Properties

Label 1295.2.a.h.1.11
Level $1295$
Weight $2$
Character 1295.1
Self dual yes
Analytic conductor $10.341$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1295,2,Mod(1,1295)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1295.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1295, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1295 = 5 \cdot 7 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1295.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3406270618\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5 x^{11} - 7 x^{10} + 63 x^{9} - 11 x^{8} - 279 x^{7} + 171 x^{6} + 503 x^{5} - 367 x^{4} + \cdots - 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(2.68572\) of defining polynomial
Character \(\chi\) \(=\) 1295.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.68572 q^{2} -2.63795 q^{3} +5.21310 q^{4} +1.00000 q^{5} -7.08481 q^{6} -1.00000 q^{7} +8.62948 q^{8} +3.95881 q^{9} +2.68572 q^{10} +1.13341 q^{11} -13.7519 q^{12} +2.39306 q^{13} -2.68572 q^{14} -2.63795 q^{15} +12.7502 q^{16} +2.66063 q^{17} +10.6322 q^{18} -6.13281 q^{19} +5.21310 q^{20} +2.63795 q^{21} +3.04402 q^{22} +6.65282 q^{23} -22.7642 q^{24} +1.00000 q^{25} +6.42709 q^{26} -2.52928 q^{27} -5.21310 q^{28} +1.97736 q^{29} -7.08481 q^{30} -1.15585 q^{31} +16.9845 q^{32} -2.98989 q^{33} +7.14571 q^{34} -1.00000 q^{35} +20.6376 q^{36} -1.00000 q^{37} -16.4710 q^{38} -6.31278 q^{39} +8.62948 q^{40} +10.4136 q^{41} +7.08481 q^{42} -10.5999 q^{43} +5.90858 q^{44} +3.95881 q^{45} +17.8676 q^{46} +7.80249 q^{47} -33.6344 q^{48} +1.00000 q^{49} +2.68572 q^{50} -7.01862 q^{51} +12.4752 q^{52} +11.7655 q^{53} -6.79295 q^{54} +1.13341 q^{55} -8.62948 q^{56} +16.1781 q^{57} +5.31065 q^{58} -6.92707 q^{59} -13.7519 q^{60} -2.57934 q^{61} -3.10429 q^{62} -3.95881 q^{63} +20.1152 q^{64} +2.39306 q^{65} -8.03000 q^{66} -6.24070 q^{67} +13.8701 q^{68} -17.5498 q^{69} -2.68572 q^{70} -5.10743 q^{71} +34.1624 q^{72} -11.9912 q^{73} -2.68572 q^{74} -2.63795 q^{75} -31.9709 q^{76} -1.13341 q^{77} -16.9544 q^{78} +7.60555 q^{79} +12.7502 q^{80} -5.20428 q^{81} +27.9680 q^{82} -7.36059 q^{83} +13.7519 q^{84} +2.66063 q^{85} -28.4684 q^{86} -5.21620 q^{87} +9.78074 q^{88} -5.13957 q^{89} +10.6322 q^{90} -2.39306 q^{91} +34.6818 q^{92} +3.04908 q^{93} +20.9553 q^{94} -6.13281 q^{95} -44.8042 q^{96} +3.81785 q^{97} +2.68572 q^{98} +4.48695 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 5 q^{2} + 4 q^{3} + 15 q^{4} + 12 q^{5} + 6 q^{6} - 12 q^{7} + 21 q^{8} + 18 q^{9} + 5 q^{10} - 4 q^{11} + 8 q^{12} + 6 q^{13} - 5 q^{14} + 4 q^{15} + 21 q^{16} + 20 q^{17} + 14 q^{18} - 4 q^{19}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.68572 1.89909 0.949546 0.313629i \(-0.101545\pi\)
0.949546 + 0.313629i \(0.101545\pi\)
\(3\) −2.63795 −1.52302 −0.761512 0.648151i \(-0.775543\pi\)
−0.761512 + 0.648151i \(0.775543\pi\)
\(4\) 5.21310 2.60655
\(5\) 1.00000 0.447214
\(6\) −7.08481 −2.89236
\(7\) −1.00000 −0.377964
\(8\) 8.62948 3.05098
\(9\) 3.95881 1.31960
\(10\) 2.68572 0.849299
\(11\) 1.13341 0.341736 0.170868 0.985294i \(-0.445343\pi\)
0.170868 + 0.985294i \(0.445343\pi\)
\(12\) −13.7519 −3.96983
\(13\) 2.39306 0.663715 0.331858 0.943329i \(-0.392325\pi\)
0.331858 + 0.943329i \(0.392325\pi\)
\(14\) −2.68572 −0.717789
\(15\) −2.63795 −0.681117
\(16\) 12.7502 3.18754
\(17\) 2.66063 0.645297 0.322649 0.946519i \(-0.395427\pi\)
0.322649 + 0.946519i \(0.395427\pi\)
\(18\) 10.6322 2.50604
\(19\) −6.13281 −1.40696 −0.703482 0.710713i \(-0.748372\pi\)
−0.703482 + 0.710713i \(0.748372\pi\)
\(20\) 5.21310 1.16568
\(21\) 2.63795 0.575649
\(22\) 3.04402 0.648988
\(23\) 6.65282 1.38721 0.693604 0.720357i \(-0.256022\pi\)
0.693604 + 0.720357i \(0.256022\pi\)
\(24\) −22.7642 −4.64672
\(25\) 1.00000 0.200000
\(26\) 6.42709 1.26046
\(27\) −2.52928 −0.486761
\(28\) −5.21310 −0.985183
\(29\) 1.97736 0.367187 0.183594 0.983002i \(-0.441227\pi\)
0.183594 + 0.983002i \(0.441227\pi\)
\(30\) −7.08481 −1.29350
\(31\) −1.15585 −0.207597 −0.103798 0.994598i \(-0.533100\pi\)
−0.103798 + 0.994598i \(0.533100\pi\)
\(32\) 16.9845 3.00246
\(33\) −2.98989 −0.520472
\(34\) 7.14571 1.22548
\(35\) −1.00000 −0.169031
\(36\) 20.6376 3.43961
\(37\) −1.00000 −0.164399
\(38\) −16.4710 −2.67195
\(39\) −6.31278 −1.01085
\(40\) 8.62948 1.36444
\(41\) 10.4136 1.62633 0.813166 0.582032i \(-0.197742\pi\)
0.813166 + 0.582032i \(0.197742\pi\)
\(42\) 7.08481 1.09321
\(43\) −10.5999 −1.61647 −0.808235 0.588860i \(-0.799577\pi\)
−0.808235 + 0.588860i \(0.799577\pi\)
\(44\) 5.90858 0.890752
\(45\) 3.95881 0.590144
\(46\) 17.8676 2.63443
\(47\) 7.80249 1.13811 0.569055 0.822300i \(-0.307309\pi\)
0.569055 + 0.822300i \(0.307309\pi\)
\(48\) −33.6344 −4.85471
\(49\) 1.00000 0.142857
\(50\) 2.68572 0.379818
\(51\) −7.01862 −0.982803
\(52\) 12.4752 1.73001
\(53\) 11.7655 1.61612 0.808058 0.589103i \(-0.200519\pi\)
0.808058 + 0.589103i \(0.200519\pi\)
\(54\) −6.79295 −0.924404
\(55\) 1.13341 0.152829
\(56\) −8.62948 −1.15316
\(57\) 16.1781 2.14284
\(58\) 5.31065 0.697322
\(59\) −6.92707 −0.901828 −0.450914 0.892567i \(-0.648902\pi\)
