Properties

Label 1280.3.h.c.1279.2
Level $1280$
Weight $3$
Character 1280.1279
Analytic conductor $34.877$
Analytic rank $0$
Dimension $2$
CM discriminant -40
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,3,Mod(1279,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.1279");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1280.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.8774738381\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1279.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1280.1279
Dual form 1280.3.h.c.1279.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000i q^{5} +6.00000 q^{7} -9.00000 q^{9} +O(q^{10})\) \(q+5.00000i q^{5} +6.00000 q^{7} -9.00000 q^{9} +18.0000i q^{11} +6.00000i q^{13} -2.00000i q^{19} -26.0000 q^{23} -25.0000 q^{25} +30.0000i q^{35} -54.0000i q^{37} +78.0000 q^{41} -45.0000i q^{45} -86.0000 q^{47} -13.0000 q^{49} +74.0000i q^{53} -90.0000 q^{55} -78.0000i q^{59} -54.0000 q^{63} -30.0000 q^{65} +108.000i q^{77} +81.0000 q^{81} -18.0000 q^{89} +36.0000i q^{91} +10.0000 q^{95} -162.000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 12 q^{7} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 12 q^{7} - 18 q^{9} - 52 q^{23} - 50 q^{25} + 156 q^{41} - 172 q^{47} - 26 q^{49} - 180 q^{55} - 108 q^{63} - 60 q^{65} + 162 q^{81} - 36 q^{89} + 20 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) 5.00000i 1.00000i
\(6\) 0 0
\(7\) 6.00000 0.857143 0.428571 0.903508i \(-0.359017\pi\)
0.428571 + 0.903508i \(0.359017\pi\)
\(8\) 0 0
\(9\) −9.00000 −1.00000
\(10\) 0 0
\(11\) 18.0000i 1.63636i 0.574960 + 0.818182i \(0.305018\pi\)
−0.574960 + 0.818182i \(0.694982\pi\)
\(12\) 0 0
\(13\) 6.00000i 0.461538i 0.973009 + 0.230769i \(0.0741242\pi\)
−0.973009 + 0.230769i \(0.925876\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) − 2.00000i − 0.105263i −0.998614 0.0526316i \(-0.983239\pi\)
0.998614 0.0526316i \(-0.0167609\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −26.0000 −1.13043 −0.565217 0.824942i \(-0.691208\pi\)
−0.565217 + 0.824942i \(0.691208\pi\)
\(24\) 0 0
\(25\) −25.0000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 30.0000i 0.857143i
\(36\) 0 0
\(37\) − 54.0000i − 1.45946i −0.683736 0.729730i \(-0.739646\pi\)
0.683736 0.729730i \(-0.260354\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 78.0000 1.90244 0.951220 0.308515i \(-0.0998320\pi\)
0.951220 + 0.308515i \(0.0998320\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) − 45.0000i − 1.00000i
\(46\) 0 0
\(47\) −86.0000 −1.82979 −0.914894 0.403695i \(-0.867726\pi\)
−0.914894 + 0.403695i \(0.867726\pi\)
\(48\) 0 0
\(49\) −13.0000 −0.265306
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 74.0000i 1.39623i 0.715987 + 0.698113i \(0.245977\pi\)
−0.715987 + 0.698113i \(0.754023\pi\)
\(54\) 0 0
\(55\) −90.0000 −1.63636
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 78.0000i − 1.32203i −0.750371 0.661017i \(-0.770125\pi\)
0.750371 0.661017i \(-0.229875\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) −54.0000 −0.857143
\(64\) 0 0
\(65\) −30.0000 −0.461538
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 108.000i 1.40260i
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 81.0000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −18.0000 −0.202247 −0.101124 0.994874i \(-0.532244\pi\)
−0.101124 + 0.994874i \(0.532244\pi\)
\(90\) 0 0
\(91\) 36.0000i 0.395604i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 10.0000 0.105263
