Properties

Label 1295.2.a.j.1.8
Level $1295$
Weight $2$
Character 1295.1
Self dual yes
Analytic conductor $10.341$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1295,2,Mod(1,1295)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1295.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1295, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1295 = 5 \cdot 7 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1295.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3406270618\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - x^{14} - 26 x^{13} + 24 x^{12} + 266 x^{11} - 222 x^{10} - 1368 x^{9} + 998 x^{8} + 3770 x^{7} + \cdots - 158 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-0.217863\) of defining polynomial
Character \(\chi\) \(=\) 1295.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.217863 q^{2} -1.49352 q^{3} -1.95254 q^{4} -1.00000 q^{5} -0.325383 q^{6} -1.00000 q^{7} -0.861110 q^{8} -0.769386 q^{9} -0.217863 q^{10} +3.38659 q^{11} +2.91616 q^{12} -5.83649 q^{13} -0.217863 q^{14} +1.49352 q^{15} +3.71747 q^{16} -6.73222 q^{17} -0.167621 q^{18} -6.04339 q^{19} +1.95254 q^{20} +1.49352 q^{21} +0.737812 q^{22} +1.87057 q^{23} +1.28609 q^{24} +1.00000 q^{25} -1.27155 q^{26} +5.62967 q^{27} +1.95254 q^{28} +2.09751 q^{29} +0.325383 q^{30} +6.03431 q^{31} +2.53212 q^{32} -5.05796 q^{33} -1.46670 q^{34} +1.00000 q^{35} +1.50225 q^{36} +1.00000 q^{37} -1.31663 q^{38} +8.71693 q^{39} +0.861110 q^{40} -5.53198 q^{41} +0.325383 q^{42} -9.02220 q^{43} -6.61245 q^{44} +0.769386 q^{45} +0.407528 q^{46} -2.22013 q^{47} -5.55213 q^{48} +1.00000 q^{49} +0.217863 q^{50} +10.0547 q^{51} +11.3959 q^{52} +10.5060 q^{53} +1.22649 q^{54} -3.38659 q^{55} +0.861110 q^{56} +9.02595 q^{57} +0.456969 q^{58} +12.2350 q^{59} -2.91616 q^{60} +4.32755 q^{61} +1.31465 q^{62} +0.769386 q^{63} -6.88328 q^{64} +5.83649 q^{65} -1.10194 q^{66} -3.52898 q^{67} +13.1449 q^{68} -2.79375 q^{69} +0.217863 q^{70} +16.7576 q^{71} +0.662526 q^{72} +15.9462 q^{73} +0.217863 q^{74} -1.49352 q^{75} +11.7999 q^{76} -3.38659 q^{77} +1.89909 q^{78} -5.87020 q^{79} -3.71747 q^{80} -6.09989 q^{81} -1.20521 q^{82} +0.349330 q^{83} -2.91616 q^{84} +6.73222 q^{85} -1.96560 q^{86} -3.13268 q^{87} -2.91623 q^{88} +4.91332 q^{89} +0.167621 q^{90} +5.83649 q^{91} -3.65236 q^{92} -9.01239 q^{93} -0.483683 q^{94} +6.04339 q^{95} -3.78178 q^{96} -16.3416 q^{97} +0.217863 q^{98} -2.60560 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - q^{2} - q^{3} + 23 q^{4} - 15 q^{5} + 6 q^{6} - 15 q^{7} - 3 q^{8} + 30 q^{9} + q^{10} + 17 q^{11} + 8 q^{12} - 5 q^{13} + q^{14} + q^{15} + 39 q^{16} - 7 q^{17} + 12 q^{18} + 6 q^{19} - 23 q^{20}+ \cdots + 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.217863 0.154052 0.0770261 0.997029i \(-0.475458\pi\)
0.0770261 + 0.997029i \(0.475458\pi\)
\(3\) −1.49352 −0.862286 −0.431143 0.902284i \(-0.641890\pi\)
−0.431143 + 0.902284i \(0.641890\pi\)
\(4\) −1.95254 −0.976268
\(5\) −1.00000 −0.447214
\(6\) −0.325383 −0.132837
\(7\) −1.00000 −0.377964
\(8\) −0.861110 −0.304448
\(9\) −0.769386 −0.256462
\(10\) −0.217863 −0.0688942
\(11\) 3.38659 1.02110 0.510548 0.859849i \(-0.329442\pi\)
0.510548 + 0.859849i \(0.329442\pi\)
\(12\) 2.91616 0.841823
\(13\) −5.83649 −1.61875 −0.809375 0.587292i \(-0.800194\pi\)
−0.809375 + 0.587292i \(0.800194\pi\)
\(14\) −0.217863 −0.0582262
\(15\) 1.49352 0.385626
\(16\) 3.71747 0.929367
\(17\) −6.73222 −1.63280 −0.816402 0.577484i \(-0.804034\pi\)
−0.816402 + 0.577484i \(0.804034\pi\)
\(18\) −0.167621 −0.0395086
\(19\) −6.04339 −1.38645 −0.693225 0.720721i \(-0.743811\pi\)
−0.693225 + 0.720721i \(0.743811\pi\)
\(20\) 1.95254 0.436600
\(21\) 1.49352 0.325914
\(22\) 0.737812 0.157302
\(23\) 1.87057 0.390042 0.195021 0.980799i \(-0.437523\pi\)
0.195021 + 0.980799i \(0.437523\pi\)
\(24\) 1.28609 0.262522
\(25\) 1.00000 0.200000
\(26\) −1.27155 −0.249372
\(27\) 5.62967 1.08343
\(28\) 1.95254 0.368995
\(29\) 2.09751 0.389498 0.194749 0.980853i \(-0.437611\pi\)
0.194749 + 0.980853i \(0.437611\pi\)
\(30\) 0.325383 0.0594066
\(31\) 6.03431 1.08379 0.541897 0.840445i \(-0.317706\pi\)
0.541897 + 0.840445i \(0.317706\pi\)
\(32\) 2.53212 0.447619
\(33\) −5.05796 −0.880478
\(34\) −1.46670 −0.251537
\(35\) 1.00000 0.169031
\(36\) 1.50225 0.250376
\(37\) 1.00000 0.164399
\(38\) −1.31663 −0.213586
\(39\) 8.71693 1.39583
\(40\) 0.861110 0.136153
\(41\) −5.53198 −0.863950 −0.431975 0.901886i \(-0.642183\pi\)
−0.431975 + 0.901886i \(0.642183\pi\)
\(42\) 0.325383 0.0502077
\(43\) −9.02220 −1.37587 −0.687936 0.725771i \(-0.741483\pi\)
−0.687936 + 0.725771i \(0.741483\pi\)
\(44\) −6.61245 −0.996864
\(45\) 0.769386 0.114693
\(46\) 0.407528 0.0600868
\(47\) −2.22013 −0.323839 −0.161919 0.986804i \(-0.551768\pi\)
−0.161919 + 0.986804i \(0.551768\pi\)
\(48\) −5.55213 −0.801381
\(49\) 1.00000 0.142857
\(50\) 0.217863 0.0308104
\(51\) 10.0547 1.40794
\(52\) 11.3959 1.58033
\(53\) 10.5060 1.44311 0.721553 0.692360i \(-0.243429\pi\)
0.721553 + 0.692360i \(0.243429\pi\)
\(54\) 1.22649 0.166905
\(55\) −3.38659 −0.456648
\(56\) 0.861110 0.115071
\(57\) 9.02595 1.19552
\(58\) 0.456969 0.0600030
\(59\) 12.2350 1.59286 0.796428 0.604734i \(-0.206721\pi\)