−0.450914 + 0.892567i \(0.648902\pi\)
\(60\) −13.7519 −1.77536
\(61\) −2.57934 −0.330251 −0.165125 0.986273i \(-0.552803\pi\)
−0.165125 + 0.986273i \(0.552803\pi\)
\(62\) −3.10429 −0.394245
\(63\) −3.95881 −0.498763
\(64\) 20.1152 2.51440
\(65\) 2.39306 0.296823
\(66\) −8.03000 −0.988425
\(67\) −6.24070 −0.762423 −0.381212 0.924488i \(-0.624493\pi\)
−0.381212 + 0.924488i \(0.624493\pi\)
\(68\) 13.8701 1.68200
\(69\) −17.5498 −2.11275
\(70\) −2.68572 −0.321005
\(71\) −5.10743 −0.606141 −0.303071 0.952968i \(-0.598012\pi\)
−0.303071 + 0.952968i \(0.598012\pi\)
\(72\) 34.1624 4.02608
\(73\) −11.9912 −1.40346 −0.701731 0.712442i \(-0.747589\pi\)
−0.701731 + 0.712442i \(0.747589\pi\)
\(74\) −2.68572 −0.312209
\(75\) −2.63795 −0.304605
\(76\) −31.9709 −3.66732
\(77\) −1.13341 −0.129164
\(78\) −16.9544 −1.91970
\(79\) 7.60555 0.855691 0.427846 0.903852i \(-0.359273\pi\)
0.427846 + 0.903852i \(0.359273\pi\)
\(80\) 12.7502 1.42551
\(81\) −5.20428 −0.578253
\(82\) 27.9680 3.08855
\(83\) −7.36059 −0.807930 −0.403965 0.914774i \(-0.632368\pi\)
−0.403965 + 0.914774i \(0.632368\pi\)
\(84\) 13.7519 1.50046
\(85\) 2.66063 0.288586
\(86\) −28.4684 −3.06982
\(87\) −5.21620 −0.559235
\(88\) 9.78074 1.04263
\(89\) −5.13957 −0.544793 −0.272396 0.962185i \(-0.587816\pi\)
−0.272396 + 0.962185i \(0.587816\pi\)
\(90\) 10.6322 1.12074
\(91\) −2.39306 −0.250861
\(92\) 34.6818 3.61582
\(93\) 3.04908 0.316175
\(94\) 20.9553 2.16137
\(95\) −6.13281 −0.629213
\(96\) −44.8042 −4.57281
\(97\) 3.81785 0.387644 0.193822 0.981037i \(-0.437912\pi\)
0.193822 + 0.981037i \(0.437912\pi\)
\(98\) 2.68572 0.271299
\(99\) 4.48695 0.450956
\(100\) 5.21310 0.521310
\(101\) −0.378222 −0.0376345 −0.0188173 0.999823i \(-0.505990\pi\)
−0.0188173 + 0.999823i \(0.505990\pi\)
\(102\) −18.8500 −1.86643
\(103\) 9.70427 0.956190 0.478095 0.878308i \(-0.341327\pi\)
0.478095 + 0.878308i \(0.341327\pi\)
\(104\) 20.6509 2.02498
\(105\) 2.63795 0.257438
\(106\) 31.5988 3.06915
\(107\) 17.9059 1.73103 0.865516 0.500881i \(-0.166991\pi\)
0.865516 + 0.500881i \(0.166991\pi\)
\(108\) −13.1854 −1.26877
\(109\) −11.0040 −1.05400 −0.526998 0.849866i \(-0.676683\pi\)
−0.526998 + 0.849866i \(0.676683\pi\)
\(110\) 3.04402 0.290236
\(111\) 2.63795 0.250384
\(112\) −12.7502 −1.20478
\(113\) −18.8356 −1.77190 −0.885951 0.463778i \(-0.846494\pi\)
−0.885951 + 0.463778i \(0.846494\pi\)
\(114\) 43.4498 4.06945
\(115\) 6.65282 0.620378
\(116\) 10.3082 0.957091
\(117\) 9.47366 0.875840
\(118\) −18.6042 −1.71265
\(119\) −2.66063 −0.243899
\(120\) −22.7642 −2.07808
\(121\) −9.71538 −0.883216
\(122\) −6.92739 −0.627177
\(123\) −27.4706 −2.47694
\(124\) −6.02555 −0.541111
\(125\) 1.00000 0.0894427
\(126\) −10.6322 −0.947196
\(127\) −12.0340 −1.06785 −0.533925 0.845532i \(-0.679283\pi\)
−0.533925 + 0.845532i \(0.679283\pi\)
\(128\) 20.0548 1.77261
\(129\) 27.9621 2.46192
\(130\) 6.42709 0.563693
\(131\) −0.676979 −0.0591479 −0.0295739 0.999563i \(-0.509415\pi\)
−0.0295739 + 0.999563i \(0.509415\pi\)
\(132\) −15.5866 −1.35664
\(133\) 6.13281 0.531782
\(134\) −16.7608 −1.44791
\(135\) −2.52928 −0.217686
\(136\) 22.9598 1.96879
\(137\) −11.9047 −1.01709 −0.508544 0.861036i \(-0.669816\pi\)
−0.508544 + 0.861036i \(0.669816\pi\)
\(138\) −47.1339 −4.01231
\(139\) −18.5910 −1.57687 −0.788433 0.615121i \(-0.789107\pi\)
−0.788433 + 0.615121i \(0.789107\pi\)
\(140\) −5.21310 −0.440587
\(141\) −20.5826 −1.73337
\(142\) −13.7171 −1.15112
\(143\) 2.71232 0.226816
\(144\) 50.4755 4.20629
\(145\) 1.97736 0.164211
\(146\) −32.2050 −2.66530
\(147\) −2.63795 −0.217575
\(148\) −5.21310 −0.428514
\(149\) −15.2717 −1.25110 −0.625552 0.780182i \(-0.715126\pi\)
−0.625552 + 0.780182i \(0.715126\pi\)
\(150\) −7.08481 −0.578472
\(151\) 0.795527 0.0647391 0.0323695 0.999476i \(-0.489695\pi\)
0.0323695 + 0.999476i \(0.489695\pi\)
\(152\) −52.9230 −4.29262
\(153\) 10.5329 0.851535
\(154\) −3.04402 −0.245294
\(155\) −1.15585 −0.0928400
\(156\) −32.9091 −2.63484
\(157\) 14.2562 1.13777 0.568886 0.822416i \(-0.307374\pi\)
0.568886 + 0.822416i \(0.307374\pi\)
\(158\) 20.4264 1.62504
\(159\) −31.0369 −2.46138
\(160\) 16.9845 1.34274
\(161\) −6.65282 −0.524315
\(162\) −13.9772 −1.09816
\(163\) 6.39293 0.500733 0.250366 0.968151i \(-0.419449\pi\)
0.250366 + 0.968151i \(0.419449\pi\)
\(164\) 54.2871 4.23911
\(165\) −2.98989 −0.232762
\(166\) −19.7685 −1.53433
\(167\) 7.05817 0.546178 0.273089 0.961989i \(-0.411955\pi\)
0.273089 + 0.961989i \(0.411955\pi\)
\(168\) 22.7642 1.75629
\(169\) −7.27327 −0.559482
\(170\) 7.14571 0.548051
\(171\) −24.2786 −1.85663
\(172\) −55.2583 −4.21341
\(173\) 8.20768 0.624018 0.312009 0.950079i \(-0.398998\pi\)
0.312009 + 0.950079i \(0.398998\pi\)
\(174\) −14.0092 −1.06204
\(175\) −1.00000 −0.0755929
\(176\) 14.4512 1.08930
\(177\) 18.2733 1.37351
\(178\) −13.8034 −1.03461
\(179\) −22.8550 −1.70826 −0.854130 0.520060i \(-0.825910\pi\)
−0.854130 + 0.520060i \(0.825910\pi\)
\(180\) 20.6376 1.53824
\(181\) −8.33307 −0.619392 −0.309696 0.950836i \(-0.600227\pi\)
−0.309696 + 0.950836i \(0.600227\pi\)
\(182\) −6.42709 −0.476408
\(183\) 6.80419 0.502980
\(184\) 57.4103 4.23235
\(185\) −1.00000 −0.0735215
