Properties

Label 1274.2.m.g.589.6
Level $1274$
Weight $2$
Character 1274.589
Analytic conductor $10.173$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(491,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.491"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,2,10,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 46 x^{18} + 895 x^{16} + 9634 x^{14} + 62977 x^{12} + 257850 x^{10} + 656102 x^{8} + \cdots + 32041 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 589.6
Root \(3.16760i\) of defining polynomial
Character \(\chi\) \(=\) 1274.589
Dual form 1274.2.m.g.491.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(-1.58380 + 2.74322i) q^{3} +(0.500000 + 0.866025i) q^{4} +3.36560i q^{5} +(-2.74322 + 1.58380i) q^{6} +1.00000i q^{8} +(-3.51684 - 6.09135i) q^{9} +(-1.68280 + 2.91470i) q^{10} +(1.85380 + 1.07029i) q^{11} -3.16760 q^{12} +(-1.39219 + 3.32593i) q^{13} +(-9.23259 - 5.33044i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.38022 - 4.12266i) q^{17} -7.03369i q^{18} +(0.852891 - 0.492417i) q^{19} +(-2.91470 + 1.68280i) q^{20} +(1.07029 + 1.85380i) q^{22} +(-1.59384 + 2.76062i) q^{23} +(-2.74322 - 1.58380i) q^{24} -6.32727 q^{25} +(-2.86864 + 2.18424i) q^{26} +12.7771 q^{27} +(-2.13687 + 3.70117i) q^{29} +(-5.33044 - 9.23259i) q^{30} -0.825595i q^{31} +(-0.866025 + 0.500000i) q^{32} +(-5.87211 + 3.39026i) q^{33} -4.76044i q^{34} +(3.51684 - 6.09135i) q^{36} +(7.47646 + 4.31654i) q^{37} +0.984833 q^{38} +(-6.91880 - 9.08670i) q^{39} -3.36560 q^{40} +(2.86076 + 1.65166i) q^{41} +(-2.74451 - 4.75362i) q^{43} +2.14059i q^{44} +(20.5011 - 11.8363i) q^{45} +(-2.76062 + 1.59384i) q^{46} -4.02219i q^{47} +(-1.58380 - 2.74322i) q^{48} +(-5.47958 - 3.16364i) q^{50} +15.0792 q^{51} +(-3.57644 + 0.457288i) q^{52} +13.0781 q^{53} +(11.0653 + 6.38856i) q^{54} +(-3.60218 + 6.23916i) q^{55} +3.11956i q^{57} +(-3.70117 + 2.13687i) q^{58} +(-3.09394 + 1.78629i) q^{59} -10.6609i q^{60} +(2.03816 + 3.53019i) q^{61} +(0.412798 - 0.714987i) q^{62} -1.00000 q^{64} +(-11.1937 - 4.68557i) q^{65} -6.78052 q^{66} +(0.319284 + 0.184338i) q^{67} +(2.38022 - 4.12266i) q^{68} +(-5.04865 - 8.74453i) q^{69} +(-0.525851 + 0.303600i) q^{71} +(6.09135 - 3.51684i) q^{72} -6.45285i q^{73} +(4.31654 + 7.47646i) q^{74} +(10.0211 - 17.3571i) q^{75} +(0.852891 + 0.492417i) q^{76} +(-1.44850 - 11.3287i) q^{78} -9.83378 q^{79} +(-2.91470 - 1.68280i) q^{80} +(-9.68586 + 16.7764i) q^{81} +(1.65166 + 2.86076i) q^{82} +10.7180i q^{83} +(13.8752 - 8.01087i) q^{85} -5.48901i q^{86} +(-6.76875 - 11.7238i) q^{87} +(-1.07029 + 1.85380i) q^{88} +(4.30275 + 2.48419i) q^{89} +23.6726 q^{90} -3.18768 q^{92} +(2.26479 + 1.30758i) q^{93} +(2.01109 - 3.48332i) q^{94} +(1.65728 + 2.87049i) q^{95} -3.16760i q^{96} +(10.0273 - 5.78928i) q^{97} -15.0562i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{3} + 10 q^{4} - 16 q^{9} - 4 q^{10} + 6 q^{11} + 4 q^{12} + 6 q^{13} - 12 q^{15} - 10 q^{16} - 10 q^{17} + 24 q^{19} + 2 q^{22} - 36 q^{25} - 28 q^{27} + 2 q^{29} - 2 q^{30} - 12 q^{33} + 16 q^{36}+ \cdots + 78 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) −1.58380 + 2.74322i −0.914407 + 1.58380i −0.106641 + 0.994298i \(0.534009\pi\)
−0.807767 + 0.589502i \(0.799324\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 3.36560i 1.50514i 0.658511 + 0.752571i \(0.271187\pi\)
−0.658511 + 0.752571i \(0.728813\pi\)
\(6\) −2.74322 + 1.58380i −1.11992 + 0.646584i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) −3.51684 6.09135i −1.17228 2.03045i
\(10\) −1.68280 + 2.91470i −0.532148 + 0.921708i
\(11\) 1.85380 + 1.07029i 0.558943 + 0.322706i 0.752721 0.658340i \(-0.228741\pi\)
−0.193778 + 0.981045i \(0.562074\pi\)
\(12\) −3.16760 −0.914407
\(13\) −1.39219 + 3.32593i −0.386125 + 0.922446i
\(14\) 0 0
\(15\) −9.23259 5.33044i −2.38385 1.37631i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.38022 4.12266i −0.577288 0.999892i −0.995789 0.0916759i \(-0.970778\pi\)
0.418501 0.908216i \(-0.362556\pi\)
\(18\) 7.03369i 1.65786i
\(19\) 0.852891 0.492417i 0.195667 0.112968i −0.398966 0.916966i \(-0.630631\pi\)
0.594633 + 0.803998i \(0.297298\pi\)
\(20\) −2.91470 + 1.68280i −0.651746 + 0.376286i
\(21\) 0 0
\(22\) 1.07029 + 1.85380i 0.228187 + 0.395232i
\(23\) −1.59384 + 2.76062i −0.332339 + 0.575628i −0.982970 0.183766i \(-0.941171\pi\)
0.650631 + 0.759394i \(0.274505\pi\)
\(24\) −2.74322 1.58380i −0.559958 0.323292i
\(25\) −6.32727 −1.26545
\(26\) −2.86864 + 2.18424i −0.562587 + 0.428365i
\(27\) 12.7771 2.45896
\(28\) 0 0
\(29\) −2.13687 + 3.70117i −0.396807 + 0.687290i −0.993330 0.115306i \(-0.963215\pi\)
0.596523 + 0.802596i \(0.296548\pi\)
\(30\) −5.33044 9.23259i −0.973201 1.68563i
\(31\) 0.825595i 0.148281i −0.997248 0.0741407i \(-0.976379\pi\)
0.997248 0.0741407i \(-0.0236214\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) −5.87211 + 3.39026i −1.02220 + 0.590169i
\(34\) 4.76044i 0.816409i
\(35\) 0 0
\(36\) 3.51684 6.09135i 0.586141 1.01523i
\(37\) 7.47646 + 4.31654i 1.22912 + 0.709635i 0.966847 0.255358i \(-0.0821934\pi\)
0.262277 + 0.964993i \(0.415527\pi\)
\(38\) 0.984833 0.159761
\(39\) −6.91880 9.08670i −1.10789 1.45504i
\(40\) −3.36560 −0.532148
\(41\) 2.86076 + 1.65166i 0.446776 + 0.257946i 0.706468 0.707745i \(-0.250288\pi\)
−0.259692 + 0.965692i \(0.583621\pi\)
\(42\) 0 0
\(43\) −2.74451 4.75362i −0.418533 0.724921i 0.577259 0.816561i \(-0.304122\pi\)
−0.995792 + 0.0916402i \(0.970789\pi\)
\(44\) 2.14059i 0.322706i
\(45\) 20.5011 11.8363i 3.05612 1.76445i
\(46\) −2.76062 + 1.59384i −0.407031 + 0.234999i
\(47\) 4.02219i 0.586696i −0.956006 0.293348i \(-0.905231\pi\)
0.956006 0.293348i \(-0.0947695\pi\)
\(48\) −1.58380 2.74322i −0.228602 0.395950i
\(49\) 0 0
\(50\) −5.47958 3.16364i −0.774930 0.447406i
\(51\) 15.0792 2.11151
\(52\) −3.57644 + 0.457288i −0.495962 + 0.0634144i
\(53\) 13.0781 1.79642 0.898210 0.439567i \(-0.144868\pi\)
0.898210 + 0.439567i \(0.144868\pi\)
\(54\) 11.0653 + 6.38856i 1.50580 + 0.869372i
\(55\) −3.60218 + 6.23916i −0.485718 + 0.841289i
\(56\) 0 0
\(57\) 3.11956i 0.413196i
\(58\) −3.70117 + 2.13687i −0.485987 + 0.280585i
\(59\) −3.09394 + 1.78629i −0.402796 + 0.232555i −0.687690 0.726005i \(-0.741375\pi\)
0.284893 + 0.958559i \(0.408042\pi\)
\(60\) 10.6609i 1.37631i
\(61\) 2.03816 + 3.53019i 0.260959 + 0.451995i 0.966497 0.256678i \(-0.0826279\pi\)
−0.705538 + 0.708672i \(0.749295\pi\)
\(62\) 0.412798 0.714987i 0.0524254 0.0908034i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −11.1937 4.68557i −1.38841 0.581174i
\(66\) −6.78052 −0.834625
\(67\) 0.319284 + 0.184338i 0.0390067 + 0.0225205i 0.519377 0.854545i \(-0.326164\pi\)
−0.480370 + 0.877066i \(0.659498\pi\)
