Properties

Label 1275.2.b.k.1174.8
Level $1275$
Weight $2$
Character 1275.1174
Analytic conductor $10.181$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1275,2,Mod(1174,1275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1275.1174"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1275.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-18,0,2,0,0,-8,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1809262577\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.12131700736.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 11x^{6} + 33x^{4} + 24x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 255)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1174.8
Root \(-0.489088i\) of defining polynomial
Character \(\chi\) \(=\) 1275.1174
Dual form 1275.2.b.k.1174.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.60015i q^{2} +1.00000i q^{3} -4.76079 q^{4} -2.60015 q^{6} -2.81754i q^{7} -7.17848i q^{8} -1.00000 q^{9} +4.38277 q^{11} -4.76079i q^{12} -5.52159i q^{13} +7.32602 q^{14} +9.14356 q^{16} +1.00000i q^{17} -2.60015i q^{18} -1.18246 q^{19} +2.81754 q^{21} +11.3959i q^{22} +9.15666i q^{23} +7.17848 q^{24} +14.3570 q^{26} -1.00000i q^{27} +13.4137i q^{28} +0.817537 q^{29} +7.20030 q^{31} +9.41769i q^{32} +4.38277i q^{33} -2.60015 q^{34} +4.76079 q^{36} -2.70405i q^{37} -3.07459i q^{38} +5.52159 q^{39} +9.58307 q^{41} +7.32602i q^{42} -1.95635i q^{43} -20.8655 q^{44} -23.8087 q^{46} +4.38277i q^{47} +9.14356i q^{48} -0.938512 q^{49} -1.00000 q^{51} +26.2871i q^{52} -9.58307i q^{53} +2.60015 q^{54} -20.2256 q^{56} -1.18246i q^{57} +2.12572i q^{58} +7.52159 q^{59} -5.52159 q^{61} +18.7219i q^{62} +2.81754i q^{63} -6.20030 q^{64} -11.3959 q^{66} -13.4779i q^{67} -4.76079i q^{68} -9.15666 q^{69} -2.04365 q^{71} +7.17848i q^{72} +4.33912i q^{73} +7.03094 q^{74} +5.62946 q^{76} -12.3486i q^{77} +14.3570i q^{78} +10.7219 q^{79} +1.00000 q^{81} +24.9175i q^{82} -2.04365i q^{83} -13.4137 q^{84} +5.08682 q^{86} +0.817537i q^{87} -31.4616i q^{88} +10.2871 q^{89} -15.5573 q^{91} -43.5930i q^{92} +7.20030i q^{93} -11.3959 q^{94} -9.41769 q^{96} +8.40061i q^{97} -2.44027i q^{98} -4.38277 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 18 q^{4} + 2 q^{6} - 8 q^{9} + 4 q^{11} + 22 q^{14} + 22 q^{16} - 24 q^{19} + 8 q^{21} - 8 q^{29} + 12 q^{31} + 2 q^{34} + 18 q^{36} + 4 q^{39} - 30 q^{44} - 48 q^{46} - 44 q^{49} - 8 q^{51} - 2 q^{54}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1275\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(751\) \(851\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.60015i 1.83859i 0.393575 + 0.919293i \(0.371238\pi\)
−0.393575 + 0.919293i \(0.628762\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −4.76079 −2.38040
\(5\) 0 0
\(6\) −2.60015 −1.06151
\(7\) − 2.81754i − 1.06493i −0.846452 0.532464i \(-0.821266\pi\)
0.846452 0.532464i \(-0.178734\pi\)
\(8\) − 7.17848i − 2.53798i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 4.38277 1.32145 0.660727 0.750626i \(-0.270248\pi\)
0.660727 + 0.750626i \(0.270248\pi\)
\(12\) − 4.76079i − 1.37432i
\(13\) − 5.52159i − 1.53141i −0.643191 0.765706i \(-0.722390\pi\)
0.643191 0.765706i \(-0.277610\pi\)
\(14\) 7.32602 1.95796
\(15\) 0 0
\(16\) 9.14356 2.28589
\(17\) 1.00000i 0.242536i
\(18\) − 2.60015i − 0.612862i
\(19\) −1.18246 −0.271276 −0.135638 0.990758i \(-0.543308\pi\)
−0.135638 + 0.990758i \(0.543308\pi\)
\(20\) 0 0
\(21\) 2.81754 0.614837
\(22\) 11.3959i 2.42961i
\(23\) 9.15666i 1.90930i 0.297738 + 0.954648i \(0.403768\pi\)
−0.297738 + 0.954648i \(0.596232\pi\)
\(24\) 7.17848 1.46530
\(25\) 0 0
\(26\) 14.3570 2.81563
\(27\) − 1.00000i − 0.192450i
\(28\) 13.4137i 2.53495i
\(29\) 0.817537 0.151813 0.0759064 0.997115i \(-0.475815\pi\)
0.0759064 + 0.997115i \(0.475815\pi\)
\(30\) 0 0
\(31\) 7.20030 1.29321 0.646606 0.762824i \(-0.276188\pi\)
0.646606 + 0.762824i \(0.276188\pi\)
\(32\) 9.41769i 1.66483i
\(33\) 4.38277i 0.762942i
\(34\) −2.60015 −0.445922
\(35\) 0 0
\(36\) 4.76079 0.793465
\(37\) − 2.70405i − 0.444543i −0.974985 0.222271i \(-0.928653\pi\)
0.974985 0.222271i \(-0.0713471\pi\)
\(38\) − 3.07459i − 0.498764i
\(39\) 5.52159 0.884161
\(40\) 0 0
\(41\) 9.58307 1.49662 0.748312 0.663347i \(-0.230864\pi\)
0.748312 + 0.663347i \(0.230864\pi\)
\(42\) 7.32602i 1.13043i
\(43\) − 1.95635i − 0.298341i −0.988811 0.149171i \(-0.952340\pi\)
0.988811 0.149171i \(-0.0476603\pi\)
\(44\) −20.8655 −3.14559
\(45\) 0 0
\(46\) −23.8087 −3.51040
\(47\) 4.38277i 0.639292i 0.947537 + 0.319646i \(0.103564\pi\)
−0.947537 + 0.319646i \(0.896436\pi\)
\(48\) 9.14356i 1.31976i
\(49\) −0.938512 −0.134073
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 26.2871i 3.64537i
\(53\) − 9.58307i − 1.31634i −0.752871 0.658168i \(-0.771332\pi\)
0.752871 0.658168i \(-0.228668\pi\)
\(54\) 2.60015 0.353836
\(55\) 0 0
\(56\) −20.2256 −2.70276
\(57\) − 1.18246i − 0.156621i
\(58\) 2.12572i 0.279121i
\(59\) 7.52159 0.979227 0.489613 0.871940i \(-0.337138\pi\)
