Properties

Label 1274.2.m.e.491.3
Level $1274$
Weight $2$
Character 1274.491
Analytic conductor $10.173$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(491,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.491"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 103x^{12} - 396x^{10} + 1089x^{8} - 1584x^{6} + 1648x^{4} - 768x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 491.3
Root \(-0.646642 - 0.373339i\) of defining polynomial
Character \(\chi\) \(=\) 1274.491
Dual form 1274.2.m.e.589.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.373339 + 0.646642i) q^{3} +(0.500000 - 0.866025i) q^{4} +1.93185i q^{5} +(-0.646642 - 0.373339i) q^{6} +1.00000i q^{8} +(1.22124 - 2.11524i) q^{9} +(-0.965926 - 1.67303i) q^{10} +(3.31599 - 1.91449i) q^{11} +0.746678 q^{12} +(-1.19966 + 3.40012i) q^{13} +(-1.24922 + 0.721236i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(0.129815 - 0.224846i) q^{17} +2.44247i q^{18} +(2.92286 + 1.68752i) q^{19} +(1.67303 + 0.965926i) q^{20} +(-1.91449 + 3.31599i) q^{22} +(-2.72124 - 4.71332i) q^{23} +(-0.646642 + 0.373339i) q^{24} +1.26795 q^{25} +(-0.661126 - 3.54442i) q^{26} +4.06378 q^{27} +(5.31931 + 9.21332i) q^{29} +(0.721236 - 1.24922i) q^{30} -6.85042i q^{31} +(0.866025 + 0.500000i) q^{32} +(2.47598 + 1.42951i) q^{33} +0.259630i q^{34} +(-1.22124 - 2.11524i) q^{36} +(6.27477 - 3.62274i) q^{37} -3.37503 q^{38} +(-2.64654 + 0.493649i) q^{39} -1.93185 q^{40} +(0.957850 - 0.553015i) q^{41} +(-1.00000 + 1.73205i) q^{43} -3.82898i q^{44} +(4.08633 + 2.35925i) q^{45} +(4.71332 + 2.72124i) q^{46} +6.36175i q^{47} +(0.373339 - 0.646642i) q^{48} +(-1.09808 + 0.633975i) q^{50} +0.193860 q^{51} +(2.34476 + 2.73899i) q^{52} -9.04447 q^{53} +(-3.51933 + 2.03189i) q^{54} +(3.69851 + 6.40601i) q^{55} +2.52006i q^{57} +(-9.21332 - 5.31931i) q^{58} +(3.12262 + 1.80285i) q^{59} +1.44247i q^{60} +(-2.21495 + 3.83640i) q^{61} +(3.42521 + 5.93263i) q^{62} -1.00000 q^{64} +(-6.56853 - 2.31756i) q^{65} -2.85902 q^{66} +(1.13356 - 0.654458i) q^{67} +(-0.129815 - 0.224846i) q^{68} +(2.03189 - 3.51933i) q^{69} +(5.88434 + 3.39732i) q^{71} +(2.11524 + 1.22124i) q^{72} +2.97832i q^{73} +(-3.62274 + 6.27477i) q^{74} +(0.473375 + 0.819910i) q^{75} +(2.92286 - 1.68752i) q^{76} +(2.04515 - 1.75078i) q^{78} -8.80301 q^{79} +(1.67303 - 0.965926i) q^{80} +(-2.14654 - 3.71792i) q^{81} +(-0.553015 + 0.957850i) q^{82} +14.8826i q^{83} +(0.434369 + 0.250783i) q^{85} -2.00000i q^{86} +(-3.97181 + 6.87938i) q^{87} +(1.91449 + 3.31599i) q^{88} +(13.4263 - 7.75168i) q^{89} -4.71849 q^{90} -5.44247 q^{92} +(4.42977 - 2.55753i) q^{93} +(-3.18087 - 5.50943i) q^{94} +(-3.26003 + 5.64654i) q^{95} +0.746678i q^{96} +(-9.65704 - 5.57550i) q^{97} -9.35218i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 12 q^{11} + 12 q^{15} - 8 q^{16} - 4 q^{22} - 24 q^{23} + 48 q^{25} + 24 q^{29} - 8 q^{30} + 12 q^{37} + 12 q^{39} - 16 q^{43} - 12 q^{46} + 24 q^{50} - 48 q^{51} - 24 q^{53} - 60 q^{58}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0.373339 + 0.646642i 0.215547 + 0.373339i 0.953442 0.301577i \(-0.0975131\pi\)
−0.737894 + 0.674916i \(0.764180\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.93185i 0.863950i 0.901886 + 0.431975i \(0.142183\pi\)
−0.901886 + 0.431975i \(0.857817\pi\)
\(6\) −0.646642 0.373339i −0.263991 0.152415i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 1.22124 2.11524i 0.407079 0.705081i
\(10\) −0.965926 1.67303i −0.305453 0.529059i