\(68\) 2.38022 4.12266i 0.288644 0.499946i
\(69\) −5.04865 8.74453i −0.607787 1.05272i
\(70\) 0 0
\(71\) −0.525851 + 0.303600i −0.0624070 + 0.0360307i −0.530879 0.847448i \(-0.678138\pi\)
0.468472 + 0.883478i \(0.344805\pi\)
\(72\) 6.09135 3.51684i 0.717873 0.414464i
\(73\) 6.45285i 0.755248i −0.925959 0.377624i \(-0.876741\pi\)
0.925959 0.377624i \(-0.123259\pi\)
\(74\) 4.31654 + 7.47646i 0.501787 + 0.869121i
\(75\) 10.0211 17.3571i 1.15714 2.00423i
\(76\) 0.852891 + 0.492417i 0.0978333 + 0.0564841i
\(77\) 0 0
\(78\) −1.44850 11.3287i −0.164011 1.28272i
\(79\) −9.83378 −1.10639 −0.553193 0.833053i \(-0.686591\pi\)
−0.553193 + 0.833053i \(0.686591\pi\)
\(80\) −2.91470 1.68280i −0.325873 0.188143i
\(81\) −9.68586 + 16.7764i −1.07621 + 1.86404i
\(82\) 1.65166 + 2.86076i 0.182396 + 0.315918i
\(83\) 10.7180i 1.17646i 0.808694 + 0.588229i \(0.200175\pi\)
−0.808694 + 0.588229i \(0.799825\pi\)
\(84\) 0 0
\(85\) 13.8752 8.01087i 1.50498 0.868901i
\(86\) 5.48901i 0.591895i
\(87\) −6.76875 11.7238i −0.725686 1.25693i
\(88\) −1.07029 + 1.85380i −0.114094 + 0.197616i
\(89\) 4.30275 + 2.48419i 0.456090 + 0.263324i 0.710399 0.703799i \(-0.248515\pi\)
−0.254309 + 0.967123i \(0.581848\pi\)
\(90\) 23.6726 2.49531
\(91\) 0 0
\(92\) −3.18768 −0.332339
\(93\) 2.26479 + 1.30758i 0.234848 + 0.135590i
\(94\) 2.01109 3.48332i 0.207428 0.359277i
\(95\) 1.65728 + 2.87049i 0.170033 + 0.294506i
\(96\) 3.16760i 0.323292i
\(97\) 10.0273 5.78928i 1.01812 0.587812i 0.104562 0.994518i \(-0.466656\pi\)
0.913559 + 0.406706i \(0.133323\pi\)
\(98\) 0 0
\(99\) 15.0562i 1.51321i
\(100\) −3.16364 5.47958i −0.316364 0.547958i
\(101\) −3.09598 + 5.36239i −0.308061 + 0.533578i −0.977938 0.208894i \(-0.933013\pi\)
0.669877 + 0.742472i \(0.266347\pi\)
\(102\) 13.0589 + 7.53958i 1.29303 + 0.746530i
\(103\) −3.30691 −0.325839 −0.162920 0.986639i \(-0.552091\pi\)
−0.162920 + 0.986639i \(0.552091\pi\)
\(104\) −3.32593 1.39219i −0.326134 0.136516i
\(105\) 0 0
\(106\) 11.3260 + 6.53907i 1.10008 + 0.635130i
\(107\) 5.09798 8.82996i 0.492840 0.853625i −0.507126 0.861872i \(-0.669292\pi\)
0.999966 + 0.00824751i \(0.00262529\pi\)
\(108\) 6.38856 + 11.0653i 0.614739 + 1.06476i
\(109\) 7.46908i 0.715408i 0.933835 + 0.357704i \(0.116440\pi\)
−0.933835 + 0.357704i \(0.883560\pi\)
\(110\) −6.23916 + 3.60218i −0.594881 + 0.343455i
\(111\) −23.6824 + 13.6731i −2.24784 + 1.29779i
\(112\) 0 0
\(113\) 1.05003 + 1.81870i 0.0987784 + 0.171089i 0.911179 0.412010i \(-0.135173\pi\)
−0.812401 + 0.583099i \(0.801840\pi\)
\(114\) −1.55978 + 2.70162i −0.146087 + 0.253030i
\(115\) −9.29113 5.36424i −0.866403 0.500218i
\(116\) −4.27374 −0.396807
\(117\) 25.1555 3.21642i 2.32563 0.297358i
\(118\) −3.57257 −0.328882
\(119\) 0 0
\(120\) 5.33044 9.23259i 0.486600 0.842817i
\(121\) −3.20894 5.55805i −0.291722 0.505277i
\(122\) 4.07631i 0.369052i
\(123\) −9.06175 + 5.23181i −0.817071 + 0.471736i
\(124\) 0.714987 0.412798i 0.0642077 0.0370703i
\(125\) 4.46708i 0.399548i
\(126\) 0 0
\(127\) −2.09804 + 3.63391i −0.186171 + 0.322458i −0.943970 0.330030i \(-0.892941\pi\)
0.757800 + 0.652487i \(0.226275\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 17.3870 1.53084
\(130\) −7.35128 9.65470i −0.644750 0.846773i
\(131\) −10.3960 −0.908303 −0.454152 0.890924i \(-0.650058\pi\)
−0.454152 + 0.890924i \(0.650058\pi\)
\(132\) −5.87211 3.39026i −0.511101 0.295084i
\(133\) 0 0
\(134\) 0.184338 + 0.319284i 0.0159244 + 0.0275819i
\(135\) 43.0027i 3.70108i
\(136\) 4.12266 2.38022i 0.353515 0.204102i
\(137\) 8.90891 5.14356i 0.761140 0.439444i −0.0685651 0.997647i \(-0.521842\pi\)
0.829705 + 0.558202i \(0.188509\pi\)
\(138\) 10.0973i 0.859540i
\(139\) −5.72470 9.91547i −0.485563 0.841019i 0.514300 0.857611i \(-0.328052\pi\)
−0.999862 + 0.0165912i \(0.994719\pi\)
\(140\) 0 0
\(141\) 11.0337 + 6.37034i 0.929209 + 0.536479i
\(142\) −0.607200 −0.0509551
\(143\) −6.14057 + 4.67556i −0.513501 + 0.390990i
\(144\) 7.03369 0.586141
\(145\) −12.4567 7.19186i −1.03447 0.597251i
\(146\) 3.22642 5.58833i 0.267021 0.462493i
\(147\) 0 0
\(148\) 8.63308i 0.709635i
\(149\) −15.0887 + 8.71148i −1.23612 + 0.713672i −0.968298 0.249798i \(-0.919636\pi\)
−0.267818 + 0.963470i \(0.586303\pi\)
\(150\) 17.3571 10.0211i 1.41720 0.818222i
\(151\) 12.9755i 1.05593i 0.849267 + 0.527964i \(0.177044\pi\)
−0.849267 + 0.527964i \(0.822956\pi\)
\(152\) 0.492417 + 0.852891i 0.0399403 + 0.0691786i
\(153\) −16.7417 + 28.9975i −1.35349 + 2.34431i
\(154\) 0 0
\(155\) 2.77863 0.223185
\(156\) 4.40992 10.5352i 0.353076 0.843492i
\(157\) −24.3865 −1.94625 −0.973127 0.230267i \(-0.926040\pi\)
−0.973127 + 0.230267i \(0.926040\pi\)
\(158\) −8.51630 4.91689i −0.677521 0.391167i
\(159\) −20.7131 + 35.8762i −1.64266 + 2.84517i
\(160\) −1.68280 2.91470i −0.133037 0.230427i
\(161\) 0 0
\(162\) −16.7764 + 9.68586i −1.31808 + 0.760993i
\(163\) −11.5032 + 6.64137i −0.900999 + 0.520192i −0.877524 0.479532i \(-0.840806\pi\)
−0.0234749 + 0.999724i \(0.507473\pi\)
\(164\) 3.30333i 0.257946i
\(165\) −11.4103 19.7632i −0.888288 1.53856i
\(166\) −5.35902 + 9.28210i −0.415941 + 0.720430i
\(167\) 15.4031 + 8.89300i 1.19193 + 0.688161i 0.958744 0.284271i \(-0.0917516\pi\)
0.233186 + 0.972432i \(0.425085\pi\)
\(168\) 0 0
\(169\) −9.12359 9.26068i −0.701814 0.712360i
\(170\) 16.0217 1.22881
\(171\) −5.99897 3.46351i −0.458753 0.264861i
\(172\) 2.74451 4.75362i 0.209267 0.362460i
\(173\) 2.94124 + 5.09437i 0.223618 + 0.387318i 0.955904 0.293680i \(-0.0948799\pi\)
−0.732286 + 0.680997i \(0.761547\pi\)
\(174\) 13.5375i 1.02628i
\(175\) 0 0
\(176\) −1.85380 + 1.07029i −0.139736 + 0.0806764i
\(177\) 11.3165i 0.850598i
\(178\) 2.48419 + 4.30275i 0.186198 + 0.322505i
\(179\) 4.94561 8.56604i 0.369652 0.640256i −0.619859 0.784713i \(-0.712810\pi\)
0.989511 + 0.144457i \(0.0461435\pi\)
\(180\) 20.5011 + 11.8363i 1.52806 + 0.882226i
\(181\) −19.7017 −1.46442 −0.732209 0.681080i \(-0.761511\pi\)
−0.732209 + 0.681080i \(0.761511\pi\)
\(182\) 0 0
\(183\) −12.9121 −0.954492
\(184\) −2.76062 1.59384i −0.203515 0.117500i
\(185\) −14.5278 + 25.1628i −1.06810 + 1.85001i
\(186\) 1.30758 + 2.26479i 0.0958763 + 0.166063i
\(187\) 10.1901i 0.745177i
\(188\) 3.48332 2.01109i 0.254047 0.146674i
\(189\) 0 0
\(190\) 3.31456i 0.240463i
\(191\) −8.08740 14.0078i −0.585184 1.01357i −0.994852 0.101334i \(-0.967689\pi\)
0.409669 0.912234i \(-0.365644\pi\)
\(192\) 1.58380 2.74322i 0.114301 0.197975i
\(193\) 12.5167 + 7.22652i 0.900972 + 0.520176i 0.877515 0.479549i \(-0.159200\pi\)
0.0234565 + 0.999725i \(0.492533\pi\)
\(194\) 11.5786 0.831292
\(195\) 30.5822 23.2859i 2.19004 1.66754i
\(196\) 0 0
\(197\) 16.4684 + 9.50802i 1.17332 + 0.677419i 0.954461 0.298337i \(-0.0964319\pi\)
