Properties

Label 128.12.g
Level $128$
Weight $12$
Character orbit 128.g
Rep. character $\chi_{128}(17,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $172$
Sturm bound $192$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 128 = 2^{7} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 128.g (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 32 \)
Character field: \(\Q(\zeta_{8})\)
Sturm bound: \(192\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(128, [\chi])\).

Total New Old
Modular forms 720 180 540
Cusp forms 688 172 516
Eisenstein series 32 8 24

Trace form

\( 172 q + 4 q^{3} - 4 q^{5} + 4 q^{7} - 4 q^{9} + 4 q^{11} - 4 q^{13} + 4 q^{19} - 4 q^{21} - 13479492 q^{23} - 4 q^{25} - 133635188 q^{27} - 4 q^{29} + 687099632 q^{31} - 8 q^{33} - 1064775860 q^{35} - 4 q^{37}+ \cdots - 378702509904 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(128, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{12}^{\mathrm{old}}(128, [\chi])\) into lower level spaces

\( S_{12}^{\mathrm{old}}(128, [\chi]) \simeq \) \(S_{12}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 3}\)