0.489613 + 0.871940i \(0.337138\pi\)
\(60\) 0 0
\(61\) −5.52159 −0.706967 −0.353483 0.935441i \(-0.615003\pi\)
−0.353483 + 0.935441i \(0.615003\pi\)
\(62\) 18.7219i 2.37768i
\(63\) 2.81754i 0.354976i
\(64\) −6.20030 −0.775038
\(65\) 0 0
\(66\) −11.3959 −1.40273
\(67\) − 13.4779i − 1.64659i −0.567612 0.823296i \(-0.692133\pi\)
0.567612 0.823296i \(-0.307867\pi\)
\(68\) − 4.76079i − 0.577331i
\(69\) −9.15666 −1.10233
\(70\) 0 0
\(71\) −2.04365 −0.242536 −0.121268 0.992620i \(-0.538696\pi\)
−0.121268 + 0.992620i \(0.538696\pi\)
\(72\) 7.17848i 0.845992i
\(73\) 4.33912i 0.507856i 0.967223 + 0.253928i \(0.0817226\pi\)
−0.967223 + 0.253928i \(0.918277\pi\)
\(74\) 7.03094 0.817330
\(75\) 0 0
\(76\) 5.62946 0.645744
\(77\) − 12.3486i − 1.40725i
\(78\) 14.3570i 1.62561i
\(79\) 10.7219 1.20631 0.603153 0.797625i \(-0.293911\pi\)
0.603153 + 0.797625i \(0.293911\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 24.9175i 2.75167i
\(83\) − 2.04365i − 0.224319i −0.993690 0.112160i \(-0.964223\pi\)
0.993690 0.112160i \(-0.0357768\pi\)
\(84\) −13.4137 −1.46356
\(85\) 0 0
\(86\) 5.08682 0.548526
\(87\) 0.817537i 0.0876491i
\(88\) − 31.4616i − 3.35382i
\(89\) 10.2871 1.09043 0.545216 0.838295i \(-0.316447\pi\)
0.545216 + 0.838295i \(0.316447\pi\)
\(90\) 0 0
\(91\) −15.5573 −1.63084
\(92\) − 43.5930i − 4.54488i
\(93\) 7.20030i 0.746637i
\(94\) −11.3959 −1.17539
\(95\) 0 0
\(96\) −9.41769 −0.961189
\(97\) 8.40061i 0.852953i 0.904499 + 0.426476i \(0.140245\pi\)
−0.904499 + 0.426476i \(0.859755\pi\)
\(98\) − 2.44027i − 0.246505i
\(99\) −4.38277 −0.440485
\(100\) 0 0
\(101\) −9.04317 −0.899829 −0.449915 0.893072i \(-0.648546\pi\)
−0.449915 + 0.893072i \(0.648546\pi\)
\(102\) − 2.60015i − 0.257453i
\(103\) 1.08682i 0.107087i 0.998566 + 0.0535436i \(0.0170516\pi\)
−0.998566 + 0.0535436i \(0.982948\pi\)
\(104\) −39.6366 −3.88669
\(105\) 0 0
\(106\) 24.9175 2.42020
\(107\) − 10.4006i − 1.00546i −0.864442 0.502732i \(-0.832328\pi\)
0.864442 0.502732i \(-0.167672\pi\)
\(108\) 4.76079i 0.458107i
\(109\) 8.40061 0.804632 0.402316 0.915501i \(-0.368205\pi\)
0.402316 + 0.915501i \(0.368205\pi\)
\(110\) 0 0
\(111\) 2.70405 0.256657
\(112\) − 25.7623i − 2.43431i
\(113\) 5.60888i 0.527639i 0.964572 + 0.263819i \(0.0849823\pi\)
−0.964572 + 0.263819i \(0.915018\pi\)
\(114\) 3.07459 0.287961
\(115\) 0 0
\(116\) −3.89212 −0.361374
\(117\) 5.52159i 0.510471i
\(118\) 19.5573i 1.80039i
\(119\) 2.81754 0.258283
\(120\) 0 0
\(121\) 8.20866 0.746242
\(122\) − 14.3570i − 1.29982i
\(123\) 9.58307i 0.864077i
\(124\) −34.2792 −3.07836
\(125\) 0 0
\(126\) −7.32602 −0.652654
\(127\) 18.2435i 1.61885i 0.587226 + 0.809423i \(0.300220\pi\)
−0.587226 + 0.809423i \(0.699780\pi\)
\(128\) 2.71364i 0.239854i
\(129\) 1.95635 0.172247
\(130\) 0 0
\(131\) −9.95635 −0.869891 −0.434945 0.900457i \(-0.643232\pi\)
−0.434945 + 0.900457i \(0.643232\pi\)
\(132\) − 20.8655i − 1.81610i
\(133\) 3.33163i 0.288889i
\(134\) 35.0447 3.02740
\(135\) 0 0
\(136\) 7.17848 0.615550
\(137\) − 14.4526i − 1.23477i −0.786661 0.617385i \(-0.788192\pi\)
0.786661 0.617385i \(-0.211808\pi\)
\(138\) − 23.8087i − 2.02673i
\(139\) 7.67872 0.651301 0.325650 0.945490i \(-0.394417\pi\)
0.325650 + 0.945490i \(0.394417\pi\)
\(140\) 0 0
\(141\) −4.38277 −0.369096
\(142\) − 5.31379i − 0.445924i
\(143\) − 24.1998i − 2.02369i
\(144\) −9.14356 −0.761963
\(145\) 0 0
\(146\) −11.2824 −0.933736
\(147\) − 0.938512i − 0.0774072i
\(148\) 12.8734i 1.05819i
\(149\) −3.12098 −0.255680 −0.127840 0.991795i \(-0.540804\pi\)
−0.127840 + 0.991795i \(0.540804\pi\)
\(150\) 0 0
\(151\) −9.21815 −0.750162 −0.375081 0.926992i \(-0.622385\pi\)
−0.375081 + 0.926992i \(0.622385\pi\)
\(152\) 8.48829i 0.688491i
\(153\) − 1.00000i − 0.0808452i
\(154\) 32.1083 2.58736
\(155\) 0 0
\(156\) −26.2871 −2.10465
\(157\) 1.23446i 0.0985209i 0.998786 + 0.0492605i \(0.0156864\pi\)
−0.998786 + 0.0492605i \(0.984314\pi\)
\(158\) 27.8785i 2.21790i
\(159\) 9.58307 0.759987
\(160\) 0 0
\(161\) 25.7992 2.03326
\(162\) 2.60015i 0.204287i
\(163\) 14.6262i 1.14562i 0.819690 + 0.572808i \(0.194146\pi\)
−0.819690 + 0.572808i \(0.805854\pi\)
\(164\) −45.6230 −3.56256
\(165\) 0 0
\(166\) 5.31379 0.412430
\(167\) − 8.76554i − 0.678298i −0.940733 0.339149i \(-0.889861\pi\)
0.940733 0.339149i \(-0.110139\pi\)
\(168\) − 20.2256i − 1.56044i
\(169\) −17.4879 −1.34522
\(170\) 0 0
\(171\) 1.18246 0.0904252
\(172\) 9.31379i 0.710170i
\(173\) − 22.5141i − 1.71172i −0.517212 0.855858i \(-0.673030\pi\)
0.517212 0.855858i \(-0.326970\pi\)
\(174\) −2.12572 −0.161150
\(175\) 0 0
\(176\) 40.0741 3.02070
\(177\) 7.52159i 0.565357i
\(178\) 26.7481i 2.00485i
\(179\) 20.7655 1.55209 0.776045 0.630678i \(-0.217223\pi\)
0.776045 + 0.630678i \(0.217223\pi\)
\(180\) 0 0
\(181\) 9.52159 0.707734 0.353867 0.935296i \(-0.384867\pi\)
0.353867 + 0.935296i \(0.384867\pi\)
\(182\) − 40.4513i − 2.99845i
\(183\) − 5.52159i − 0.408167i
\(184\) 65.7309 4.84575
\(185\) 0 0
\(186\) −18.7219 −1.37276
\(187\) 4.38277i 0.320500i