\(186\) 8.18897 0.600444
\(187\) 3.01559 0.220521
\(188\) 40.6751 2.96654
\(189\) 2.52928 0.183978
\(190\) −16.4710 −1.19493
\(191\) 1.48828 0.107688 0.0538439 0.998549i \(-0.482853\pi\)
0.0538439 + 0.998549i \(0.482853\pi\)
\(192\) −53.0629 −3.82948
\(193\) 3.84787 0.276976 0.138488 0.990364i \(-0.455776\pi\)
0.138488 + 0.990364i \(0.455776\pi\)
\(194\) 10.2537 0.736172
\(195\) −6.31278 −0.452068
\(196\) 5.21310 0.372364
\(197\) 22.2813 1.58748 0.793738 0.608260i \(-0.208132\pi\)
0.793738 + 0.608260i \(0.208132\pi\)
\(198\) 12.0507 0.856406
\(199\) 2.30318 0.163268 0.0816342 0.996662i \(-0.473986\pi\)
0.0816342 + 0.996662i \(0.473986\pi\)
\(200\) 8.62948 0.610196
\(201\) 16.4627 1.16119
\(202\) −1.01580 −0.0714714
\(203\) −1.97736 −0.138784
\(204\) −36.5887 −2.56172
\(205\) 10.4136 0.727317
\(206\) 26.0630 1.81589
\(207\) 26.3372 1.83056
\(208\) 30.5119 2.11562
\(209\) −6.95099 −0.480810
\(210\) 7.08481 0.488898
\(211\) −17.4658 −1.20240 −0.601198 0.799100i \(-0.705310\pi\)
−0.601198 + 0.799100i \(0.705310\pi\)
\(212\) 61.3347 4.21248
\(213\) 13.4732 0.923167
\(214\) 48.0904 3.28739
\(215\) −10.5999 −0.722907
\(216\) −21.8264 −1.48510
\(217\) 1.15585 0.0784641
\(218\) −29.5538 −2.00164
\(219\) 31.6322 2.13751
\(220\) 5.90858 0.398356
\(221\) 6.36704 0.428294
\(222\) 7.08481 0.475501
\(223\) −22.5861 −1.51248 −0.756239 0.654295i \(-0.772965\pi\)
−0.756239 + 0.654295i \(0.772965\pi\)
\(224\) −16.9845 −1.13482
\(225\) 3.95881 0.263920
\(226\) −50.5871 −3.36501
\(227\) −17.4492 −1.15814 −0.579071 0.815277i \(-0.696585\pi\)
−0.579071 + 0.815277i \(0.696585\pi\)
\(228\) 84.3379 5.58541
\(229\) −0.677338 −0.0447598 −0.0223799 0.999750i \(-0.507124\pi\)
−0.0223799 + 0.999750i \(0.507124\pi\)
\(230\) 17.8676 1.17815
\(231\) 2.98989 0.196720
\(232\) 17.0636 1.12028
\(233\) 11.3982 0.746719 0.373360 0.927687i \(-0.378206\pi\)
0.373360 + 0.927687i \(0.378206\pi\)
\(234\) 25.4436 1.66330
\(235\) 7.80249 0.508978
\(236\) −36.1115 −2.35066
\(237\) −20.0631 −1.30324
\(238\) −7.14571 −0.463187
\(239\) 7.61118 0.492326 0.246163 0.969228i \(-0.420830\pi\)
0.246163 + 0.969228i \(0.420830\pi\)
\(240\) −33.6344 −2.17109
\(241\) 17.2539 1.11142 0.555710 0.831376i \(-0.312446\pi\)
0.555710 + 0.831376i \(0.312446\pi\)
\(242\) −26.0928 −1.67731
\(243\) 21.3165 1.36745
\(244\) −13.4464 −0.860815
\(245\) 1.00000 0.0638877
\(246\) −73.7784 −4.70394
\(247\) −14.6762 −0.933823
\(248\) −9.97438 −0.633373
\(249\) 19.4169 1.23050
\(250\) 2.68572 0.169860
\(251\) −24.0020 −1.51499 −0.757497 0.652838i \(-0.773578\pi\)
−0.757497 + 0.652838i \(0.773578\pi\)
\(252\) −20.6376 −1.30005
\(253\) 7.54037 0.474059
\(254\) −32.3201 −2.02794
\(255\) −7.01862 −0.439523
\(256\) 13.6312 0.851953
\(257\) 27.5951 1.72134 0.860668 0.509166i \(-0.170046\pi\)
0.860668 + 0.509166i \(0.170046\pi\)
\(258\) 75.0983 4.67542
\(259\) 1.00000 0.0621370
\(260\) 12.4752 0.773682
\(261\) 7.82800 0.484541
\(262\) −1.81818 −0.112327
\(263\) 8.76498 0.540472 0.270236 0.962794i \(-0.412898\pi\)
0.270236 + 0.962794i \(0.412898\pi\)
\(264\) −25.8012 −1.58795
\(265\) 11.7655 0.722749
\(266\) 16.4710 1.00990
\(267\) 13.5579 0.829733
\(268\) −32.5334 −1.98729
\(269\) −24.9951 −1.52398 −0.761989 0.647590i \(-0.775777\pi\)
−0.761989 + 0.647590i \(0.775777\pi\)
\(270\) −6.79295 −0.413406
\(271\) 21.9919 1.33591 0.667956 0.744201i \(-0.267169\pi\)
0.667956 + 0.744201i \(0.267169\pi\)
\(272\) 33.9235 2.05691
\(273\) 6.31278 0.382067
\(274\) −31.9727 −1.93154
\(275\) 1.13341 0.0683472
\(276\) −91.4889 −5.50699
\(277\) 20.2087 1.21423 0.607113 0.794616i \(-0.292328\pi\)
0.607113 + 0.794616i \(0.292328\pi\)
\(278\) −49.9302 −2.99461
\(279\) −4.57578 −0.273945
\(280\) −8.62948 −0.515710
\(281\) −7.52218 −0.448736 −0.224368 0.974505i \(-0.572032\pi\)
−0.224368 + 0.974505i \(0.572032\pi\)
\(282\) −55.2791 −3.29182
\(283\) 5.02530 0.298723 0.149361 0.988783i \(-0.452278\pi\)
0.149361 + 0.988783i \(0.452278\pi\)
\(284\) −26.6255 −1.57994
\(285\) 16.1781 0.958307
\(286\) 7.28453 0.430743
\(287\) −10.4136 −0.614695
\(288\) 67.2382 3.96205
\(289\) −9.92105 −0.583591
\(290\) 5.31065 0.311852
\(291\) −10.0713 −0.590391
\(292\) −62.5112 −3.65819
\(293\) 9.61902 0.561949 0.280975 0.959715i \(-0.409342\pi\)
0.280975 + 0.959715i \(0.409342\pi\)
\(294\) −7.08481 −0.413195
\(295\) −6.92707 −0.403310
\(296\) −8.62948 −0.501578
\(297\) −2.86672 −0.166344
\(298\) −41.0155 −2.37596
\(299\) 15.9206 0.920711
\(300\) −13.7519 −0.793967
\(301\) 10.5999 0.610968
\(302\) 2.13656 0.122945
\(303\) 0.997733 0.0573183
\(304\) −78.1944 −4.48476
\(305\) −2.57934 −0.147693
\(306\) 28.2885 1.61714
\(307\) −5.85093 −0.333930 −0.166965 0.985963i \(-0.553397\pi\)
−0.166965 + 0.985963i \(0.553397\pi\)
\(308\) −5.90858 −0.336673
\(309\) −25.5994 −1.45630
\(310\) −3.10429 −0.176312
\(311\) 22.5592 1.27921 0.639607 0.768702i \(-0.279097\pi\)
0.639607 + 0.768702i \(0.279097\pi\)
\(312\) −54.4760 −3.08410
\(313\) −2.83215 −0.160083 −0.0800413 0.996792i \(-0.525505\pi\)
−0.0800413 + 0.996792i \(0.525505\pi\)
\(314\) 38.2883 2.16073
\(315\) −3.95881 −0.223053
\(316\) 39.6485 2.23040