0.796428 + 0.604734i \(0.206721\pi\)
\(60\) −2.91616 −0.376474
\(61\) 4.32755 0.554086 0.277043 0.960858i \(-0.410646\pi\)
0.277043 + 0.960858i \(0.410646\pi\)
\(62\) 1.31465 0.166961
\(63\) 0.769386 0.0969336
\(64\) −6.88328 −0.860410
\(65\) 5.83649 0.723927
\(66\) −1.10194 −0.135639
\(67\) −3.52898 −0.431134 −0.215567 0.976489i \(-0.569160\pi\)
−0.215567 + 0.976489i \(0.569160\pi\)
\(68\) 13.1449 1.59405
\(69\) −2.79375 −0.336328
\(70\) 0.217863 0.0260396
\(71\) 16.7576 1.98876 0.994381 0.105856i \(-0.0337583\pi\)
0.994381 + 0.105856i \(0.0337583\pi\)
\(72\) 0.662526 0.0780795
\(73\) 15.9462 1.86636 0.933181 0.359406i \(-0.117021\pi\)
0.933181 + 0.359406i \(0.117021\pi\)
\(74\) 0.217863 0.0253260
\(75\) −1.49352 −0.172457
\(76\) 11.7999 1.35355
\(77\) −3.38659 −0.385938
\(78\) 1.89909 0.215030
\(79\) −5.87020 −0.660449 −0.330224 0.943903i \(-0.607124\pi\)
−0.330224 + 0.943903i \(0.607124\pi\)
\(80\) −3.71747 −0.415626
\(81\) −6.09989 −0.677765
\(82\) −1.20521 −0.133093
\(83\) 0.349330 0.0383440 0.0191720 0.999816i \(-0.493897\pi\)
0.0191720 + 0.999816i \(0.493897\pi\)
\(84\) −2.91616 −0.318179
\(85\) 6.73222 0.730212
\(86\) −1.96560 −0.211956
\(87\) −3.13268 −0.335859
\(88\) −2.91623 −0.310871
\(89\) 4.91332 0.520811 0.260405 0.965499i \(-0.416144\pi\)
0.260405 + 0.965499i \(0.416144\pi\)
\(90\) 0.167621 0.0176688
\(91\) 5.83649 0.611830
\(92\) −3.65236 −0.380785
\(93\) −9.01239 −0.934541
\(94\) −0.483683 −0.0498880
\(95\) 6.04339 0.620039
\(96\) −3.78178 −0.385976
\(97\) −16.3416 −1.65924 −0.829620 0.558328i \(-0.811443\pi\)
−0.829620 + 0.558328i \(0.811443\pi\)
\(98\) 0.217863 0.0220075
\(99\) −2.60560 −0.261873
\(100\) −1.95254 −0.195254
\(101\) −4.90859 −0.488423 −0.244212 0.969722i \(-0.578529\pi\)
−0.244212 + 0.969722i \(0.578529\pi\)
\(102\) 2.19055 0.216897
\(103\) 6.89151 0.679040 0.339520 0.940599i \(-0.389735\pi\)
0.339520 + 0.940599i \(0.389735\pi\)
\(104\) 5.02586 0.492826
\(105\) −1.49352 −0.145753
\(106\) 2.28886 0.222314
\(107\) 14.3715 1.38935 0.694674 0.719325i \(-0.255549\pi\)
0.694674 + 0.719325i \(0.255549\pi\)
\(108\) −10.9921 −1.05772
\(109\) −3.28497 −0.314643 −0.157321 0.987547i \(-0.550286\pi\)
−0.157321 + 0.987547i \(0.550286\pi\)
\(110\) −0.737812 −0.0703477
\(111\) −1.49352 −0.141759
\(112\) −3.71747 −0.351268
\(113\) −11.2517 −1.05847 −0.529237 0.848474i \(-0.677522\pi\)
−0.529237 + 0.848474i \(0.677522\pi\)
\(114\) 1.96642 0.184172
\(115\) −1.87057 −0.174432
\(116\) −4.09546 −0.380254
\(117\) 4.49051 0.415148
\(118\) 2.66554 0.245383
\(119\) 6.73222 0.617142
\(120\) −1.28609 −0.117403
\(121\) 0.469017 0.0426380
\(122\) 0.942811 0.0853581
\(123\) 8.26214 0.744973
\(124\) −11.7822 −1.05807
\(125\) −1.00000 −0.0894427
\(126\) 0.167621 0.0149328
\(127\) 6.97972 0.619350 0.309675 0.950842i \(-0.399780\pi\)
0.309675 + 0.950842i \(0.399780\pi\)
\(128\) −6.56385 −0.580167
\(129\) 13.4749 1.18640
\(130\) 1.27155 0.111523
\(131\) −16.6490 −1.45463 −0.727315 0.686303i \(-0.759232\pi\)
−0.727315 + 0.686303i \(0.759232\pi\)
\(132\) 9.87585 0.859582
\(133\) 6.04339 0.524029
\(134\) −0.768834 −0.0664171
\(135\) −5.62967 −0.484525
\(136\) 5.79718 0.497104
\(137\) 2.78390 0.237845 0.118922 0.992904i \(-0.462056\pi\)
0.118922 + 0.992904i \(0.462056\pi\)
\(138\) −0.608653 −0.0518120
\(139\) −6.67857 −0.566469 −0.283234 0.959051i \(-0.591407\pi\)
−0.283234 + 0.959051i \(0.591407\pi\)
\(140\) −1.95254 −0.165019
\(141\) 3.31581 0.279242
\(142\) 3.65086 0.306373
\(143\) −19.7658 −1.65290
\(144\) −2.86017 −0.238347
\(145\) −2.09751 −0.174189
\(146\) 3.47408 0.287517
\(147\) −1.49352 −0.123184
\(148\) −1.95254 −0.160497
\(149\) −11.3078 −0.926373 −0.463186 0.886261i \(-0.653294\pi\)
−0.463186 + 0.886261i \(0.653294\pi\)
\(150\) −0.325383 −0.0265674
\(151\) 3.41835 0.278181 0.139091 0.990280i \(-0.455582\pi\)
0.139091 + 0.990280i \(0.455582\pi\)
\(152\) 5.20403 0.422102
\(153\) 5.17968 0.418752
\(154\) −0.737812 −0.0594546
\(155\) −6.03431 −0.484687
\(156\) −17.0201 −1.36270
\(157\) 12.1170 0.967044 0.483522 0.875332i \(-0.339357\pi\)
0.483522 + 0.875332i \(0.339357\pi\)
\(158\) −1.27890 −0.101744
\(159\) −15.6909 −1.24437
\(160\) −2.53212 −0.200181
\(161\) −1.87057 −0.147422
\(162\) −1.32894 −0.104411
\(163\) −19.0212 −1.48986 −0.744929 0.667143i \(-0.767517\pi\)
−0.744929 + 0.667143i \(0.767517\pi\)
\(164\) 10.8014 0.843447
\(165\) 5.05796 0.393762
\(166\) 0.0761060 0.00590697
\(167\) −3.66541 −0.283638 −0.141819 0.989893i \(-0.545295\pi\)
−0.141819 + 0.989893i \(0.545295\pi\)
\(168\) −1.28609 −0.0992239
\(169\) 21.0646 1.62035
\(170\) 1.46670 0.112491
\(171\) 4.64971 0.355572
\(172\) 17.6162 1.34322
\(173\) 4.03343 0.306656 0.153328 0.988175i \(-0.451001\pi\)
0.153328 + 0.988175i \(0.451001\pi\)
\(174\) −0.682495 −0.0517398
\(175\) −1.00000 −0.0755929
\(176\) 12.5896 0.948973
\(177\) −18.2732 −1.37350
\(178\) 1.07043 0.0802320
\(179\) 5.88554 0.439906 0.219953 0.975511i \(-0.429410\pi\)
0.219953 + 0.975511i \(0.429410\pi\)
\(180\) −1.50225 −0.111971
\(181\) 12.4436 0.924929 0.462464 0.886638i \(-0.346965\pi\)
0.462464 + 0.886638i \(0.346965\pi\)
\(182\) 1.27155 0.0942537
\(183\) −6.46329 −0.477780
\(184\) −1.61077 −0.118748