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) − 162.000i − 1.63636i
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) −186.000 −1.80583 −0.902913 0.429824i \(-0.858576\pi\)
−0.902913 + 0.429824i \(0.858576\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) − 130.000i − 1.13043i
\(116\) 0 0
\(117\) − 54.0000i − 0.461538i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −203.000 −1.67769
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 125.000i − 1.00000i
\(126\) 0 0
\(127\) −246.000 −1.93701 −0.968504 0.248998i \(-0.919899\pi\)
−0.968504 + 0.248998i \(0.919899\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 222.000i 1.69466i 0.531070 + 0.847328i \(0.321790\pi\)
−0.531070 + 0.847328i \(0.678210\pi\)
\(132\) 0 0
\(133\) − 12.0000i − 0.0902256i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 82.0000i 0.589928i 0.955508 + 0.294964i \(0.0953077\pi\)
−0.955508 + 0.294964i \(0.904692\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −108.000 −0.755245
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 186.000i − 1.18471i −0.805676 0.592357i \(-0.798198\pi\)
0.805676 0.592357i \(-0.201802\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −156.000 −0.968944
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −314.000 −1.88024 −0.940120 0.340844i \(-0.889287\pi\)
−0.940120 + 0.340844i \(0.889287\pi\)
\(168\) 0 0
\(169\) 133.000 0.786982
\(170\) 0 0
\(171\) 18.0000i 0.105263i
\(172\) 0 0
\(173\) 166.000i 0.959538i 0.877395 + 0.479769i \(0.159279\pi\)
−0.877395 + 0.479769i \(0.840721\pi\)
\(174\) 0 0
\(175\) −150.000 −0.857143
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 318.000i 1.77654i 0.459325 + 0.888268i \(0.348091\pi\)
−0.459325 + 0.888268i \(0.651909\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 270.000 1.45946
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 106.000i 0.538071i 0.963130 + 0.269036i \(0.0867049\pi\)
−0.963130 + 0.269036i \(0.913295\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 390.000i 1.90244i
\(206\) 0 0
\(207\) 234.000 1.13043
\(208\) 0 0
\(209\) 36.0000 0.172249
\(210\) 0 0
\(211\) 62.0000i 0.293839i 0.989148 + 0.146919i \(0.0469358\pi\)
−0.989148 + 0.146919i \(0.953064\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −54.0000 −0.242152 −0.121076 0.992643i \(-0.538635\pi\)
−0.121076 + 0.992643i \(0.538635\pi\)
\(224\) 0 0
\(225\) 225.000 1.00000
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) − 430.000i − 1.82979i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −158.000 −0.655602 −0.327801 0.944747i \(-0.606307\pi\)
−0.327801 + 0.944747i \(0.606307\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 65.0000i − 0.265306i
\(246\) 0 0
\(247\) 12.0000 0.0485830
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 498.000i 1.98406i 0.125987 + 0.992032i \(0.459790\pi\)
−0.125987 + 0.992032i \(0.540210\pi\)
\(252\) 0 0
\(253\) − 468.000i − 1.84980i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) − 324.000i − 1.25097i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 454.000 1.72624 0.863118 0.505003i \(-0.168508\pi\)
0.863118 + 0.505003i \(0.168508\pi\)
\(264\) 0 0
\(265\) −370.000 −1.39623
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 450.000i − 1.63636i
\(276\) 0 0
\(277\) 426.000i 1.53791i 0.639305 + 0.768953i \(0.279222\pi\)
−0.639305 + 0.768953i \(0.720778\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 78.0000 0.277580 0.138790 0.990322i \(-0.455679\pi\)
0.138790 + 0.990322i \(0.455679\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 468.000 1.63066