0.218863 + 0.975756i \(0.429765\pi\)
\(198\) 7.52811 13.0391i 0.535000 0.926647i
\(199\) −0.812870 1.40793i −0.0576228 0.0998056i 0.835775 0.549072i \(-0.185019\pi\)
−0.893398 + 0.449266i \(0.851685\pi\)
\(200\) 6.32727i 0.447406i
\(201\) −1.01136 + 0.583911i −0.0713360 + 0.0411859i
\(202\) −5.36239 + 3.09598i −0.377296 + 0.217832i
\(203\) 0 0
\(204\) 7.53958 + 13.0589i 0.527876 + 0.914309i
\(205\) −5.55884 + 9.62819i −0.388246 + 0.672462i
\(206\) −2.86387 1.65345i −0.199535 0.115202i
\(207\) 22.4212 1.55838
\(208\) −2.18424 2.86864i −0.151450 0.198904i
\(209\) 2.10812 0.145822
\(210\) 0 0
\(211\) −9.03133 + 15.6427i −0.621742 + 1.07689i 0.367419 + 0.930056i \(0.380242\pi\)
−0.989161 + 0.146834i \(0.953092\pi\)
\(212\) 6.53907 + 11.3260i 0.449105 + 0.777872i
\(213\) 1.92337i 0.131787i
\(214\) 8.82996 5.09798i 0.603604 0.348491i
\(215\) 15.9988 9.23692i 1.09111 0.629952i
\(216\) 12.7771i 0.869372i
\(217\) 0 0
\(218\) −3.73454 + 6.46841i −0.252935 + 0.438096i
\(219\) 17.7016 + 10.2200i 1.19616 + 0.690605i
\(220\) −7.20436 −0.485718
\(221\) 17.0254 2.17689i 1.14525 0.146434i
\(222\) −27.3461 −1.83535
\(223\) −20.8994 12.0663i −1.39953 0.808017i −0.405184 0.914235i \(-0.632793\pi\)
−0.994343 + 0.106218i \(0.966126\pi\)
\(224\) 0 0
\(225\) 22.2520 + 38.5417i 1.48347 + 2.56944i
\(226\) 2.10006i 0.139694i
\(227\) 7.87201 4.54491i 0.522484 0.301656i −0.215467 0.976511i \(-0.569127\pi\)
0.737950 + 0.674855i \(0.235794\pi\)
\(228\) −2.70162 + 1.55978i −0.178919 + 0.103299i
\(229\) 6.33642i 0.418722i 0.977838 + 0.209361i \(0.0671384\pi\)
−0.977838 + 0.209361i \(0.932862\pi\)
\(230\) −5.36424 9.29113i −0.353707 0.612639i
\(231\) 0 0
\(232\) −3.70117 2.13687i −0.242994 0.140292i
\(233\) 17.1230 1.12177 0.560883 0.827895i \(-0.310462\pi\)
0.560883 + 0.827895i \(0.310462\pi\)
\(234\) 23.3935 + 9.79226i 1.52928 + 0.640140i
\(235\) 13.5371 0.883062
\(236\) −3.09394 1.78629i −0.201398 0.116277i
\(237\) 15.5747 26.9762i 1.01169 1.75229i
\(238\) 0 0
\(239\) 18.3950i 1.18987i 0.803772 + 0.594937i \(0.202823\pi\)
−0.803772 + 0.594937i \(0.797177\pi\)
\(240\) 9.23259 5.33044i 0.595961 0.344078i
\(241\) 14.2664 8.23670i 0.918979 0.530573i 0.0356697 0.999364i \(-0.488644\pi\)
0.883309 + 0.468791i \(0.155310\pi\)
\(242\) 6.41789i 0.412557i
\(243\) −11.5153 19.9450i −0.738704 1.27947i
\(244\) −2.03816 + 3.53019i −0.130480 + 0.225997i
\(245\) 0 0
\(246\) −10.4636 −0.667136
\(247\) 0.450352 + 3.52219i 0.0286552 + 0.224112i
\(248\) 0.825595 0.0524254
\(249\) −29.4020 16.9752i −1.86327 1.07576i
\(250\) 2.23354 3.86860i 0.141261 0.244672i
\(251\) −11.3118 19.5926i −0.713993 1.23667i −0.963347 0.268259i \(-0.913552\pi\)
0.249354 0.968412i \(-0.419782\pi\)
\(252\) 0 0
\(253\) −5.90934 + 3.41176i −0.371517 + 0.214495i
\(254\) −3.63391 + 2.09804i −0.228012 + 0.131643i
\(255\) 50.7505i 3.17812i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −5.10320 + 8.83901i −0.318329 + 0.551362i −0.980140 0.198309i \(-0.936455\pi\)
0.661811 + 0.749671i \(0.269788\pi\)
\(258\) 15.0576 + 8.69350i 0.937444 + 0.541234i
\(259\) 0 0
\(260\) −1.53905 12.0369i −0.0954478 0.746494i
\(261\) 30.0602 1.86068
\(262\) −9.00321 5.19800i −0.556220 0.321134i
\(263\) −8.96671 + 15.5308i −0.552911 + 0.957670i 0.445152 + 0.895455i \(0.353150\pi\)
−0.998063 + 0.0622150i \(0.980184\pi\)
\(264\) −3.39026 5.87211i −0.208656 0.361403i
\(265\) 44.0158i 2.70387i
\(266\) 0 0
\(267\) −13.6294 + 7.86893i −0.834105 + 0.481571i
\(268\) 0.368677i 0.0225205i
\(269\) 14.5400 + 25.1841i 0.886522 + 1.53550i 0.843959 + 0.536408i \(0.180219\pi\)
0.0425633 + 0.999094i \(0.486448\pi\)
\(270\) −21.5013 + 37.2414i −1.30853 + 2.26644i
\(271\) 4.79671 + 2.76938i 0.291379 + 0.168228i 0.638564 0.769569i \(-0.279529\pi\)
−0.347184 + 0.937797i \(0.612862\pi\)
\(272\) 4.76044 0.288644
\(273\) 0 0
\(274\) 10.2871 0.621468
\(275\) −11.7295 6.77204i −0.707317 0.408370i
\(276\) 5.04865 8.74453i 0.303893 0.526359i
\(277\) −1.53567 2.65986i −0.0922696 0.159816i 0.816196 0.577775i \(-0.196079\pi\)
−0.908466 + 0.417959i \(0.862745\pi\)
\(278\) 11.4494i 0.686689i
\(279\) −5.02899 + 2.90349i −0.301078 + 0.173827i
\(280\) 0 0
\(281\) 28.7901i 1.71747i −0.512419 0.858735i \(-0.671251\pi\)
0.512419 0.858735i \(-0.328749\pi\)
\(282\) 6.37034 + 11.0337i 0.379348 + 0.657050i
\(283\) −0.146547 + 0.253827i −0.00871132 + 0.0150885i −0.870348 0.492437i \(-0.836106\pi\)
0.861637 + 0.507525i \(0.169440\pi\)
\(284\) −0.525851 0.303600i −0.0312035 0.0180154i
\(285\) −10.4992 −0.621918
\(286\) −7.65567 + 0.978865i −0.452689 + 0.0578815i
\(287\) 0 0
\(288\) 6.09135 + 3.51684i 0.358936 + 0.207232i
\(289\) −2.83089 + 4.90325i −0.166523 + 0.288427i
\(290\) −7.19186 12.4567i −0.422320 0.731480i
\(291\) 36.6762i 2.15000i
\(292\) 5.58833 3.22642i 0.327032 0.188812i
\(293\) 20.3451 11.7463i 1.18857 0.686223i 0.230591 0.973051i \(-0.425934\pi\)
0.957982 + 0.286827i \(0.0926006\pi\)
\(294\) 0 0
\(295\) −6.01193 10.4130i −0.350028 0.606266i
\(296\) −4.31654 + 7.47646i −0.250894 + 0.434561i
\(297\) 23.6863 + 13.6753i 1.37442 + 0.793519i
\(298\) −17.4230 −1.00928
\(299\) −6.96267 9.14432i −0.402662 0.528830i
\(300\) 20.0423 1.15714
\(301\) 0 0
\(302\) −6.48773 + 11.2371i −0.373327 + 0.646621i
\(303\) −9.80681 16.9859i −0.563387 0.975815i
\(304\) 0.984833i 0.0564841i
\(305\) −11.8812 + 6.85962i −0.680316 + 0.392781i
\(306\) −28.9975 + 16.7417i −1.65768 + 0.957061i
\(307\) 9.44232i 0.538902i 0.963014 + 0.269451i \(0.0868422\pi\)
−0.963014 + 0.269451i \(0.913158\pi\)
\(308\) 0 0
\(309\) 5.23748 9.07158i 0.297950 0.516064i
\(310\) 2.40636 + 1.38931i 0.136672 + 0.0789077i
\(311\) −5.49342 −0.311503 −0.155752 0.987796i \(-0.549780\pi\)
−0.155752 + 0.987796i \(0.549780\pi\)
\(312\) 9.08670 6.91880i 0.514433 0.391700i
\(313\) 11.1616 0.630889 0.315445 0.948944i \(-0.397846\pi\)
0.315445 + 0.948944i \(0.397846\pi\)
\(314\) −21.1193 12.1933i −1.19183 0.688105i
\(315\) 0 0
\(316\) −4.91689 8.51630i −0.276597 0.479079i
\(317\) 2.47705i 0.139125i −0.997578 0.0695624i \(-0.977840\pi\)
0.997578 0.0695624i \(-0.0221603\pi\)
\(318\) −35.8762 + 20.7131i −2.01184 + 1.16154i
\(319\) −7.92268 + 4.57416i −0.443585 + 0.256104i
\(320\) 3.36560i 0.188143i
\(321\) 16.1484 + 27.9698i 0.901314 + 1.56112i
\(322\) 0 0
\(323\) −4.06013 2.34412i −0.225912 0.130430i
\(324\) −19.3717 −1.07621
\(325\) 8.80880 21.0441i 0.488624 1.16731i
\(326\) −13.2827 −0.735663
\(327\) −20.4893 11.8295i −1.13306 0.654174i
\(328\) −1.65166 + 2.86076i −0.0911978 + 0.157959i
\(329\) 0 0
\(330\) 22.8205i 1.25623i
\(331\) −15.9990 + 9.23702i −0.879384 + 0.507713i −0.870455 0.492247i \(-0.836176\pi\)
−0.00892890 + 0.999960i \(0.502842\pi\)
\(332\) −9.28210 + 5.35902i −0.509421 + 0.294114i