\(11\) 3.31599 1.91449i 0.999810 0.577241i 0.0916179 0.995794i \(-0.470796\pi\)
0.908192 + 0.418554i \(0.137463\pi\)
\(12\) 0.746678 0.215547
\(13\) −1.19966 + 3.40012i −0.332725 + 0.943024i
\(14\) 0 0
\(15\) −1.24922 + 0.721236i −0.322546 + 0.186222i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.129815 0.224846i 0.0314847 0.0545331i −0.849854 0.527019i \(-0.823310\pi\)
0.881338 + 0.472486i \(0.156643\pi\)
\(18\) 2.44247i 0.575696i
\(19\) 2.92286 + 1.68752i 0.670551 + 0.387143i 0.796285 0.604921i \(-0.206795\pi\)
−0.125734 + 0.992064i \(0.540129\pi\)
\(20\) 1.67303 + 0.965926i 0.374101 + 0.215988i
\(21\) 0 0
\(22\) −1.91449 + 3.31599i −0.408171 + 0.706972i
\(23\) −2.72124 4.71332i −0.567417 0.982795i −0.996820 0.0796821i \(-0.974609\pi\)
0.429403 0.903113i \(-0.358724\pi\)
\(24\) −0.646642 + 0.373339i −0.131995 + 0.0762075i
\(25\) 1.26795 0.253590
\(26\) −0.661126 3.54442i −0.129658 0.695118i
\(27\) 4.06378 0.782074
\(28\) 0 0
\(29\) 5.31931 + 9.21332i 0.987771 + 1.71087i 0.628907 + 0.777481i \(0.283503\pi\)
0.358865 + 0.933390i \(0.383164\pi\)
\(30\) 0.721236 1.24922i 0.131679 0.228075i
\(31\) 6.85042i 1.23037i −0.788382 0.615186i \(-0.789081\pi\)
0.788382 0.615186i \(-0.210919\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 2.47598 + 1.42951i 0.431013 + 0.248845i
\(34\) 0.259630i 0.0445261i
\(35\) 0 0
\(36\) −1.22124 2.11524i −0.203539 0.352540i
\(37\) 6.27477 3.62274i 1.03157 0.595575i 0.114133 0.993465i \(-0.463591\pi\)
0.917433 + 0.397891i \(0.130258\pi\)
\(38\) −3.37503 −0.547503
\(39\) −2.64654 + 0.493649i −0.423786 + 0.0790471i
\(40\) −1.93185 −0.305453
\(41\) 0.957850 0.553015i 0.149591 0.0863665i −0.423336 0.905973i \(-0.639141\pi\)
0.572927 + 0.819606i \(0.305808\pi\)
\(42\) 0 0
\(43\) −1.00000 + 1.73205i −0.152499 + 0.264135i −0.932145 0.362084i \(-0.882065\pi\)
0.779647 + 0.626219i \(0.215399\pi\)
\(44\) 3.82898i 0.577241i
\(45\) 4.08633 + 2.35925i 0.609155 + 0.351696i
\(46\) 4.71332 + 2.72124i 0.694941 + 0.401224i
\(47\) 6.36175i 0.927956i 0.885847 + 0.463978i \(0.153578\pi\)
−0.885847 + 0.463978i \(0.846422\pi\)
\(48\) 0.373339 0.646642i 0.0538869 0.0933348i
\(49\) 0 0
\(50\) −1.09808 + 0.633975i −0.155291 + 0.0896575i
\(51\) 0.193860 0.0271458
\(52\) 2.34476 + 2.73899i 0.325160 + 0.379830i
\(53\) −9.04447 −1.24235 −0.621177 0.783670i \(-0.713345\pi\)
−0.621177 + 0.783670i \(0.713345\pi\)
\(54\) −3.51933 + 2.03189i −0.478920 + 0.276505i
\(55\) 3.69851 + 6.40601i 0.498707 + 0.863786i
\(56\) 0 0
\(57\) 2.52006i 0.333791i
\(58\) −9.21332 5.31931i −1.20977 0.698460i
\(59\) 3.12262 + 1.80285i 0.406531 + 0.234711i 0.689298 0.724478i \(-0.257919\pi\)
−0.282767 + 0.959189i \(0.591252\pi\)
\(60\) 1.44247i 0.186222i
\(61\) −2.21495 + 3.83640i −0.283595 + 0.491201i −0.972267 0.233872i \(-0.924860\pi\)
0.688673 + 0.725073i \(0.258194\pi\)
\(62\) 3.42521 + 5.93263i 0.435002 + 0.753445i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −6.56853 2.31756i −0.814726 0.287458i
\(66\) −2.85902 −0.351921
\(67\) 1.13356 0.654458i 0.138486 0.0799548i −0.429156 0.903230i \(-0.641189\pi\)
0.567642 + 0.823275i \(0.307856\pi\)
\(68\) −0.129815 0.224846i −0.0157424 0.0272666i
\(69\) 2.03189 3.51933i 0.244611 0.423678i
\(70\) 0 0
\(71\) 5.88434 + 3.39732i 0.698342 + 0.403188i 0.806730 0.590921i \(-0.201235\pi\)
−0.108387 + 0.994109i \(0.534569\pi\)
\(72\) 2.11524 + 1.22124i 0.249284 + 0.143924i
\(73\) 2.97832i 0.348586i 0.984694 + 0.174293i \(0.0557641\pi\)
−0.984694 + 0.174293i \(0.944236\pi\)