\(288\) 0 0
\(289\) 289.000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 566.000i − 1.93174i −0.259026 0.965870i \(-0.583402\pi\)
0.259026 0.965870i \(-0.416598\pi\)
\(294\) 0 0
\(295\) 390.000 1.32203
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 156.000i − 0.521739i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) − 270.000i − 0.857143i
\(316\) 0 0
\(317\) − 346.000i − 1.09148i −0.837954 0.545741i \(-0.816248\pi\)
0.837954 0.545741i \(-0.183752\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) − 150.000i − 0.461538i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −516.000 −1.56839
\(330\) 0 0
\(331\) 338.000i 1.02115i 0.859834 + 0.510574i \(0.170567\pi\)
−0.859834 + 0.510574i \(0.829433\pi\)
\(332\) 0 0
\(333\) 486.000i 1.45946i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −372.000 −1.08455
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 357.000 0.988920
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 234.000 0.637602 0.318801 0.947822i \(-0.396720\pi\)
0.318801 + 0.947822i \(0.396720\pi\)
\(368\) 0 0
\(369\) −702.000 −1.90244
\(370\) 0 0
\(371\) 444.000i 1.19677i
\(372\) 0 0
\(373\) 234.000i 0.627346i 0.949531 + 0.313673i \(0.101560\pi\)
−0.949531 + 0.313673i \(0.898440\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 398.000i − 1.05013i −0.851062 0.525066i \(-0.824041\pi\)
0.851062 0.525066i \(-0.175959\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 586.000 1.53003 0.765013 0.644015i \(-0.222732\pi\)
0.765013 + 0.644015i \(0.222732\pi\)
\(384\) 0 0
\(385\) −540.000 −1.40260
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 774.000i 1.94962i 0.223032 + 0.974811i \(0.428404\pi\)
−0.223032 + 0.974811i \(0.571596\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 642.000 1.60100 0.800499 0.599334i \(-0.204568\pi\)
0.800499 + 0.599334i \(0.204568\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 405.000i 1.00000i
\(406\) 0 0
\(407\) 972.000 2.38821
\(408\) 0 0
\(409\) 622.000 1.52078 0.760391 0.649465i \(-0.225007\pi\)
0.760391 + 0.649465i \(0.225007\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 468.000i − 1.13317i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 162.000i − 0.386635i −0.981136 0.193317i \(-0.938075\pi\)
0.981136 0.193317i \(-0.0619247\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 774.000 1.82979
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 52.0000i 0.118993i
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 117.000 0.265306
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) − 90.0000i − 0.202247i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 258.000 0.574610 0.287305 0.957839i \(-0.407241\pi\)
0.287305 + 0.957839i \(0.407241\pi\)
\(450\) 0 0
\(451\) 1404.00i 3.11308i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −180.000 −0.395604
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 426.000 0.920086 0.460043 0.887897i \(-0.347834\pi\)
0.460043 + 0.887897i \(0.347834\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 50.0000i 0.105263i
\(476\) 0 0
\(477\) − 666.000i − 1.39623i
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 324.000 0.673597
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 6.00000 0.0123203 0.00616016 0.999981i \(-0.498039\pi\)
0.00616016 + 0.999981i \(0.498039\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 978.000i 1.99185i 0.0901668 + 0.995927i \(0.471260\pi\)