\(188\) − 20.8655i − 1.52177i
\(189\) −2.81754 −0.204946
\(190\) 0 0
\(191\) −4.47841 −0.324047 −0.162023 0.986787i \(-0.551802\pi\)
−0.162023 + 0.986787i \(0.551802\pi\)
\(192\) − 6.20030i − 0.447468i
\(193\) − 23.4438i − 1.68752i −0.536720 0.843760i \(-0.680337\pi\)
0.536720 0.843760i \(-0.319663\pi\)
\(194\) −21.8429 −1.56823
\(195\) 0 0
\(196\) 4.46806 0.319147
\(197\) 13.1661i 0.938049i 0.883185 + 0.469025i \(0.155394\pi\)
−0.883185 + 0.469025i \(0.844606\pi\)
\(198\) − 11.3959i − 0.809869i
\(199\) −21.0352 −1.49115 −0.745573 0.666424i \(-0.767824\pi\)
−0.745573 + 0.666424i \(0.767824\pi\)
\(200\) 0 0
\(201\) 13.4779 0.950660
\(202\) − 23.5136i − 1.65441i
\(203\) − 2.30344i − 0.161670i
\(204\) 4.76079 0.333322
\(205\) 0 0
\(206\) −2.82589 −0.196889
\(207\) − 9.15666i − 0.636432i
\(208\) − 50.4870i − 3.50064i
\(209\) −5.18246 −0.358478
\(210\) 0 0
\(211\) 26.7576 1.84207 0.921034 0.389483i \(-0.127346\pi\)
0.921034 + 0.389483i \(0.127346\pi\)
\(212\) 45.6230i 3.13340i
\(213\) − 2.04365i − 0.140028i
\(214\) 27.0432 1.84863
\(215\) 0 0
\(216\) −7.17848 −0.488434
\(217\) − 20.2871i − 1.37718i
\(218\) 21.8429i 1.47939i
\(219\) −4.33912 −0.293211
\(220\) 0 0
\(221\) 5.52159 0.371422
\(222\) 7.03094i 0.471886i
\(223\) − 10.9489i − 0.733190i −0.930381 0.366595i \(-0.880523\pi\)
0.930381 0.366595i \(-0.119477\pi\)
\(224\) 26.5347 1.77292
\(225\) 0 0
\(226\) −14.5839 −0.970109
\(227\) 13.7992i 0.915886i 0.888981 + 0.457943i \(0.151414\pi\)
−0.888981 + 0.457943i \(0.848586\pi\)
\(228\) 5.62946i 0.372820i
\(229\) −8.42641 −0.556833 −0.278417 0.960460i \(-0.589810\pi\)
−0.278417 + 0.960460i \(0.589810\pi\)
\(230\) 0 0
\(231\) 12.3486 0.812479
\(232\) − 5.86867i − 0.385297i
\(233\) 27.1923i 1.78143i 0.454563 + 0.890715i \(0.349796\pi\)
−0.454563 + 0.890715i \(0.650204\pi\)
\(234\) −14.3570 −0.938544
\(235\) 0 0
\(236\) −35.8087 −2.33095
\(237\) 10.7219i 0.696462i
\(238\) 7.32602i 0.474876i
\(239\) −7.55727 −0.488839 −0.244420 0.969670i \(-0.578597\pi\)
−0.244420 + 0.969670i \(0.578597\pi\)
\(240\) 0 0
\(241\) −13.4343 −0.865379 −0.432689 0.901543i \(-0.642435\pi\)
−0.432689 + 0.901543i \(0.642435\pi\)
\(242\) 21.3438i 1.37203i
\(243\) 1.00000i 0.0641500i
\(244\) 26.2871 1.68286
\(245\) 0 0
\(246\) −24.9175 −1.58868
\(247\) 6.52907i 0.415435i
\(248\) − 51.6873i − 3.28214i
\(249\) 2.04365 0.129511
\(250\) 0 0
\(251\) −28.3228 −1.78772 −0.893860 0.448347i \(-0.852013\pi\)
−0.893860 + 0.448347i \(0.852013\pi\)
\(252\) − 13.4137i − 0.844984i
\(253\) 40.1315i 2.52305i
\(254\) −47.4358 −2.97639
\(255\) 0 0
\(256\) −19.4565 −1.21603
\(257\) 24.0863i 1.50246i 0.660038 + 0.751232i \(0.270540\pi\)
−0.660038 + 0.751232i \(0.729460\pi\)
\(258\) 5.08682i 0.316691i
\(259\) −7.61876 −0.473406
\(260\) 0 0
\(261\) −0.817537 −0.0506042
\(262\) − 25.8880i − 1.59937i
\(263\) − 18.0178i − 1.11103i −0.831507 0.555514i \(-0.812522\pi\)
0.831507 0.555514i \(-0.187478\pi\)
\(264\) 31.4616 1.93633
\(265\) 0 0
\(266\) −8.66276 −0.531148
\(267\) 10.2871i 0.629562i
\(268\) 64.1657i 3.91954i
\(269\) −0.590561 −0.0360071 −0.0180036 0.999838i \(-0.505731\pi\)
−0.0180036 + 0.999838i \(0.505731\pi\)
\(270\) 0 0
\(271\) 13.7580 0.835742 0.417871 0.908506i \(-0.362776\pi\)
0.417871 + 0.908506i \(0.362776\pi\)
\(272\) 9.14356i 0.554410i
\(273\) − 15.5573i − 0.941569i
\(274\) 37.5790 2.27023
\(275\) 0 0
\(276\) 43.5930 2.62399
\(277\) − 9.68573i − 0.581959i −0.956729 0.290980i \(-0.906019\pi\)
0.956729 0.290980i \(-0.0939812\pi\)
\(278\) 19.9658i 1.19747i
\(279\) −7.20030 −0.431071
\(280\) 0 0
\(281\) 10.1230 0.603886 0.301943 0.953326i \(-0.402365\pi\)
0.301943 + 0.953326i \(0.402365\pi\)
\(282\) − 11.3959i − 0.678614i
\(283\) − 4.31293i − 0.256377i −0.991750 0.128188i \(-0.959084\pi\)
0.991750 0.128188i \(-0.0409162\pi\)
\(284\) 9.72938 0.577332
\(285\) 0 0
\(286\) 62.9232 3.72073
\(287\) − 27.0007i − 1.59380i
\(288\) − 9.41769i − 0.554943i
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −8.40061 −0.492452
\(292\) − 20.6577i − 1.20890i
\(293\) 11.2181i 0.655371i 0.944787 + 0.327686i \(0.106269\pi\)
−0.944787 + 0.327686i \(0.893731\pi\)
\(294\) 2.44027 0.142320
\(295\) 0 0
\(296\) −19.4110 −1.12824
\(297\) − 4.38277i − 0.254314i
\(298\) − 8.11501i − 0.470090i
\(299\) 50.5593 2.92392
\(300\) 0 0
\(301\) −5.51210 −0.317712
\(302\) − 23.9686i − 1.37924i
\(303\) − 9.04317i − 0.519517i
\(304\) −10.8119 −0.620107
\(305\) 0 0
\(306\) 2.60015 0.148641
\(307\) 4.44426i 0.253647i 0.991925 + 0.126824i \(0.0404782\pi\)
−0.991925 + 0.126824i \(0.959522\pi\)
\(308\) 58.7892i 3.34982i
\(309\) −1.08682 −0.0618269
\(310\) 0 0
\(311\) −7.61723 −0.431934 −0.215967 0.976401i \(-0.569290\pi\)
−0.215967 + 0.976401i \(0.569290\pi\)
\(312\) − 39.6366i − 2.24398i
\(313\) 1.85122i 0.104637i 0.998630 + 0.0523185i \(0.0166611\pi\)
−0.998630 + 0.0523185i \(0.983339\pi\)
\(314\) −3.20979 −0.181139
\(315\) 0 0
\(316\) −51.0447 −2.87149
\(317\) − 6.16415i − 0.346213i −0.984903 0.173106i \(-0.944620\pi\)
0.984903 0.173106i \(-0.0553805\pi\)