\(185\) −1.00000 −0.0735215
\(186\) −1.96346 −0.143968
\(187\) −22.7993 −1.66725
\(188\) 4.33487 0.316153
\(189\) −5.62967 −0.409498
\(190\) 1.31663 0.0955184
\(191\) −13.0389 −0.943462 −0.471731 0.881743i \(-0.656371\pi\)
−0.471731 + 0.881743i \(0.656371\pi\)
\(192\) 10.2803 0.741920
\(193\) 8.61139 0.619861 0.309931 0.950759i \(-0.399694\pi\)
0.309931 + 0.950759i \(0.399694\pi\)
\(194\) −3.56023 −0.255610
\(195\) −8.71693 −0.624232
\(196\) −1.95254 −0.139467
\(197\) −7.23661 −0.515587 −0.257794 0.966200i \(-0.582995\pi\)
−0.257794 + 0.966200i \(0.582995\pi\)
\(198\) −0.567663 −0.0403420
\(199\) 12.0025 0.850833 0.425417 0.904998i \(-0.360128\pi\)
0.425417 + 0.904998i \(0.360128\pi\)
\(200\) −0.861110 −0.0608897
\(201\) 5.27062 0.371761
\(202\) −1.06940 −0.0752427
\(203\) −2.09751 −0.147216
\(204\) −19.6322 −1.37453
\(205\) 5.53198 0.386370
\(206\) 1.50140 0.104608
\(207\) −1.43919 −0.100031
\(208\) −21.6969 −1.50441
\(209\) −20.4665 −1.41570
\(210\) −0.325383 −0.0224536
\(211\) 6.91538 0.476074 0.238037 0.971256i \(-0.423496\pi\)
0.238037 + 0.971256i \(0.423496\pi\)
\(212\) −20.5133 −1.40886
\(213\) −25.0279 −1.71488
\(214\) 3.13102 0.214032
\(215\) 9.02220 0.615309
\(216\) −4.84776 −0.329849
\(217\) −6.03431 −0.409636
\(218\) −0.715672 −0.0484714
\(219\) −23.8160 −1.60934
\(220\) 6.61245 0.445811
\(221\) 39.2925 2.64310
\(222\) −0.325383 −0.0218383
\(223\) −23.2218 −1.55505 −0.777524 0.628853i \(-0.783525\pi\)
−0.777524 + 0.628853i \(0.783525\pi\)
\(224\) −2.53212 −0.169184
\(225\) −0.769386 −0.0512924
\(226\) −2.45133 −0.163060
\(227\) −26.0532 −1.72921 −0.864605 0.502452i \(-0.832431\pi\)
−0.864605 + 0.502452i \(0.832431\pi\)
\(228\) −17.6235 −1.16714
\(229\) 23.5530 1.55642 0.778212 0.628002i \(-0.216127\pi\)
0.778212 + 0.628002i \(0.216127\pi\)
\(230\) −0.407528 −0.0268716
\(231\) 5.05796 0.332789
\(232\) −1.80619 −0.118582
\(233\) −3.48049 −0.228014 −0.114007 0.993480i \(-0.536369\pi\)
−0.114007 + 0.993480i \(0.536369\pi\)
\(234\) 0.978315 0.0639545
\(235\) 2.22013 0.144825
\(236\) −23.8892 −1.55505
\(237\) 8.76728 0.569496
\(238\) 1.46670 0.0950720
\(239\) 12.7795 0.826639 0.413320 0.910586i \(-0.364369\pi\)
0.413320 + 0.910586i \(0.364369\pi\)
\(240\) 5.55213 0.358388
\(241\) 7.87741 0.507429 0.253714 0.967279i \(-0.418348\pi\)
0.253714 + 0.967279i \(0.418348\pi\)
\(242\) 0.102181 0.00656847
\(243\) −7.77868 −0.499003
\(244\) −8.44969 −0.540936
\(245\) −1.00000 −0.0638877
\(246\) 1.80001 0.114765
\(247\) 35.2722 2.24432
\(248\) −5.19620 −0.329959
\(249\) −0.521733 −0.0330635
\(250\) −0.217863 −0.0137788
\(251\) 0.295312 0.0186399 0.00931997 0.999957i \(-0.497033\pi\)
0.00931997 + 0.999957i \(0.497033\pi\)
\(252\) −1.50225 −0.0946331
\(253\) 6.33487 0.398270
\(254\) 1.52062 0.0954122
\(255\) −10.0547 −0.629652
\(256\) 12.3365 0.771034
\(257\) 14.8383 0.925586 0.462793 0.886466i \(-0.346847\pi\)
0.462793 + 0.886466i \(0.346847\pi\)
\(258\) 2.93567 0.182767
\(259\) −1.00000 −0.0621370
\(260\) −11.3959 −0.706747
\(261\) −1.61380 −0.0998915
\(262\) −3.62720 −0.224089
\(263\) 17.5280 1.08082 0.540411 0.841401i \(-0.318269\pi\)
0.540411 + 0.841401i \(0.318269\pi\)
\(264\) 4.35546 0.268060
\(265\) −10.5060 −0.645376
\(266\) 1.31663 0.0807278
\(267\) −7.33816 −0.449088
\(268\) 6.89047 0.420902
\(269\) 23.6619 1.44269 0.721346 0.692575i \(-0.243524\pi\)
0.721346 + 0.692575i \(0.243524\pi\)
\(270\) −1.22649 −0.0746421
\(271\) −17.4543 −1.06027 −0.530136 0.847913i \(-0.677859\pi\)
−0.530136 + 0.847913i \(0.677859\pi\)
\(272\) −25.0268 −1.51747
\(273\) −8.71693 −0.527573
\(274\) 0.606508 0.0366405
\(275\) 3.38659 0.204219
\(276\) 5.45489 0.328346
\(277\) −18.3589 −1.10308 −0.551541 0.834148i \(-0.685960\pi\)
−0.551541 + 0.834148i \(0.685960\pi\)
\(278\) −1.45501 −0.0872657
\(279\) −4.64272 −0.277952
\(280\) −0.861110 −0.0514612
\(281\) 20.1014 1.19915 0.599574 0.800319i \(-0.295337\pi\)
0.599574 + 0.800319i \(0.295337\pi\)
\(282\) 0.722391 0.0430178
\(283\) −6.73193 −0.400172 −0.200086 0.979778i \(-0.564122\pi\)
−0.200086 + 0.979778i \(0.564122\pi\)
\(284\) −32.7198 −1.94157
\(285\) −9.02595 −0.534651
\(286\) −4.30623 −0.254633
\(287\) 5.53198 0.326542
\(288\) −1.94818 −0.114797
\(289\) 28.3228 1.66605
\(290\) −0.456969 −0.0268342
\(291\) 24.4066 1.43074
\(292\) −31.1355 −1.82207
\(293\) −26.6297 −1.55572 −0.777861 0.628437i \(-0.783695\pi\)
−0.777861 + 0.628437i \(0.783695\pi\)
\(294\) −0.325383 −0.0189767
\(295\) −12.2350 −0.712346
\(296\) −0.861110 −0.0500510
\(297\) 19.0654 1.10629
\(298\) −2.46355 −0.142710
\(299\) −10.9176 −0.631380
\(300\) 2.91616 0.168365
\(301\) 9.02220 0.520031
\(302\) 0.744730 0.0428544
\(303\) 7.33110 0.421161
\(304\) −22.4661 −1.28852
\(305\) −4.32755 −0.247795
\(306\) 1.12846 0.0645097
\(307\) 16.8453 0.961412 0.480706 0.876882i \(-0.340380\pi\)
0.480706 + 0.876882i \(0.340380\pi\)
\(308\) 6.61245 0.376779
\(309\) −10.2926 −0.585527
\(310\) −1.31465 −0.0746672
\(311\) 4.94377 0.280336 0.140168 0.990128i \(-0.455236\pi\)
0.140168 + 0.990128i \(0.455236\pi\)
\(312\) −7.50624 −0.424957
\(313\) −21.0958 −1.19241 −0.596203 0.802834i \(-0.703325\pi\)
−0.596203 + 0.802834i \(0.703325\pi\)
\(314\) 2.63985 0.148975
\(315\) −0.769386 −0.0433500