\(333\) 60.7224i 3.32757i
\(334\) 8.89300 + 15.4031i 0.486603 + 0.842822i
\(335\) −0.620410 + 1.07458i −0.0338966 + 0.0587107i
\(336\) 0 0
\(337\) 20.2662 1.10397 0.551984 0.833855i \(-0.313871\pi\)
0.551984 + 0.833855i \(0.313871\pi\)
\(338\) −3.27092 12.5818i −0.177915 0.684358i
\(339\) −6.65214 −0.361295
\(340\) 13.8752 + 8.01087i 0.752490 + 0.434451i
\(341\) 0.883630 1.53049i 0.0478512 0.0828808i
\(342\) −3.46351 5.99897i −0.187285 0.324387i
\(343\) 0 0
\(344\) 4.75362 2.74451i 0.256298 0.147974i
\(345\) 29.4306 16.9918i 1.58449 0.914806i
\(346\) 5.88247i 0.316244i
\(347\) −3.47239 6.01435i −0.186408 0.322867i 0.757642 0.652670i \(-0.226351\pi\)
−0.944050 + 0.329803i \(0.893018\pi\)
\(348\) 6.76875 11.7238i 0.362843 0.628463i
\(349\) 1.83312 + 1.05835i 0.0981249 + 0.0566524i 0.548259 0.836308i \(-0.315291\pi\)
−0.450135 + 0.892961i \(0.648624\pi\)
\(350\) 0 0
\(351\) −17.7882 + 42.4958i −0.949465 + 2.26826i
\(352\) −2.14059 −0.114094
\(353\) 6.65507 + 3.84230i 0.354213 + 0.204505i 0.666539 0.745470i \(-0.267775\pi\)
−0.312326 + 0.949975i \(0.601108\pi\)
\(354\) 5.65824 9.80036i 0.300732 0.520883i
\(355\) −1.02180 1.76980i −0.0542313 0.0939315i
\(356\) 4.96839i 0.263324i
\(357\) 0 0
\(358\) 8.56604 4.94561i 0.452730 0.261384i
\(359\) 9.39300i 0.495744i 0.968793 + 0.247872i \(0.0797312\pi\)
−0.968793 + 0.247872i \(0.920269\pi\)
\(360\) 11.8363 + 20.5011i 0.623828 + 1.08050i
\(361\) −9.01505 + 15.6145i −0.474476 + 0.821817i
\(362\) −17.0622 9.85087i −0.896769 0.517750i
\(363\) 20.3293 1.06701
\(364\) 0 0
\(365\) 21.7177 1.13676
\(366\) −11.1822 6.45606i −0.584505 0.337464i
\(367\) 14.4340 25.0005i 0.753450 1.30501i −0.192691 0.981260i \(-0.561721\pi\)
0.946141 0.323755i \(-0.104945\pi\)
\(368\) −1.59384 2.76062i −0.0830848 0.143907i
\(369\) 23.2346i 1.20954i
\(370\) −25.1628 + 14.5278i −1.30815 + 0.755262i
\(371\) 0 0
\(372\) 2.61516i 0.135590i
\(373\) 10.8721 + 18.8310i 0.562934 + 0.975030i 0.997239 + 0.0742642i \(0.0236608\pi\)
−0.434305 + 0.900766i \(0.643006\pi\)
\(374\) 5.09507 8.82492i 0.263460 0.456326i
\(375\) 12.2542 + 7.07496i 0.632803 + 0.365349i
\(376\) 4.02219 0.207428
\(377\) −9.33488 12.2598i −0.480771 0.631413i
\(378\) 0 0
\(379\) −30.6531 17.6976i −1.57455 0.909065i −0.995601 0.0936990i \(-0.970131\pi\)
−0.578946 0.815366i \(-0.696536\pi\)
\(380\) −1.65728 + 2.87049i −0.0850166 + 0.147253i
\(381\) −6.64575 11.5108i −0.340472 0.589715i
\(382\) 16.1748i 0.827575i
\(383\) 6.73904 3.89078i 0.344349 0.198810i −0.317845 0.948143i \(-0.602959\pi\)
0.662193 + 0.749333i \(0.269626\pi\)
\(384\) 2.74322 1.58380i 0.139989 0.0808230i
\(385\) 0 0
\(386\) 7.22652 + 12.5167i 0.367820 + 0.637083i
\(387\) −19.3040 + 33.4355i −0.981278 + 1.69962i
\(388\) 10.0273 + 5.78928i 0.509060 + 0.293906i
\(389\) 8.74901 0.443592 0.221796 0.975093i \(-0.428808\pi\)
0.221796 + 0.975093i \(0.428808\pi\)
\(390\) 38.1279 4.87509i 1.93068 0.246860i
\(391\) 15.1748 0.767422
\(392\) 0 0
\(393\) 16.4652 28.5186i 0.830559 1.43857i
\(394\) 9.50802 + 16.4684i 0.479007 + 0.829665i
\(395\) 33.0966i 1.66527i
\(396\) 13.0391 7.52811i 0.655238 0.378302i
\(397\) 24.9631 14.4124i 1.25286 0.723340i 0.281185 0.959654i \(-0.409273\pi\)
0.971677 + 0.236313i \(0.0759392\pi\)
\(398\) 1.62574i 0.0814909i
\(399\) 0 0
\(400\) 3.16364 5.47958i 0.158182 0.273979i
\(401\) 0.884338 + 0.510573i 0.0441618 + 0.0254968i 0.521918 0.852995i \(-0.325217\pi\)
−0.477757 + 0.878492i \(0.658550\pi\)
\(402\) −1.16782 −0.0582456
\(403\) 2.74587 + 1.14939i 0.136782 + 0.0572552i
\(404\) −6.19195 −0.308061
\(405\) −56.4627 32.5987i −2.80565 1.61984i
\(406\) 0 0
\(407\) 9.23993 + 16.0040i 0.458006 + 0.793290i
\(408\) 15.0792i 0.746530i
\(409\) 10.8725 6.27726i 0.537612 0.310391i −0.206498 0.978447i \(-0.566207\pi\)
0.744111 + 0.668056i \(0.232874\pi\)
\(410\) −9.62819 + 5.55884i −0.475502 + 0.274531i
\(411\) 32.5855i 1.60732i
\(412\) −1.65345 2.86387i −0.0814598 0.141093i
\(413\) 0 0
\(414\) 19.4173 + 11.2106i 0.954309 + 0.550971i
\(415\) −36.0727 −1.77074
\(416\) −0.457288 3.57644i −0.0224204 0.175349i
\(417\) 36.2671 1.77601
\(418\) 1.82569 + 1.05406i 0.0892973 + 0.0515558i
\(419\) −7.27959 + 12.6086i −0.355631 + 0.615971i −0.987226 0.159328i \(-0.949067\pi\)
0.631595 + 0.775299i \(0.282401\pi\)
\(420\) 0 0
\(421\) 15.5200i 0.756401i 0.925724 + 0.378200i \(0.123457\pi\)
−0.925724 + 0.378200i \(0.876543\pi\)
\(422\) −15.6427 + 9.03133i −0.761476 + 0.439638i
\(423\) −24.5006 + 14.1454i −1.19126 + 0.687773i
\(424\) 13.0781i 0.635130i
\(425\) 15.0603 + 26.0852i 0.730532 + 1.26532i
\(426\) 0.961684 1.66568i 0.0465937 0.0807027i
\(427\) 0 0
\(428\) 10.1960 0.492840
\(429\) −3.10065 24.2501i −0.149701 1.17081i
\(430\) 18.4738 0.890887
\(431\) −3.70768 2.14063i −0.178593 0.103111i 0.408039 0.912965i \(-0.366213\pi\)
−0.586631 + 0.809854i \(0.699546\pi\)
\(432\) −6.38856 + 11.0653i −0.307370 + 0.532380i
\(433\) 11.9795 + 20.7491i 0.575697 + 0.997137i 0.995966 + 0.0897368i \(0.0286026\pi\)
−0.420268 + 0.907400i \(0.638064\pi\)
\(434\) 0 0
\(435\) 39.4577 22.7809i 1.89185 1.09226i
\(436\) −6.46841 + 3.73454i −0.309781 + 0.178852i
\(437\) 3.13934i 0.150175i
\(438\) 10.2200 + 17.7016i 0.488331 + 0.845815i
\(439\) 13.3486 23.1204i 0.637092 1.10348i −0.348975 0.937132i \(-0.613470\pi\)
0.986068 0.166344i \(-0.0531963\pi\)
\(440\) −6.23916 3.60218i −0.297440 0.171727i
\(441\) 0 0
\(442\) 15.8329 + 6.62746i 0.753093 + 0.315236i
\(443\) 17.1779 0.816145 0.408073 0.912950i \(-0.366201\pi\)
0.408073 + 0.912950i \(0.366201\pi\)
\(444\) −23.6824 13.6731i −1.12392 0.648895i
\(445\) −8.36080 + 14.4813i −0.396340 + 0.686481i
\(446\) −12.0663 20.8994i −0.571355 0.989615i
\(447\) 55.1889i 2.61035i
\(448\) 0 0
\(449\) −9.05342 + 5.22699i −0.427257 + 0.246677i −0.698177 0.715925i \(-0.746005\pi\)
0.270920 + 0.962602i \(0.412672\pi\)
\(450\) 44.5041i 2.09794i
\(451\) 3.53553 + 6.12371i 0.166482 + 0.288354i
\(452\) −1.05003 + 1.81870i −0.0493892 + 0.0855446i
\(453\) −35.5946 20.5505i −1.67238 0.965548i
\(454\) 9.08981 0.426606
\(455\) 0 0
\(456\) −3.11956 −0.146087
\(457\) −8.99602 5.19386i −0.420816 0.242958i 0.274610 0.961556i \(-0.411451\pi\)
−0.695426 + 0.718597i \(0.744784\pi\)
\(458\) −3.16821 + 5.48750i −0.148041 + 0.256414i
\(459\) −30.4123 52.6757i −1.41953 2.45869i
\(460\) 10.7285i 0.500218i
\(461\) 6.01121 3.47058i 0.279970 0.161641i −0.353440 0.935457i \(-0.614988\pi\)
0.633410 + 0.773816i \(0.281655\pi\)
\(462\) 0 0
\(463\) 29.5056i 1.37124i 0.727960 + 0.685620i \(0.240469\pi\)
−0.727960 + 0.685620i \(0.759531\pi\)
\(464\) −2.13687 3.70117i −0.0992018 0.171822i
\(465\) −4.40079 + 7.62239i −0.204082 + 0.353480i
\(466\) 14.8290 + 8.56151i 0.686939 + 0.396604i