\(317\) 20.8339 1.17015 0.585073 0.810980i \(-0.301066\pi\)
0.585073 + 0.810980i \(0.301066\pi\)
\(318\) −83.3563 −4.67439
\(319\) 2.24116 0.125481
\(320\) 20.1152 1.12447
\(321\) −47.2351 −2.63640
\(322\) −17.8676 −0.995723
\(323\) −16.3171 −0.907910
\(324\) −27.1304 −1.50724
\(325\) 2.39306 0.132743
\(326\) 17.1696 0.950937
\(327\) 29.0282 1.60526
\(328\) 89.8640 4.96191
\(329\) −7.80249 −0.430165
\(330\) −8.03000 −0.442037
\(331\) 12.9477 0.711672 0.355836 0.934548i \(-0.384196\pi\)
0.355836 + 0.934548i \(0.384196\pi\)
\(332\) −38.3715 −2.10591
\(333\) −3.95881 −0.216941
\(334\) 18.9563 1.03724
\(335\) −6.24070 −0.340966
\(336\) 33.6344 1.83491
\(337\) 9.54523 0.519962 0.259981 0.965614i \(-0.416284\pi\)
0.259981 + 0.965614i \(0.416284\pi\)
\(338\) −19.5340 −1.06251
\(339\) 49.6874 2.69865
\(340\) 13.8701 0.752213
\(341\) −1.31005 −0.0709433
\(342\) −65.2056 −3.52591
\(343\) −1.00000 −0.0539949
\(344\) −91.4716 −4.93182
\(345\) −17.5498 −0.944851
\(346\) 22.0435 1.18507
\(347\) −17.8500 −0.958239 −0.479120 0.877750i \(-0.659044\pi\)
−0.479120 + 0.877750i \(0.659044\pi\)
\(348\) −27.1925 −1.45767
\(349\) −3.55069 −0.190064 −0.0950320 0.995474i \(-0.530295\pi\)
−0.0950320 + 0.995474i \(0.530295\pi\)
\(350\) −2.68572 −0.143558
\(351\) −6.05273 −0.323071
\(352\) 19.2504 1.02605
\(353\) −26.3798 −1.40406 −0.702028 0.712150i \(-0.747722\pi\)
−0.702028 + 0.712150i \(0.747722\pi\)
\(354\) 49.0770 2.60841
\(355\) −5.10743 −0.271074
\(356\) −26.7931 −1.42003
\(357\) 7.01862 0.371465
\(358\) −61.3820 −3.24414
\(359\) −28.5075 −1.50457 −0.752285 0.658838i \(-0.771048\pi\)
−0.752285 + 0.658838i \(0.771048\pi\)
\(360\) 34.1624 1.80052
\(361\) 18.6114 0.979546
\(362\) −22.3803 −1.17628
\(363\) 25.6287 1.34516
\(364\) −12.4752 −0.653881
\(365\) −11.9912 −0.627647
\(366\) 18.2741 0.955205
\(367\) −12.3056 −0.642349 −0.321175 0.947020i \(-0.604078\pi\)
−0.321175 + 0.947020i \(0.604078\pi\)
\(368\) 84.8246 4.42179
\(369\) 41.2254 2.14611
\(370\) −2.68572 −0.139624
\(371\) −11.7655 −0.610834
\(372\) 15.8951 0.824124
\(373\) −25.6944 −1.33041 −0.665204 0.746662i \(-0.731655\pi\)
−0.665204 + 0.746662i \(0.731655\pi\)
\(374\) 8.09902 0.418790
\(375\) −2.63795 −0.136223
\(376\) 67.3314 3.47235
\(377\) 4.73195 0.243708
\(378\) 6.79295 0.349392
\(379\) 31.0662 1.59576 0.797881 0.602815i \(-0.205954\pi\)
0.797881 + 0.602815i \(0.205954\pi\)
\(380\) −31.9709 −1.64007
\(381\) 31.7453 1.62636
\(382\) 3.99709 0.204509
\(383\) 16.3775 0.836850 0.418425 0.908251i \(-0.362582\pi\)
0.418425 + 0.908251i \(0.362582\pi\)
\(384\) −52.9036 −2.69973
\(385\) −1.13341 −0.0577640
\(386\) 10.3343 0.526003
\(387\) −41.9630 −2.13310
\(388\) 19.9028 1.01041
\(389\) 8.68408 0.440300 0.220150 0.975466i \(-0.429345\pi\)
0.220150 + 0.975466i \(0.429345\pi\)
\(390\) −16.9544 −0.858518
\(391\) 17.7007 0.895162
\(392\) 8.62948 0.435855
\(393\) 1.78584 0.0900836
\(394\) 59.8413 3.01476
\(395\) 7.60555 0.382677
\(396\) 23.3909 1.17544
\(397\) 21.4876 1.07843 0.539216 0.842167i \(-0.318721\pi\)
0.539216 + 0.842167i \(0.318721\pi\)
\(398\) 6.18571 0.310062
\(399\) −16.1781 −0.809917
\(400\) 12.7502 0.637509
\(401\) −11.7463 −0.586582 −0.293291 0.956023i \(-0.594751\pi\)
−0.293291 + 0.956023i \(0.594751\pi\)
\(402\) 44.2142 2.20520
\(403\) −2.76602 −0.137785
\(404\) −1.97171 −0.0980962
\(405\) −5.20428 −0.258603
\(406\) −5.31065 −0.263563
\(407\) −1.13341 −0.0561811
\(408\) −60.5670 −2.99851
\(409\) 21.7221 1.07409 0.537044 0.843554i \(-0.319541\pi\)
0.537044 + 0.843554i \(0.319541\pi\)
\(410\) 27.9680 1.38124
\(411\) 31.4041 1.54905
\(412\) 50.5893 2.49236
\(413\) 6.92707 0.340859
\(414\) 70.7344 3.47640
\(415\) −7.36059 −0.361317
\(416\) 40.6448 1.99278
\(417\) 49.0422 2.40160
\(418\) −18.6684 −0.913103
\(419\) 20.9252 1.02226 0.511132 0.859502i \(-0.329226\pi\)
0.511132 + 0.859502i \(0.329226\pi\)
\(420\) 13.7519 0.671025
\(421\) 28.5789 1.39285 0.696426 0.717628i \(-0.254772\pi\)
0.696426 + 0.717628i \(0.254772\pi\)
\(422\) −46.9083 −2.28346
\(423\) 30.8885 1.50185
\(424\) 101.530 4.93074
\(425\) 2.66063 0.129059
\(426\) 36.1852 1.75318
\(427\) 2.57934 0.124823
\(428\) 93.3454 4.51202
\(429\) −7.15498 −0.345445
\(430\) −28.4684 −1.37287
\(431\) −34.2084 −1.64776 −0.823879 0.566765i \(-0.808195\pi\)
−0.823879 + 0.566765i \(0.808195\pi\)
\(432\) −32.2488 −1.55157
\(433\) −21.2786 −1.02259 −0.511293 0.859407i \(-0.670833\pi\)
−0.511293 + 0.859407i \(0.670833\pi\)
\(434\) 3.10429 0.149011
\(435\) −5.21620 −0.250097
\(436\) −57.3652 −2.74729
\(437\) −40.8005 −1.95175
\(438\) 84.9553 4.05932
\(439\) 0.167388 0.00798902 0.00399451 0.999992i \(-0.498729\pi\)
0.00399451 + 0.999992i \(0.498729\pi\)
\(440\) 9.78074 0.466279
\(441\) 3.95881 0.188515
\(442\) 17.1001 0.813369
\(443\) 20.4222 0.970288 0.485144 0.874434i \(-0.338767\pi\)
0.485144 + 0.874434i \(0.338767\pi\)
\(444\) 13.7519 0.652637
\(445\) −5.13957 −0.243639
\(446\) −60.6600 −2.87233
\(447\) 40.2860 1.90546
\(448\) −20.1152 −0.950352
\(449\) 4.85292 0.229023 0.114512 0.993422i \(-0.463470\pi\)
0.114512 + 0.993422i \(0.463470\pi\)
\(450\) 10.6322 0.501209
\(451\) 11.8029 0.555776
\(452\) −98.1917 −4.61855