\(318\) 24.9175i 1.39730i
\(319\) 3.58307 0.200614
\(320\) 0 0
\(321\) 10.4006 0.580505
\(322\) 67.0819i 3.73833i
\(323\) − 1.18246i − 0.0657940i
\(324\) −4.76079 −0.264488
\(325\) 0 0
\(326\) −38.0305 −2.10631
\(327\) 8.40061i 0.464555i
\(328\) − 68.7919i − 3.79840i
\(329\) 12.3486 0.680801
\(330\) 0 0
\(331\) 26.8532 1.47599 0.737993 0.674808i \(-0.235774\pi\)
0.737993 + 0.674808i \(0.235774\pi\)
\(332\) 9.72938i 0.533969i
\(333\) 2.70405i 0.148181i
\(334\) 22.7917 1.24711
\(335\) 0 0
\(336\) 25.7623 1.40545
\(337\) 10.7040i 0.583087i 0.956558 + 0.291543i \(0.0941688\pi\)
−0.956558 + 0.291543i \(0.905831\pi\)
\(338\) − 45.4712i − 2.47331i
\(339\) −5.60888 −0.304632
\(340\) 0 0
\(341\) 31.5573 1.70892
\(342\) 3.07459i 0.166255i
\(343\) − 17.0785i − 0.922150i
\(344\) −14.0436 −0.757183
\(345\) 0 0
\(346\) 58.5401 3.14713
\(347\) − 29.9222i − 1.60631i −0.595772 0.803154i \(-0.703154\pi\)
0.595772 0.803154i \(-0.296846\pi\)
\(348\) − 3.89212i − 0.208640i
\(349\) −11.6966 −0.626103 −0.313051 0.949736i \(-0.601351\pi\)
−0.313051 + 0.949736i \(0.601351\pi\)
\(350\) 0 0
\(351\) −5.52159 −0.294720
\(352\) 41.2755i 2.19999i
\(353\) 26.2256i 1.39585i 0.716171 + 0.697925i \(0.245893\pi\)
−0.716171 + 0.697925i \(0.754107\pi\)
\(354\) −19.5573 −1.03946
\(355\) 0 0
\(356\) −48.9749 −2.59566
\(357\) 2.81754i 0.149120i
\(358\) 53.9936i 2.85365i
\(359\) 22.7917 1.20290 0.601451 0.798910i \(-0.294590\pi\)
0.601451 + 0.798910i \(0.294590\pi\)
\(360\) 0 0
\(361\) −17.6018 −0.926409
\(362\) 24.7576i 1.30123i
\(363\) 8.20866i 0.430843i
\(364\) 74.0649 3.88206
\(365\) 0 0
\(366\) 14.3570 0.750450
\(367\) − 8.00000i − 0.417597i −0.977959 0.208798i \(-0.933045\pi\)
0.977959 0.208798i \(-0.0669552\pi\)
\(368\) 83.7245i 4.36444i
\(369\) −9.58307 −0.498875
\(370\) 0 0
\(371\) −27.0007 −1.40180
\(372\) − 34.2792i − 1.77729i
\(373\) − 18.7655i − 0.971643i −0.874058 0.485821i \(-0.838521\pi\)
0.874058 0.485821i \(-0.161479\pi\)
\(374\) −11.3959 −0.589266
\(375\) 0 0
\(376\) 31.4616 1.62251
\(377\) − 4.51410i − 0.232488i
\(378\) − 7.32602i − 0.376810i
\(379\) 9.08682 0.466758 0.233379 0.972386i \(-0.425022\pi\)
0.233379 + 0.972386i \(0.425022\pi\)
\(380\) 0 0
\(381\) −18.2435 −0.934642
\(382\) − 11.6446i − 0.595788i
\(383\) 12.0685i 0.616672i 0.951278 + 0.308336i \(0.0997720\pi\)
−0.951278 + 0.308336i \(0.900228\pi\)
\(384\) −2.71364 −0.138480
\(385\) 0 0
\(386\) 60.9574 3.10265
\(387\) 1.95635i 0.0994470i
\(388\) − 39.9936i − 2.03037i
\(389\) −4.59190 −0.232819 −0.116409 0.993201i \(-0.537138\pi\)
−0.116409 + 0.993201i \(0.537138\pi\)
\(390\) 0 0
\(391\) −9.15666 −0.463072
\(392\) 6.73709i 0.340274i
\(393\) − 9.95635i − 0.502232i
\(394\) −34.2340 −1.72468
\(395\) 0 0
\(396\) 20.8655 1.04853
\(397\) 29.8702i 1.49914i 0.661924 + 0.749571i \(0.269740\pi\)
−0.661924 + 0.749571i \(0.730260\pi\)
\(398\) − 54.6947i − 2.74160i
\(399\) −3.33163 −0.166790
\(400\) 0 0
\(401\) 17.4601 0.871916 0.435958 0.899967i \(-0.356410\pi\)
0.435958 + 0.899967i \(0.356410\pi\)
\(402\) 35.0447i 1.74787i
\(403\) − 39.7571i − 1.98044i
\(404\) 43.0527 2.14195
\(405\) 0 0
\(406\) 5.98929 0.297244
\(407\) − 11.8512i − 0.587443i
\(408\) 7.17848i 0.355388i
\(409\) −6.79134 −0.335810 −0.167905 0.985803i \(-0.553700\pi\)
−0.167905 + 0.985803i \(0.553700\pi\)
\(410\) 0 0
\(411\) 14.4526 0.712895
\(412\) − 5.17411i − 0.254910i
\(413\) − 21.1923i − 1.04281i
\(414\) 23.8087 1.17013
\(415\) 0 0
\(416\) 52.0006 2.54954
\(417\) 7.67872i 0.376029i
\(418\) − 13.4752i − 0.659093i
\(419\) 1.89487 0.0925702 0.0462851 0.998928i \(-0.485262\pi\)
0.0462851 + 0.998928i \(0.485262\pi\)
\(420\) 0 0
\(421\) −10.5128 −0.512360 −0.256180 0.966629i \(-0.582464\pi\)
−0.256180 + 0.966629i \(0.582464\pi\)
\(422\) 69.5738i 3.38680i
\(423\) − 4.38277i − 0.213097i
\(424\) −68.7919 −3.34083
\(425\) 0 0
\(426\) 5.31379 0.257454
\(427\) 15.5573i 0.752869i
\(428\) 49.5151i 2.39340i
\(429\) 24.1998 1.16838
\(430\) 0 0
\(431\) 4.34709 0.209392 0.104696 0.994504i \(-0.466613\pi\)
0.104696 + 0.994504i \(0.466613\pi\)
\(432\) − 9.14356i − 0.439920i
\(433\) 1.21776i 0.0585217i 0.999572 + 0.0292608i \(0.00931534\pi\)
−0.999572 + 0.0292608i \(0.990685\pi\)
\(434\) 52.7496 2.53206
\(435\) 0 0
\(436\) −39.9936 −1.91534
\(437\) − 10.8274i − 0.517945i
\(438\) − 11.2824i − 0.539093i
\(439\) −32.4171 −1.54718 −0.773592 0.633684i \(-0.781542\pi\)
−0.773592 + 0.633684i \(0.781542\pi\)
\(440\) 0 0
\(441\) 0.938512 0.0446910
\(442\) 14.3570i 0.682891i
\(443\) 4.53155i 0.215300i 0.994189 + 0.107650i \(0.0343327\pi\)
−0.994189 + 0.107650i \(0.965667\pi\)
\(444\) −12.8734 −0.610945
\(445\) 0 0
\(446\) 28.4687 1.34803
\(447\) − 3.12098i − 0.147617i
\(448\) 17.4696i 0.825360i
\(449\) −10.8695 −0.512965 −0.256483 0.966549i \(-0.582564\pi\)
−0.256483 + 0.966549i \(0.582564\pi\)
\(450\) 0 0
\(451\) 42.0004 1.97772
\(452\) − 26.7027i − 1.25599i
\(453\) − 9.21815i − 0.433106i
\(454\) −35.8801 −1.68394
\(455\) 0 0
\(456\) −8.48829 −0.397501