\(316\) 11.4618 0.644775
\(317\) −11.6927 −0.656726 −0.328363 0.944552i \(-0.606497\pi\)
−0.328363 + 0.944552i \(0.606497\pi\)
\(318\) −3.41846 −0.191698
\(319\) 7.10342 0.397715
\(320\) 6.88328 0.384787
\(321\) −21.4642 −1.19802
\(322\) −0.407528 −0.0227107
\(323\) 40.6855 2.26380
\(324\) 11.9102 0.661680
\(325\) −5.83649 −0.323750
\(326\) −4.14402 −0.229516
\(327\) 4.90618 0.271312
\(328\) 4.76364 0.263028
\(329\) 2.22013 0.122399
\(330\) 1.10194 0.0606598
\(331\) 25.8826 1.42263 0.711317 0.702872i \(-0.248099\pi\)
0.711317 + 0.702872i \(0.248099\pi\)
\(332\) −0.682080 −0.0374340
\(333\) −0.769386 −0.0421621
\(334\) −0.798557 −0.0436951
\(335\) 3.52898 0.192809
\(336\) 5.55213 0.302893
\(337\) 24.8397 1.35311 0.676553 0.736394i \(-0.263473\pi\)
0.676553 + 0.736394i \(0.263473\pi\)
\(338\) 4.58918 0.249619
\(339\) 16.8047 0.912707
\(340\) −13.1449 −0.712882
\(341\) 20.4358 1.10666
\(342\) 1.01300 0.0547766
\(343\) −1.00000 −0.0539949
\(344\) 7.76911 0.418882
\(345\) 2.79375 0.150410
\(346\) 0.878733 0.0472410
\(347\) −8.07883 −0.433695 −0.216847 0.976206i \(-0.569577\pi\)
−0.216847 + 0.976206i \(0.569577\pi\)
\(348\) 6.11667 0.327888
\(349\) 10.7292 0.574319 0.287160 0.957883i \(-0.407289\pi\)
0.287160 + 0.957883i \(0.407289\pi\)
\(350\) −0.217863 −0.0116452
\(351\) −32.8575 −1.75380
\(352\) 8.57525 0.457063
\(353\) 13.6499 0.726510 0.363255 0.931690i \(-0.381665\pi\)
0.363255 + 0.931690i \(0.381665\pi\)
\(354\) −3.98105 −0.211590
\(355\) −16.7576 −0.889402
\(356\) −9.59343 −0.508451
\(357\) −10.0547 −0.532153
\(358\) 1.28224 0.0677684
\(359\) −19.6097 −1.03496 −0.517481 0.855695i \(-0.673130\pi\)
−0.517481 + 0.855695i \(0.673130\pi\)
\(360\) −0.662526 −0.0349182
\(361\) 17.5226 0.922242
\(362\) 2.71101 0.142487
\(363\) −0.700489 −0.0367661
\(364\) −11.3959 −0.597310
\(365\) −15.9462 −0.834663
\(366\) −1.40811 −0.0736031
\(367\) −12.0754 −0.630332 −0.315166 0.949037i \(-0.602060\pi\)
−0.315166 + 0.949037i \(0.602060\pi\)
\(368\) 6.95380 0.362492
\(369\) 4.25623 0.221571
\(370\) −0.217863 −0.0113261
\(371\) −10.5060 −0.545443
\(372\) 17.5970 0.912362
\(373\) 10.3739 0.537141 0.268570 0.963260i \(-0.413449\pi\)
0.268570 + 0.963260i \(0.413449\pi\)
\(374\) −4.96712 −0.256843
\(375\) 1.49352 0.0771252
\(376\) 1.91177 0.0985921
\(377\) −12.2421 −0.630500
\(378\) −1.22649 −0.0630841
\(379\) 15.2882 0.785303 0.392652 0.919687i \(-0.371558\pi\)
0.392652 + 0.919687i \(0.371558\pi\)
\(380\) −11.7999 −0.605324
\(381\) −10.4244 −0.534057
\(382\) −2.84069 −0.145342
\(383\) −32.3354 −1.65226 −0.826131 0.563477i \(-0.809463\pi\)
−0.826131 + 0.563477i \(0.809463\pi\)
\(384\) 9.80326 0.500271
\(385\) 3.38659 0.172597
\(386\) 1.87610 0.0954910
\(387\) 6.94156 0.352859
\(388\) 31.9076 1.61986
\(389\) −8.03491 −0.407386 −0.203693 0.979035i \(-0.565294\pi\)
−0.203693 + 0.979035i \(0.565294\pi\)
\(390\) −1.89909 −0.0961644
\(391\) −12.5931 −0.636861
\(392\) −0.861110 −0.0434926
\(393\) 24.8657 1.25431
\(394\) −1.57659 −0.0794274
\(395\) 5.87020 0.295362
\(396\) 5.08753 0.255658
\(397\) 18.7558 0.941324 0.470662 0.882313i \(-0.344015\pi\)
0.470662 + 0.882313i \(0.344015\pi\)
\(398\) 2.61489 0.131073
\(399\) −9.02595 −0.451863
\(400\) 3.71747 0.185873
\(401\) 30.0494 1.50060 0.750298 0.661100i \(-0.229910\pi\)
0.750298 + 0.661100i \(0.229910\pi\)
\(402\) 1.14827 0.0572706
\(403\) −35.2192 −1.75439
\(404\) 9.58420 0.476832
\(405\) 6.09989 0.303106
\(406\) −0.456969 −0.0226790
\(407\) 3.38659 0.167867
\(408\) −8.65823 −0.428646
\(409\) 37.3232 1.84551 0.922756 0.385385i \(-0.125931\pi\)
0.922756 + 0.385385i \(0.125931\pi\)
\(410\) 1.20521 0.0595212
\(411\) −4.15782 −0.205090
\(412\) −13.4559 −0.662925
\(413\) −12.2350 −0.602043
\(414\) −0.313547 −0.0154100
\(415\) −0.349330 −0.0171479
\(416\) −14.7787 −0.724584
\(417\) 9.97460 0.488458
\(418\) −4.45889 −0.218091
\(419\) −29.3732 −1.43498 −0.717488 0.696571i \(-0.754708\pi\)
−0.717488 + 0.696571i \(0.754708\pi\)
\(420\) 2.91616 0.142294
\(421\) 1.46201 0.0712541 0.0356271 0.999365i \(-0.488657\pi\)
0.0356271 + 0.999365i \(0.488657\pi\)
\(422\) 1.50660 0.0733403
\(423\) 1.70813 0.0830523
\(424\) −9.04679 −0.439351
\(425\) −6.73222 −0.326561
\(426\) −5.45264 −0.264181
\(427\) −4.32755 −0.209425
\(428\) −28.0609 −1.35638
\(429\) 29.5207 1.42527
\(430\) 1.96560 0.0947897
\(431\) −26.5945 −1.28101 −0.640506 0.767953i \(-0.721275\pi\)
−0.640506 + 0.767953i \(0.721275\pi\)
\(432\) 20.9281 1.00690
\(433\) 22.3197 1.07261 0.536307 0.844023i \(-0.319819\pi\)
0.536307 + 0.844023i \(0.319819\pi\)
\(434\) −1.31465 −0.0631053
\(435\) 3.13268 0.150201
\(436\) 6.41402 0.307176
\(437\) −11.3046 −0.540773
\(438\) −5.18863 −0.247922
\(439\) 2.38539 0.113848 0.0569242 0.998379i \(-0.481871\pi\)
0.0569242 + 0.998379i \(0.481871\pi\)
\(440\) 2.91623 0.139026
\(441\) −0.769386 −0.0366374
\(442\) 8.56037 0.407175
\(443\) −5.89075 −0.279878 −0.139939 0.990160i \(-0.544691\pi\)
−0.139939 + 0.990160i \(0.544691\pi\)
\(444\) 2.91616 0.138395
\(445\) −4.91332 −0.232914
\(446\) −5.05917 −0.239558
\(447\) 16.8885 0.798799
\(448\) 6.88328 0.325205
\(449\) 20.6587 0.974943 0.487472 0.873139i \(-0.337919\pi\)
0.487472 + 0.873139i \(0.337919\pi\)
\(450\) −0.167621 −0.00790171