\(453\) −2.09856 −0.0985991
\(454\) −46.8636 −2.19942
\(455\) −2.39306 −0.112188
\(456\) 139.608 6.53776
\(457\) 5.07145 0.237233 0.118616 0.992940i \(-0.462154\pi\)
0.118616 + 0.992940i \(0.462154\pi\)
\(458\) −1.81914 −0.0850029
\(459\) −6.72949 −0.314106
\(460\) 34.6818 1.61705
\(461\) 12.4230 0.578597 0.289298 0.957239i \(-0.406578\pi\)
0.289298 + 0.957239i \(0.406578\pi\)
\(462\) 8.03000 0.373589
\(463\) −22.5378 −1.04742 −0.523711 0.851896i \(-0.675453\pi\)
−0.523711 + 0.851896i \(0.675453\pi\)
\(464\) 25.2117 1.17043
\(465\) 3.04908 0.141398
\(466\) 30.6123 1.41809
\(467\) 20.9780 0.970744 0.485372 0.874308i \(-0.338684\pi\)
0.485372 + 0.874308i \(0.338684\pi\)
\(468\) 49.3871 2.28292
\(469\) 6.24070 0.288169
\(470\) 20.9553 0.966596
\(471\) −37.6073 −1.73285
\(472\) −59.7770 −2.75146
\(473\) −12.0140 −0.552406
\(474\) −53.8839 −2.47497
\(475\) −6.13281 −0.281393
\(476\) −13.8701 −0.635736
\(477\) 46.5773 2.13263
\(478\) 20.4415 0.934972
\(479\) 35.9008 1.64035 0.820175 0.572113i \(-0.193876\pi\)
0.820175 + 0.572113i \(0.193876\pi\)
\(480\) −44.8042 −2.04502
\(481\) −2.39306 −0.109114
\(482\) 46.3391 2.11069
\(483\) 17.5498 0.798545
\(484\) −50.6472 −2.30215
\(485\) 3.81785 0.173360
\(486\) 57.2502 2.59692
\(487\) 40.3182 1.82699 0.913496 0.406848i \(-0.133372\pi\)
0.913496 + 0.406848i \(0.133372\pi\)
\(488\) −22.2584 −1.00759
\(489\) −16.8643 −0.762628
\(490\) 2.68572 0.121328
\(491\) 13.1017 0.591271 0.295635 0.955301i \(-0.404469\pi\)
0.295635 + 0.955301i \(0.404469\pi\)
\(492\) −143.207 −6.45627
\(493\) 5.26103 0.236945
\(494\) −39.4161 −1.77342
\(495\) 4.48695 0.201673
\(496\) −14.7373 −0.661724
\(497\) 5.10743 0.229100
\(498\) 52.1484 2.33683
\(499\) −29.1071 −1.30301 −0.651506 0.758644i \(-0.725862\pi\)
−0.651506 + 0.758644i \(0.725862\pi\)
\(500\) 5.21310 0.233137
\(501\) −18.6191 −0.831842
\(502\) −64.4627 −2.87711
\(503\) −8.57030 −0.382131 −0.191065 0.981577i \(-0.561194\pi\)
−0.191065 + 0.981577i \(0.561194\pi\)
\(504\) −34.1624 −1.52172
\(505\) −0.378222 −0.0168307
\(506\) 20.2513 0.900282
\(507\) 19.1865 0.852104
\(508\) −62.7346 −2.78340
\(509\) −6.39654 −0.283522 −0.141761 0.989901i \(-0.545276\pi\)
−0.141761 + 0.989901i \(0.545276\pi\)
\(510\) −18.8500 −0.834694
\(511\) 11.9912 0.530459
\(512\) −3.49986 −0.154674
\(513\) 15.5116 0.684855
\(514\) 74.1128 3.26898
\(515\) 9.70427 0.427621
\(516\) 145.769 6.41712
\(517\) 8.84342 0.388933
\(518\) 2.68572 0.118004
\(519\) −21.6515 −0.950395
\(520\) 20.6509 0.905600
\(521\) 23.9935 1.05117 0.525587 0.850740i \(-0.323846\pi\)
0.525587 + 0.850740i \(0.323846\pi\)
\(522\) 21.0238 0.920187
\(523\) −42.9519 −1.87816 −0.939078 0.343705i \(-0.888318\pi\)
−0.939078 + 0.343705i \(0.888318\pi\)
\(524\) −3.52915 −0.154172
\(525\) 2.63795 0.115130
\(526\) 23.5403 1.02641
\(527\) −3.07529 −0.133962
\(528\) −38.1216 −1.65903
\(529\) 21.2600 0.924346
\(530\) 31.5988 1.37257
\(531\) −27.4229 −1.19005
\(532\) 31.9709 1.38612
\(533\) 24.9204 1.07942
\(534\) 36.4129 1.57574
\(535\) 17.9059 0.774141
\(536\) −53.8540 −2.32614
\(537\) 60.2903 2.60172
\(538\) −67.1298 −2.89417
\(539\) 1.13341 0.0488195
\(540\) −13.1854 −0.567410
\(541\) 18.4901 0.794950 0.397475 0.917613i \(-0.369886\pi\)
0.397475 + 0.917613i \(0.369886\pi\)
\(542\) 59.0641 2.53702
\(543\) 21.9823 0.943349
\(544\) 45.1894 1.93748
\(545\) −11.0040 −0.471362
\(546\) 16.9544 0.725580
\(547\) −31.0430 −1.32730 −0.663651 0.748042i \(-0.730994\pi\)
−0.663651 + 0.748042i \(0.730994\pi\)
\(548\) −62.0604 −2.65109
\(549\) −10.2111 −0.435800
\(550\) 3.04402 0.129798
\(551\) −12.1268 −0.516619
\(552\) −151.446 −6.44596
\(553\) −7.60555 −0.323421
\(554\) 54.2750 2.30593
\(555\) 2.63795 0.111975
\(556\) −96.9165 −4.11018
\(557\) −31.1647 −1.32049 −0.660246 0.751049i \(-0.729548\pi\)
−0.660246 + 0.751049i \(0.729548\pi\)
\(558\) −12.2893 −0.520246
\(559\) −25.3662 −1.07288
\(560\) −12.7502 −0.538793
\(561\) −7.95498 −0.335859
\(562\) −20.2025 −0.852190
\(563\) 28.8568 1.21617 0.608084 0.793872i \(-0.291938\pi\)
0.608084 + 0.793872i \(0.291938\pi\)
\(564\) −107.299 −4.51811
\(565\) −18.8356 −0.792419
\(566\) 13.4965 0.567302
\(567\) 5.20428 0.218559
\(568\) −44.0745 −1.84933
\(569\) 29.8956 1.25329 0.626644 0.779306i \(-0.284428\pi\)
0.626644 + 0.779306i \(0.284428\pi\)
\(570\) 43.4498 1.81991
\(571\) −27.2726 −1.14132 −0.570662 0.821185i \(-0.693313\pi\)
−0.570662 + 0.821185i \(0.693313\pi\)
\(572\) 14.1396 0.591206
\(573\) −3.92600 −0.164011
\(574\) −27.9680 −1.16736
\(575\) 6.65282 0.277442
\(576\) 79.6320 3.31800
\(577\) −7.90107 −0.328926 −0.164463 0.986383i \(-0.552589\pi\)
−0.164463 + 0.986383i \(0.552589\pi\)
\(578\) −26.6452 −1.10829
\(579\) −10.1505 −0.421841
\(580\) 10.3082 0.428024
\(581\) 7.36059 0.305369
\(582\) −27.0488 −1.12121
\(583\) 13.3351 0.552285
\(584\) −103.478 −4.28194
\(585\) 9.47366 0.391687
\(586\) 25.8340 1.06719
\(587\) 31.7082 1.30874 0.654368 0.756176i \(-0.272935\pi\)
0.654368 + 0.756176i \(0.272935\pi\)
\(588\) −13.7519 −0.567119
\(589\) 7.08860 0.292081
\(590\) −18.6042 −0.765922
\(591\) −58.7770 −2.41776
\(592\) −12.7502 −0.524029