−0.0901668 + 0.995927i \(0.528740\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 810.000 1.63636
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 962.000i − 1.92786i −0.266164 0.963928i \(-0.585756\pi\)
0.266164 0.963928i \(-0.414244\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 614.000 1.22068 0.610338 0.792141i \(-0.291034\pi\)
0.610338 + 0.792141i \(0.291034\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 930.000i − 1.80583i
\(516\) 0 0
\(517\) − 1548.00i − 2.99420i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −402.000 −0.771593 −0.385797 0.922584i \(-0.626073\pi\)
−0.385797 + 0.922584i \(0.626073\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 147.000 0.277883
\(530\) 0 0
\(531\) 702.000i 1.32203i
\(532\) 0 0
\(533\) 468.000i 0.878049i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 234.000i − 0.434137i
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 934.000i 1.67684i 0.545025 + 0.838420i \(0.316520\pi\)
−0.545025 + 0.838420i \(0.683480\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 486.000 0.857143
\(568\) 0 0
\(569\) −978.000 −1.71880 −0.859402 0.511300i \(-0.829164\pi\)
−0.859402 + 0.511300i \(0.829164\pi\)
\(570\) 0 0
\(571\) 818.000i 1.43257i 0.697806 + 0.716287i \(0.254160\pi\)
−0.697806 + 0.716287i \(0.745840\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 650.000 1.13043
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1332.00 −2.28473
\(584\) 0 0
\(585\) 270.000 0.461538
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −562.000 −0.935108 −0.467554 0.883964i \(-0.654865\pi\)
−0.467554 + 0.883964i \(0.654865\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 1015.00i − 1.67769i
\(606\) 0 0
\(607\) −1206.00 −1.98682 −0.993410 0.114613i \(-0.963437\pi\)
−0.993410 + 0.114613i \(0.963437\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 516.000i − 0.844517i
\(612\) 0 0
\(613\) 1194.00i 1.94780i 0.226982 + 0.973899i \(0.427114\pi\)
−0.226982 + 0.973899i \(0.572886\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) − 878.000i − 1.41842i −0.704999 0.709208i \(-0.749053\pi\)
0.704999 0.709208i \(-0.250947\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −108.000 −0.173355
\(624\) 0 0
\(625\) 625.000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 1230.00i − 1.93701i
\(636\) 0 0
\(637\) − 78.0000i − 0.122449i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1278.00 −1.99376 −0.996880 0.0789336i \(-0.974848\pi\)
−0.996880 + 0.0789336i \(0.974848\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 326.000 0.503864 0.251932 0.967745i \(-0.418934\pi\)
0.251932 + 0.967745i \(0.418934\pi\)
\(648\) 0 0
\(649\) 1404.00 2.16333
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1286.00i 1.96937i 0.174337 + 0.984686i \(0.444222\pi\)
−0.174337 + 0.984686i \(0.555778\pi\)
\(654\) 0 0
\(655\) −1110.00 −1.69466
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 642.000i − 0.974203i −0.873345 0.487102i \(-0.838054\pi\)
0.873345 0.487102i \(-0.161946\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 60.0000 0.0902256
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1066.00i 1.57459i 0.616574 + 0.787297i \(0.288520\pi\)
−0.616574 + 0.787297i \(0.711480\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −444.000 −0.644412
\(690\) 0 0
\(691\) 382.000i 0.552822i 0.961040 + 0.276411i \(0.0891451\pi\)
−0.961040 + 0.276411i \(0.910855\pi\)
\(692\) 0 0
\(693\) − 972.000i − 1.40260i
\(694\) 0 0
\(695\) −410.000 −0.589928
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) −108.000 −0.153627