\(457\) − 21.0020i − 0.982432i −0.871038 0.491216i \(-0.836553\pi\)
0.871038 0.491216i \(-0.163447\pi\)
\(458\) − 21.9100i − 1.02379i
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) −7.24395 −0.337384 −0.168692 0.985669i \(-0.553954\pi\)
−0.168692 + 0.985669i \(0.553954\pi\)
\(462\) 32.1083i 1.49381i
\(463\) − 9.27811i − 0.431190i −0.976483 0.215595i \(-0.930831\pi\)
0.976483 0.215595i \(-0.0691691\pi\)
\(464\) 7.47519 0.347027
\(465\) 0 0
\(466\) −70.7042 −3.27531
\(467\) − 12.2955i − 0.568967i −0.958681 0.284483i \(-0.908178\pi\)
0.958681 0.284483i \(-0.0918221\pi\)
\(468\) − 26.2871i − 1.21512i
\(469\) −37.9746 −1.75350
\(470\) 0 0
\(471\) −1.23446 −0.0568811
\(472\) − 53.9936i − 2.48526i
\(473\) − 8.57424i − 0.394244i
\(474\) −27.8785 −1.28050
\(475\) 0 0
\(476\) −13.4137 −0.614816
\(477\) 9.58307i 0.438779i
\(478\) − 19.6500i − 0.898772i
\(479\) −2.82589 −0.129118 −0.0645591 0.997914i \(-0.520564\pi\)
−0.0645591 + 0.997914i \(0.520564\pi\)
\(480\) 0 0
\(481\) −14.9306 −0.680778
\(482\) − 34.9312i − 1.59107i
\(483\) 25.7992i 1.17391i
\(484\) −39.0797 −1.77635
\(485\) 0 0
\(486\) −2.60015 −0.117945
\(487\) − 4.72985i − 0.214330i −0.994241 0.107165i \(-0.965823\pi\)
0.994241 0.107165i \(-0.0341773\pi\)
\(488\) 39.6366i 1.79426i
\(489\) −14.6262 −0.661422
\(490\) 0 0
\(491\) 16.6782 0.752679 0.376339 0.926482i \(-0.377183\pi\)
0.376339 + 0.926482i \(0.377183\pi\)
\(492\) − 45.6230i − 2.05684i
\(493\) 0.817537i 0.0368200i
\(494\) −16.9766 −0.763813
\(495\) 0 0
\(496\) 65.8364 2.95614
\(497\) 5.75805i 0.258284i
\(498\) 5.31379i 0.238117i
\(499\) −13.2510 −0.593195 −0.296597 0.955003i \(-0.595852\pi\)
−0.296597 + 0.955003i \(0.595852\pi\)
\(500\) 0 0
\(501\) 8.76554 0.391615
\(502\) − 73.6436i − 3.28688i
\(503\) − 27.0789i − 1.20739i −0.797217 0.603693i \(-0.793695\pi\)
0.797217 0.603693i \(-0.206305\pi\)
\(504\) 20.2256 0.900921
\(505\) 0 0
\(506\) −104.348 −4.63884
\(507\) − 17.4879i − 0.776665i
\(508\) − 86.8534i − 3.85350i
\(509\) −26.4101 −1.17061 −0.585304 0.810814i \(-0.699025\pi\)
−0.585304 + 0.810814i \(0.699025\pi\)
\(510\) 0 0
\(511\) 12.2256 0.540830
\(512\) − 45.1626i − 1.99592i
\(513\) 1.18246i 0.0522070i
\(514\) −62.6282 −2.76241
\(515\) 0 0
\(516\) −9.31379 −0.410017
\(517\) 19.2087i 0.844796i
\(518\) − 19.8099i − 0.870398i
\(519\) 22.5141 0.988259
\(520\) 0 0
\(521\) 1.63468 0.0716168 0.0358084 0.999359i \(-0.488599\pi\)
0.0358084 + 0.999359i \(0.488599\pi\)
\(522\) − 2.12572i − 0.0930402i
\(523\) − 4.96384i − 0.217054i −0.994094 0.108527i \(-0.965387\pi\)
0.994094 0.108527i \(-0.0346133\pi\)
\(524\) 47.4001 2.07068
\(525\) 0 0
\(526\) 46.8491 2.04272
\(527\) 7.20030i 0.313650i
\(528\) 40.0741i 1.74400i
\(529\) −60.8444 −2.64541
\(530\) 0 0
\(531\) −7.52159 −0.326409
\(532\) − 15.8612i − 0.687671i
\(533\) − 52.9138i − 2.29195i
\(534\) −26.7481 −1.15750
\(535\) 0 0
\(536\) −96.7511 −4.17901
\(537\) 20.7655i 0.896099i
\(538\) − 1.53555i − 0.0662022i
\(539\) −4.11328 −0.177172
\(540\) 0 0
\(541\) −21.0187 −0.903665 −0.451832 0.892103i \(-0.649229\pi\)
−0.451832 + 0.892103i \(0.649229\pi\)
\(542\) 35.7730i 1.53658i
\(543\) 9.52159i 0.408610i
\(544\) −9.41769 −0.403780
\(545\) 0 0
\(546\) 40.4513 1.73115
\(547\) − 6.67785i − 0.285524i −0.989757 0.142762i \(-0.954402\pi\)
0.989757 0.142762i \(-0.0455984\pi\)
\(548\) 68.8059i 2.93924i
\(549\) 5.52159 0.235656
\(550\) 0 0
\(551\) −0.966707 −0.0411831
\(552\) 65.7309i 2.79769i
\(553\) − 30.2093i − 1.28463i
\(554\) 25.1844 1.06998
\(555\) 0 0
\(556\) −36.5568 −1.55035
\(557\) 31.2168i 1.32270i 0.750078 + 0.661349i \(0.230016\pi\)
−0.750078 + 0.661349i \(0.769984\pi\)
\(558\) − 18.7219i − 0.792561i
\(559\) −10.8022 −0.456883
\(560\) 0 0
\(561\) −4.38277 −0.185041
\(562\) 26.3213i 1.11030i
\(563\) 33.6163i 1.41676i 0.705833 + 0.708379i \(0.250573\pi\)
−0.705833 + 0.708379i \(0.749427\pi\)
\(564\) 20.8655 0.878594
\(565\) 0 0
\(566\) 11.2143 0.471371
\(567\) − 2.81754i − 0.118325i
\(568\) 14.6703i 0.615551i
\(569\) −7.63507 −0.320079 −0.160039 0.987111i \(-0.551162\pi\)
−0.160039 + 0.987111i \(0.551162\pi\)
\(570\) 0 0
\(571\) −25.6009 −1.07136 −0.535682 0.844420i \(-0.679946\pi\)
−0.535682 + 0.844420i \(0.679946\pi\)
\(572\) 115.210i 4.81719i
\(573\) − 4.47841i − 0.187088i
\(574\) 70.2058 2.93033
\(575\) 0 0
\(576\) 6.20030 0.258346
\(577\) 34.9242i 1.45391i 0.686683 + 0.726957i \(0.259066\pi\)
−0.686683 + 0.726957i \(0.740934\pi\)
\(578\) − 2.60015i − 0.108152i
\(579\) 23.4438 0.974290
\(580\) 0 0
\(581\) −5.75805 −0.238884
\(582\) − 21.8429i − 0.905416i
\(583\) − 42.0004i − 1.73948i
\(584\) 31.1483 1.28893
\(585\) 0 0
\(586\) −29.1689 −1.20496
\(587\) − 18.0535i − 0.745149i −0.928002 0.372574i \(-0.878475\pi\)
0.928002 0.372574i \(-0.121525\pi\)
\(588\) 4.46806i 0.184260i
\(589\) −8.51410 −0.350817
\(590\) 0 0
\(591\) −13.1661 −0.541583
\(592\) − 24.7246i − 1.01618i
\(593\) 29.4958i 1.21125i 0.795752 + 0.605623i \(0.207076\pi\)
−0.795752 + 0.605623i \(0.792924\pi\)
\(594\) 11.3959 0.467578
\(595\) 0 0