\(593\) −16.1150 −0.661762 −0.330881 0.943672i \(-0.607346\pi\)
−0.330881 + 0.943672i \(0.607346\pi\)
\(594\) −7.69921 −0.315902
\(595\) −2.66063 −0.109075
\(596\) −79.6127 −3.26106
\(597\) −6.07570 −0.248662
\(598\) 42.7582 1.74851
\(599\) −4.66076 −0.190433 −0.0952167 0.995457i \(-0.530354\pi\)
−0.0952167 + 0.995457i \(0.530354\pi\)
\(600\) −22.7642 −0.929344
\(601\) 37.1173 1.51405 0.757024 0.653388i \(-0.226653\pi\)
0.757024 + 0.653388i \(0.226653\pi\)
\(602\) 28.4684 1.16028
\(603\) −24.7057 −1.00610
\(604\) 4.14716 0.168745
\(605\) −9.71538 −0.394986
\(606\) 2.67963 0.108853
\(607\) −0.0411726 −0.00167114 −0.000835572 1.00000i \(-0.500266\pi\)
−0.000835572 1.00000i \(0.500266\pi\)
\(608\) −104.163 −4.22435
\(609\) 5.21620 0.211371
\(610\) −6.92739 −0.280482
\(611\) 18.6718 0.755381
\(612\) 54.9091 2.21957
\(613\) 20.1686 0.814604 0.407302 0.913294i \(-0.366470\pi\)
0.407302 + 0.913294i \(0.366470\pi\)
\(614\) −15.7140 −0.634164
\(615\) −27.4706 −1.10772
\(616\) −9.78074 −0.394077
\(617\) −15.0055 −0.604098 −0.302049 0.953292i \(-0.597671\pi\)
−0.302049 + 0.953292i \(0.597671\pi\)
\(618\) −68.7529 −2.76565
\(619\) −6.29562 −0.253042 −0.126521 0.991964i \(-0.540381\pi\)
−0.126521 + 0.991964i \(0.540381\pi\)
\(620\) −6.02555 −0.241992
\(621\) −16.8269 −0.675239
\(622\) 60.5877 2.42935
\(623\) 5.13957 0.205912
\(624\) −80.4891 −3.22214
\(625\) 1.00000 0.0400000
\(626\) −7.60637 −0.304012
\(627\) 18.3364 0.732286
\(628\) 74.3192 2.96566
\(629\) −2.66063 −0.106086
\(630\) −10.6322 −0.423599
\(631\) 21.3939 0.851677 0.425839 0.904799i \(-0.359979\pi\)
0.425839 + 0.904799i \(0.359979\pi\)
\(632\) 65.6319 2.61070
\(633\) 46.0740 1.83128
\(634\) 55.9539 2.22222
\(635\) −12.0340 −0.477557
\(636\) −161.798 −6.41571
\(637\) 2.39306 0.0948165
\(638\) 6.01914 0.238300
\(639\) −20.2193 −0.799865
\(640\) 20.0548 0.792735
\(641\) −20.1107 −0.794326 −0.397163 0.917748i \(-0.630005\pi\)
−0.397163 + 0.917748i \(0.630005\pi\)
\(642\) −126.860 −5.00677
\(643\) −48.4990 −1.91261 −0.956307 0.292363i \(-0.905558\pi\)
−0.956307 + 0.292363i \(0.905558\pi\)
\(644\) −34.6818 −1.36665
\(645\) 27.9621 1.10101
\(646\) −43.8233 −1.72420
\(647\) 35.9296 1.41254 0.706270 0.707943i \(-0.250377\pi\)
0.706270 + 0.707943i \(0.250377\pi\)
\(648\) −44.9102 −1.76424
\(649\) −7.85122 −0.308187
\(650\) 6.42709 0.252091
\(651\) −3.04908 −0.119503
\(652\) 33.3270 1.30518
\(653\) 21.9900 0.860534 0.430267 0.902702i \(-0.358419\pi\)
0.430267 + 0.902702i \(0.358419\pi\)
\(654\) 77.9616 3.04854
\(655\) −0.676979 −0.0264517
\(656\) 132.775 5.18400
\(657\) −47.4708 −1.85201
\(658\) −20.9553 −0.816923
\(659\) 19.4302 0.756892 0.378446 0.925623i \(-0.376459\pi\)
0.378446 + 0.925623i \(0.376459\pi\)
\(660\) −15.5866 −0.606706
\(661\) −42.2905 −1.64491 −0.822455 0.568830i \(-0.807396\pi\)
−0.822455 + 0.568830i \(0.807396\pi\)
\(662\) 34.7740 1.35153
\(663\) −16.7960 −0.652301
\(664\) −63.5181 −2.46498
\(665\) 6.13281 0.237820
\(666\) −10.6322 −0.411991
\(667\) 13.1550 0.509365
\(668\) 36.7949 1.42364
\(669\) 59.5811 2.30354
\(670\) −16.7608 −0.647526
\(671\) −2.92345 −0.112859
\(672\) 44.8042 1.72836
\(673\) 11.2088 0.432069 0.216035 0.976386i \(-0.430688\pi\)
0.216035 + 0.976386i \(0.430688\pi\)
\(674\) 25.6358 0.987455
\(675\) −2.52928 −0.0973522
\(676\) −37.9162 −1.45832
\(677\) −49.1491 −1.88895 −0.944477 0.328577i \(-0.893431\pi\)
−0.944477 + 0.328577i \(0.893431\pi\)
\(678\) 133.447 5.12498
\(679\) −3.81785 −0.146516
\(680\) 22.9598 0.880470
\(681\) 46.0301 1.76388
\(682\) −3.51843 −0.134728
\(683\) 26.5764 1.01692 0.508458 0.861087i \(-0.330216\pi\)
0.508458 + 0.861087i \(0.330216\pi\)
\(684\) −126.567 −4.83940
\(685\) −11.9047 −0.454855
\(686\) −2.68572 −0.102541
\(687\) 1.78679 0.0681702
\(688\) −135.151 −5.15257
\(689\) 28.1555 1.07264
\(690\) −47.1339 −1.79436
\(691\) 48.2316 1.83482 0.917408 0.397947i \(-0.130277\pi\)
0.917408 + 0.397947i \(0.130277\pi\)
\(692\) 42.7874 1.62653
\(693\) −4.48695 −0.170445
\(694\) −47.9402 −1.81978
\(695\) −18.5910 −0.705196
\(696\) −45.0130 −1.70622
\(697\) 27.7067 1.04947
\(698\) −9.53616 −0.360949
\(699\) −30.0679 −1.13727
\(700\) −5.21310 −0.197037
\(701\) 29.7452 1.12346 0.561730 0.827321i \(-0.310136\pi\)
0.561730 + 0.827321i \(0.310136\pi\)
\(702\) −16.2559 −0.613541
\(703\) 6.13281 0.231303
\(704\) 22.7987 0.859260
\(705\) −20.5826 −0.775186
\(706\) −70.8488 −2.66643
\(707\) 0.378222 0.0142245
\(708\) 95.2605 3.58011
\(709\) −11.3743 −0.427170 −0.213585 0.976925i \(-0.568514\pi\)
−0.213585 + 0.976925i \(0.568514\pi\)
\(710\) −13.7171 −0.514795
\(711\) 30.1089 1.12917
\(712\) −44.3518 −1.66215
\(713\) −7.68965 −0.287980
\(714\) 18.8500 0.705445
\(715\) 2.71232 0.101435
\(716\) −119.145 −4.45266
\(717\) −20.0779 −0.749824
\(718\) −76.5633 −2.85732
\(719\) 10.9236 0.407383 0.203692 0.979035i \(-0.434706\pi\)
0.203692 + 0.979035i \(0.434706\pi\)
\(720\) 50.4755 1.88111
\(721\) −9.70427 −0.361406
\(722\) 49.9850 1.86025
\(723\) −45.5150 −1.69272
\(724\) −43.4411 −1.61448
\(725\) 1.97736 0.0734374
\(726\) 68.8316 2.55458
\(727\) −24.7288 −0.917140 −0.458570 0.888658i \(-0.651638\pi\)
