 0.935913 + 0.352231i \(0.114577\pi\)
−0.935913 + 0.352231i \(0.885423\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 51.4245i 0.179179i
\(288\) 0 0
\(289\) −283.352 −0.980457
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 57.1906 0.195190 0.0975948 0.995226i \(-0.468885\pi\)
0.0975948 + 0.995226i \(0.468885\pi\)
\(294\) 0 0
\(295\) − 384.789i − 1.30437i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 742.107i − 2.48196i
\(300\) 0 0
\(301\) −615.279 −2.04412
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 78.6235 0.257782
\(306\) 0 0
\(307\) 276.775i 0.901549i 0.892638 + 0.450774i \(0.148852\pi\)
−0.892638 + 0.450774i \(0.851148\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 24.7434i 0.0795608i 0.999208 + 0.0397804i \(0.0126658\pi\)
−0.999208 + 0.0397804i \(0.987334\pi\)
\(312\) 0 0
\(313\) −64.8140 −0.207074 −0.103537 0.994626i \(-0.533016\pi\)
−0.103537 + 0.994626i \(0.533016\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 454.599 1.43407 0.717033 0.697039i \(-0.245500\pi\)
0.717033 + 0.697039i \(0.245500\pi\)
\(318\) 0 0
\(319\) 132.183i 0.414368i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 33.3513i − 0.103255i
\(324\) 0 0
\(325\) 337.223 1.03761
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −48.3887 −0.147078
\(330\) 0 0
\(331\) − 272.520i − 0.823323i −0.911337 0.411661i \(-0.864949\pi\)
0.911337 0.411661i \(-0.135051\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 157.717i − 0.470796i
\(336\) 0 0
\(337\) −493.890 −1.46555 −0.732775 0.680471i \(-0.761775\pi\)
−0.732775 + 0.680471i \(0.761775\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 241.944 0.709512
\(342\) 0 0
\(343\) − 23.3572i − 0.0680967i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 519.842i − 1.49810i −0.662512 0.749051i \(-0.730510\pi\)
0.662512 0.749051i \(-0.269490\pi\)
\(348\) 0 0
\(349\) −241.279 −0.691344 −0.345672 0.938355i \(-0.612349\pi\)
−0.345672 + 0.938355i \(0.612349\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −200.927 −0.569198 −0.284599 0.958647i \(-0.591860\pi\)
−0.284599 + 0.958647i \(0.591860\pi\)
\(354\) 0 0
\(355\) − 307.831i − 0.867130i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 159.654i 0.444719i 0.974965 + 0.222360i \(0.0713759\pi\)
−0.974965 + 0.222360i \(0.928624\pi\)
\(360\) 0 0
\(361\) 164.056 0.454450
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 691.174 1.89363
\(366\) 0 0
\(367\) 370.301i 1.00899i 0.863413 + 0.504497i \(0.168322\pi\)
−0.863413 + 0.504497i \(0.831678\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 740.602i 1.99623i
\(372\) 0 0
\(373\) 326.389 0.875037 0.437518 0.899209i \(-0.355857\pi\)
0.437518 + 0.899209i \(0.355857\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −203.303 −0.539266
\(378\) 0 0
\(379\) − 348.114i − 0.918506i −0.888305 0.459253i \(-0.848117\pi\)
0.888305 0.459253i \(-0.151883\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 233.885i − 0.610665i −0.952246 0.305332i \(-0.901232\pi\)
0.952246 0.305332i \(-0.0987675\pi\)
\(384\) 0 0
\(385\) 752.502 1.95455
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 437.611 1.12496 0.562482 0.826809i \(-0.309846\pi\)
0.562482 + 0.826809i \(0.309846\pi\)
\(390\) 0 0
\(391\) 98.6902i 0.252405i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 137.922i 0.349169i
\(396\) 0 0
\(397\) −324.259 −0.816774 −0.408387 0.912809i \(-0.633909\pi\)
−0.408387 + 0.912809i \(0.633909\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 394.174 0.982977 0.491488 0.870884i \(-0.336453\pi\)
0.491488 + 0.870884i \(0.336453\pi\)
\(402\) 0 0
\(403\) 372.119i 0.923373i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 415.271i − 1.02032i
\(408\) 0 0
\(409\) −28.2957 −0.0691827 −0.0345914 0.999402i \(-0.511013\pi\)