\(451\) −18.7346 −0.882176
\(452\) 21.9694 1.03335
\(453\) −5.10538 −0.239872
\(454\) −5.67601 −0.266389
\(455\) −5.83649 −0.273619
\(456\) −7.77234 −0.363973
\(457\) 1.41072 0.0659909 0.0329954 0.999456i \(-0.489495\pi\)
0.0329954 + 0.999456i \(0.489495\pi\)
\(458\) 5.13131 0.239770
\(459\) −37.9002 −1.76903
\(460\) 3.65236 0.170292
\(461\) −11.6513 −0.542657 −0.271328 0.962487i \(-0.587463\pi\)
−0.271328 + 0.962487i \(0.587463\pi\)
\(462\) 1.10194 0.0512669
\(463\) 36.5630 1.69923 0.849613 0.527406i \(-0.176835\pi\)
0.849613 + 0.527406i \(0.176835\pi\)
\(464\) 7.79743 0.361987
\(465\) 9.01239 0.417939
\(466\) −0.758268 −0.0351261
\(467\) 40.8668 1.89109 0.945546 0.325489i \(-0.105529\pi\)
0.945546 + 0.325489i \(0.105529\pi\)
\(468\) −8.76789 −0.405296
\(469\) 3.52898 0.162953
\(470\) 0.483683 0.0223106
\(471\) −18.0971 −0.833869
\(472\) −10.5356 −0.484942
\(473\) −30.5545 −1.40490
\(474\) 1.91006 0.0877321
\(475\) −6.04339 −0.277290
\(476\) −13.1449 −0.602496
\(477\) −8.08315 −0.370102
\(478\) 2.78418 0.127346
\(479\) 25.7716 1.17753 0.588767 0.808303i \(-0.299614\pi\)
0.588767 + 0.808303i \(0.299614\pi\)
\(480\) 3.78178 0.172614
\(481\) −5.83649 −0.266121
\(482\) 1.71619 0.0781705
\(483\) 2.79375 0.127120
\(484\) −0.915773 −0.0416261
\(485\) 16.3416 0.742035
\(486\) −1.69468 −0.0768724
\(487\) 9.17920 0.415949 0.207975 0.978134i \(-0.433313\pi\)
0.207975 + 0.978134i \(0.433313\pi\)
\(488\) −3.72649 −0.168690
\(489\) 28.4087 1.28469
\(490\) −0.217863 −0.00984203
\(491\) −7.48276 −0.337692 −0.168846 0.985642i \(-0.554004\pi\)
−0.168846 + 0.985642i \(0.554004\pi\)
\(492\) −16.1321 −0.727293
\(493\) −14.1209 −0.635974
\(494\) 7.68449 0.345742
\(495\) 2.60560 0.117113
\(496\) 22.4324 1.00724
\(497\) −16.7576 −0.751682
\(498\) −0.113666 −0.00509350
\(499\) 5.58693 0.250105 0.125053 0.992150i \(-0.460090\pi\)
0.125053 + 0.992150i \(0.460090\pi\)
\(500\) 1.95254 0.0873201
\(501\) 5.47438 0.244577
\(502\) 0.0643375 0.00287152
\(503\) −15.6151 −0.696242 −0.348121 0.937450i \(-0.613180\pi\)
−0.348121 + 0.937450i \(0.613180\pi\)
\(504\) −0.662526 −0.0295113
\(505\) 4.90859 0.218430
\(506\) 1.38013 0.0613544
\(507\) −31.4604 −1.39721
\(508\) −13.6282 −0.604652
\(509\) 16.1873 0.717489 0.358745 0.933436i \(-0.383205\pi\)
0.358745 + 0.933436i \(0.383205\pi\)
\(510\) −2.19055 −0.0969992
\(511\) −15.9462 −0.705419
\(512\) 15.8154 0.698947
\(513\) −34.0223 −1.50212
\(514\) 3.23271 0.142589
\(515\) −6.89151 −0.303676
\(516\) −26.3102 −1.15824
\(517\) −7.51866 −0.330670
\(518\) −0.217863 −0.00957234
\(519\) −6.02402 −0.264425
\(520\) −5.02586 −0.220398
\(521\) −9.69133 −0.424585 −0.212293 0.977206i \(-0.568093\pi\)
−0.212293 + 0.977206i \(0.568093\pi\)
\(522\) −0.351586 −0.0153885
\(523\) −11.2897 −0.493662 −0.246831 0.969058i \(-0.579389\pi\)
−0.246831 + 0.969058i \(0.579389\pi\)
\(524\) 32.5078 1.42011
\(525\) 1.49352 0.0651827
\(526\) 3.81869 0.166503
\(527\) −40.6243 −1.76962
\(528\) −18.8028 −0.818287
\(529\) −19.5010 −0.847868
\(530\) −2.28886 −0.0994216
\(531\) −9.41341 −0.408507
\(532\) −11.7999 −0.511592
\(533\) 32.2873 1.39852
\(534\) −1.59871 −0.0691830
\(535\) −14.3715 −0.621335
\(536\) 3.03884 0.131258
\(537\) −8.79019 −0.379325
\(538\) 5.15504 0.222250
\(539\) 3.38659 0.145871
\(540\) 10.9921 0.473026
\(541\) −21.2851 −0.915120 −0.457560 0.889179i \(-0.651276\pi\)
−0.457560 + 0.889179i \(0.651276\pi\)
\(542\) −3.80263 −0.163337
\(543\) −18.5849 −0.797553
\(544\) −17.0468 −0.730874
\(545\) 3.28497 0.140713
\(546\) −1.89909 −0.0812737
\(547\) 5.41351 0.231465 0.115732 0.993280i \(-0.463078\pi\)
0.115732 + 0.993280i \(0.463078\pi\)
\(548\) −5.43566 −0.232200
\(549\) −3.32956 −0.142102
\(550\) 0.737812 0.0314604
\(551\) −12.6761 −0.540019
\(552\) 2.40572 0.102394
\(553\) 5.87020 0.249626
\(554\) −3.99973 −0.169932
\(555\) 1.49352 0.0633966
\(556\) 13.0401 0.553025
\(557\) 22.9573 0.972732 0.486366 0.873755i \(-0.338322\pi\)
0.486366 + 0.873755i \(0.338322\pi\)
\(558\) −1.01147 −0.0428191
\(559\) 52.6579 2.22719
\(560\) 3.71747 0.157092
\(561\) 34.0513 1.43765
\(562\) 4.37934 0.184731
\(563\) 28.4981 1.20105 0.600525 0.799606i \(-0.294958\pi\)
0.600525 + 0.799606i \(0.294958\pi\)
\(564\) −6.47424 −0.272615
\(565\) 11.2517 0.473364
\(566\) −1.46664 −0.0616473
\(567\) 6.09989 0.256171
\(568\) −14.4301 −0.605476
\(569\) 21.3568 0.895322 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(570\) −1.96642 −0.0823642
\(571\) −6.48995 −0.271596 −0.135798 0.990737i \(-0.543360\pi\)
−0.135798 + 0.990737i \(0.543360\pi\)
\(572\) 38.5934 1.61367
\(573\) 19.4739 0.813534
\(574\) 1.20521 0.0503046
\(575\) 1.87057 0.0780083
\(576\) 5.29590 0.220663
\(577\) 38.6544 1.60920 0.804602 0.593815i \(-0.202379\pi\)
0.804602 + 0.593815i \(0.202379\pi\)
\(578\) 6.17048 0.256658
\(579\) −12.8613 −0.534498
\(580\) 4.09546 0.170055
\(581\) −0.349330 −0.0144927
\(582\) 5.31729 0.220409
\(583\) 35.5794 1.47355
\(584\) −13.7314 −0.568211
\(585\) −4.49051 −0.185660
\(586\) −5.80161 −0.239662
\(587\) −5.41348 −0.223438 −0.111719 0.993740i \(-0.535636\pi\)
−0.111719 + 0.993740i \(0.535636\pi\)
\(588\) 2.91616 0.120260
\(589\) −36.4677 −1.50263
\(590\) −2.66554 −0.109739