\(596\) 14.8583 0.608620
\(597\) − 21.0352i − 0.860914i
\(598\) 131.462i 5.37587i
\(599\) 19.7214 0.805795 0.402898 0.915245i \(-0.368003\pi\)
0.402898 + 0.915245i \(0.368003\pi\)
\(600\) 0 0
\(601\) −3.29556 −0.134429 −0.0672144 0.997739i \(-0.521411\pi\)
−0.0672144 + 0.997739i \(0.521411\pi\)
\(602\) − 14.3323i − 0.584141i
\(603\) 13.4779i 0.548864i
\(604\) 43.8857 1.78568
\(605\) 0 0
\(606\) 23.5136 0.955176
\(607\) − 30.5222i − 1.23886i −0.785052 0.619430i \(-0.787364\pi\)
0.785052 0.619430i \(-0.212636\pi\)
\(608\) − 11.1361i − 0.451627i
\(609\) 2.30344 0.0933401
\(610\) 0 0
\(611\) 24.1998 0.979020
\(612\) 4.76079i 0.192444i
\(613\) 23.5478i 0.951086i 0.879693 + 0.475543i \(0.157748\pi\)
−0.879693 + 0.475543i \(0.842252\pi\)
\(614\) −11.5557 −0.466352
\(615\) 0 0
\(616\) −88.6443 −3.57158
\(617\) 9.43429i 0.379810i 0.981802 + 0.189905i \(0.0608180\pi\)
−0.981802 + 0.189905i \(0.939182\pi\)
\(618\) − 2.82589i − 0.113674i
\(619\) 12.1657 0.488980 0.244490 0.969652i \(-0.421380\pi\)
0.244490 + 0.969652i \(0.421380\pi\)
\(620\) 0 0
\(621\) 9.15666 0.367444
\(622\) − 19.8060i − 0.794147i
\(623\) − 28.9843i − 1.16123i
\(624\) 50.4870 2.02110
\(625\) 0 0
\(626\) −4.81345 −0.192384
\(627\) − 5.18246i − 0.206968i
\(628\) − 5.87702i − 0.234519i
\(629\) 2.70405 0.107817
\(630\) 0 0
\(631\) 14.0710 0.560157 0.280078 0.959977i \(-0.409640\pi\)
0.280078 + 0.959977i \(0.409640\pi\)
\(632\) − 76.9669i − 3.06158i
\(633\) 26.7576i 1.06352i
\(634\) 16.0277 0.636542
\(635\) 0 0
\(636\) −45.6230 −1.80907
\(637\) 5.18207i 0.205321i
\(638\) 9.31654i 0.368845i
\(639\) 2.04365 0.0808454
\(640\) 0 0
\(641\) −9.35610 −0.369544 −0.184772 0.982781i \(-0.559155\pi\)
−0.184772 + 0.982781i \(0.559155\pi\)
\(642\) 27.0432i 1.06731i
\(643\) 50.6619i 1.99791i 0.0456899 + 0.998956i \(0.485451\pi\)
−0.0456899 + 0.998956i \(0.514549\pi\)
\(644\) −122.825 −4.83997
\(645\) 0 0
\(646\) 3.07459 0.120968
\(647\) − 14.0436i − 0.552113i −0.961141 0.276056i \(-0.910972\pi\)
0.961141 0.276056i \(-0.0890276\pi\)
\(648\) − 7.17848i − 0.281997i
\(649\) 32.9654 1.29400
\(650\) 0 0
\(651\) 20.2871 0.795115
\(652\) − 69.6325i − 2.72702i
\(653\) 9.04317i 0.353887i 0.984221 + 0.176943i \(0.0566209\pi\)
−0.984221 + 0.176943i \(0.943379\pi\)
\(654\) −21.8429 −0.854124
\(655\) 0 0
\(656\) 87.6234 3.42112
\(657\) − 4.33912i − 0.169285i
\(658\) 32.1083i 1.25171i
\(659\) 7.32176 0.285215 0.142608 0.989779i \(-0.454451\pi\)
0.142608 + 0.989779i \(0.454451\pi\)
\(660\) 0 0
\(661\) −42.1329 −1.63878 −0.819389 0.573238i \(-0.805687\pi\)
−0.819389 + 0.573238i \(0.805687\pi\)
\(662\) 69.8225i 2.71373i
\(663\) 5.52159i 0.214441i
\(664\) −14.6703 −0.569317
\(665\) 0 0
\(666\) −7.03094 −0.272443
\(667\) 7.48590i 0.289855i
\(668\) 41.7309i 1.61462i
\(669\) 10.9489 0.423308
\(670\) 0 0
\(671\) −24.1998 −0.934224
\(672\) 26.5347i 1.02360i
\(673\) 3.82637i 0.147496i 0.997277 + 0.0737478i \(0.0234960\pi\)
−0.997277 + 0.0737478i \(0.976504\pi\)
\(674\) −27.8322 −1.07205
\(675\) 0 0
\(676\) 83.2563 3.20216
\(677\) − 11.5311i − 0.443175i −0.975140 0.221588i \(-0.928876\pi\)
0.975140 0.221588i \(-0.0711239\pi\)
\(678\) − 14.5839i − 0.560093i
\(679\) 23.6690 0.908334
\(680\) 0 0
\(681\) −13.7992 −0.528787
\(682\) 82.0537i 3.14200i
\(683\) − 3.82541i − 0.146375i −0.997318 0.0731877i \(-0.976683\pi\)
0.997318 0.0731877i \(-0.0233172\pi\)
\(684\) −5.62946 −0.215248
\(685\) 0 0
\(686\) 44.4066 1.69545
\(687\) − 8.42641i − 0.321488i
\(688\) − 17.8880i − 0.681975i
\(689\) −52.9138 −2.01585
\(690\) 0 0
\(691\) 5.95635 0.226590 0.113295 0.993561i \(-0.463859\pi\)
0.113295 + 0.993561i \(0.463859\pi\)
\(692\) 107.185i 4.07456i
\(693\) 12.3486i 0.469085i
\(694\) 77.8023 2.95333
\(695\) 0 0
\(696\) 5.86867 0.222451
\(697\) 9.58307i 0.362985i
\(698\) − 30.4128i − 1.15114i
\(699\) −27.1923 −1.02851
\(700\) 0 0
\(701\) −31.6436 −1.19516 −0.597581 0.801808i \(-0.703871\pi\)
−0.597581 + 0.801808i \(0.703871\pi\)
\(702\) − 14.3570i − 0.541869i
\(703\) 3.19744i 0.120594i
\(704\) −27.1745 −1.02418
\(705\) 0 0
\(706\) −68.1906 −2.56639
\(707\) 25.4795i 0.958254i
\(708\) − 35.8087i − 1.34577i
\(709\) −15.6708 −0.588528 −0.294264 0.955724i \(-0.595074\pi\)
−0.294264 + 0.955724i \(0.595074\pi\)
\(710\) 0 0
\(711\) −10.7219 −0.402102
\(712\) − 73.8459i − 2.76749i
\(713\) 65.9307i 2.46913i
\(714\) −7.32602 −0.274170
\(715\) 0 0
\(716\) −98.8604 −3.69459
\(717\) − 7.55727i − 0.282231i
\(718\) 59.2620i 2.21164i
\(719\) 4.15579 0.154985 0.0774925 0.996993i \(-0.475309\pi\)
0.0774925 + 0.996993i \(0.475309\pi\)
\(720\) 0 0
\(721\) 3.06215 0.114040
\(722\) − 45.7673i − 1.70328i
\(723\) − 13.4343i − 0.499627i
\(724\) −45.3303 −1.68469
\(725\) 0 0
\(726\) −21.3438 −0.792141
\(727\) − 7.36445i − 0.273132i −0.990631 0.136566i \(-0.956393\pi\)
0.990631 0.136566i \(-0.0436066\pi\)
\(728\) 111.678i 4.13905i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 1.95635 0.0723583
\(732\) 26.2871i 0.971600i
\(733\) − 50.3228i − 1.85872i −0.369181 0.929358i \(-0.620362\pi\)