\(467\) 32.5194 1.50482 0.752410 0.658695i \(-0.228891\pi\)
0.752410 + 0.658695i \(0.228891\pi\)
\(468\) 15.3633 + 20.1771i 0.710167 + 0.932688i
\(469\) 0 0
\(470\) 11.7235 + 6.76854i 0.540763 + 0.312209i
\(471\) 38.6233 66.8976i 1.77967 3.08248i
\(472\) −1.78629 3.09394i −0.0822205 0.142410i
\(473\) 11.7497i 0.540252i
\(474\) 26.9762 15.5747i 1.23906 0.715371i
\(475\) −5.39647 + 3.11566i −0.247607 + 0.142956i
\(476\) 0 0
\(477\) −45.9938 79.6635i −2.10591 3.64754i
\(478\) −9.19751 + 15.9306i −0.420684 + 0.728647i
\(479\) −35.0245 20.2214i −1.60031 0.923938i −0.991425 0.130679i \(-0.958284\pi\)
−0.608884 0.793260i \(-0.708382\pi\)
\(480\) 10.6609 0.486600
\(481\) −24.7652 + 18.8567i −1.12920 + 0.859792i
\(482\) 16.4734 0.750343
\(483\) 0 0
\(484\) 3.20894 5.55805i 0.145861 0.252639i
\(485\) 19.4844 + 33.7480i 0.884741 + 1.53242i
\(486\) 23.0305i 1.04469i
\(487\) −30.0331 + 17.3396i −1.36093 + 0.785733i −0.989748 0.142827i \(-0.954381\pi\)
−0.371182 + 0.928560i \(0.621047\pi\)
\(488\) −3.53019 + 2.03816i −0.159804 + 0.0922630i
\(489\) 42.0744i 1.90267i
\(490\) 0 0
\(491\) 1.67954 2.90904i 0.0757964 0.131283i −0.825636 0.564203i \(-0.809183\pi\)
0.901432 + 0.432920i \(0.142517\pi\)
\(492\) −9.06175 5.23181i −0.408535 0.235868i
\(493\) 20.3449 0.916288
\(494\) −1.37108 + 3.27548i −0.0616878 + 0.147371i
\(495\) 50.6733 2.27759
\(496\) 0.714987 + 0.412798i 0.0321038 + 0.0185352i
\(497\) 0 0
\(498\) −16.9752 29.4020i −0.760678 1.31753i
\(499\) 24.5977i 1.10114i −0.834788 0.550572i \(-0.814410\pi\)
0.834788 0.550572i \(-0.185590\pi\)
\(500\) 3.86860 2.23354i 0.173009 0.0998869i
\(501\) −48.7909 + 28.1695i −2.17982 + 1.25852i
\(502\) 22.6235i 1.00974i
\(503\) −0.0232016 0.0401863i −0.00103451 0.00179182i 0.865508 0.500896i \(-0.166996\pi\)
−0.866542 + 0.499104i \(0.833663\pi\)
\(504\) 0 0
\(505\) −18.0477 10.4198i −0.803110 0.463676i
\(506\) −6.82352 −0.303342
\(507\) 39.8540 10.3610i 1.76998 0.460147i
\(508\) −4.19608 −0.186171
\(509\) −36.9879 21.3550i −1.63946 0.946542i −0.981020 0.193908i \(-0.937884\pi\)
−0.658439 0.752634i \(-0.728783\pi\)
\(510\) −25.3752 + 43.9512i −1.12363 + 1.94619i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 10.8975 6.29166i 0.481136 0.277784i
\(514\) −8.83901 + 5.10320i −0.389872 + 0.225093i
\(515\) 11.1297i 0.490435i
\(516\) 8.69350 + 15.0576i 0.382710 + 0.662873i
\(517\) 4.30492 7.45634i 0.189330 0.327930i
\(518\) 0 0
\(519\) −18.6333 −0.817912
\(520\) 4.68557 11.1937i 0.205476 0.490878i
\(521\) −18.3425 −0.803602 −0.401801 0.915727i \(-0.631616\pi\)
−0.401801 + 0.915727i \(0.631616\pi\)
\(522\) 26.0329 + 15.0301i 1.13943 + 0.657849i
\(523\) 6.16294 10.6745i 0.269487 0.466765i −0.699243 0.714884i \(-0.746479\pi\)
0.968729 + 0.248120i \(0.0798126\pi\)
\(524\) −5.19800 9.00321i −0.227076 0.393307i
\(525\) 0 0
\(526\) −15.5308 + 8.96671i −0.677175 + 0.390967i
\(527\) −3.40365 + 1.96510i −0.148265 + 0.0856010i
\(528\) 6.78052i 0.295084i
\(529\) 6.41933 + 11.1186i 0.279101 + 0.483418i
\(530\) −22.0079 + 38.1188i −0.955962 + 1.65577i
\(531\) 21.7618 + 12.5642i 0.944381 + 0.545239i
\(532\) 0 0
\(533\) −9.47605 + 7.21526i −0.410453 + 0.312527i
\(534\) −15.7379 −0.681044
\(535\) 29.7181 + 17.1578i 1.28483 + 0.741795i
\(536\) −0.184338 + 0.319284i −0.00796221 + 0.0137910i
\(537\) 15.6657 + 27.1338i 0.676025 + 1.17091i
\(538\) 29.0801i 1.25373i
\(539\) 0 0
\(540\) −37.2414 + 21.5013i −1.60262 + 0.925270i
\(541\) 19.1727i 0.824297i 0.911117 + 0.412148i \(0.135222\pi\)
−0.911117 + 0.412148i \(0.864778\pi\)
\(542\) 2.76938 + 4.79671i 0.118955 + 0.206036i
\(543\) 31.2036 54.0462i 1.33907 2.31935i
\(544\) 4.12266 + 2.38022i 0.176758 + 0.102051i
\(545\) −25.1380 −1.07679
\(546\) 0 0
\(547\) −1.25358 −0.0535993 −0.0267997 0.999641i \(-0.508532\pi\)
−0.0267997 + 0.999641i \(0.508532\pi\)
\(548\) 8.90891 + 5.14356i 0.380570 + 0.219722i
\(549\) 14.3358 24.8303i 0.611835 1.05973i
\(550\) −6.77204 11.7295i −0.288761 0.500148i
\(551\) 4.20892i 0.179306i
\(552\) 8.74453 5.04865i 0.372192 0.214885i
\(553\) 0 0
\(554\) 3.07134i 0.130489i
\(555\) −46.0181 79.7057i −1.95336 3.38332i
\(556\) 5.72470 9.91547i 0.242781 0.420510i
\(557\) −25.1832 14.5395i −1.06704 0.616058i −0.139672 0.990198i \(-0.544605\pi\)
−0.927372 + 0.374139i \(0.877938\pi\)
\(558\) −5.80698 −0.245829
\(559\) 19.6311 2.51006i 0.830307 0.106164i
\(560\) 0 0
\(561\) 27.9538 + 16.1391i 1.18021 + 0.681395i
\(562\) 14.3950 24.9329i 0.607218 1.05173i
\(563\) 21.6177 + 37.4430i 0.911078 + 1.57803i 0.812544 + 0.582900i \(0.198082\pi\)
0.0985342 + 0.995134i \(0.468585\pi\)
\(564\) 12.7407i 0.536479i
\(565\) −6.12103 + 3.53398i −0.257514 + 0.148676i
\(566\) −0.253827 + 0.146547i −0.0106692 + 0.00615984i
\(567\) 0 0
\(568\) −0.303600 0.525851i −0.0127388 0.0220642i
\(569\) 19.6059 33.9584i 0.821921 1.42361i −0.0823283 0.996605i \(-0.526236\pi\)
0.904250 0.427004i \(-0.140431\pi\)
\(570\) −9.09257 5.24959i −0.380846 0.219881i
\(571\) −9.73232 −0.407285 −0.203642 0.979045i \(-0.565278\pi\)
−0.203642 + 0.979045i \(0.565278\pi\)
\(572\) −7.11944 2.98011i −0.297679 0.124605i
\(573\) 51.2353 2.14039
\(574\) 0 0
\(575\) 10.0847 17.4672i 0.420560 0.728432i
\(576\) 3.51684 + 6.09135i 0.146535 + 0.253806i
\(577\) 32.9589i 1.37210i 0.727555 + 0.686049i \(0.240657\pi\)
−0.727555 + 0.686049i \(0.759343\pi\)
\(578\) −4.90325 + 2.83089i −0.203948 + 0.117750i
\(579\) −39.6479 + 22.8907i −1.64771 + 0.951306i
\(580\) 14.3837i 0.597251i
\(581\) 0 0
\(582\) −18.3381 + 31.7626i −0.760139 + 1.31660i
\(583\) 24.2443 + 13.9974i 1.00410 + 0.579715i
\(584\) 6.45285 0.267021
\(585\) 10.8252 + 84.6635i 0.447567 + 3.50041i
\(586\) 23.4925 0.970466
\(587\) 17.6862 + 10.2112i 0.729989 + 0.421460i 0.818418 0.574623i \(-0.194851\pi\)
−0.0884289 + 0.996082i \(0.528185\pi\)
\(588\) 0 0
\(589\) −0.406537 0.704143i −0.0167511 0.0290137i
\(590\) 12.0239i 0.495014i
\(591\) −52.1652 + 30.1176i −2.14579 + 1.23887i
\(592\) −7.47646 + 4.31654i −0.307281 + 0.177409i
\(593\) 2.94734i 0.121033i 0.998167 + 0.0605165i \(0.0192748\pi\)
−0.998167 + 0.0605165i \(0.980725\pi\)
\(594\) 13.6753 + 23.6863i 0.561103 + 0.971859i
\(595\) 0 0
\(596\) −15.0887 8.71148i −0.618058 0.356836i
\(597\) 5.14969 0.210763
\(598\) −1.45769 11.4005i −0.0596094 0.466203i
\(599\) 22.1745 0.906025 0.453012 0.891504i \(-0.350349\pi\)
0.453012 + 0.891504i \(0.350349\pi\)
\(600\) 17.3571 + 10.0211i 0.708601 + 0.409111i
\(601\) −21.9356 + 37.9936i −0.894772 + 1.54979i −0.0606864 + 0.998157i \(0.519329\pi\)
−0.834086 + 0.551634i \(0.814004\pi\)
\(602\) 0 0
\(603\) 2.59316i 0.105602i
\(604\) −11.2371 + 6.48773i −0.457230 + 0.263982i
\(605\) 18.7062 10.8000i 0.760515 0.439083i
\(606\) 19.6136i 0.796749i