\(591\) 10.8081 0.444584
\(592\) 3.71747 0.152787
\(593\) 26.1907 1.07552 0.537762 0.843097i \(-0.319270\pi\)
0.537762 + 0.843097i \(0.319270\pi\)
\(594\) 4.15364 0.170426
\(595\) −6.73222 −0.275994
\(596\) 22.0789 0.904388
\(597\) −17.9260 −0.733662
\(598\) −2.37853 −0.0972654
\(599\) 11.4005 0.465814 0.232907 0.972499i \(-0.425176\pi\)
0.232907 + 0.972499i \(0.425176\pi\)
\(600\) 1.28609 0.0525043
\(601\) 32.8167 1.33862 0.669311 0.742983i \(-0.266590\pi\)
0.669311 + 0.742983i \(0.266590\pi\)
\(602\) 1.96560 0.0801119
\(603\) 2.71515 0.110570
\(604\) −6.67445 −0.271579
\(605\) −0.469017 −0.0190683
\(606\) 1.59717 0.0648807
\(607\) 41.3132 1.67685 0.838426 0.545016i \(-0.183476\pi\)
0.838426 + 0.545016i \(0.183476\pi\)
\(608\) −15.3026 −0.620602
\(609\) 3.13268 0.126943
\(610\) −0.942811 −0.0381733
\(611\) 12.9577 0.524214
\(612\) −10.1135 −0.408814
\(613\) −22.9322 −0.926225 −0.463112 0.886300i \(-0.653267\pi\)
−0.463112 + 0.886300i \(0.653267\pi\)
\(614\) 3.66996 0.148108
\(615\) −8.26214 −0.333162
\(616\) 2.91623 0.117498
\(617\) −12.8588 −0.517674 −0.258837 0.965921i \(-0.583339\pi\)
−0.258837 + 0.965921i \(0.583339\pi\)
\(618\) −2.24238 −0.0902017
\(619\) 27.7662 1.11602 0.558009 0.829835i \(-0.311565\pi\)
0.558009 + 0.829835i \(0.311565\pi\)
\(620\) 11.7822 0.473185
\(621\) 10.5307 0.422583
\(622\) 1.07706 0.0431863
\(623\) −4.91332 −0.196848
\(624\) 32.4049 1.29723
\(625\) 1.00000 0.0400000
\(626\) −4.59599 −0.183693
\(627\) 30.5672 1.22074
\(628\) −23.6589 −0.944094
\(629\) −6.73222 −0.268431
\(630\) −0.167621 −0.00667816
\(631\) −39.3607 −1.56693 −0.783463 0.621439i \(-0.786548\pi\)
−0.783463 + 0.621439i \(0.786548\pi\)
\(632\) 5.05488 0.201072
\(633\) −10.3283 −0.410512
\(634\) −2.54740 −0.101170
\(635\) −6.97972 −0.276982
\(636\) 30.6371 1.21484
\(637\) −5.83649 −0.231250
\(638\) 1.54757 0.0612689
\(639\) −12.8931 −0.510042
\(640\) 6.56385 0.259459
\(641\) 20.0941 0.793669 0.396834 0.917890i \(-0.370109\pi\)
0.396834 + 0.917890i \(0.370109\pi\)
\(642\) −4.67625 −0.184557
\(643\) 7.75553 0.305848 0.152924 0.988238i \(-0.451131\pi\)
0.152924 + 0.988238i \(0.451131\pi\)
\(644\) 3.65236 0.143923
\(645\) −13.4749 −0.530573
\(646\) 8.86384 0.348743
\(647\) 12.6001 0.495362 0.247681 0.968842i \(-0.420332\pi\)
0.247681 + 0.968842i \(0.420332\pi\)
\(648\) 5.25267 0.206344
\(649\) 41.4348 1.62646
\(650\) −1.27155 −0.0498744
\(651\) 9.01239 0.353223
\(652\) 37.1397 1.45450
\(653\) −7.33941 −0.287213 −0.143607 0.989635i \(-0.545870\pi\)
−0.143607 + 0.989635i \(0.545870\pi\)
\(654\) 1.06887 0.0417962
\(655\) 16.6490 0.650531
\(656\) −20.5650 −0.802927
\(657\) −12.2688 −0.478651
\(658\) 0.483683 0.0188559
\(659\) −43.8743 −1.70910 −0.854550 0.519370i \(-0.826167\pi\)
−0.854550 + 0.519370i \(0.826167\pi\)
\(660\) −9.87585 −0.384417
\(661\) −3.62074 −0.140830 −0.0704152 0.997518i \(-0.522432\pi\)
−0.0704152 + 0.997518i \(0.522432\pi\)
\(662\) 5.63884 0.219160
\(663\) −58.6843 −2.27911
\(664\) −0.300812 −0.0116738
\(665\) −6.04339 −0.234353
\(666\) −0.167621 −0.00649517
\(667\) 3.92355 0.151920
\(668\) 7.15685 0.276907
\(669\) 34.6823 1.34090
\(670\) 0.768834 0.0297027
\(671\) 14.6556 0.565775
\(672\) 3.78178 0.145885
\(673\) 41.1003 1.58430 0.792151 0.610326i \(-0.208961\pi\)
0.792151 + 0.610326i \(0.208961\pi\)
\(674\) 5.41165 0.208449
\(675\) 5.62967 0.216686
\(676\) −41.1293 −1.58190
\(677\) −9.33150 −0.358639 −0.179319 0.983791i \(-0.557390\pi\)
−0.179319 + 0.983791i \(0.557390\pi\)
\(678\) 3.66112 0.140604
\(679\) 16.3416 0.627134
\(680\) −5.79718 −0.222312
\(681\) 38.9110 1.49107
\(682\) 4.45219 0.170483
\(683\) −4.22754 −0.161762 −0.0808811 0.996724i \(-0.525773\pi\)
−0.0808811 + 0.996724i \(0.525773\pi\)
\(684\) −9.07872 −0.347133
\(685\) −2.78390 −0.106367
\(686\) −0.217863 −0.00831804
\(687\) −35.1769 −1.34208
\(688\) −33.5397 −1.27869
\(689\) −61.3179 −2.33603
\(690\) 0.608653 0.0231710
\(691\) 11.2190 0.426792 0.213396 0.976966i \(-0.431548\pi\)
0.213396 + 0.976966i \(0.431548\pi\)
\(692\) −7.87541 −0.299378
\(693\) 2.60560 0.0989785
\(694\) −1.76008 −0.0668116
\(695\) 6.67857 0.253332
\(696\) 2.69758 0.102252
\(697\) 37.2425 1.41066
\(698\) 2.33749 0.0884751
\(699\) 5.19819 0.196614
\(700\) 1.95254 0.0737989
\(701\) −45.8362 −1.73121 −0.865604 0.500729i \(-0.833065\pi\)
−0.865604 + 0.500729i \(0.833065\pi\)
\(702\) −7.15842 −0.270177
\(703\) −6.04339 −0.227931
\(704\) −23.3109 −0.878562
\(705\) −3.31581 −0.124881
\(706\) 2.97380 0.111920
\(707\) 4.90859 0.184607
\(708\) 35.6791 1.34090
\(709\) −5.50415 −0.206713 −0.103356 0.994644i \(-0.532958\pi\)
−0.103356 + 0.994644i \(0.532958\pi\)
\(710\) −3.65086 −0.137014
\(711\) 4.51645 0.169380
\(712\) −4.23091 −0.158560
\(713\) 11.2876 0.422725
\(714\) −2.19055 −0.0819793
\(715\) 19.7658 0.739199
\(716\) −11.4917 −0.429466
\(717\) −19.0865 −0.712800
\(718\) −4.27223 −0.159438
\(719\) −11.1224 −0.414795 −0.207398 0.978257i \(-0.566499\pi\)
−0.207398 + 0.978257i \(0.566499\pi\)
\(720\) 2.86017 0.106592
\(721\) −6.89151 −0.256653
\(722\) 3.81752 0.142073
\(723\) −11.7651 −0.437549
\(724\) −24.2967 −0.902978
\(725\) 2.09751 0.0778996
\(726\) −0.152610 −0.00566390
\(727\) −42.2530 −1.56708 −0.783538 0.621344i \(-0.786587\pi\)