\(74\) −3.62274 + 6.27477i −0.421135 + 0.729427i
\(75\) 0.473375 + 0.819910i 0.0546606 + 0.0946750i
\(76\) 2.92286 1.68752i 0.335276 0.193571i
\(77\) 0 0
\(78\) 2.04515 1.75078i 0.231567 0.198237i
\(79\) −8.80301 −0.990416 −0.495208 0.868774i \(-0.664908\pi\)
−0.495208 + 0.868774i \(0.664908\pi\)
\(80\) 1.67303 0.965926i 0.187051 0.107994i
\(81\) −2.14654 3.71792i −0.238505 0.413102i
\(82\) −0.553015 + 0.957850i −0.0610703 + 0.105777i
\(83\) 14.8826i 1.63357i 0.576939 + 0.816787i \(0.304247\pi\)
−0.576939 + 0.816787i \(0.695753\pi\)
\(84\) 0 0
\(85\) 0.434369 + 0.250783i 0.0471139 + 0.0272012i
\(86\) 2.00000i 0.215666i
\(87\) −3.97181 + 6.87938i −0.425823 + 0.737547i
\(88\) 1.91449 + 3.31599i 0.204085 + 0.353486i
\(89\) 13.4263 7.75168i 1.42319 0.821677i 0.426616 0.904433i \(-0.359706\pi\)
0.996570 + 0.0827560i \(0.0263722\pi\)
\(90\) −4.71849 −0.497373
\(91\) 0 0
\(92\) −5.44247 −0.567417
\(93\) 4.42977 2.55753i 0.459346 0.265203i
\(94\) −3.18087 5.50943i −0.328082 0.568255i
\(95\) −3.26003 + 5.64654i −0.334472 + 0.579323i
\(96\) 0.746678i 0.0762075i
\(97\) −9.65704 5.57550i −0.980524 0.566106i −0.0780959 0.996946i \(-0.524884\pi\)
−0.902428 + 0.430840i \(0.858217\pi\)
\(98\) 0 0
\(99\) 9.35218i 0.939929i
\(100\) 0.633975 1.09808i 0.0633975 0.109808i
\(101\) 5.53114 + 9.58021i 0.550369 + 0.953267i 0.998248 + 0.0591725i \(0.0188462\pi\)
−0.447879 + 0.894094i \(0.647820\pi\)
\(102\) −0.167887 + 0.0969299i −0.0166233 + 0.00959749i
\(103\) −0.946750 −0.0932861 −0.0466430 0.998912i \(-0.514852\pi\)
−0.0466430 + 0.998912i \(0.514852\pi\)
\(104\) −3.40012 1.19966i −0.333409 0.117636i
\(105\) 0 0
\(106\) 7.83274 4.52224i 0.760783 0.439238i
\(107\) 0.245037 + 0.424416i 0.0236886 + 0.0410299i 0.877627 0.479345i \(-0.159126\pi\)
−0.853938 + 0.520375i \(0.825792\pi\)
\(108\) 2.03189 3.51933i 0.195518 0.338648i
\(109\) 7.97090i 0.763473i 0.924271 + 0.381737i \(0.124674\pi\)
−0.924271 + 0.381737i \(0.875326\pi\)
\(110\) −6.40601 3.69851i −0.610789 0.352639i
\(111\) 4.68523 + 2.70502i 0.444703 + 0.256749i
\(112\) 0 0
\(113\) −1.53723 + 2.66256i −0.144610 + 0.250473i −0.929228 0.369508i \(-0.879526\pi\)
0.784617 + 0.619981i \(0.212860\pi\)
\(114\) −1.26003 2.18244i −0.118013 0.204404i
\(115\) 9.10543 5.25702i 0.849086 0.490220i
\(116\) 10.6386 0.987771
\(117\) 5.72702 + 6.68992i 0.529463 + 0.618483i
\(118\) −3.60569 −0.331931
\(119\) 0 0
\(120\) −0.721236 1.24922i −0.0658395 0.114037i
\(121\) 1.83055 3.17060i 0.166413 0.288236i
\(122\) 4.42989i 0.401064i
\(123\) 0.715206 + 0.412924i 0.0644880 + 0.0372321i
\(124\) −5.93263 3.42521i −0.532766 0.307593i
\(125\) 12.1087i 1.08304i
\(126\) 0 0
\(127\) −1.99582 3.45686i −0.177100 0.306747i 0.763786 0.645470i \(-0.223338\pi\)
−0.940886 + 0.338723i \(0.890005\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) −1.49336 −0.131483
\(130\) 6.84729 1.27720i 0.600547 0.112018i
\(131\) 19.5815 1.71084 0.855421 0.517933i \(-0.173299\pi\)
0.855421 + 0.517933i \(0.173299\pi\)
\(132\) 2.47598 1.42951i 0.215506 0.124423i
\(133\) 0 0
\(134\) −0.654458 + 1.13356i −0.0565366 + 0.0979242i
\(135\) 7.85061i 0.675673i
\(136\) 0.224846 + 0.129815i 0.0192804 + 0.0111315i
\(137\) −2.61786 1.51142i −0.223659 0.129129i 0.383985 0.923340i \(-0.374552\pi\)
−0.607643 + 0.794210i \(0.707885\pi\)
\(138\) 4.06378i 0.345932i
\(139\) 1.83741 3.18249i 0.155847 0.269936i −0.777520 0.628858i \(-0.783523\pi\)
0.933367 + 0.358923i \(0.116856\pi\)
\(140\) 0 0