0.369181 0.929358i \(-0.379638\pi\)
\(734\) 20.8012 0.767787
\(735\) 0 0
\(736\) −86.2346 −3.17865
\(737\) − 59.0707i − 2.17590i
\(738\) − 24.9175i − 0.917224i
\(739\) 10.0863 0.371032 0.185516 0.982641i \(-0.440604\pi\)
0.185516 + 0.982641i \(0.440604\pi\)
\(740\) 0 0
\(741\) −6.52907 −0.239851
\(742\) − 70.2058i − 2.57734i
\(743\) − 34.7646i − 1.27539i −0.770289 0.637694i \(-0.779888\pi\)
0.770289 0.637694i \(-0.220112\pi\)
\(744\) 51.6873 1.89495
\(745\) 0 0
\(746\) 48.7933 1.78645
\(747\) 2.04365i 0.0747731i
\(748\) − 20.8655i − 0.762916i
\(749\) −29.3041 −1.07075
\(750\) 0 0
\(751\) −16.4171 −0.599069 −0.299534 0.954085i \(-0.596831\pi\)
−0.299534 + 0.954085i \(0.596831\pi\)
\(752\) 40.0741i 1.46135i
\(753\) − 28.3228i − 1.03214i
\(754\) 11.7373 0.427449
\(755\) 0 0
\(756\) 13.4137 0.487852
\(757\) 37.8611i 1.37608i 0.725670 + 0.688042i \(0.241530\pi\)
−0.725670 + 0.688042i \(0.758470\pi\)
\(758\) 23.6271i 0.858175i
\(759\) −40.1315 −1.45668
\(760\) 0 0
\(761\) 6.16415 0.223450 0.111725 0.993739i \(-0.464362\pi\)
0.111725 + 0.993739i \(0.464362\pi\)
\(762\) − 47.4358i − 1.71842i
\(763\) − 23.6690i − 0.856876i
\(764\) 21.3208 0.771360
\(765\) 0 0
\(766\) −31.3799 −1.13380
\(767\) − 41.5311i − 1.49960i
\(768\) − 19.4565i − 0.702076i
\(769\) −29.0007 −1.04579 −0.522895 0.852397i \(-0.675148\pi\)
−0.522895 + 0.852397i \(0.675148\pi\)
\(770\) 0 0
\(771\) −24.0863 −0.867448
\(772\) 111.611i 4.01697i
\(773\) − 29.3045i − 1.05401i −0.849862 0.527005i \(-0.823315\pi\)
0.849862 0.527005i \(-0.176685\pi\)
\(774\) −5.08682 −0.182842
\(775\) 0 0
\(776\) 60.3036 2.16477
\(777\) − 7.61876i − 0.273321i
\(778\) − 11.9396i − 0.428057i
\(779\) −11.3316 −0.405998
\(780\) 0 0
\(781\) −8.95683 −0.320501
\(782\) − 23.8087i − 0.851398i
\(783\) − 0.817537i − 0.0292164i
\(784\) −8.58134 −0.306476
\(785\) 0 0
\(786\) 25.8880 0.923396
\(787\) 5.09517i 0.181623i 0.995868 + 0.0908116i \(0.0289461\pi\)
−0.995868 + 0.0908116i \(0.971054\pi\)
\(788\) − 62.6813i − 2.23293i
\(789\) 18.0178 0.641452
\(790\) 0 0
\(791\) 15.8032 0.561898
\(792\) 31.4616i 1.11794i
\(793\) 30.4879i 1.08266i
\(794\) −77.6671 −2.75630
\(795\) 0 0
\(796\) 100.144 3.54952
\(797\) − 16.6786i − 0.590787i −0.955376 0.295394i \(-0.904549\pi\)
0.955376 0.295394i \(-0.0954508\pi\)
\(798\) − 8.66276i − 0.306658i
\(799\) −4.38277 −0.155051
\(800\) 0 0
\(801\) −10.2871 −0.363478
\(802\) 45.3989i 1.60309i
\(803\) 19.0174i 0.671108i
\(804\) −64.1657 −2.26295
\(805\) 0 0
\(806\) 103.375 3.64121
\(807\) − 0.590561i − 0.0207887i
\(808\) 64.9162i 2.28375i
\(809\) −13.3574 −0.469623 −0.234811 0.972041i \(-0.575447\pi\)
−0.234811 + 0.972041i \(0.575447\pi\)
\(810\) 0 0
\(811\) 34.8344 1.22320 0.611601 0.791166i \(-0.290526\pi\)
0.611601 + 0.791166i \(0.290526\pi\)
\(812\) 10.9662i 0.384838i
\(813\) 13.7580i 0.482516i
\(814\) 30.8150 1.08006
\(815\) 0 0
\(816\) −9.14356 −0.320089
\(817\) 2.31332i 0.0809327i
\(818\) − 17.6585i − 0.617416i
\(819\) 15.5573 0.543615
\(820\) 0 0
\(821\) 27.0282 0.943291 0.471645 0.881788i \(-0.343660\pi\)
0.471645 + 0.881788i \(0.343660\pi\)
\(822\) 37.5790i 1.31072i
\(823\) 6.60727i 0.230315i 0.993347 + 0.115157i \(0.0367373\pi\)
−0.993347 + 0.115157i \(0.963263\pi\)
\(824\) 7.80170 0.271785
\(825\) 0 0
\(826\) 55.1033 1.91729
\(827\) 29.1400i 1.01330i 0.862153 + 0.506648i \(0.169116\pi\)
−0.862153 + 0.506648i \(0.830884\pi\)
\(828\) 43.5930i 1.51496i
\(829\) 1.22763 0.0426375 0.0213188 0.999773i \(-0.493214\pi\)
0.0213188 + 0.999773i \(0.493214\pi\)
\(830\) 0 0
\(831\) 9.68573 0.335994
\(832\) 34.2355i 1.18690i
\(833\) − 0.938512i − 0.0325175i
\(834\) −19.9658 −0.691361
\(835\) 0 0
\(836\) 24.6726 0.853321
\(837\) − 7.20030i − 0.248879i
\(838\) 4.92694i 0.170198i
\(839\) −11.7759 −0.406549 −0.203274 0.979122i \(-0.565158\pi\)
−0.203274 + 0.979122i \(0.565158\pi\)
\(840\) 0 0
\(841\) −28.3316 −0.976953
\(842\) − 27.3348i − 0.942018i
\(843\) 10.1230i 0.348654i
\(844\) −127.387 −4.38485
\(845\) 0 0
\(846\) 11.3959 0.391798
\(847\) − 23.1282i − 0.794694i
\(848\) − 87.6234i − 3.00900i
\(849\) 4.31293 0.148019
\(850\) 0 0
\(851\) 24.7600 0.848764
\(852\) 9.72938i 0.333323i
\(853\) − 38.7139i − 1.32554i −0.748823 0.662770i \(-0.769381\pi\)
0.748823 0.662770i \(-0.230619\pi\)
\(854\) −40.4513 −1.38421
\(855\) 0 0
\(856\) −74.6606 −2.55185
\(857\) 31.6351i 1.08063i 0.841462 + 0.540317i \(0.181696\pi\)
−0.841462 + 0.540317i \(0.818304\pi\)
\(858\) 62.9232i 2.14816i
\(859\) −17.6337 −0.601655 −0.300828 0.953679i \(-0.597263\pi\)
−0.300828 + 0.953679i \(0.597263\pi\)
\(860\) 0 0
\(861\) 27.0007 0.920180
\(862\) 11.3031i 0.384985i
\(863\) 52.4541i 1.78556i 0.450493 + 0.892780i \(0.351248\pi\)
−0.450493 + 0.892780i \(0.648752\pi\)
\(864\) 9.41769 0.320396
\(865\) 0 0
\(866\) −3.16635 −0.107597
\(867\) − 1.00000i − 0.0339618i
\(868\) 96.5828i 3.27823i
\(869\) 46.9916 1.59408
\(870\) 0 0
\(871\) −74.4196 −2.52161
\(872\) − 60.3036i − 2.04214i
\(873\) − 8.40061i − 0.284318i
\(874\) 28.1529 0.952287
\(875\) 0 0
