Properties

 Label 1296.2.i.j Level $1296$ Weight $2$ Character orbit 1296.i Analytic conductor $10.349$ Analytic rank $0$ Dimension $2$ CM discriminant -3 Inner twists $4$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$1296 = 2^{4} \cdot 3^{4}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1296.i (of order $$3$$, degree $$2$$, not minimal)

Newform invariants

 Self dual: no Analytic conductor: $$10.3486121020$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{13}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 108) Sato-Tate group: $\mathrm{U}(1)[D_{3}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 5 - 5 \zeta_{6} ) q^{7} +O(q^{10})$$ $$q + ( 5 - 5 \zeta_{6} ) q^{7} + 7 \zeta_{6} q^{13} + q^{19} + ( 5 - 5 \zeta_{6} ) q^{25} -4 \zeta_{6} q^{31} - q^{37} + ( 8 - 8 \zeta_{6} ) q^{43} -18 \zeta_{6} q^{49} + ( 13 - 13 \zeta_{6} ) q^{61} + 11 \zeta_{6} q^{67} + 17 q^{73} + ( -13 + 13 \zeta_{6} ) q^{79} + 35 q^{91} + ( -5 + 5 \zeta_{6} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 5 q^{7} + O(q^{10})$$ $$2 q + 5 q^{7} + 7 q^{13} + 2 q^{19} + 5 q^{25} - 4 q^{31} - 2 q^{37} + 8 q^{43} - 18 q^{49} + 13 q^{61} + 11 q^{67} + 34 q^{73} - 13 q^{79} + 70 q^{91} - 5 q^{97} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1296\mathbb{Z}\right)^\times$$.

 $$n$$ $$325$$ $$1135$$ $$1217$$ $$\chi(n)$$ $$1$$ $$1$$ $$-\zeta_{6}$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
433.1
 0.5 − 0.866025i 0.5 + 0.866025i
0 0 0 0 0 2.50000 + 4.33013i 0 0 0
865.1 0 0 0 0 0 2.50000 4.33013i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$
9.c even 3 1 inner
9.d odd 6 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1296.2.i.j 2
3.b odd 2 1 CM 1296.2.i.j 2
4.b odd 2 1 324.2.e.b 2
9.c even 3 1 432.2.a.d 1
9.c even 3 1 inner 1296.2.i.j 2
9.d odd 6 1 432.2.a.d 1
9.d odd 6 1 inner 1296.2.i.j 2
12.b even 2 1 324.2.e.b 2
36.f odd 6 1 108.2.a.a 1
36.f odd 6 1 324.2.e.b 2
36.h even 6 1 108.2.a.a 1
36.h even 6 1 324.2.e.b 2
72.j odd 6 1 1728.2.a.m 1
72.l even 6 1 1728.2.a.p 1
72.n even 6 1 1728.2.a.m 1
72.p odd 6 1 1728.2.a.p 1
180.n even 6 1 2700.2.a.b 1
180.p odd 6 1 2700.2.a.b 1
180.v odd 12 2 2700.2.d.g 2
180.x even 12 2 2700.2.d.g 2
252.s odd 6 1 5292.2.a.j 1
252.bi even 6 1 5292.2.a.j 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
108.2.a.a 1 36.f odd 6 1
108.2.a.a 1 36.h even 6 1
324.2.e.b 2 4.b odd 2 1
324.2.e.b 2 12.b even 2 1
324.2.e.b 2 36.f odd 6 1
324.2.e.b 2 36.h even 6 1
432.2.a.d 1 9.c even 3 1
432.2.a.d 1 9.d odd 6 1
1296.2.i.j 2 1.a even 1 1 trivial
1296.2.i.j 2 3.b odd 2 1 CM
1296.2.i.j 2 9.c even 3 1 inner
1296.2.i.j 2 9.d odd 6 1 inner
1728.2.a.m 1 72.j odd 6 1
1728.2.a.m 1 72.n even 6 1
1728.2.a.p 1 72.l even 6 1
1728.2.a.p 1 72.p odd 6 1
2700.2.a.b 1 180.n even 6 1
2700.2.a.b 1 180.p odd 6 1
2700.2.d.g 2 180.v odd 12 2
2700.2.d.g 2 180.x even 12 2
5292.2.a.j 1 252.s odd 6 1
5292.2.a.j 1 252.bi even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1296, [\chi])$$:

 $$T_{5}$$ $$T_{7}^{2} - 5 T_{7} + 25$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$25 - 5 T + T^{2}$$
$11$ $$T^{2}$$
$13$ $$49 - 7 T + T^{2}$$
$17$ $$T^{2}$$
$19$ $$( -1 + T )^{2}$$
$23$ $$T^{2}$$
$29$ $$T^{2}$$
$31$ $$16 + 4 T + T^{2}$$
$37$ $$( 1 + T )^{2}$$
$41$ $$T^{2}$$
$43$ $$64 - 8 T + T^{2}$$
$47$ $$T^{2}$$
$53$ $$T^{2}$$
$59$ $$T^{2}$$
$61$ $$169 - 13 T + T^{2}$$
$67$ $$121 - 11 T + T^{2}$$
$71$ $$T^{2}$$
$73$ $$( -17 + T )^{2}$$
$79$ $$169 + 13 T + T^{2}$$
$83$ $$T^{2}$$
$89$ $$T^{2}$$
$97$ $$25 + 5 T + T^{2}$$