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) − 540.000i − 0.755245i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) −1116.00 −1.54785
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −1434.00 −1.97249 −0.986245 0.165291i \(-0.947144\pi\)
−0.986245 + 0.165291i \(0.947144\pi\)
\(728\) 0 0
\(729\) −729.000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) − 954.000i − 1.30150i −0.759292 0.650750i \(-0.774454\pi\)
0.759292 0.650750i \(-0.225546\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1438.00i 1.94587i 0.231073 + 0.972936i \(0.425776\pi\)
−0.231073 + 0.972936i \(0.574224\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 134.000 0.180350 0.0901750 0.995926i \(-0.471257\pi\)
0.0901750 + 0.995926i \(0.471257\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 534.000i − 0.705416i −0.935733 0.352708i \(-0.885261\pi\)
0.935733 0.352708i \(-0.114739\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1038.00 1.36399 0.681997 0.731355i \(-0.261112\pi\)
0.681997 + 0.731355i \(0.261112\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 468.000 0.610169
\(768\) 0 0
\(769\) 1378.00 1.79194 0.895969 0.444117i \(-0.146483\pi\)
0.895969 + 0.444117i \(0.146483\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 1046.00i − 1.35317i −0.736365 0.676585i \(-0.763459\pi\)
0.736365 0.676585i \(-0.236541\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 156.000i − 0.200257i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 930.000 1.18471
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 26.0000i − 0.0326223i −0.999867 0.0163112i \(-0.994808\pi\)
0.999867 0.0163112i \(-0.00519224\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 162.000 0.202247
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) − 780.000i − 0.968944i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 942.000 1.16440 0.582200 0.813045i \(-0.302192\pi\)
0.582200 + 0.813045i \(0.302192\pi\)
\(810\) 0 0
\(811\) 1618.00i 1.99507i 0.0701862 + 0.997534i \(0.477641\pi\)
−0.0701862 + 0.997534i \(0.522359\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) − 324.000i − 0.395604i
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) −666.000 −0.809235 −0.404617 0.914486i \(-0.632595\pi\)
−0.404617 + 0.914486i \(0.632595\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) − 1570.00i − 1.88024i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −841.000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 665.000i 0.786982i
\(846\) 0 0
\(847\) −1218.00 −1.43802
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1404.00i 1.64982i
\(852\) 0 0
\(853\) 1674.00i 1.96249i 0.192777 + 0.981243i \(0.438251\pi\)
−0.192777 + 0.981243i \(0.561749\pi\)
\(854\) 0 0
\(855\) −90.0000 −0.105263
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 1522.00i 1.77183i 0.463850 + 0.885914i \(0.346468\pi\)
−0.463850 + 0.885914i \(0.653532\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1654.00 −1.91657 −0.958285 0.285814i \(-0.907736\pi\)
−0.958285 + 0.285814i \(0.907736\pi\)
\(864\) 0 0
\(865\) −830.000 −0.959538
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 750.000i − 0.857143i
\(876\) 0 0
\(877\) − 1626.00i − 1.85405i −0.375002 0.927024i \(-0.622358\pi\)
0.375002 0.927024i \(-0.377642\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1602.00 1.81839 0.909194 0.416373i \(-0.136699\pi\)
0.909194 + 0.416373i \(0.136699\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1754.00 −1.97745 −0.988726 0.149736i \(-0.952158\pi\)