\(607\) 11.7640 + 20.3758i 0.477485 + 0.827028i 0.999667 0.0258057i \(-0.00821512\pi\)
−0.522182 + 0.852834i \(0.674882\pi\)
\(608\) −0.492417 + 0.852891i −0.0199701 + 0.0345893i
\(609\) 0 0
\(610\) −13.7192 −0.555476
\(611\) 13.3775 + 5.59967i 0.541196 + 0.226538i
\(612\) −33.4835 −1.35349
\(613\) −4.94319 2.85395i −0.199654 0.115270i 0.396840 0.917888i \(-0.370107\pi\)
−0.596494 + 0.802618i \(0.703440\pi\)
\(614\) −4.72116 + 8.17729i −0.190531 + 0.330009i
\(615\) −17.6082 30.4983i −0.710030 1.22981i
\(616\) 0 0
\(617\) −9.94900 + 5.74406i −0.400531 + 0.231247i −0.686713 0.726928i \(-0.740947\pi\)
0.286182 + 0.958175i \(0.407614\pi\)
\(618\) 9.07158 5.23748i 0.364912 0.210682i
\(619\) 11.6996i 0.470246i −0.971966 0.235123i \(-0.924451\pi\)
0.971966 0.235123i \(-0.0755493\pi\)
\(620\) 1.38931 + 2.40636i 0.0557961 + 0.0966418i
\(621\) −20.3647 + 35.2727i −0.817207 + 1.41544i
\(622\) −4.75744 2.74671i −0.190756 0.110133i
\(623\) 0 0
\(624\) 11.3287 1.44850i 0.453512 0.0579866i
\(625\) −16.6020 −0.664079
\(626\) 9.66620 + 5.58079i 0.386339 + 0.223053i
\(627\) −3.33884 + 5.78305i −0.133341 + 0.230953i
\(628\) −12.1933 21.1193i −0.486564 0.842753i
\(629\) 41.0972i 1.63865i
\(630\) 0 0
\(631\) 32.2871 18.6410i 1.28533 0.742085i 0.307512 0.951544i \(-0.400504\pi\)
0.977817 + 0.209459i \(0.0671703\pi\)
\(632\) 9.83378i 0.391167i
\(633\) −28.6076 49.5499i −1.13705 1.96943i
\(634\) 1.23852 2.14518i 0.0491880 0.0851961i
\(635\) −12.2303 7.06117i −0.485345 0.280214i
\(636\) −41.4263 −1.64266
\(637\) 0 0
\(638\) −9.14832 −0.362185
\(639\) 3.69867 + 2.13543i 0.146317 + 0.0844763i
\(640\) 1.68280 2.91470i 0.0665185 0.115213i
\(641\) 15.2287 + 26.3769i 0.601499 + 1.04183i 0.992594 + 0.121477i \(0.0387629\pi\)
−0.391095 + 0.920350i \(0.627904\pi\)
\(642\) 32.2967i 1.27465i
\(643\) −4.04254 + 2.33396i −0.159422 + 0.0920426i −0.577589 0.816328i \(-0.696006\pi\)
0.418166 + 0.908370i \(0.362673\pi\)
\(644\) 0 0
\(645\) 58.5177i 2.30413i
\(646\) −2.34412 4.06013i −0.0922282 0.159744i
\(647\) 11.2208 19.4350i 0.441136 0.764070i −0.556638 0.830755i \(-0.687909\pi\)
0.997774 + 0.0666848i \(0.0212422\pi\)
\(648\) −16.7764 9.68586i −0.659039 0.380496i
\(649\) −7.64740 −0.300187
\(650\) 18.1507 13.8203i 0.711928 0.542076i
\(651\) 0 0
\(652\) −11.5032 6.64137i −0.450500 0.260096i
\(653\) −2.22584 + 3.85527i −0.0871039 + 0.150868i −0.906286 0.422665i \(-0.861095\pi\)
0.819182 + 0.573534i \(0.194428\pi\)
\(654\) −11.8295 20.4893i −0.462571 0.801197i
\(655\) 34.9888i 1.36713i
\(656\) −2.86076 + 1.65166i −0.111694 + 0.0644866i
\(657\) −39.3066 + 22.6937i −1.53350 + 0.885364i
\(658\) 0 0
\(659\) 13.8502 + 23.9893i 0.539529 + 0.934491i 0.998929 + 0.0462621i \(0.0147309\pi\)
−0.459400 + 0.888229i \(0.651936\pi\)
\(660\) 11.4103 19.7632i 0.444144 0.769280i
\(661\) 26.6584 + 15.3912i 1.03689 + 0.598649i 0.918951 0.394372i \(-0.129038\pi\)
0.117940 + 0.993021i \(0.462371\pi\)
\(662\) −18.4740 −0.718014
\(663\) −20.9931 + 50.1522i −0.815306 + 1.94775i
\(664\) −10.7180 −0.415941
\(665\) 0 0
\(666\) 30.3612 52.5871i 1.17647 2.03771i
\(667\) −6.81167 11.7982i −0.263749 0.456827i
\(668\) 17.7860i 0.688161i
\(669\) 66.2009 38.2211i 2.55948 1.47771i
\(670\) −1.07458 + 0.620410i −0.0415147 + 0.0239685i
\(671\) 8.72570i 0.336852i
\(672\) 0 0
\(673\) 7.54026 13.0601i 0.290656 0.503430i −0.683309 0.730129i \(-0.739460\pi\)
0.973965 + 0.226699i \(0.0727933\pi\)
\(674\) 17.5510 + 10.1331i 0.676039 + 0.390312i
\(675\) −80.8443 −3.11170
\(676\) 3.45819 12.5316i 0.133007 0.481985i
\(677\) 7.45886 0.286667 0.143334 0.989674i \(-0.454218\pi\)
0.143334 + 0.989674i \(0.454218\pi\)
\(678\) −5.76092 3.32607i −0.221247 0.127737i
\(679\) 0 0
\(680\) 8.01087 + 13.8752i 0.307203 + 0.532091i
\(681\) 28.7929i 1.10335i
\(682\) 1.53049 0.883630i 0.0586055 0.0338359i
\(683\) 27.0516 15.6183i 1.03510 0.597616i 0.116659 0.993172i \(-0.462782\pi\)
0.918442 + 0.395556i \(0.129448\pi\)
\(684\) 6.92701i 0.264861i
\(685\) 17.3112 + 29.9838i 0.661426 + 1.14562i
\(686\) 0 0
\(687\) −17.3822 10.0356i −0.663172 0.382883i
\(688\) 5.48901 0.209267
\(689\) −18.2073 + 43.4969i −0.693643 + 1.65710i
\(690\) 33.9835 1.29373
\(691\) 16.4111 + 9.47494i 0.624307 + 0.360444i 0.778544 0.627590i \(-0.215959\pi\)
−0.154237 + 0.988034i \(0.549292\pi\)
\(692\) −2.94124 + 5.09437i −0.111809 + 0.193659i
\(693\) 0 0
\(694\) 6.94477i 0.263620i
\(695\) 33.3715 19.2671i 1.26585 0.730841i
\(696\) 11.7238 6.76875i 0.444390 0.256569i
\(697\) 15.7253i 0.595637i
\(698\) 1.05835 + 1.83312i 0.0400593 + 0.0693848i
\(699\) −27.1195 + 46.9723i −1.02575 + 1.77665i
\(700\) 0 0
\(701\) −31.8599 −1.20333 −0.601665 0.798748i \(-0.705496\pi\)
−0.601665 + 0.798748i \(0.705496\pi\)
\(702\) −36.6529 + 27.9083i −1.38338 + 1.05333i
\(703\) 8.50214 0.320664
\(704\) −1.85380 1.07029i −0.0698678 0.0403382i
\(705\) −21.4400 + 37.1352i −0.807478 + 1.39859i
\(706\) 3.84230 + 6.65507i 0.144607 + 0.250467i
\(707\) 0 0
\(708\) 9.80036 5.65824i 0.368320 0.212650i
\(709\) 10.5513 6.09179i 0.396262 0.228782i −0.288608 0.957447i \(-0.593192\pi\)
0.684870 + 0.728665i \(0.259859\pi\)
\(710\) 2.04359i 0.0766947i
\(711\) 34.5839 + 59.9010i 1.29700 + 2.24646i
\(712\) −2.48419 + 4.30275i −0.0930991 + 0.161252i
\(713\) 2.27915 + 1.31587i 0.0853549 + 0.0492797i
\(714\) 0 0
\(715\) −15.7361 20.6667i −0.588495 0.772892i
\(716\) 9.89122 0.369652
\(717\) −50.4616 29.1340i −1.88452 1.08803i
\(718\) −4.69650 + 8.13458i −0.175272 + 0.303580i
\(719\) 19.1614 + 33.1885i 0.714599 + 1.23772i 0.963114 + 0.269094i \(0.0867243\pi\)
−0.248515 + 0.968628i \(0.579942\pi\)
\(720\) 23.6726i 0.882226i
\(721\) 0 0
\(722\) −15.6145 + 9.01505i −0.581113 + 0.335505i
\(723\) 52.1812i 1.94064i
\(724\) −9.85087 17.0622i −0.366105 0.634112i
\(725\) 13.5206 23.4183i 0.502141 0.869734i
\(726\) 17.6057 + 10.1646i 0.653408 + 0.377245i
\(727\) 32.7827 1.21584 0.607921 0.793997i \(-0.292004\pi\)
0.607921 + 0.793997i \(0.292004\pi\)
\(728\) 0 0
\(729\) 14.8363 0.549492
\(730\) 18.8081 + 10.8589i 0.696119 + 0.401904i
\(731\) −13.0651 + 22.6293i −0.483229 + 0.836977i
\(732\) −6.45606 11.1822i −0.238623 0.413307i
\(733\) 30.9479i 1.14309i 0.820572 + 0.571543i \(0.193655\pi\)
−0.820572 + 0.571543i \(0.806345\pi\)
\(734\) 25.0005 14.4340i 0.922784 0.532770i
\(735\) 0 0
\(736\) 3.18768i 0.117500i
\(737\) 0.394593 + 0.683454i 0.0145350 + 0.0251754i
\(738\) 11.6173 20.1217i 0.427638 0.740691i
\(739\) 2.54693 + 1.47047i 0.0936904 + 0.0540922i 0.546113 0.837711i \(-0.316107\pi\)
−0.452423 + 0.891804i \(0.649440\pi\)
\(740\) −29.0555 −1.06810
\(741\) −10.3754 4.34303i −0.381151 0.159545i
\(742\) 0 0
\(743\) 10.9357 + 6.31376i 0.401194 + 0.231629i 0.686999 0.726658i \(-0.258928\pi\)