−0.0345914 + 0.999402i \(0.511013\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 568.056 1.37544
\(414\) 0 0
\(415\) − 186.693i − 0.449863i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 323.825i 0.772852i 0.922320 + 0.386426i \(0.126291\pi\)
−0.922320 + 0.386426i \(0.873709\pi\)
\(420\) 0 0
\(421\) −431.352 −1.02459 −0.512295 0.858810i \(-0.671204\pi\)
−0.512295 + 0.858810i \(0.671204\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −44.8460 −0.105520
\(426\) 0 0
\(427\) 116.070i 0.271827i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 345.557i − 0.801757i −0.916131 0.400879i \(-0.868705\pi\)
0.916131 0.400879i \(-0.131295\pi\)
\(432\) 0 0
\(433\) 369.907 0.854289 0.427144 0.904183i \(-0.359520\pi\)
0.427144 + 0.904183i \(0.359520\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 582.777 1.33359
\(438\) 0 0
\(439\) − 413.766i − 0.942519i −0.881995 0.471259i \(-0.843800\pi\)
0.881995 0.471259i \(-0.156200\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 539.636i 1.21814i 0.793116 + 0.609070i \(0.208457\pi\)
−0.793116 + 0.609070i \(0.791543\pi\)
\(444\) 0 0
\(445\) 483.594 1.08673
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 325.056 0.723956 0.361978 0.932187i \(-0.382101\pi\)
0.361978 + 0.932187i \(0.382101\pi\)
\(450\) 0 0
\(451\) 61.1058i 0.135490i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1157.38i 2.54369i
\(456\) 0 0
\(457\) 618.149 1.35262 0.676312 0.736615i \(-0.263577\pi\)
0.676312 + 0.736615i \(0.263577\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 849.983 1.84378 0.921891 0.387450i \(-0.126644\pi\)
0.921891 + 0.387450i \(0.126644\pi\)
\(462\) 0 0
\(463\) − 815.741i − 1.76186i −0.473247 0.880930i \(-0.656918\pi\)
0.473247 0.880930i \(-0.343082\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 378.909i − 0.811368i −0.914013 0.405684i \(-0.867033\pi\)
0.914013 0.405684i \(-0.132967\pi\)
\(468\) 0 0
\(469\) 232.834 0.496447
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −731.113 −1.54569
\(474\) 0 0
\(475\) 264.821i 0.557518i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 344.052i − 0.718271i −0.933285 0.359136i \(-0.883072\pi\)
0.933285 0.359136i \(-0.116928\pi\)
\(480\) 0 0
\(481\) 638.704 1.32787
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 942.008 1.94228
\(486\) 0 0
\(487\) − 587.595i − 1.20656i −0.797529 0.603281i \(-0.793860\pi\)
0.797529 0.603281i \(-0.206140\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 496.604i 1.01141i 0.862706 + 0.505707i \(0.168768\pi\)
−0.862706 + 0.505707i \(0.831232\pi\)
\(492\) 0 0
\(493\) 27.0366 0.0548410
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 454.445 0.914376
\(498\) 0 0
\(499\) 34.8569i 0.0698534i 0.999390 + 0.0349267i \(0.0111198\pi\)
−0.999390 + 0.0349267i \(0.988880\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 630.866i − 1.25421i −0.778936 0.627104i \(-0.784240\pi\)
0.778936 0.627104i \(-0.215760\pi\)
\(504\) 0 0
\(505\) −181.166 −0.358745
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −82.0564 −0.161211 −0.0806055 0.996746i \(-0.525685\pi\)
−0.0806055 + 0.996746i \(0.525685\pi\)
\(510\) 0 0
\(511\) 1020.37i 1.99680i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 971.475i 1.88636i
\(516\) 0 0
\(517\) −57.4985 −0.111216
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −562.797 −1.08023 −0.540113 0.841593i \(-0.681618\pi\)
−0.540113 + 0.841593i \(0.681618\pi\)
\(522\) 0 0
\(523\) 909.721i 1.73943i 0.493555 + 0.869714i \(0.335697\pi\)
−0.493555 + 0.869714i \(0.664303\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 49.4868i − 0.0939029i
\(528\) 0 0
\(529\) −1195.50 −2.25993
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −93.9832 −0.176329
\(534\) 0 0