\(876\) 20.6577 0.697958
\(877\) − 5.19195i − 0.175320i −0.996150 0.0876599i \(-0.972061\pi\)
0.996150 0.0876599i \(-0.0279389\pi\)
\(878\) − 84.2894i − 2.84463i
\(879\) −11.2181 −0.378379
\(880\) 0 0
\(881\) −42.0867 −1.41794 −0.708969 0.705240i \(-0.750839\pi\)
−0.708969 + 0.705240i \(0.750839\pi\)
\(882\) 2.44027i 0.0821683i
\(883\) − 22.2602i − 0.749115i −0.927204 0.374557i \(-0.877795\pi\)
0.927204 0.374557i \(-0.122205\pi\)
\(884\) −26.2871 −0.884132
\(885\) 0 0
\(886\) −11.7827 −0.395848
\(887\) − 31.3574i − 1.05288i −0.850212 0.526440i \(-0.823527\pi\)
0.850212 0.526440i \(-0.176473\pi\)
\(888\) − 19.4110i − 0.651389i
\(889\) 51.4017 1.72396
\(890\) 0 0
\(891\) 4.38277 0.146828
\(892\) 52.1253i 1.74528i
\(893\) − 5.18246i − 0.173425i
\(894\) 8.11501 0.271407
\(895\) 0 0
\(896\) 7.64578 0.255428
\(897\) 50.5593i 1.68812i
\(898\) − 28.2625i − 0.943130i
\(899\) 5.88651 0.196326
\(900\) 0 0
\(901\) 9.58307 0.319258
\(902\) 109.207i 3.63621i
\(903\) − 5.51210i − 0.183431i
\(904\) 40.2632 1.33914
\(905\) 0 0
\(906\) 23.9686 0.796303
\(907\) 29.9837i 0.995592i 0.867294 + 0.497796i \(0.165857\pi\)
−0.867294 + 0.497796i \(0.834143\pi\)
\(908\) − 65.6952i − 2.18017i
\(909\) 9.04317 0.299943
\(910\) 0 0
\(911\) −2.74770 −0.0910352 −0.0455176 0.998964i \(-0.514494\pi\)
−0.0455176 + 0.998964i \(0.514494\pi\)
\(912\) − 10.8119i − 0.358019i
\(913\) − 8.95683i − 0.296428i
\(914\) 54.6084 1.80629
\(915\) 0 0
\(916\) 40.1164 1.32548
\(917\) 28.0524i 0.926372i
\(918\) 2.60015i 0.0858178i
\(919\) −12.3653 −0.407894 −0.203947 0.978982i \(-0.565377\pi\)
−0.203947 + 0.978982i \(0.565377\pi\)
\(920\) 0 0
\(921\) −4.44426 −0.146443
\(922\) − 18.8354i − 0.620310i
\(923\) 11.2842i 0.371423i
\(924\) −58.7892 −1.93402
\(925\) 0 0
\(926\) 24.1245 0.792780
\(927\) − 1.08682i − 0.0356958i
\(928\) 7.69930i 0.252742i
\(929\) 23.0625 0.756657 0.378329 0.925671i \(-0.376499\pi\)
0.378329 + 0.925671i \(0.376499\pi\)
\(930\) 0 0
\(931\) 1.10976 0.0363708
\(932\) − 129.457i − 4.24051i
\(933\) − 7.61723i − 0.249377i
\(934\) 31.9701 1.04609
\(935\) 0 0
\(936\) 39.6366 1.29556
\(937\) − 54.0609i − 1.76609i −0.469285 0.883047i \(-0.655488\pi\)
0.469285 0.883047i \(-0.344512\pi\)
\(938\) − 98.7397i − 3.22397i
\(939\) −1.85122 −0.0604122
\(940\) 0 0
\(941\) 39.2009 1.27791 0.638956 0.769243i \(-0.279367\pi\)
0.638956 + 0.769243i \(0.279367\pi\)
\(942\) − 3.20979i − 0.104581i
\(943\) 87.7489i 2.85750i
\(944\) 68.7741 2.23841
\(945\) 0 0
\(946\) 22.2943 0.724852
\(947\) 21.8453i 0.709878i 0.934889 + 0.354939i \(0.115498\pi\)
−0.934889 + 0.354939i \(0.884502\pi\)
\(948\) − 51.0447i − 1.65785i
\(949\) 23.9588 0.777737
\(950\) 0 0
\(951\) 6.16415 0.199886
\(952\) − 20.2256i − 0.655517i
\(953\) 11.6364i 0.376940i 0.982079 + 0.188470i \(0.0603529\pi\)
−0.982079 + 0.188470i \(0.939647\pi\)
\(954\) −24.9175 −0.806732
\(955\) 0 0
\(956\) 35.9786 1.16363
\(957\) 3.58307i 0.115824i
\(958\) − 7.34774i − 0.237395i
\(959\) −40.7208 −1.31494
\(960\) 0 0
\(961\) 20.8444 0.672400
\(962\) − 38.8219i − 1.25167i
\(963\) 10.4006i 0.335155i
\(964\) 63.9579 2.05994
\(965\) 0 0
\(966\) −67.0819 −2.15832
\(967\) 25.4096i 0.817118i 0.912732 + 0.408559i \(0.133969\pi\)
−0.912732 + 0.408559i \(0.866031\pi\)
\(968\) − 58.9257i − 1.89394i
\(969\) 1.18246 0.0379862
\(970\) 0 0
\(971\) −44.9654 −1.44301 −0.721504 0.692411i \(-0.756549\pi\)
−0.721504 + 0.692411i \(0.756549\pi\)
\(972\) − 4.76079i − 0.152702i
\(973\) − 21.6351i − 0.693589i
\(974\) 12.2983 0.394064
\(975\) 0 0
\(976\) −50.4870 −1.61605
\(977\) − 3.51210i − 0.112362i −0.998421 0.0561810i \(-0.982108\pi\)
0.998421 0.0561810i \(-0.0178924\pi\)
\(978\) − 38.0305i − 1.21608i
\(979\) 45.0861 1.44096
\(980\) 0 0
\(981\) −8.40061 −0.268211
\(982\) 43.3660i 1.38386i
\(983\) 9.97381i 0.318115i 0.987269 + 0.159057i \(0.0508455\pi\)
−0.987269 + 0.159057i \(0.949154\pi\)
\(984\) 68.7919 2.19301
\(985\) 0 0
\(986\) −2.12572 −0.0676967
\(987\) 12.3486i 0.393061i
\(988\) − 31.0836i − 0.988900i
\(989\) 17.9137 0.569621
\(990\) 0 0
\(991\) −4.24443 −0.134829 −0.0674143 0.997725i \(-0.521475\pi\)
−0.0674143 + 0.997725i \(0.521475\pi\)
\(992\) 67.8102i 2.15298i
\(993\) 26.8532i 0.852161i
\(994\) −14.9718 −0.474877
\(995\) 0 0
\(996\) −9.72938 −0.308287
\(997\) 43.8336i 1.38822i 0.719868 + 0.694111i \(0.244202\pi\)
−0.719868 + 0.694111i \(0.755798\pi\)
\(998\) − 34.4545i − 1.09064i
\(999\) −2.70405 −0.0855523
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1275.2.b.k.1174.8 8
5.2 odd 4 255.2.a.d.1.1 4
5.3 odd 4 1275.2.a.t.1.4 4
5.4 even 2 inner 1275.2.b.k.1174.1 8
15.2 even 4 765.2.a.m.1.4 4
15.8 even 4 3825.2.a.bi.1.1 4
20.7 even 4 4080.2.a.bt.1.2 4
85.67 odd 4 4335.2.a.z.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
255.2.a.d.1.1 4 5.2 odd 4
765.2.a.m.1.4 4 15.2 even 4
1275.2.a.t.1.4 4 5.3 odd 4
1275.2.b.k.1174.1 8 5.4 even 2 inner
1275.2.b.k.1174.8 8 1.1 even 1 trivial
3825.2.a.bi.1.1 4 15.8 even 4
4080.2.a.bt.1.2 4 20.7 even 4
4335.2.a.z.1.1 4 85.67 odd 4