−0.783538 + 0.621344i \(0.786587\pi\)
\(728\) −5.02586 −0.186271
\(729\) 29.9173 1.10805
\(730\) −3.47408 −0.128582
\(731\) 60.7394 2.24653
\(732\) 12.6198 0.466442
\(733\) 38.0314 1.40472 0.702361 0.711821i \(-0.252129\pi\)
0.702361 + 0.711821i \(0.252129\pi\)
\(734\) −2.63079 −0.0971040
\(735\) 1.49352 0.0550895
\(736\) 4.73651 0.174590
\(737\) −11.9512 −0.440230
\(738\) 0.927274 0.0341334
\(739\) −31.6847 −1.16554 −0.582770 0.812637i \(-0.698031\pi\)
−0.582770 + 0.812637i \(0.698031\pi\)
\(740\) 1.95254 0.0717766
\(741\) −52.6798 −1.93524
\(742\) −2.28886 −0.0840266
\(743\) 19.8357 0.727702 0.363851 0.931457i \(-0.381462\pi\)
0.363851 + 0.931457i \(0.381462\pi\)
\(744\) 7.76066 0.284519
\(745\) 11.3078 0.414287
\(746\) 2.26009 0.0827477
\(747\) −0.268770 −0.00983378
\(748\) 44.5164 1.62768
\(749\) −14.3715 −0.525124
\(750\) 0.325383 0.0118813
\(751\) −15.2445 −0.556281 −0.278141 0.960540i \(-0.589718\pi\)
−0.278141 + 0.960540i \(0.589718\pi\)
\(752\) −8.25325 −0.300965
\(753\) −0.441056 −0.0160730
\(754\) −2.66709 −0.0971299
\(755\) −3.41835 −0.124406
\(756\) 10.9921 0.399780
\(757\) 44.9317 1.63307 0.816535 0.577296i \(-0.195892\pi\)
0.816535 + 0.577296i \(0.195892\pi\)
\(758\) 3.33073 0.120978
\(759\) −9.46128 −0.343423
\(760\) −5.20403 −0.188770
\(761\) −38.3101 −1.38874 −0.694369 0.719619i \(-0.744317\pi\)
−0.694369 + 0.719619i \(0.744317\pi\)
\(762\) −2.27108 −0.0822727
\(763\) 3.28497 0.118924
\(764\) 25.4589 0.921071
\(765\) −5.17968 −0.187272
\(766\) −7.04468 −0.254535
\(767\) −71.4091 −2.57843
\(768\) −18.4249 −0.664852
\(769\) −21.9991 −0.793309 −0.396655 0.917968i \(-0.629829\pi\)
−0.396655 + 0.917968i \(0.629829\pi\)
\(770\) 0.737812 0.0265889
\(771\) −22.1613 −0.798121
\(772\) −16.8140 −0.605151
\(773\) −17.8465 −0.641894 −0.320947 0.947097i \(-0.604001\pi\)
−0.320947 + 0.947097i \(0.604001\pi\)
\(774\) 1.51231 0.0543587
\(775\) 6.03431 0.216759
\(776\) 14.0719 0.505153
\(777\) 1.49352 0.0535799
\(778\) −1.75051 −0.0627587
\(779\) 33.4319 1.19782
\(780\) 17.0201 0.609418
\(781\) 56.7512 2.03072
\(782\) −2.74357 −0.0981099
\(783\) 11.8083 0.421994
\(784\) 3.71747 0.132767
\(785\) −12.1170 −0.432475
\(786\) 5.41731 0.193229
\(787\) −26.3236 −0.938335 −0.469167 0.883109i \(-0.655446\pi\)
−0.469167 + 0.883109i \(0.655446\pi\)
\(788\) 14.1297 0.503351
\(789\) −26.1785 −0.931978
\(790\) 1.27890 0.0455011
\(791\) 11.2517 0.400065
\(792\) 2.24371 0.0797267
\(793\) −25.2577 −0.896926
\(794\) 4.08618 0.145013
\(795\) 15.6909 0.556499
\(796\) −23.4353 −0.830641
\(797\) −8.11182 −0.287335 −0.143668 0.989626i \(-0.545890\pi\)
−0.143668 + 0.989626i \(0.545890\pi\)
\(798\) −1.96642 −0.0696104
\(799\) 14.9464 0.528765
\(800\) 2.53212 0.0895239
\(801\) −3.78024 −0.133568
\(802\) 6.54665 0.231170
\(803\) 54.0033 1.90574
\(804\) −10.2911 −0.362938
\(805\) 1.87057 0.0659291
\(806\) −7.67294 −0.270268
\(807\) −35.3396 −1.24401
\(808\) 4.22684 0.148700
\(809\) 19.4596 0.684162 0.342081 0.939670i \(-0.388868\pi\)
0.342081 + 0.939670i \(0.388868\pi\)
\(810\) 1.32894 0.0466941
\(811\) 48.8378 1.71493 0.857464 0.514544i \(-0.172039\pi\)
0.857464 + 0.514544i \(0.172039\pi\)
\(812\) 4.09546 0.143723
\(813\) 26.0684 0.914258
\(814\) 0.737812 0.0258603
\(815\) 19.0212 0.666285
\(816\) 37.3781 1.30850
\(817\) 54.5247 1.90758
\(818\) 8.13133 0.284305
\(819\) −4.49051 −0.156911
\(820\) −10.8014 −0.377201
\(821\) −3.45147 −0.120457 −0.0602286 0.998185i \(-0.519183\pi\)
−0.0602286 + 0.998185i \(0.519183\pi\)
\(822\) −0.905834 −0.0315946
\(823\) 38.5885 1.34511 0.672555 0.740047i \(-0.265197\pi\)
0.672555 + 0.740047i \(0.265197\pi\)
\(824\) −5.93434 −0.206733
\(825\) −5.05796 −0.176096
\(826\) −2.66554 −0.0927460
\(827\) −28.0738 −0.976220 −0.488110 0.872782i \(-0.662314\pi\)
−0.488110 + 0.872782i \(0.662314\pi\)
\(828\) 2.81008 0.0976570
\(829\) −55.9601 −1.94357 −0.971787 0.235859i \(-0.924210\pi\)
−0.971787 + 0.235859i \(0.924210\pi\)
\(830\) −0.0761060 −0.00264168
\(831\) 27.4195 0.951172
\(832\) 40.1742 1.39279
\(833\) −6.73222 −0.233258
\(834\) 2.17309 0.0752480
\(835\) 3.66541 0.126847
\(836\) 39.9616 1.38210
\(837\) 33.9712 1.17422
\(838\) −6.39933 −0.221061
\(839\) −36.8044 −1.27063 −0.635314 0.772254i \(-0.719129\pi\)
−0.635314 + 0.772254i \(0.719129\pi\)
\(840\) 1.28609 0.0443743
\(841\) −24.6004 −0.848291
\(842\) 0.318518 0.0109769
\(843\) −30.0219 −1.03401
\(844\) −13.5025 −0.464776
\(845\) −21.0646 −0.724643
\(846\) 0.372139 0.0127944
\(847\) −0.469017 −0.0161156
\(848\) 39.0556 1.34117
\(849\) 10.0543 0.345063
\(850\) −1.46670 −0.0503074
\(851\) 1.87057 0.0641224
\(852\) 48.8679 1.67419
\(853\) 15.8751 0.543553 0.271776 0.962360i \(-0.412389\pi\)
0.271776 + 0.962360i \(0.412389\pi\)
\(854\) −0.942811 −0.0322623
\(855\) −4.64971 −0.159017
\(856\) −12.3755 −0.422985
\(857\) −11.5952 −0.396086 −0.198043 0.980193i \(-0.563459\pi\)
−0.198043 + 0.980193i \(0.563459\pi\)
\(858\) 6.43146 0.219566
\(859\) 25.3500 0.864931 0.432465 0.901651i \(-0.357644\pi\)
0.432465 + 0.901651i \(0.357644\pi\)
\(860\) −17.6162 −0.600706
\(861\) −8.26214 −0.281573
\(862\) −5.79395 −0.197343
\(863\) 25.4598 0.866661 0.433330 0.901235i \(-0.357338\pi\)
0.433330 + 0.901235i \(0.357338\pi\)