−0.988726 + 0.149736i \(0.952158\pi\)
\(888\) 0 0
\(889\) −1476.00 −1.66029
\(890\) 0 0
\(891\) 1458.00i 1.63636i
\(892\) 0 0
\(893\) 172.000i 0.192609i
\(894\) 0 0
\(895\) −1590.00 −1.77654
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1332.00i 1.45256i
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1350.00i 1.45946i
\(926\) 0 0
\(927\) 1674.00 1.80583
\(928\) 0 0
\(929\) −702.000 −0.755651 −0.377826 0.925877i \(-0.623328\pi\)
−0.377826 + 0.925877i \(0.623328\pi\)
\(930\) 0 0
\(931\) 26.0000i 0.0279270i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) −2028.00 −2.15058
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 961.000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −954.000 −0.986556 −0.493278 0.869872i \(-0.664202\pi\)
−0.493278 + 0.869872i \(0.664202\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 1902.00i − 1.95881i −0.201917 0.979403i \(-0.564717\pi\)
0.201917 0.979403i \(-0.435283\pi\)
\(972\) 0 0
\(973\) 492.000i 0.505653i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) − 324.000i − 0.330950i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −346.000 −0.351984 −0.175992 0.984392i \(-0.556313\pi\)
−0.175992 + 0.984392i \(0.556313\pi\)
\(984\) 0 0
\(985\) −530.000 −0.538071
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 426.000i 0.427282i 0.976912 + 0.213641i \(0.0685323\pi\)
−0.976912 + 0.213641i \(0.931468\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.3.h.c.1279.2 2
4.3 odd 2 1280.3.h.b.1279.2 2
5.4 even 2 1280.3.h.b.1279.1 2
8.3 odd 2 1280.3.h.b.1279.1 2
8.5 even 2 inner 1280.3.h.c.1279.1 2
16.3 odd 4 40.3.e.a.19.1 1
16.5 even 4 40.3.e.b.19.1 yes 1
16.11 odd 4 160.3.e.a.79.1 1
16.13 even 4 160.3.e.b.79.1 1
20.19 odd 2 inner 1280.3.h.c.1279.1 2
40.19 odd 2 CM 1280.3.h.c.1279.2 2
40.29 even 2 1280.3.h.b.1279.2 2
48.5 odd 4 360.3.p.a.19.1 1
48.11 even 4 1440.3.p.b.559.1 1
48.29 odd 4 1440.3.p.a.559.1 1
48.35 even 4 360.3.p.b.19.1 1
80.3 even 4 200.3.g.c.51.2 2
80.13 odd 4 800.3.g.c.751.2 2
80.19 odd 4 40.3.e.b.19.1 yes 1
80.27 even 4 800.3.g.c.751.2 2
80.29 even 4 160.3.e.a.79.1 1
80.37 odd 4 200.3.g.c.51.2 2
80.43 even 4 800.3.g.c.751.1 2
80.53 odd 4 200.3.g.c.51.1 2
80.59 odd 4 160.3.e.b.79.1 1
80.67 even 4 200.3.g.c.51.1 2
80.69 even 4 40.3.e.a.19.1 1
80.77 odd 4 800.3.g.c.751.1 2
240.29 odd 4 1440.3.p.b.559.1 1
240.59 even 4 1440.3.p.a.559.1 1
240.149 odd 4 360.3.p.b.19.1 1
240.179 even 4 360.3.p.a.19.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.3.e.a.19.1 1 16.3 odd 4
40.3.e.a.19.1 1 80.69 even 4
40.3.e.b.19.1 yes 1 16.5 even 4
40.3.e.b.19.1 yes 1 80.19 odd 4
160.3.e.a.79.1 1 16.11 odd 4
160.3.e.a.79.1 1 80.29 even 4
160.3.e.b.79.1 1 16.13 even 4
160.3.e.b.79.1 1 80.59 odd 4
200.3.g.c.51.1 2 80.53 odd 4
200.3.g.c.51.1 2 80.67 even 4
200.3.g.c.51.2 2 80.3 even 4
200.3.g.c.51.2 2 80.37 odd 4
360.3.p.a.19.1 1 48.5 odd 4
360.3.p.a.19.1 1 240.179 even 4
360.3.p.b.19.1 1 48.35 even 4
360.3.p.b.19.1 1 240.149 odd 4
800.3.g.c.751.1 2 80.43 even 4
800.3.g.c.751.1 2 80.77 odd 4
800.3.g.c.751.2 2 80.13 odd 4
800.3.g.c.751.2 2 80.27 even 4
1280.3.h.b.1279.1 2 5.4 even 2
1280.3.h.b.1279.1 2 8.3 odd 2
1280.3.h.b.1279.2 2 4.3 odd 2
1280.3.h.b.1279.2 2 40.29 even 2
1280.3.h.c.1279.1 2 8.5 even 2 inner
1280.3.h.c.1279.1 2 20.19 odd 2 inner
1280.3.h.c.1279.2 2 1.1 even 1 trivial
1280.3.h.c.1279.2 2 40.19 odd 2 CM
1440.3.p.a.559.1 1 48.29 odd 4
1440.3.p.a.559.1 1 240.59 even 4
1440.3.p.b.559.1 1 48.11 even 4
1440.3.p.b.559.1 1 240.29 odd 4