−0.458570 + 0.888658i \(0.651638\pi\)
\(728\) −20.6509 −0.765372
\(729\) −40.6191 −1.50441
\(730\) −32.2050 −1.19196
\(731\) −28.2024 −1.04310
\(732\) 35.4709 1.31104
\(733\) 19.1479 0.707242 0.353621 0.935389i \(-0.384950\pi\)
0.353621 + 0.935389i \(0.384950\pi\)
\(734\) −33.0495 −1.21988
\(735\) −2.63795 −0.0973024
\(736\) 112.994 4.16503
\(737\) −7.07328 −0.260548
\(738\) 110.720 4.07566
\(739\) −44.6732 −1.64333 −0.821664 0.569972i \(-0.806954\pi\)
−0.821664 + 0.569972i \(0.806954\pi\)
\(740\) −5.21310 −0.191637
\(741\) 38.7151 1.42223
\(742\) −31.5988 −1.16003
\(743\) −9.81654 −0.360134 −0.180067 0.983654i \(-0.557631\pi\)
−0.180067 + 0.983654i \(0.557631\pi\)
\(744\) 26.3120 0.964643
\(745\) −15.2717 −0.559511
\(746\) −69.0081 −2.52657
\(747\) −29.1392 −1.06615
\(748\) 15.7205 0.574800
\(749\) −17.9059 −0.654269
\(750\) −7.08481 −0.258701
\(751\) −9.94489 −0.362894 −0.181447 0.983401i \(-0.558078\pi\)
−0.181447 + 0.983401i \(0.558078\pi\)
\(752\) 99.4831 3.62778
\(753\) 63.3163 2.30737
\(754\) 12.7087 0.462823
\(755\) 0.795527 0.0289522
\(756\) 13.1854 0.479549
\(757\) −9.25447 −0.336360 −0.168180 0.985756i \(-0.553789\pi\)
−0.168180 + 0.985756i \(0.553789\pi\)
\(758\) 83.4351 3.03050
\(759\) −19.8912 −0.722003
\(760\) −52.9230 −1.91972
\(761\) 17.0295 0.617318 0.308659 0.951173i \(-0.400120\pi\)
0.308659 + 0.951173i \(0.400120\pi\)
\(762\) 85.2589 3.08861
\(763\) 11.0040 0.398373
\(764\) 7.75852 0.280693
\(765\) 10.5329 0.380818
\(766\) 43.9853 1.58925
\(767\) −16.5769 −0.598557
\(768\) −35.9586 −1.29754
\(769\) −35.9995 −1.29818 −0.649088 0.760713i \(-0.724849\pi\)
−0.649088 + 0.760713i \(0.724849\pi\)
\(770\) −3.04402 −0.109699
\(771\) −72.7947 −2.62164
\(772\) 20.0593 0.721951
\(773\) −27.1991 −0.978284 −0.489142 0.872204i \(-0.662690\pi\)
−0.489142 + 0.872204i \(0.662690\pi\)
\(774\) −112.701 −4.05095
\(775\) −1.15585 −0.0415193
\(776\) 32.9461 1.18270
\(777\) −2.63795 −0.0946361
\(778\) 23.3230 0.836171
\(779\) −63.8647 −2.28819
\(780\) −32.9091 −1.17834
\(781\) −5.78882 −0.207140
\(782\) 47.5391 1.69999
\(783\) −5.00132 −0.178732
\(784\) 12.7502 0.455364
\(785\) 14.2562 0.508827
\(786\) 4.79626 0.171077
\(787\) −45.8780 −1.63537 −0.817687 0.575663i \(-0.804744\pi\)
−0.817687 + 0.575663i \(0.804744\pi\)
\(788\) 116.155 4.13783
\(789\) −23.1216 −0.823152
\(790\) 20.4264 0.726738
\(791\) 18.8356 0.669716
\(792\) 38.7201 1.37586
\(793\) −6.17252 −0.219193
\(794\) 57.7097 2.04804
\(795\) −31.0369 −1.10076
\(796\) 12.0067 0.425567
\(797\) −41.4841 −1.46944 −0.734721 0.678369i \(-0.762687\pi\)
−0.734721 + 0.678369i \(0.762687\pi\)
\(798\) −43.4498 −1.53811
\(799\) 20.7595 0.734419
\(800\) 16.9845 0.600491
\(801\) −20.3465 −0.718910
\(802\) −31.5473 −1.11397
\(803\) −13.5909 −0.479614
\(804\) 85.8216 3.02669
\(805\) −6.65282 −0.234481
\(806\) −7.42875 −0.261666
\(807\) 65.9359 2.32105
\(808\) −3.26386 −0.114822
\(809\) −15.1944 −0.534205 −0.267102 0.963668i \(-0.586066\pi\)
−0.267102 + 0.963668i \(0.586066\pi\)
\(810\) −13.9772 −0.491110
\(811\) 15.5885 0.547386 0.273693 0.961817i \(-0.411755\pi\)
0.273693 + 0.961817i \(0.411755\pi\)
\(812\) −10.3082 −0.361746
\(813\) −58.0136 −2.03463
\(814\) −3.04402 −0.106693
\(815\) 6.39293 0.223935
\(816\) −89.4886 −3.13273
\(817\) 65.0072 2.27431
\(818\) 58.3394 2.03979
\(819\) −9.47366 −0.331036
\(820\) 54.2871 1.89579
\(821\) −16.4855 −0.575346 −0.287673 0.957729i \(-0.592882\pi\)
−0.287673 + 0.957729i \(0.592882\pi\)
\(822\) 84.3426 2.94178
\(823\) 37.9133 1.32158 0.660788 0.750573i \(-0.270222\pi\)
0.660788 + 0.750573i \(0.270222\pi\)
\(824\) 83.7428 2.91732
\(825\) −2.98989 −0.104094
\(826\) 18.6042 0.647322
\(827\) 31.8294 1.10682 0.553408 0.832911i \(-0.313327\pi\)
0.553408 + 0.832911i \(0.313327\pi\)
\(828\) 137.298 4.77145
\(829\) −3.75950 −0.130573 −0.0652865 0.997867i \(-0.520796\pi\)
−0.0652865 + 0.997867i \(0.520796\pi\)
\(830\) −19.7685 −0.686175
\(831\) −53.3097 −1.84929
\(832\) 48.1368 1.66884
\(833\) 2.66063 0.0921853
\(834\) 131.714 4.56087
\(835\) 7.05817 0.244258
\(836\) −36.2362 −1.25326
\(837\) 2.92347 0.101050
\(838\) 56.1994 1.94137
\(839\) 47.4957 1.63973 0.819866 0.572555i \(-0.194048\pi\)
0.819866 + 0.572555i \(0.194048\pi\)
\(840\) 22.7642 0.785439
\(841\) −25.0900 −0.865174
\(842\) 76.7551 2.64515
\(843\) 19.8432 0.683435
\(844\) −91.0510 −3.13410
\(845\) −7.27327 −0.250208
\(846\) 82.9580 2.85215
\(847\) 9.71538 0.333824
\(848\) 150.012 5.15144
\(849\) −13.2565 −0.454962
\(850\) 7.14571 0.245096
\(851\) −6.65282 −0.228056
\(852\) 70.2370 2.40628
\(853\) 11.4008 0.390355 0.195177 0.980768i \(-0.437472\pi\)
0.195177 + 0.980768i \(0.437472\pi\)
\(854\) 6.92739 0.237050
\(855\) −24.2786 −0.830311
\(856\) 154.519 5.28135
\(857\) −48.8854 −1.66989 −0.834946 0.550331i \(-0.814501\pi\)
−0.834946 + 0.550331i \(0.814501\pi\)
\(858\) −19.2163 −0.656032
\(859\) 26.4508 0.902490 0.451245 0.892400i \(-0.350980\pi\)
0.451245 + 0.892400i \(0.350980\pi\)
\(860\) −55.2583 −1.88429
\(861\) 27.4706 0.936196
\(862\) −91.8741 −3.12924
\(863\) −32.5774 −1.10895 −0.554474 0.832201i \(-0.687080\pi\)
−0.554474 + 0.832201i \(0.687080\pi\)