\(141\) −4.11377 + 2.37509i −0.346442 + 0.200019i
\(142\) −6.79465 −0.570194
\(143\) 2.53144 + 13.5715i 0.211690 + 1.13491i
\(144\) −2.44247 −0.203539
\(145\) −17.7988 + 10.2761i −1.47811 + 0.853385i
\(146\) −1.48916 2.57930i −0.123244 0.213465i
\(147\) 0 0
\(148\) 7.24548i 0.595575i
\(149\) 6.77213 + 3.90989i 0.554794 + 0.320311i 0.751053 0.660241i \(-0.229546\pi\)
−0.196259 + 0.980552i \(0.562879\pi\)
\(150\) −0.819910 0.473375i −0.0669453 0.0386509i
\(151\) 21.2398i 1.72847i −0.503089 0.864235i \(-0.667803\pi\)
0.503089 0.864235i \(-0.332197\pi\)
\(152\) −1.68752 + 2.92286i −0.136876 + 0.237076i
\(153\) −0.317069 0.549180i −0.0256335 0.0443985i
\(154\) 0 0
\(155\) 13.2340 1.06298
\(156\) −0.895758 + 2.53880i −0.0717181 + 0.203266i
\(157\) −19.7800 −1.57862 −0.789309 0.613996i \(-0.789561\pi\)
−0.789309 + 0.613996i \(0.789561\pi\)
\(158\) 7.62363 4.40150i 0.606503 0.350165i
\(159\) −3.37665 5.84854i −0.267786 0.463819i
\(160\) −0.965926 + 1.67303i −0.0763631 + 0.132265i
\(161\) 0 0
\(162\) 3.71792 + 2.14654i 0.292107 + 0.168648i
\(163\) 11.8793 + 6.85853i 0.930460 + 0.537201i 0.886957 0.461852i \(-0.152815\pi\)
0.0435030 + 0.999053i \(0.486148\pi\)
\(164\) 1.10603i 0.0863665i
\(165\) −2.76160 + 4.78323i −0.214990 + 0.372374i
\(166\) −7.44129 12.8887i −0.577556 1.00036i
\(167\) −2.52616 + 1.45848i −0.195480 + 0.112860i −0.594545 0.804062i \(-0.702668\pi\)
0.399066 + 0.916922i \(0.369335\pi\)
\(168\) 0 0
\(169\) −10.1216 8.15796i −0.778588 0.627535i
\(170\) −0.501566 −0.0384683
\(171\) 7.13901 4.12171i 0.545934 0.315195i
\(172\) 1.00000 + 1.73205i 0.0762493 + 0.132068i
\(173\) −8.90477 + 15.4235i −0.677017 + 1.17263i 0.298858 + 0.954298i \(0.403394\pi\)
−0.975875 + 0.218330i \(0.929939\pi\)
\(174\) 7.94363i 0.602205i
\(175\) 0 0
\(176\) −3.31599 1.91449i −0.249952 0.144310i
\(177\) 2.69229i 0.202365i
\(178\) −7.75168 + 13.4263i −0.581013 + 1.00634i
\(179\) −0.910987 1.57788i −0.0680904 0.117936i 0.829970 0.557808i \(-0.188357\pi\)
−0.898061 + 0.439872i \(0.855024\pi\)
\(180\) 4.08633 2.35925i 0.304577 0.175848i
\(181\) −18.7124 −1.39088 −0.695439 0.718585i \(-0.744790\pi\)
−0.695439 + 0.718585i \(0.744790\pi\)
\(182\) 0 0
\(183\) −3.30771 −0.244513
\(184\) 4.71332 2.72124i 0.347470 0.200612i
\(185\) 6.99860 + 12.1219i 0.514547 + 0.891222i
\(186\) −2.55753 + 4.42977i −0.187527 + 0.324806i
\(187\) 0.994117i 0.0726970i
\(188\) 5.50943 + 3.18087i 0.401817 + 0.231989i
\(189\) 0 0
\(190\) 6.52006i 0.473015i
\(191\) −11.6453 + 20.1702i −0.842621 + 1.45946i 0.0450496 + 0.998985i \(0.485655\pi\)
−0.887671 + 0.460478i \(0.847678\pi\)
\(192\) −0.373339 0.646642i −0.0269434 0.0466674i
\(193\) 7.82749 4.51920i 0.563435 0.325299i −0.191088 0.981573i \(-0.561202\pi\)
0.754523 + 0.656274i \(0.227868\pi\)
\(194\) 11.1510 0.800595
\(195\) −0.953656 5.11272i −0.0682927 0.366130i
\(196\) 0 0
\(197\) 1.22442 0.706918i 0.0872361 0.0503658i −0.455747 0.890109i \(-0.650628\pi\)
0.542983 + 0.839743i \(0.317295\pi\)
\(198\) 4.67609 + 8.09922i 0.332315 + 0.575587i
\(199\) 3.95223 6.84546i 0.280166 0.485262i −0.691259 0.722607i \(-0.742944\pi\)
0.971425 + 0.237345i \(0.0762771\pi\)
\(200\) 1.26795i 0.0896575i
\(201\) 0.846401 + 0.488670i 0.0597005 + 0.0344681i
\(202\) −9.58021 5.53114i −0.674061 0.389169i
\(203\) 0 0
\(204\) 0.0969299 0.167887i 0.00678645 0.0117545i
\(205\) 1.06834 + 1.85043i 0.0746163 + 0.129239i
\(206\) 0.819910 0.473375i 0.0571258 0.0329816i
\(207\) −13.2931 −0.923933
\(208\) 3.54442 0.661126i 0.245761 0.0458409i