−0.285805 + 0.958288i \(0.592261\pi\)
\(744\) −1.30758 + 2.26479i −0.0479381 + 0.0830313i
\(745\) −29.3194 50.7826i −1.07418 1.86053i
\(746\) 21.7441i 0.796109i
\(747\) 65.2874 37.6937i 2.38874 1.37914i
\(748\) 8.82492 5.09507i 0.322671 0.186294i
\(749\) 0 0
\(750\) 7.07496 + 12.2542i 0.258341 + 0.447460i
\(751\) 12.7063 22.0080i 0.463660 0.803082i −0.535480 0.844548i \(-0.679869\pi\)
0.999140 + 0.0414655i \(0.0132027\pi\)
\(752\) 3.48332 + 2.01109i 0.127023 + 0.0733370i
\(753\) 71.6623 2.61152
\(754\) −1.95433 15.2848i −0.0711725 0.556638i
\(755\) −43.6702 −1.58932
\(756\) 0 0
\(757\) −3.88828 + 6.73469i −0.141322 + 0.244777i −0.927995 0.372594i \(-0.878469\pi\)
0.786673 + 0.617370i \(0.211802\pi\)
\(758\) −17.6976 30.6531i −0.642806 1.11337i
\(759\) 21.6142i 0.784545i
\(760\) −2.87049 + 1.65728i −0.104124 + 0.0601158i
\(761\) 33.3076 19.2301i 1.20740 0.697092i 0.245209 0.969470i \(-0.421143\pi\)
0.962190 + 0.272378i \(0.0878101\pi\)
\(762\) 13.2915i 0.481500i
\(763\) 0 0
\(764\) 8.08740 14.0078i 0.292592 0.506784i
\(765\) −97.5941 56.3460i −3.52852 2.03719i
\(766\) 7.78157 0.281160
\(767\) −1.63369 12.7771i −0.0589893 0.461353i
\(768\) 3.16760 0.114301
\(769\) 15.1551 + 8.74980i 0.546507 + 0.315526i 0.747712 0.664023i \(-0.231152\pi\)
−0.201205 + 0.979549i \(0.564486\pi\)
\(770\) 0 0
\(771\) −16.1649 27.9984i −0.582165 1.00834i
\(772\) 14.4530i 0.520176i
\(773\) 6.17873 3.56729i 0.222233 0.128306i −0.384751 0.923021i \(-0.625713\pi\)
0.606984 + 0.794714i \(0.292379\pi\)
\(774\) −33.4355 + 19.3040i −1.20181 + 0.693868i
\(775\) 5.22377i 0.187643i
\(776\) 5.78928 + 10.0273i 0.207823 + 0.359960i
\(777\) 0 0
\(778\) 7.57687 + 4.37451i 0.271644 + 0.156834i
\(779\) 3.25322 0.116559
\(780\) 35.4573 + 14.8420i 1.26958 + 0.531430i
\(781\) −1.29976 −0.0465092
\(782\) 13.1417 + 7.58739i 0.469948 + 0.271325i
\(783\) −27.3030 + 47.2903i −0.975731 + 1.69002i
\(784\) 0 0
\(785\) 82.0753i 2.92939i
\(786\) 28.5186 16.4652i 1.01722 0.587294i
\(787\) −28.2009 + 16.2818i −1.00525 + 0.580383i −0.909798 0.415050i \(-0.863764\pi\)
−0.0954550 + 0.995434i \(0.530431\pi\)
\(788\) 19.0160i 0.677419i
\(789\) −28.4030 49.1954i −1.01117 1.75140i
\(790\) 16.5483 28.6625i 0.588762 1.01977i
\(791\) 0 0
\(792\) 15.0562 0.535000
\(793\) −14.5787 + 1.86405i −0.517704 + 0.0661943i
\(794\) 28.8249 1.02296
\(795\) −120.745 69.7122i −4.28239 2.47244i
\(796\) 0.812870 1.40793i 0.0288114 0.0499028i
\(797\) −5.18869 8.98708i −0.183793 0.318339i 0.759376 0.650652i \(-0.225504\pi\)
−0.943169 + 0.332313i \(0.892171\pi\)
\(798\) 0 0
\(799\) −16.5821 + 9.57369i −0.586633 + 0.338693i
\(800\) 5.47958 3.16364i 0.193732 0.111851i
\(801\) 34.9461i 1.23476i
\(802\) 0.510573 + 0.884338i 0.0180290 + 0.0312271i
\(803\) 6.90644 11.9623i 0.243723 0.422141i
\(804\) −1.01136 0.583911i −0.0356680 0.0205929i
\(805\) 0 0
\(806\) 1.80330 + 2.36834i 0.0635185 + 0.0834211i
\(807\) −92.1141 −3.24257
\(808\) −5.36239 3.09598i −0.188648 0.108916i
\(809\) 16.3533 28.3248i 0.574953 0.995847i −0.421094 0.907017i \(-0.638354\pi\)
0.996047 0.0888304i \(-0.0283129\pi\)
\(810\) −32.5987 56.4627i −1.14540 1.98390i
\(811\) 51.4793i 1.80768i −0.427869 0.903841i \(-0.640736\pi\)
0.427869 0.903841i \(-0.359264\pi\)
\(812\) 0 0
\(813\) −15.1941 + 8.77229i −0.532879 + 0.307658i
\(814\) 18.4799i 0.647719i
\(815\) −22.3522 38.7151i −0.782963 1.35613i
\(816\) −7.53958 + 13.0589i −0.263938 + 0.457154i
\(817\) −4.68153 2.70288i −0.163786 0.0945619i
\(818\) 12.5545 0.438959
\(819\) 0 0
\(820\) −11.1177 −0.388246
\(821\) 22.9971 + 13.2774i 0.802603 + 0.463383i 0.844381 0.535744i \(-0.179969\pi\)
−0.0417774 + 0.999127i \(0.513302\pi\)
\(822\) −16.2927 + 28.2199i −0.568275 + 0.984281i
\(823\) −17.1965 29.7851i −0.599431 1.03824i −0.992905 0.118909i \(-0.962060\pi\)
0.393474 0.919336i \(-0.371273\pi\)
\(824\) 3.30691i 0.115202i
\(825\) 37.1544 21.4511i 1.29355 0.746832i
\(826\) 0 0
\(827\) 5.99914i 0.208610i −0.994545 0.104305i \(-0.966738\pi\)
0.994545 0.104305i \(-0.0332619\pi\)
\(828\) 11.2106 + 19.4173i 0.389595 + 0.674798i
\(829\) −26.3198 + 45.5873i −0.914125 + 1.58331i −0.105947 + 0.994372i \(0.533787\pi\)
−0.808178 + 0.588939i \(0.799546\pi\)
\(830\) −31.2398 18.0363i −1.08435 0.626050i
\(831\) 9.72879 0.337488
\(832\) 1.39219 3.32593i 0.0482657 0.115306i
\(833\) 0 0
\(834\) 31.4083 + 18.1336i 1.08758 + 0.627914i
\(835\) −29.9303 + 51.8408i −1.03578 + 1.79402i
\(836\) 1.05406 + 1.82569i 0.0364555 + 0.0631427i
\(837\) 10.5487i 0.364617i
\(838\) −12.6086 + 7.27959i −0.435558 + 0.251469i
\(839\) 29.2128 16.8660i 1.00854 0.582279i 0.0977743 0.995209i \(-0.468828\pi\)
0.910763 + 0.412929i \(0.135494\pi\)
\(840\) 0 0
\(841\) 5.36756 + 9.29689i 0.185088 + 0.320583i
\(842\) −7.76002 + 13.4408i −0.267428 + 0.463199i
\(843\) 78.9775 + 45.5977i 2.72013 + 1.57047i
\(844\) −18.0627 −0.621742
\(845\) 31.1678 30.7064i 1.07220 1.05633i
\(846\) −28.2908 −0.972658
\(847\) 0 0
\(848\) −6.53907 + 11.3260i −0.224552 + 0.388936i
\(849\) −0.464203 0.804023i −0.0159314 0.0275940i
\(850\) 30.1206i 1.03313i
\(851\) −23.8326 + 13.7598i −0.816971 + 0.471679i
\(852\) 1.66568 0.961684i 0.0570654 0.0329467i
\(853\) 23.9213i 0.819049i −0.912299 0.409525i \(-0.865695\pi\)
0.912299 0.409525i \(-0.134305\pi\)
\(854\) 0 0
\(855\) 11.6568 20.1901i 0.398654 0.690488i
\(856\) 8.82996 + 5.09798i 0.301802 + 0.174245i
\(857\) 36.9629 1.26263 0.631314 0.775527i \(-0.282516\pi\)
0.631314 + 0.775527i \(0.282516\pi\)
\(858\) 9.43981 22.5515i 0.322270 0.769897i
\(859\) 2.09326 0.0714211 0.0357105 0.999362i \(-0.488631\pi\)
0.0357105 + 0.999362i \(0.488631\pi\)
\(860\) 15.9988 + 9.23692i 0.545555 + 0.314976i
\(861\) 0 0
\(862\) −2.14063 3.70768i −0.0729102 0.126284i
\(863\) 25.7306i 0.875881i −0.899004 0.437941i \(-0.855708\pi\)
0.899004 0.437941i \(-0.144292\pi\)
\(864\) −11.0653 + 6.38856i −0.376449 + 0.217343i
\(865\) −17.1456 + 9.89903i −0.582969 + 0.336577i
\(866\) 23.9590i 0.814159i
\(867\) −8.96714 15.5315i −0.304540 0.527479i
\(868\) 0 0
\(869\) −18.2299 10.5250i −0.618407 0.357037i
\(870\) 45.5619 1.54469
\(871\) −1.05760 + 0.805279i −0.0358355 + 0.0272858i
\(872\) −7.46908 −0.252935
\(873\) −70.5291 40.7200i −2.38705 1.37816i
\(874\) −1.56967 + 2.71875i −0.0530948 + 0.0919630i
\(875\) 0 0
\(876\) 20.4400i 0.690605i
\(877\) −0.540703 + 0.312175i −0.0182582 + 0.0105414i −0.509101 0.860707i \(-0.670022\pi\)
0.490843 + 0.871248i \(0.336689\pi\)
\(878\) 23.1204 13.3486i 0.780276 0.450492i
\(879\) 74.4148i 2.50995i
\(880\) −3.60218 6.23916i −0.121430 0.210322i
\(881\) −11.7941 + 20.4280i −0.397355 + 0.688238i −0.993399 0.114713i \(-0.963405\pi\)
0.596044 + 0.802952i \(0.296738\pi\)
\(882\) 0 0
\(883\) −3.01641 −0.101510 −0.0507551 0.998711i \(-0.516163\pi\)