\(535\) 1275.51i 2.38412i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 541.574i 1.00478i
\(540\) 0 0
\(541\) 468.259 0.865544 0.432772 0.901503i \(-0.357536\pi\)
0.432772 + 0.901503i \(0.357536\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.71646 −0.00314947
\(546\) 0 0
\(547\) 312.996i 0.572205i 0.958199 + 0.286102i \(0.0923598\pi\)
−0.958199 + 0.286102i \(0.907640\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 159.654i − 0.289754i
\(552\) 0 0
\(553\) −203.611 −0.368194
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −382.841 −0.687328 −0.343664 0.939093i \(-0.611668\pi\)
−0.343664 + 0.939093i \(0.611668\pi\)
\(558\) 0 0
\(559\) − 1124.48i − 2.01160i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 599.021i − 1.06398i −0.846751 0.531990i \(-0.821444\pi\)
0.846751 0.531990i \(-0.178556\pi\)
\(564\) 0 0
\(565\) 1317.13 2.33121
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −844.174 −1.48361 −0.741805 0.670616i \(-0.766030\pi\)
−0.741805 + 0.670616i \(0.766030\pi\)
\(570\) 0 0
\(571\) − 776.368i − 1.35966i −0.733368 0.679832i \(-0.762053\pi\)
0.733368 0.679832i \(-0.237947\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 783.634i − 1.36284i
\(576\) 0 0
\(577\) −487.316 −0.844568 −0.422284 0.906464i \(-0.638771\pi\)
−0.422284 + 0.906464i \(0.638771\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 275.611 0.474374
\(582\) 0 0
\(583\) 880.029i 1.50948i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 562.874i − 0.958900i −0.877569 0.479450i \(-0.840836\pi\)
0.877569 0.479450i \(-0.159164\pi\)
\(588\) 0 0
\(589\) −292.226 −0.496138
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 316.915 0.534426 0.267213 0.963637i \(-0.413897\pi\)
0.267213 + 0.963637i \(0.413897\pi\)
\(594\) 0 0
\(595\) − 153.916i − 0.258682i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 88.4351i − 0.147638i −0.997272 0.0738189i \(-0.976481\pi\)
0.997272 0.0738189i \(-0.0235187\pi\)
\(600\) 0 0
\(601\) −111.817 −0.186052 −0.0930258 0.995664i \(-0.529654\pi\)
−0.0930258 + 0.995664i \(0.529654\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 92.7287 0.153271
\(606\) 0 0
\(607\) − 688.268i − 1.13388i −0.823757 0.566942i \(-0.808126\pi\)
0.823757 0.566942i \(-0.191874\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 88.4351i − 0.144738i
\(612\) 0 0
\(613\) −1021.67 −1.66667 −0.833334 0.552770i \(-0.813571\pi\)
−0.833334 + 0.552770i \(0.813571\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 763.768 1.23787 0.618937 0.785441i \(-0.287564\pi\)
0.618937 + 0.785441i \(0.287564\pi\)
\(618\) 0 0
\(619\) − 763.698i − 1.23376i −0.787057 0.616880i \(-0.788396\pi\)
0.787057 0.616880i \(-0.211604\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 713.921i 1.14594i
\(624\) 0 0
\(625\) −740.668 −1.18507
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −84.9390 −0.135038
\(630\) 0 0
\(631\) − 166.586i − 0.264002i −0.991250 0.132001i \(-0.957860\pi\)
0.991250 0.132001i \(-0.0421403\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 478.531i − 0.753592i
\(636\) 0 0
\(637\) −832.963 −1.30763
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −204.271 −0.318676 −0.159338 0.987224i \(-0.550936\pi\)
−0.159338 + 0.987224i \(0.550936\pi\)
\(642\) 0 0
\(643\) − 954.908i − 1.48508i −0.669801 0.742541i \(-0.733620\pi\)
0.669801 0.742541i \(-0.266380\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 424.736i − 0.656470i −0.944596 0.328235i \(-0.893546\pi\)
0.944596 0.328235i \(-0.106454\pi\)
\(648\) 0 0
\(649\) 675.000 1.04006
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 614.355 0.940820 0.470410 0.882448i \(-0.344106\pi\)
0.470410 + 0.882448i \(0.344106\pi\)
\(654\) 0 0