\(209\) 12.9229 0.893898
\(210\) 0 0
\(211\) 11.3923 + 19.7321i 0.784279 + 1.35841i 0.929429 + 0.369001i \(0.120300\pi\)
−0.145150 + 0.989410i \(0.546367\pi\)
\(212\) −4.52224 + 7.83274i −0.310588 + 0.537955i
\(213\) 5.07342i 0.347625i
\(214\) −0.424416 0.245037i −0.0290125 0.0167504i
\(215\) −3.34607 1.93185i −0.228200 0.131751i
\(216\) 4.06378i 0.276505i
\(217\) 0 0
\(218\) −3.98545 6.90300i −0.269929 0.467530i
\(219\) −1.92591 + 1.11192i −0.130141 + 0.0751369i
\(220\) 7.39702 0.498707
\(221\) 0.608770 + 0.711124i 0.0409503 + 0.0478354i
\(222\) −5.41004 −0.363098
\(223\) 20.6339 11.9130i 1.38175 0.797751i 0.389380 0.921077i \(-0.372689\pi\)
0.992366 + 0.123326i \(0.0393561\pi\)
\(224\) 0 0
\(225\) 1.54846 2.68202i 0.103231 0.178801i
\(226\) 3.07446i 0.204510i
\(227\) −20.9972 12.1227i −1.39363 0.804614i −0.399917 0.916551i \(-0.630961\pi\)
−0.993715 + 0.111937i \(0.964295\pi\)
\(228\) 2.18244 + 1.26003i 0.144536 + 0.0834477i
\(229\) 20.1075i 1.32874i −0.747403 0.664371i \(-0.768700\pi\)
0.747403 0.664371i \(-0.231300\pi\)
\(230\) −5.25702 + 9.10543i −0.346638 + 0.600394i
\(231\) 0 0
\(232\) −9.21332 + 5.31931i −0.604884 + 0.349230i
\(233\) 9.53156 0.624433 0.312217 0.950011i \(-0.398929\pi\)
0.312217 + 0.950011i \(0.398929\pi\)
\(234\) −8.30470 2.93013i −0.542895 0.191549i
\(235\) −12.2900 −0.801708
\(236\) 3.12262 1.80285i 0.203265 0.117355i
\(237\) −3.28651 5.69240i −0.213482 0.369761i
\(238\) 0 0
\(239\) 24.2296i 1.56729i −0.621212 0.783643i \(-0.713359\pi\)
0.621212 0.783643i \(-0.286641\pi\)
\(240\) 1.24922 + 0.721236i 0.0806366 + 0.0465556i
\(241\) −10.4503 6.03348i −0.673163 0.388651i 0.124111 0.992268i \(-0.460392\pi\)
−0.797274 + 0.603618i \(0.793725\pi\)
\(242\) 3.66109i 0.235344i
\(243\) 7.69844 13.3341i 0.493855 0.855382i
\(244\) 2.21495 + 3.83640i 0.141797 + 0.245600i
\(245\) 0 0
\(246\) −0.825849 −0.0526542
\(247\) −9.24420 + 7.91365i −0.588194 + 0.503534i
\(248\) 6.85042 0.435002
\(249\) −9.62370 + 5.55625i −0.609877 + 0.352113i
\(250\) −6.05437 10.4865i −0.382912 0.663223i
\(251\) 15.3532 26.5924i 0.969083 1.67850i 0.270861 0.962618i \(-0.412692\pi\)
0.698221 0.715882i \(-0.253975\pi\)
\(252\) 0 0
\(253\) −18.0472 10.4196i −1.13462 0.655072i
\(254\) 3.45686 + 1.99582i 0.216903 + 0.125229i
\(255\) 0.374508i 0.0234526i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −3.62356 6.27619i −0.226032 0.391498i 0.730597 0.682809i \(-0.239242\pi\)
−0.956628 + 0.291311i \(0.905909\pi\)
\(258\) 1.29328 0.746678i 0.0805164 0.0464862i
\(259\) 0 0
\(260\) −5.29133 + 4.52973i −0.328154 + 0.280922i
\(261\) 25.9845 1.60840
\(262\) −16.9581 + 9.79074i −1.04767 + 0.604874i
\(263\) −1.29018 2.23467i −0.0795562 0.137795i 0.823502 0.567313i \(-0.192017\pi\)
−0.903059 + 0.429518i \(0.858684\pi\)
\(264\) −1.42951 + 2.47598i −0.0879802 + 0.152386i
\(265\) 17.4726i 1.07333i
\(266\) 0 0
\(267\) 10.0251 + 5.78801i 0.613528 + 0.354221i
\(268\) 1.30892i 0.0799548i
\(269\) 6.27231 10.8640i 0.382430 0.662388i −0.608979 0.793186i \(-0.708421\pi\)
0.991409 + 0.130798i \(0.0417541\pi\)
\(270\) −3.92531 6.79883i −0.238886 0.413764i
\(271\) −8.35249 + 4.82231i −0.507378 + 0.292935i −0.731755 0.681568i \(-0.761299\pi\)
0.224377 + 0.974502i \(0.427965\pi\)
\(272\) −0.259630 −0.0157424
\(273\) 0 0
\(274\) 3.02284 0.182616
\(275\) 4.20451 2.42748i 0.253542 0.146382i
\(276\) −2.03189 3.51933i −0.122305 0.211839i
\(277\) 8.52931 14.7732i 0.512477 0.887636i −0.487419 0.873168i \(-0.662061\pi\)