\(864\) −42.9585 −1.46148
\(865\) 8.20768 0.279069
\(866\) −57.1485 −1.94198
\(867\) 26.1713 0.888824
\(868\) 6.02555 0.204521
\(869\) 8.62021 0.292421
\(870\) −14.0092 −0.474958
\(871\) −14.9344 −0.506032
\(872\) −94.9592 −3.21572
\(873\) 15.1141 0.511536
\(874\) −109.579 −3.70655
\(875\) −1.00000 −0.0338062
\(876\) 164.902 5.57151
\(877\) 24.7310 0.835106 0.417553 0.908652i \(-0.362888\pi\)
0.417553 + 0.908652i \(0.362888\pi\)
\(878\) 0.449559 0.0151719
\(879\) −25.3745 −0.855862
\(880\) 14.4512 0.487149
\(881\) −41.9206 −1.41234 −0.706171 0.708042i \(-0.749579\pi\)
−0.706171 + 0.708042i \(0.749579\pi\)
\(882\) 10.6322 0.358006
\(883\) −38.3378 −1.29017 −0.645084 0.764112i \(-0.723178\pi\)
−0.645084 + 0.764112i \(0.723178\pi\)
\(884\) 33.1920 1.11637
\(885\) 18.2733 0.614250
\(886\) 54.8483 1.84267
\(887\) −53.2824 −1.78905 −0.894525 0.447018i \(-0.852486\pi\)
−0.894525 + 0.447018i \(0.852486\pi\)
\(888\) 22.7642 0.763916
\(889\) 12.0340 0.403609
\(890\) −13.8034 −0.462692
\(891\) −5.89858 −0.197610
\(892\) −117.744 −3.94235
\(893\) −47.8512 −1.60128
\(894\) 108.197 3.61865
\(895\) −22.8550 −0.763957
\(896\) −20.0548 −0.669984
\(897\) −41.9978 −1.40227
\(898\) 13.0336 0.434936
\(899\) −2.28553 −0.0762268
\(900\) 20.6376 0.687921
\(901\) 31.3036 1.04287
\(902\) 31.6993 1.05547
\(903\) −27.9621 −0.930519
\(904\) −162.541 −5.40604
\(905\) −8.33307 −0.277001
\(906\) −5.63616 −0.187249
\(907\) 16.3153 0.541742 0.270871 0.962616i \(-0.412688\pi\)
0.270871 + 0.962616i \(0.412688\pi\)
\(908\) −90.9642 −3.01875
\(909\) −1.49731 −0.0496626
\(910\) −6.42709 −0.213056
\(911\) 54.2742 1.79818 0.899091 0.437761i \(-0.144228\pi\)
0.899091 + 0.437761i \(0.144228\pi\)
\(912\) 206.273 6.83039
\(913\) −8.34258 −0.276099
\(914\) 13.6205 0.450526
\(915\) 6.80419 0.224939
\(916\) −3.53103 −0.116668
\(917\) 0.676979 0.0223558
\(918\) −18.0735 −0.596515
\(919\) 11.1583 0.368078 0.184039 0.982919i \(-0.441083\pi\)
0.184039 + 0.982919i \(0.441083\pi\)
\(920\) 57.4103 1.89276
\(921\) 15.4345 0.508584
\(922\) 33.3647 1.09881
\(923\) −12.2224 −0.402305
\(924\) 15.5866 0.512760
\(925\) −1.00000 −0.0328798
\(926\) −60.5304 −1.98915
\(927\) 38.4173 1.26179
\(928\) 33.5845 1.10246
\(929\) 44.6809 1.46593 0.732966 0.680265i \(-0.238135\pi\)
0.732966 + 0.680265i \(0.238135\pi\)
\(930\) 8.18897 0.268527
\(931\) −6.13281 −0.200995
\(932\) 59.4198 1.94636
\(933\) −59.5101 −1.94827
\(934\) 56.3409 1.84353
\(935\) 3.01559 0.0986202
\(936\) 81.7527 2.67217
\(937\) 39.3445 1.28533 0.642664 0.766148i \(-0.277829\pi\)
0.642664 + 0.766148i \(0.277829\pi\)
\(938\) 16.7608 0.547259
\(939\) 7.47109 0.243810
\(940\) 40.6751 1.32668
\(941\) −54.9858 −1.79249 −0.896243 0.443562i \(-0.853714\pi\)
−0.896243 + 0.443562i \(0.853714\pi\)
\(942\) −101.003 −3.29085
\(943\) 69.2798 2.25606
\(944\) −88.3214 −2.87462
\(945\) 2.52928 0.0822776
\(946\) −32.2664 −1.04907
\(947\) 24.2351 0.787534 0.393767 0.919210i \(-0.371172\pi\)
0.393767 + 0.919210i \(0.371172\pi\)
\(948\) −104.591 −3.39695
\(949\) −28.6956 −0.931499
\(950\) −16.4710 −0.534390
\(951\) −54.9588 −1.78216
\(952\) −22.9598 −0.744133
\(953\) 19.7233 0.638901 0.319451 0.947603i \(-0.396502\pi\)
0.319451 + 0.947603i \(0.396502\pi\)
\(954\) 125.094 4.05006
\(955\) 1.48828 0.0481595
\(956\) 39.6778 1.28327
\(957\) −5.91209 −0.191111
\(958\) 96.4195 3.11517
\(959\) 11.9047 0.384423
\(960\) −53.0629 −1.71260
\(961\) −29.6640 −0.956904
\(962\) −6.42709 −0.207218
\(963\) 70.8861 2.28427
\(964\) 89.9461 2.89697
\(965\) 3.84787 0.123867
\(966\) 47.1339 1.51651
\(967\) 45.6772 1.46888 0.734440 0.678674i \(-0.237445\pi\)
0.734440 + 0.678674i \(0.237445\pi\)
\(968\) −83.8387 −2.69468
\(969\) 43.0439 1.38277
\(970\) 10.2537 0.329226
\(971\) −29.0814 −0.933268 −0.466634 0.884451i \(-0.654533\pi\)
−0.466634 + 0.884451i \(0.654533\pi\)
\(972\) 111.125 3.56434
\(973\) 18.5910 0.595999
\(974\) 108.283 3.46962
\(975\) −6.31278 −0.202171
\(976\) −32.8871 −1.05269
\(977\) −0.284694 −0.00910818 −0.00455409 0.999990i \(-0.501450\pi\)
−0.00455409 + 0.999990i \(0.501450\pi\)
\(978\) −45.2927 −1.44830
\(979\) −5.82524 −0.186175
\(980\) 5.21310 0.166526
\(981\) −43.5629 −1.39086
\(982\) 35.1875 1.12288
\(983\) −14.1092 −0.450014 −0.225007 0.974357i \(-0.572240\pi\)
−0.225007 + 0.974357i \(0.572240\pi\)
\(984\) −237.057 −7.55710
\(985\) 22.2813 0.709941
\(986\) 14.1297 0.449980
\(987\) 20.5826 0.655152
\(988\) −76.5084 −2.43405
\(989\) −70.5192 −2.24238
\(990\) 12.0507 0.382996
\(991\) −37.1730 −1.18084 −0.590420 0.807096i \(-0.701038\pi\)
−0.590420 + 0.807096i \(0.701038\pi\)
\(992\) −19.6315 −0.623300
\(993\) −34.1555 −1.08389
\(994\) 13.7171 0.435081
\(995\) 2.30318 0.0730159
\(996\) 101.222 3.20735
\(997\) −38.2049 −1.20996 −0.604981 0.796240i \(-0.706819\pi\)
−0.604981 + 0.796240i \(0.706819\pi\)
\(998\) −78.1735 −2.47454
\(999\) 2.52928 0.0800230
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1295.2.a.h.1.11 12
5.4 even 2 6475.2.a.r.1.2 12
7.6 odd 2 9065.2.a.m.1.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.a.h.1.11 12 1.1 even 1 trivial
6475.2.a.r.1.2 12 5.4 even 2
9065.2.a.m.1.11 12 7.6 odd 2