\(655\) − 1221.35i − 1.86466i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 974.486i − 1.47873i −0.673302 0.739367i \(-0.735125\pi\)
0.673302 0.739367i \(-0.264875\pi\)
\(660\) 0 0
\(661\) −548.761 −0.830198 −0.415099 0.909776i \(-0.636253\pi\)
−0.415099 + 0.909776i \(0.636253\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −908.890 −1.36675
\(666\) 0 0
\(667\) 472.434i 0.708297i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 137.922i 0.205547i
\(672\) 0 0
\(673\) −373.983 −0.555696 −0.277848 0.960625i \(-0.589621\pi\)
−0.277848 + 0.960625i \(0.589621\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 241.944 0.357376 0.178688 0.983906i \(-0.442815\pi\)
0.178688 + 0.983906i \(0.442815\pi\)
\(678\) 0 0
\(679\) 1390.67i 2.04811i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 524.358i 0.767728i 0.923390 + 0.383864i \(0.125407\pi\)
−0.923390 + 0.383864i \(0.874593\pi\)
\(684\) 0 0
\(685\) 925.651 1.35132
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1353.52 −1.96447
\(690\) 0 0
\(691\) − 353.994i − 0.512293i −0.966638 0.256146i \(-0.917547\pi\)
0.966638 0.256146i \(-0.0824529\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 1160.39i − 1.66963i
\(696\) 0 0
\(697\) 12.4985 0.0179318
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 621.287 0.886286 0.443143 0.896451i \(-0.353863\pi\)
0.443143 + 0.896451i \(0.353863\pi\)
\(702\) 0 0
\(703\) 501.575i 0.713478i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 267.452i − 0.378291i
\(708\) 0 0
\(709\) 787.983 1.11140 0.555700 0.831383i \(-0.312450\pi\)
0.555700 + 0.831383i \(0.312450\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 864.727 1.21280
\(714\) 0 0
\(715\) 1375.27i 1.92345i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1248.82i 1.73689i 0.495785 + 0.868445i \(0.334881\pi\)
−0.495785 + 0.868445i \(0.665119\pi\)
\(720\) 0 0
\(721\) −1434.17 −1.98914
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −214.680 −0.296110
\(726\) 0 0
\(727\) − 732.642i − 1.00776i −0.863773 0.503880i \(-0.831905\pi\)
0.863773 0.503880i \(-0.168095\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 149.541i 0.204570i
\(732\) 0 0
\(733\) −364.721 −0.497573 −0.248787 0.968558i \(-0.580032\pi\)
−0.248787 + 0.968558i \(0.580032\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 276.668 0.375397
\(738\) 0 0
\(739\) 1162.07i 1.57248i 0.617918 + 0.786242i \(0.287976\pi\)
−0.617918 + 0.786242i \(0.712024\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 180.955i − 0.243546i −0.992558 0.121773i \(-0.961142\pi\)
0.992558 0.121773i \(-0.0388580\pi\)
\(744\) 0 0
\(745\) −1265.54 −1.69871
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1883.00 −2.51402
\(750\) 0 0
\(751\) − 176.557i − 0.235096i −0.993067 0.117548i \(-0.962497\pi\)
0.993067 0.117548i \(-0.0375034\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 47.9813i − 0.0635514i
\(756\) 0 0
\(757\) 146.665 0.193745 0.0968723 0.995297i \(-0.469116\pi\)
0.0968723 + 0.995297i \(0.469116\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −806.809 −1.06020 −0.530098 0.847936i \(-0.677845\pi\)
−0.530098 + 0.847936i \(0.677845\pi\)
\(762\) 0 0
\(763\) − 2.53397i − 0.00332107i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1038.18i 1.35356i
\(768\) 0 0
\(769\) 551.133 0.716687 0.358344 0.933590i \(-0.383342\pi\)
0.358344 + 0.933590i \(0.383342\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −856.915 −1.10856 −0.554279 0.832331i \(-0.687006\pi\)
−0.554279 + 0.832331i \(0.687006\pi\)
\(774\) 0 0
\(775\) 392.942i 0.507023i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 73.8051i − 0.0947434i
\(780\) 0 0
\(781\) 540.000 0.691421
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −477.748 −0.608597
\(786\) 0 0
\(787\) − 538.705i − 0.684504i −0.939608 0.342252i \(-0.888810\pi\)