0.999895 0.0144673i \(-0.00460526\pi\)
\(278\) 3.67483i 0.220402i
\(279\) −14.4903 8.36597i −0.867511 0.500858i
\(280\) 0 0
\(281\) 14.5518i 0.868090i −0.900891 0.434045i \(-0.857086\pi\)
0.900891 0.434045i \(-0.142914\pi\)
\(282\) 2.37509 4.11377i 0.141434 0.244972i
\(283\) −10.3722 17.9652i −0.616565 1.06792i −0.990108 0.140309i \(-0.955190\pi\)
0.373543 0.927613i \(-0.378143\pi\)
\(284\) 5.88434 3.39732i 0.349171 0.201594i
\(285\) −4.86839 −0.288379
\(286\) −8.97805 10.4876i −0.530883 0.620142i
\(287\) 0 0
\(288\) 2.11524 1.22124i 0.124642 0.0719620i
\(289\) 8.46630 + 14.6641i 0.498017 + 0.862591i
\(290\) 10.2761 17.7988i 0.603435 1.04518i
\(291\) 8.32620i 0.488091i
\(292\) 2.57930 + 1.48916i 0.150942 + 0.0871466i
\(293\) −2.98843 1.72537i −0.174586 0.100797i 0.410161 0.912013i \(-0.365473\pi\)
−0.584746 + 0.811216i \(0.698806\pi\)
\(294\) 0 0
\(295\) −3.48283 + 6.03245i −0.202778 + 0.351223i
\(296\) 3.62274 + 6.27477i 0.210567 + 0.364714i
\(297\) 13.4755 7.78006i 0.781925 0.451445i
\(298\) −7.81978 −0.452988
\(299\) 19.2904 3.59816i 1.11559 0.208087i
\(300\) 0.946750 0.0546606
\(301\) 0 0
\(302\) 10.6199 + 18.3942i 0.611106 + 1.05847i
\(303\) −4.12998 + 7.15334i −0.237261 + 0.410948i
\(304\) 3.37503i 0.193571i
\(305\) −7.41136 4.27895i −0.424373 0.245012i
\(306\) 0.549180 + 0.317069i 0.0313945 + 0.0181256i
\(307\) 15.1001i 0.861807i −0.902398 0.430904i \(-0.858195\pi\)
0.902398 0.430904i \(-0.141805\pi\)
\(308\) 0 0
\(309\) −0.353459 0.612209i −0.0201076 0.0348273i
\(310\) −11.4610 + 6.61699i −0.650939 + 0.375820i
\(311\) 14.5048 0.822493 0.411246 0.911524i \(-0.365094\pi\)
0.411246 + 0.911524i \(0.365094\pi\)
\(312\) −0.493649 2.64654i −0.0279474 0.149831i
\(313\) −0.258110 −0.0145892 −0.00729462 0.999973i \(-0.502322\pi\)
−0.00729462 + 0.999973i \(0.502322\pi\)
\(314\) 17.1300 9.89002i 0.966702 0.558126i
\(315\) 0 0
\(316\) −4.40150 + 7.62363i −0.247604 + 0.428863i
\(317\) 23.3984i 1.31418i −0.753811 0.657092i \(-0.771786\pi\)
0.753811 0.657092i \(-0.228214\pi\)
\(318\) 5.84854 + 3.37665i 0.327970 + 0.189353i
\(319\) 35.2776 + 20.3675i 1.97517 + 1.14036i
\(320\) 1.93185i 0.107994i
\(321\) −0.182964 + 0.316903i −0.0102120 + 0.0176878i
\(322\) 0 0
\(323\) 0.758862 0.438129i 0.0422242 0.0243782i
\(324\) −4.29308 −0.238505
\(325\) −1.52110 + 4.31118i −0.0843757 + 0.239141i
\(326\) −13.7171 −0.759717
\(327\) −5.15432 + 2.97585i −0.285034 + 0.164565i
\(328\) 0.553015 + 0.957850i 0.0305352 + 0.0528884i
\(329\) 0 0
\(330\) 5.52320i 0.304042i
\(331\) −3.52357 2.03433i −0.193673 0.111817i 0.400028 0.916503i \(-0.369000\pi\)
−0.593701 + 0.804686i \(0.702334\pi\)
\(332\) 12.8887 + 7.44129i 0.707358 + 0.408394i
\(333\) 17.6969i 0.969783i
\(334\) 1.45848 2.52616i 0.0798043 0.138225i
\(335\) 1.26432 + 2.18986i 0.0690770 + 0.119645i
\(336\) 0 0
\(337\) −19.2548 −1.04887 −0.524437 0.851449i \(-0.675724\pi\)
−0.524437 + 0.851449i \(0.675724\pi\)
\(338\) 12.8446 + 2.00418i 0.698653 + 0.109013i
\(339\) −2.29563 −0.124682
\(340\) 0.434369 0.250783i 0.0235570 0.0136006i
\(341\) −13.1151 22.7159i −0.710220 1.23014i
\(342\) −4.12171 + 7.13901i −0.222877 + 0.386034i
\(343\) 0 0
\(344\) −1.73205 1.00000i −0.0933859 0.0539164i
\(345\) 6.79883 + 3.92531i 0.366037 + 0.211331i
\(346\) 17.8095i 0.957447i
\(347\) 5.70601 9.88309i 0.306314 0.530552i −0.671239 0.741241i \(-0.734237\pi\)
0.977553 + 0.210689i \(0.0675708\pi\)
\(348\) 3.97181 + 6.87938i 0.212912 + 0.368774i