−0.0507551 + 0.998711i \(0.516163\pi\)
\(884\) 10.3979 + 13.6560i 0.349721 + 0.459301i
\(885\) 38.0868 1.28027
\(886\) 14.8765 + 8.58893i 0.499785 + 0.288551i
\(887\) −4.57839 + 7.93000i −0.153727 + 0.266263i −0.932595 0.360925i \(-0.882461\pi\)
0.778868 + 0.627188i \(0.215794\pi\)
\(888\) −13.6731 23.6824i −0.458838 0.794731i
\(889\) 0 0
\(890\) −14.4813 + 8.36080i −0.485416 + 0.280255i
\(891\) −35.9113 + 20.7334i −1.20308 + 0.694596i
\(892\) 24.1325i 0.808017i
\(893\) −1.98059 3.43049i −0.0662780 0.114797i
\(894\) 27.5945 47.7950i 0.922897 1.59850i
\(895\) 28.8299 + 16.6449i 0.963677 + 0.556379i
\(896\) 0 0
\(897\) 36.1124 4.61738i 1.20576 0.154170i
\(898\) −10.4540 −0.348854
\(899\) 3.05567 + 1.76419i 0.101912 + 0.0588391i
\(900\) −22.2520 + 38.5417i −0.741735 + 1.28472i
\(901\) −31.1288 53.9167i −1.03705 1.79623i
\(902\) 7.07106i 0.235440i
\(903\) 0 0
\(904\) −1.81870 + 1.05003i −0.0604892 + 0.0349234i
\(905\) 66.3082i 2.20416i
\(906\) −20.5505 35.5946i −0.682746 1.18255i
\(907\) −23.3637 + 40.4672i −0.775780 + 1.34369i 0.158574 + 0.987347i \(0.449310\pi\)
−0.934355 + 0.356344i \(0.884023\pi\)
\(908\) 7.87201 + 4.54491i 0.261242 + 0.150828i
\(909\) 43.5523 1.44454
\(910\) 0 0
\(911\) 41.7044 1.38173 0.690864 0.722985i \(-0.257230\pi\)
0.690864 + 0.722985i \(0.257230\pi\)
\(912\) −2.70162 1.55978i −0.0894595 0.0516494i
\(913\) −11.4715 + 19.8691i −0.379650 + 0.657572i
\(914\) −5.19386 8.99602i −0.171797 0.297562i
\(915\) 43.4571i 1.43665i
\(916\) −5.48750 + 3.16821i −0.181312 + 0.104681i
\(917\) 0 0
\(918\) 60.8247i 2.00751i
\(919\) 3.95481 + 6.84994i 0.130457 + 0.225959i 0.923853 0.382748i \(-0.125022\pi\)
−0.793396 + 0.608706i \(0.791689\pi\)
\(920\) 5.36424 9.29113i 0.176854 0.306320i
\(921\) −25.9024 14.9547i −0.853513 0.492776i
\(922\) 6.94115 0.228595
\(923\) −0.277665 2.17161i −0.00913946 0.0714795i
\(924\) 0 0
\(925\) −47.3056 27.3119i −1.55540 0.898011i
\(926\) −14.7528 + 25.5526i −0.484806 + 0.839709i
\(927\) 11.6299 + 20.1435i 0.381975 + 0.661601i
\(928\) 4.27374i 0.140292i
\(929\) 5.51012 3.18127i 0.180781 0.104374i −0.406878 0.913482i \(-0.633383\pi\)
0.587660 + 0.809108i \(0.300049\pi\)
\(930\) −7.62239 + 4.40079i −0.249948 + 0.144307i
\(931\) 0 0
\(932\) 8.56151 + 14.8290i 0.280442 + 0.485739i
\(933\) 8.70048 15.0697i 0.284841 0.493359i
\(934\) 28.1626 + 16.2597i 0.921510 + 0.532034i
\(935\) 34.2959 1.12160
\(936\) 3.21642 + 25.1555i 0.105132 + 0.822234i
\(937\) −41.7048 −1.36244 −0.681219 0.732080i \(-0.738550\pi\)
−0.681219 + 0.732080i \(0.738550\pi\)
\(938\) 0 0
\(939\) −17.6777 + 30.6187i −0.576890 + 0.999202i
\(940\) 6.76854 + 11.7235i 0.220765 + 0.382377i
\(941\) 20.6192i 0.672167i −0.941832 0.336083i \(-0.890898\pi\)
0.941832 0.336083i \(-0.109102\pi\)
\(942\) 66.8976 38.6233i 2.17964 1.25842i
\(943\) −9.11921 + 5.26498i −0.296962 + 0.171451i
\(944\) 3.57257i 0.116277i
\(945\) 0 0
\(946\) 5.87486 10.1755i 0.191008 0.330836i
\(947\) 4.43704 + 2.56172i 0.144184 + 0.0832449i 0.570357 0.821397i \(-0.306805\pi\)
−0.426172 + 0.904642i \(0.640138\pi\)
\(948\) 31.1495 1.01169
\(949\) 21.4617 + 8.98362i 0.696676 + 0.291621i
\(950\) −6.23131 −0.202170
\(951\) 6.79508 + 3.92314i 0.220346 + 0.127217i
\(952\) 0 0
\(953\) −15.2986 26.4979i −0.495570 0.858352i 0.504417 0.863460i \(-0.331707\pi\)
−0.999987 + 0.00510792i \(0.998374\pi\)
\(954\) 91.9875i 2.97821i
\(955\) 47.1446 27.2190i 1.52556 0.880785i
\(956\) −15.9306 + 9.19751i −0.515231 + 0.297469i
\(957\) 28.9782i 0.936733i
\(958\) −20.2214 35.0245i −0.653323 1.13159i
\(959\) 0 0
\(960\) 9.23259 + 5.33044i 0.297981 + 0.172039i
\(961\) 30.3184 0.978013
\(962\) −30.8756 + 3.94780i −0.995471 + 0.127282i
\(963\) −71.7152 −2.31099
\(964\) 14.2664 + 8.23670i 0.459489 + 0.265286i
\(965\) −24.3216 + 42.1262i −0.782940 + 1.35609i
\(966\) 0 0
\(967\) 48.2365i 1.55118i 0.631236 + 0.775591i \(0.282548\pi\)
−0.631236 + 0.775591i \(0.717452\pi\)
\(968\) 5.55805 3.20894i 0.178643 0.103139i
\(969\) 12.8609 7.42523i 0.413151 0.238533i
\(970\) 38.9688i 1.25121i
\(971\) 16.3486 + 28.3166i 0.524651 + 0.908721i 0.999588 + 0.0287019i \(0.00913736\pi\)
−0.474937 + 0.880020i \(0.657529\pi\)
\(972\) 11.5153 19.9450i 0.369352 0.639736i
\(973\) 0 0
\(974\) −34.6792 −1.11119
\(975\) 43.7771 + 57.4941i 1.40199 + 1.84128i
\(976\) −4.07631 −0.130480
\(977\) 22.0714 + 12.7429i 0.706125 + 0.407682i 0.809625 0.586948i \(-0.199671\pi\)
−0.103499 + 0.994630i \(0.533004\pi\)
\(978\) 21.0372 36.4375i 0.672695 1.16514i
\(979\) 5.31763 + 9.21041i 0.169952 + 0.294366i
\(980\) 0 0
\(981\) 45.4968 26.2676i 1.45260 0.838660i
\(982\) 2.90904 1.67954i 0.0928313 0.0535962i
\(983\) 27.7551i 0.885249i −0.896707 0.442625i \(-0.854047\pi\)
0.896707 0.442625i \(-0.145953\pi\)
\(984\) −5.23181 9.06175i −0.166784 0.288878i
\(985\) −32.0002 + 55.4260i −1.01961 + 1.76602i
\(986\) 17.6192 + 10.1724i 0.561109 + 0.323957i
\(987\) 0 0
\(988\) −2.82513 + 2.15111i −0.0898794 + 0.0684360i
\(989\) 17.4972 0.556380
\(990\) 43.8843 + 25.3366i 1.39474 + 0.805251i
\(991\) 9.79291 16.9618i 0.311082 0.538810i −0.667515 0.744597i \(-0.732642\pi\)
0.978597 + 0.205786i \(0.0659752\pi\)
\(992\) 0.412798 + 0.714987i 0.0131063 + 0.0227008i
\(993\) 58.5184i 1.85702i
\(994\) 0 0
\(995\) 4.73854 2.73580i 0.150222 0.0867305i
\(996\) 33.9505i 1.07576i
\(997\) 2.38826 + 4.13659i 0.0756370 + 0.131007i 0.901363 0.433064i \(-0.142568\pi\)
−0.825726 + 0.564071i \(0.809234\pi\)
\(998\) 12.2988 21.3022i 0.389313 0.674310i
\(999\) 95.5276 + 55.1529i 3.02236 + 1.74496i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.m.g.589.6 20
7.2 even 3 182.2.o.a.95.1 yes 20
7.3 odd 6 1274.2.v.h.667.1 20
7.4 even 3 182.2.v.a.121.5 yes 20
7.5 odd 6 1274.2.o.h.459.5 20
7.6 odd 2 1274.2.m.f.589.10 20
13.10 even 6 inner 1274.2.m.g.491.6 20
21.2 odd 6 1638.2.dt.c.1369.6 20
21.11 odd 6 1638.2.cr.c.667.10 20
91.10 odd 6 1274.2.o.h.569.10 20
91.23 even 6 182.2.v.a.179.5 yes 20
91.62 odd 6 1274.2.m.f.491.10 20
91.75 odd 6 1274.2.v.h.361.1 20
91.88 even 6 182.2.o.a.23.6 20
273.23 odd 6 1638.2.cr.c.361.10 20
273.179 odd 6 1638.2.dt.c.1297.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.o.a.23.6 20 91.88 even 6
182.2.o.a.95.1 yes 20 7.2 even 3
182.2.v.a.121.5 yes 20 7.4 even 3
182.2.v.a.179.5 yes 20 91.23 even 6
1274.2.m.f.491.10 20 91.62 odd 6
1274.2.m.f.589.10 20 7.6 odd 2
1274.2.m.g.491.6 20 13.10 even 6 inner
1274.2.m.g.589.6 20 1.1 even 1 trivial
1274.2.o.h.459.5 20 7.5 odd 6
1274.2.o.h.569.10 20 91.10 odd 6
1274.2.v.h.361.1 20 91.75 odd 6
1274.2.v.h.667.1 20 7.3 odd 6
1638.2.cr.c.361.10 20 273.23 odd 6
1638.2.cr.c.667.10 20 21.11 odd 6
1638.2.dt.c.1297.1 20 273.179 odd 6
1638.2.dt.c.1369.6 20 21.2 odd 6