0.939608 0.342252i \(-0.111190\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1944.46i 2.45823i
\(792\) 0 0
\(793\) −212.130 −0.267503
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1348.31 −1.69173 −0.845863 0.533399i \(-0.820914\pi\)
−0.845863 + 0.533399i \(0.820914\pi\)
\(798\) 0 0
\(799\) 11.7607i 0.0147192i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1212.46i 1.50992i
\(804\) 0 0
\(805\) 2689.50 3.34100
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1163.88 −1.43867 −0.719334 0.694664i \(-0.755553\pi\)
−0.719334 + 0.694664i \(0.755553\pi\)
\(810\) 0 0
\(811\) − 627.878i − 0.774202i −0.922037 0.387101i \(-0.873476\pi\)
0.922037 0.387101i \(-0.126524\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 743.613i 0.912408i
\(816\) 0 0
\(817\) 883.056 1.08085
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −64.3643 −0.0783975 −0.0391987 0.999231i \(-0.512481\pi\)
−0.0391987 + 0.999231i \(0.512481\pi\)
\(822\) 0 0
\(823\) − 943.602i − 1.14654i −0.819367 0.573269i \(-0.805675\pi\)
0.819367 0.573269i \(-0.194325\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 571.482i 0.691031i 0.938413 + 0.345515i \(0.112296\pi\)
−0.938413 + 0.345515i \(0.887704\pi\)
\(828\) 0 0
\(829\) −519.555 −0.626725 −0.313362 0.949634i \(-0.601455\pi\)
−0.313362 + 0.949634i \(0.601455\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 110.773 0.132981
\(834\) 0 0
\(835\) − 121.138i − 0.145076i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 1200.84i − 1.43128i −0.698470 0.715640i \(-0.746135\pi\)
0.698470 0.715640i \(-0.253865\pi\)
\(840\) 0 0
\(841\) −711.575 −0.846105
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −995.854 −1.17853
\(846\) 0 0
\(847\) 136.893i 0.161622i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 1484.21i − 1.74408i
\(852\) 0 0
\(853\) −599.166 −0.702422 −0.351211 0.936296i \(-0.614230\pi\)
−0.351211 + 0.936296i \(0.614230\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −691.328 −0.806683 −0.403342 0.915049i \(-0.632151\pi\)
−0.403342 + 0.915049i \(0.632151\pi\)
\(858\) 0 0
\(859\) 1403.79i 1.63422i 0.576485 + 0.817108i \(0.304424\pi\)
−0.576485 + 0.817108i \(0.695576\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 253.038i − 0.293207i −0.989195 0.146604i \(-0.953166\pi\)
0.989195 0.146604i \(-0.0468342\pi\)
\(864\) 0 0
\(865\) 1942.69 2.24588
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −241.944 −0.278416
\(870\) 0 0
\(871\) 425.526i 0.488549i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 396.982i − 0.453694i
\(876\) 0 0
\(877\) −107.870 −0.122999 −0.0614997 0.998107i \(-0.519588\pi\)
−0.0614997 + 0.998107i \(0.519588\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 119.927 0.136126 0.0680629 0.997681i \(-0.478318\pi\)
0.0680629 + 0.997681i \(0.478318\pi\)
\(882\) 0 0
\(883\) − 306.661i − 0.347295i −0.984808 0.173647i \(-0.944445\pi\)
0.984808 0.173647i \(-0.0555553\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 785.572i − 0.885651i −0.896608 0.442825i \(-0.853976\pi\)
0.896608 0.442825i \(-0.146024\pi\)
\(888\) 0 0
\(889\) 706.445 0.794651
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 69.4481 0.0777695
\(894\) 0 0
\(895\) 615.663i 0.687891i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 236.896i − 0.263510i
\(900\) 0 0
\(901\) 180.000 0.199778
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −850.753 −0.940059
\(906\) 0 0
\(907\) − 1218.36i − 1.34329i −0.740873 0.671646i \(-0.765588\pi\)
0.740873 0.671646i \(-0.234412\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 878.524i 0.964351i 0.876075 + 0.482175i \(0.160153\pi\)
−0.876075 + 0.482175i \(0.839847\pi\)
\(912\) 0 0
\(913\) 327.498 0.358706