\(349\) −21.2148 + 12.2484i −1.13560 + 0.655639i −0.945337 0.326094i \(-0.894268\pi\)
−0.190263 + 0.981733i \(0.560934\pi\)
\(350\) 0 0
\(351\) −4.87514 + 13.8173i −0.260216 + 0.737514i
\(352\) 3.82898 0.204085
\(353\) 3.93089 2.26950i 0.209220 0.120793i −0.391729 0.920081i \(-0.628123\pi\)
0.600949 + 0.799287i \(0.294790\pi\)
\(354\) −1.34615 2.33159i −0.0715469 0.123923i
\(355\) −6.56313 + 11.3677i −0.348335 + 0.603333i
\(356\) 15.5034i 0.821677i
\(357\) 0 0
\(358\) 1.57788 + 0.910987i 0.0833933 + 0.0481472i
\(359\) 8.35652i 0.441040i −0.975382 0.220520i \(-0.929225\pi\)
0.975382 0.220520i \(-0.0707755\pi\)
\(360\) −2.35925 + 4.08633i −0.124343 + 0.215369i
\(361\) −3.80457 6.58972i −0.200241 0.346827i
\(362\) 16.2054 9.35618i 0.851735 0.491750i
\(363\) 2.73366 0.143480
\(364\) 0 0
\(365\) −5.75368 −0.301161
\(366\) 2.86456 1.65385i 0.149733 0.0864483i
\(367\) 12.4612 + 21.5834i 0.650469 + 1.12665i 0.983009 + 0.183556i \(0.0587610\pi\)
−0.332540 + 0.943089i \(0.607906\pi\)
\(368\) −2.72124 + 4.71332i −0.141854 + 0.245699i
\(369\) 2.70145i 0.140632i
\(370\) −12.1219 6.99860i −0.630189 0.363840i
\(371\) 0 0
\(372\) 5.11506i 0.265203i
\(373\) −10.2477 + 17.7495i −0.530603 + 0.919032i 0.468759 + 0.883326i \(0.344701\pi\)
−0.999362 + 0.0357058i \(0.988632\pi\)
\(374\) 0.497058 + 0.860930i 0.0257023 + 0.0445177i
\(375\) −7.83003 + 4.52067i −0.404341 + 0.233446i
\(376\) −6.36175 −0.328082
\(377\) −37.7077 + 7.03348i −1.94205 + 0.362242i
\(378\) 0 0
\(379\) 2.28701 1.32041i 0.117476 0.0678248i −0.440111 0.897944i \(-0.645061\pi\)
0.557587 + 0.830119i \(0.311727\pi\)
\(380\) 3.26003 + 5.64654i 0.167236 + 0.289661i
\(381\) 1.49024 2.58116i 0.0763471 0.132237i
\(382\) 23.2905i 1.19165i
\(383\) 13.7442 + 7.93524i 0.702298 + 0.405472i 0.808203 0.588904i \(-0.200441\pi\)
−0.105905 + 0.994376i \(0.533774\pi\)
\(384\) 0.646642 + 0.373339i 0.0329988 + 0.0190519i
\(385\) 0 0
\(386\) −4.51920 + 7.82749i −0.230021 + 0.398409i
\(387\) 2.44247 + 4.23048i 0.124158 + 0.215048i
\(388\) −9.65704 + 5.57550i −0.490262 + 0.283053i
\(389\) −22.7875 −1.15537 −0.577687 0.816258i \(-0.696045\pi\)
−0.577687 + 0.816258i \(0.696045\pi\)
\(390\) 3.38225 + 3.95092i 0.171267 + 0.200063i
\(391\) −1.41303 −0.0714598
\(392\) 0 0
\(393\) 7.31053 + 12.6622i 0.368768 + 0.638724i
\(394\) −0.706918 + 1.22442i −0.0356140 + 0.0616853i
\(395\) 17.0061i 0.855670i
\(396\) −8.09922 4.67609i −0.407001 0.234982i
\(397\) −20.4984 11.8347i −1.02878 0.593968i −0.112147 0.993692i \(-0.535773\pi\)
−0.916636 + 0.399724i \(0.869106\pi\)
\(398\) 7.90446i 0.396215i
\(399\) 0 0
\(400\) −0.633975 1.09808i −0.0316987 0.0549038i
\(401\) 7.23425 4.17669i 0.361261 0.208574i −0.308373 0.951266i \(-0.599784\pi\)
0.669634 + 0.742691i \(0.266451\pi\)
\(402\) −0.977340 −0.0487453
\(403\) 23.2922 + 8.21815i 1.16027 + 0.409375i
\(404\) 11.0623 0.550369
\(405\) 7.18247 4.14680i 0.356900 0.206056i
\(406\) 0 0
\(407\) 13.8714 24.0260i 0.687580 1.19092i
\(408\) 0.193860i 0.00959749i
\(409\) −16.3786 9.45621i −0.809872 0.467580i 0.0370397 0.999314i \(-0.488207\pi\)
−0.846911 + 0.531734i \(0.821541\pi\)
\(410\) −1.85043 1.06834i −0.0913860 0.0527617i
\(411\) 2.25709i 0.111334i
\(412\) −0.473375 + 0.819910i −0.0233215 + 0.0403940i
\(413\) 0 0
\(414\) 11.5121 6.64654i 0.565791 0.326660i
\(415\) −28.7509 −1.41133
\(416\) −2.73899 + 2.34476i −0.134290 + 0.114961i
\(417\) 2.74391 0.134370
\(418\) −11.1916 + 6.46147i −0.547399 + 0.316041i
\(419\) −3.22104 5.57900i −0.157358 0.272552i 0.776557 0.630047i \(-0.216964\pi\)