\(864\) 14.2550 0.484964
\(865\) −4.03343 −0.137141
\(866\) 4.86262 0.165239
\(867\) −42.3008 −1.43661
\(868\) 11.7822 0.399914
\(869\) −19.8800 −0.674382
\(870\) 0.682495 0.0231387
\(871\) 20.5969 0.697898
\(872\) 2.82872 0.0957925
\(873\) 12.5730 0.425532
\(874\) −2.46285 −0.0833073
\(875\) 1.00000 0.0338062
\(876\) 46.5017 1.57115
\(877\) −20.7406 −0.700360 −0.350180 0.936682i \(-0.613880\pi\)
−0.350180 + 0.936682i \(0.613880\pi\)
\(878\) 0.519687 0.0175386
\(879\) 39.7720 1.34148
\(880\) −12.5896 −0.424394
\(881\) 12.8811 0.433976 0.216988 0.976174i \(-0.430377\pi\)
0.216988 + 0.976174i \(0.430377\pi\)
\(882\) −0.167621 −0.00564408
\(883\) 23.7354 0.798760 0.399380 0.916786i \(-0.369225\pi\)
0.399380 + 0.916786i \(0.369225\pi\)
\(884\) −76.7200 −2.58037
\(885\) 18.2732 0.614247
\(886\) −1.28337 −0.0431158
\(887\) −32.8026 −1.10140 −0.550702 0.834702i \(-0.685640\pi\)
−0.550702 + 0.834702i \(0.685640\pi\)
\(888\) 1.28609 0.0431583
\(889\) −6.97972 −0.234092
\(890\) −1.07043 −0.0358808
\(891\) −20.6578 −0.692063
\(892\) 45.3414 1.51814
\(893\) 13.4171 0.448986
\(894\) 3.67937 0.123057
\(895\) −5.88554 −0.196732
\(896\) 6.56385 0.219283
\(897\) 16.3057 0.544430
\(898\) 4.50075 0.150192
\(899\) 12.6570 0.422136
\(900\) 1.50225 0.0500752
\(901\) −70.7285 −2.35631
\(902\) −4.08156 −0.135901
\(903\) −13.4749 −0.448416
\(904\) 9.68897 0.322250
\(905\) −12.4436 −0.413641
\(906\) −1.11227 −0.0369528
\(907\) 16.8914 0.560871 0.280436 0.959873i \(-0.409521\pi\)
0.280436 + 0.959873i \(0.409521\pi\)
\(908\) 50.8698 1.68817
\(909\) 3.77661 0.125262
\(910\) −1.27155 −0.0421516
\(911\) 8.36024 0.276987 0.138494 0.990363i \(-0.455774\pi\)
0.138494 + 0.990363i \(0.455774\pi\)
\(912\) 33.5537 1.11107
\(913\) 1.18304 0.0391529
\(914\) 0.307344 0.0101660
\(915\) 6.46329 0.213670
\(916\) −45.9880 −1.51949
\(917\) 16.6490 0.549799
\(918\) −8.25703 −0.272523
\(919\) 47.7444 1.57494 0.787472 0.616350i \(-0.211389\pi\)
0.787472 + 0.616350i \(0.211389\pi\)
\(920\) 1.61077 0.0531055
\(921\) −25.1589 −0.829012
\(922\) −2.53839 −0.0835974
\(923\) −97.8056 −3.21931
\(924\) −9.87585 −0.324891
\(925\) 1.00000 0.0328798
\(926\) 7.96571 0.261769
\(927\) −5.30223 −0.174148
\(928\) 5.31114 0.174347
\(929\) 12.7769 0.419196 0.209598 0.977788i \(-0.432784\pi\)
0.209598 + 0.977788i \(0.432784\pi\)
\(930\) 1.96346 0.0643845
\(931\) −6.04339 −0.198064
\(932\) 6.79578 0.222603
\(933\) −7.38364 −0.241730
\(934\) 8.90336 0.291327
\(935\) 22.7993 0.745617
\(936\) −3.86683 −0.126391
\(937\) 40.0276 1.30764 0.653822 0.756648i \(-0.273164\pi\)
0.653822 + 0.756648i \(0.273164\pi\)
\(938\) 0.768834 0.0251033
\(939\) 31.5071 1.02820
\(940\) −4.33487 −0.141388
\(941\) 4.88944 0.159391 0.0796955 0.996819i \(-0.474605\pi\)
0.0796955 + 0.996819i \(0.474605\pi\)
\(942\) −3.94268 −0.128459
\(943\) −10.3480 −0.336976
\(944\) 45.4830 1.48035
\(945\) 5.62967 0.183133
\(946\) −6.65669 −0.216428
\(947\) 51.9445 1.68797 0.843985 0.536367i \(-0.180204\pi\)
0.843985 + 0.536367i \(0.180204\pi\)
\(948\) −17.1184 −0.555980
\(949\) −93.0698 −3.02117
\(950\) −1.31663 −0.0427171
\(951\) 17.4633 0.566286
\(952\) −5.79718 −0.187888
\(953\) −20.4519 −0.662502 −0.331251 0.943543i \(-0.607471\pi\)
−0.331251 + 0.943543i \(0.607471\pi\)
\(954\) −1.76102 −0.0570150
\(955\) 13.0389 0.421929
\(956\) −24.9525 −0.807021
\(957\) −10.6091 −0.342944
\(958\) 5.61466 0.181402
\(959\) −2.78390 −0.0898968
\(960\) −10.2803 −0.331797
\(961\) 5.41290 0.174610
\(962\) −1.27155 −0.0409965
\(963\) −11.0573 −0.356315
\(964\) −15.3809 −0.495386
\(965\) −8.61139 −0.277210
\(966\) 0.608653 0.0195831
\(967\) 29.7143 0.955547 0.477773 0.878483i \(-0.341444\pi\)
0.477773 + 0.878483i \(0.341444\pi\)
\(968\) −0.403876 −0.0129811
\(969\) −60.7647 −1.95204
\(970\) 3.56023 0.114312
\(971\) 37.3665 1.19915 0.599574 0.800319i \(-0.295337\pi\)
0.599574 + 0.800319i \(0.295337\pi\)
\(972\) 15.1882 0.487160
\(973\) 6.67857 0.214105
\(974\) 1.99981 0.0640779
\(975\) 8.71693 0.279165
\(976\) 16.0875 0.514949
\(977\) −21.6934 −0.694032 −0.347016 0.937859i \(-0.612805\pi\)
−0.347016 + 0.937859i \(0.612805\pi\)
\(978\) 6.18919 0.197909
\(979\) 16.6394 0.531798
\(980\) 1.95254 0.0623715
\(981\) 2.52741 0.0806940
\(982\) −1.63021 −0.0520222
\(983\) −18.4925 −0.589820 −0.294910 0.955525i \(-0.595290\pi\)
−0.294910 + 0.955525i \(0.595290\pi\)
\(984\) −7.11462 −0.226806
\(985\) 7.23661 0.230578
\(986\) −3.07642 −0.0979731
\(987\) −3.31581 −0.105543
\(988\) −68.8702 −2.19105
\(989\) −16.8767 −0.536648
\(990\) 0.567663 0.0180415
\(991\) 6.04331 0.191972 0.0959860 0.995383i \(-0.469400\pi\)
0.0959860 + 0.995383i \(0.469400\pi\)
\(992\) 15.2796 0.485127
\(993\) −38.6562 −1.22672
\(994\) −3.65086 −0.115798
\(995\) −12.0025 −0.380504
\(996\) 1.01870 0.0322788
\(997\) 9.16494 0.290257 0.145128 0.989413i \(-0.453640\pi\)
0.145128 + 0.989413i \(0.453640\pi\)
\(998\) 1.21718 0.0385293
\(999\) 5.62967 0.178115
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1295.2.a.j.1.8 15
5.4 even 2 6475.2.a.u.1.8 15
7.6 odd 2 9065.2.a.o.1.8 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.a.j.1.8 15 1.1 even 1 trivial
6475.2.a.u.1.8 15 5.4 even 2
9065.2.a.o.1.8 15 7.6 odd 2