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1803.06 1.96626
\(918\) 0 0
\(919\) 1036.67i 1.12804i 0.825760 + 0.564022i \(0.190747\pi\)
−0.825760 + 0.564022i \(0.809253\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 830.542i 0.899829i
\(924\) 0 0
\(925\) 674.445 0.729130
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −249.822 −0.268915 −0.134457 0.990919i \(-0.542929\pi\)
−0.134457 + 0.990919i \(0.542929\pi\)
\(930\) 0 0
\(931\) − 654.127i − 0.702607i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 182.892i − 0.195607i
\(936\) 0 0
\(937\) 190.744 0.203569 0.101784 0.994806i \(-0.467545\pi\)
0.101784 + 0.994806i \(0.467545\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −282.300 −0.300000 −0.150000 0.988686i \(-0.547927\pi\)
−0.150000 + 0.988686i \(0.547927\pi\)
\(942\) 0 0
\(943\) 218.397i 0.231598i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 662.712i − 0.699802i −0.936787 0.349901i \(-0.886215\pi\)
0.936787 0.349901i \(-0.113785\pi\)
\(948\) 0 0
\(949\) −1864.82 −1.96503
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1166.70 −1.22424 −0.612119 0.790765i \(-0.709683\pi\)
−0.612119 + 0.790765i \(0.709683\pi\)
\(954\) 0 0
\(955\) − 1990.93i − 2.08475i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1366.52i 1.42494i
\(960\) 0 0
\(961\) 527.395 0.548798
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 260.032 0.269463
\(966\) 0 0
\(967\) − 1166.84i − 1.20666i −0.797490 0.603332i \(-0.793839\pi\)
0.797490 0.603332i \(-0.206161\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 1481.20i − 1.52544i −0.646728 0.762721i \(-0.723863\pi\)
0.646728 0.762721i \(-0.276137\pi\)
\(972\) 0 0
\(973\) 1713.06 1.76060
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1185.56 1.21347 0.606734 0.794905i \(-0.292479\pi\)
0.606734 + 0.794905i \(0.292479\pi\)
\(978\) 0 0
\(979\) 848.325i 0.866522i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 64.7650i − 0.0658851i −0.999457 0.0329425i \(-0.989512\pi\)
0.999457 0.0329425i \(-0.0104878\pi\)
\(984\) 0 0
\(985\) −627.594 −0.637152
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2613.06 −2.64212
\(990\) 0 0
\(991\) 1394.27i 1.40694i 0.710727 + 0.703468i \(0.248366\pi\)
−0.710727 + 0.703468i \(0.751634\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 737.591i 0.741297i
\(996\) 0 0
\(997\) −974.541 −0.977474 −0.488737 0.872431i \(-0.662542\pi\)
−0.488737 + 0.872431i \(0.662542\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1296.3.g.d.1135.1 4
3.2 odd 2 1296.3.g.h.1135.3 4
4.3 odd 2 inner 1296.3.g.d.1135.2 4
9.2 odd 6 144.3.o.b.31.2 8
9.4 even 3 432.3.o.c.127.4 8
9.5 odd 6 144.3.o.b.79.3 yes 8
9.7 even 3 432.3.o.c.415.3 8
12.11 even 2 1296.3.g.h.1135.4 4
36.7 odd 6 432.3.o.c.415.4 8
36.11 even 6 144.3.o.b.31.3 yes 8
36.23 even 6 144.3.o.b.79.2 yes 8
36.31 odd 6 432.3.o.c.127.3 8
72.5 odd 6 576.3.o.e.511.2 8
72.11 even 6 576.3.o.e.319.2 8
72.13 even 6 1728.3.o.d.127.2 8
72.29 odd 6 576.3.o.e.319.3 8
72.43 odd 6 1728.3.o.d.1279.2 8
72.59 even 6 576.3.o.e.511.3 8
72.61 even 6 1728.3.o.d.1279.1 8
72.67 odd 6 1728.3.o.d.127.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.3.o.b.31.2 8 9.2 odd 6
144.3.o.b.31.3 yes 8 36.11 even 6
144.3.o.b.79.2 yes 8 36.23 even 6
144.3.o.b.79.3 yes 8 9.5 odd 6
432.3.o.c.127.3 8 36.31 odd 6
432.3.o.c.127.4 8 9.4 even 3
432.3.o.c.415.3 8 9.7 even 3
432.3.o.c.415.4 8 36.7 odd 6
576.3.o.e.319.2 8 72.11 even 6
576.3.o.e.319.3 8 72.29 odd 6
576.3.o.e.511.2 8 72.5 odd 6
576.3.o.e.511.3 8 72.59 even 6
1296.3.g.d.1135.1 4 1.1 even 1 trivial
1296.3.g.d.1135.2 4 4.3 odd 2 inner
1296.3.g.h.1135.3 4 3.2 odd 2
1296.3.g.h.1135.4 4 12.11 even 2
1728.3.o.d.127.1 8 72.67 odd 6
1728.3.o.d.127.2 8 72.13 even 6
1728.3.o.d.1279.1 8 72.61 even 6
1728.3.o.d.1279.2 8 72.43 odd 6