−0.933915 + 0.357495i \(0.883631\pi\)
\(420\) 0 0
\(421\) 4.13898i 0.201722i 0.994901 + 0.100861i \(0.0321597\pi\)
−0.994901 + 0.100861i \(0.967840\pi\)
\(422\) −19.7321 11.3923i −0.960541 0.554569i
\(423\) 13.4566 + 7.76919i 0.654284 + 0.377751i
\(424\) 9.04447i 0.439238i
\(425\) 0.164599 0.285093i 0.00798420 0.0138290i
\(426\) −2.53671 4.39371i −0.122904 0.212876i
\(427\) 0 0
\(428\) 0.490074 0.0236886
\(429\) −7.83083 + 6.70371i −0.378076 + 0.323658i
\(430\) 3.86370 0.186324
\(431\) 2.51939 1.45457i 0.121355 0.0700641i −0.438094 0.898929i \(-0.644346\pi\)
0.559449 + 0.828865i \(0.311013\pi\)
\(432\) −2.03189 3.51933i −0.0977592 0.169324i
\(433\) −2.97439 + 5.15180i −0.142940 + 0.247580i −0.928603 0.371076i \(-0.878989\pi\)
0.785662 + 0.618655i \(0.212322\pi\)
\(434\) 0 0
\(435\) −13.2900 7.67296i −0.637204 0.367890i
\(436\) 6.90300 + 3.98545i 0.330594 + 0.190868i
\(437\) 18.3685i 0.878686i
\(438\) 1.11192 1.92591i 0.0531298 0.0920236i
\(439\) −16.3940 28.3953i −0.782444 1.35523i −0.930514 0.366256i \(-0.880639\pi\)
0.148070 0.988977i \(-0.452694\pi\)
\(440\) −6.40601 + 3.69851i −0.305395 + 0.176320i
\(441\) 0 0
\(442\) −0.882772 0.311467i −0.0419892 0.0148150i
\(443\) −28.7255 −1.36479 −0.682395 0.730983i \(-0.739062\pi\)
−0.682395 + 0.730983i \(0.739062\pi\)
\(444\) 4.68523 2.70502i 0.222351 0.128375i
\(445\) 14.9751 + 25.9376i 0.709888 + 1.22956i
\(446\) −11.9130 + 20.6339i −0.564095 + 0.977042i
\(447\) 5.83886i 0.276169i
\(448\) 0 0
\(449\) 22.7208 + 13.1179i 1.07226 + 0.619071i 0.928799 0.370584i \(-0.120843\pi\)
0.143464 + 0.989656i \(0.454176\pi\)
\(450\) 3.09693i 0.145991i
\(451\) 2.11748 3.66759i 0.0997085 0.172700i
\(452\) 1.53723 + 2.66256i 0.0723052 + 0.125236i
\(453\) 13.7345 7.92964i 0.645305 0.372567i
\(454\) 24.2455 1.13790
\(455\) 0 0
\(456\) −2.52006 −0.118013
\(457\) 13.8319 7.98587i 0.647030 0.373563i −0.140287 0.990111i \(-0.544803\pi\)
0.787318 + 0.616548i \(0.211469\pi\)
\(458\) 10.0538 + 17.4136i 0.469781 + 0.813685i
\(459\) 0.527538 0.913723i 0.0246234 0.0426489i
\(460\) 10.5140i 0.490220i
\(461\) 16.8887 + 9.75067i 0.786583 + 0.454134i 0.838758 0.544504i \(-0.183282\pi\)
−0.0521751 + 0.998638i \(0.516615\pi\)
\(462\) 0 0
\(463\) 39.7898i 1.84919i −0.380951 0.924595i \(-0.624403\pi\)
0.380951 0.924595i \(-0.375597\pi\)
\(464\) 5.31931 9.21332i 0.246943 0.427718i
\(465\) 4.94077 + 8.55766i 0.229123 + 0.396852i
\(466\) −8.25457 + 4.76578i −0.382386 + 0.220770i
\(467\) 3.60569 0.166852 0.0834258 0.996514i \(-0.473414\pi\)
0.0834258 + 0.996514i \(0.473414\pi\)
\(468\) 8.65714 1.61478i 0.400177 0.0746434i
\(469\) 0 0
\(470\) 10.6434 6.14498i 0.490944 0.283447i
\(471\) −7.38466 12.7906i −0.340267 0.589360i
\(472\) −1.80285 + 3.12262i −0.0829828 + 0.143730i
\(473\) 7.65796i 0.352113i
\(474\) 5.69240 + 3.28651i 0.261460 + 0.150954i
\(475\) 3.70604 + 2.13969i 0.170045 + 0.0981755i
\(476\) 0 0
\(477\) −11.0454 + 19.1312i −0.505736 + 0.875960i
\(478\) 12.1148 + 20.9835i 0.554119 + 0.959762i
\(479\) −23.0597 + 13.3135i −1.05362 + 0.608310i −0.923662 0.383209i \(-0.874819\pi\)
−0.129962 + 0.991519i \(0.541485\pi\)
\(480\) −1.44247 −0.0658395
\(481\) 4.79018 + 25.6810i 0.218413 + 1.17095i
\(482\) 12.0670 0.549635
\(483\) 0 0
\(484\) −1.83055 3.17060i −0.0832067 0.144118i
\(485\) 10.7710 18.6560i 0.489087 0.847124i
\(486\) 15.3969i 0.698417i
\(487\) 34.6506 + 20.0056i 1.57017 + 0.906539i 0.996147 + 0.0877000i \(0.0279517\pi\)
0.574024 + 0.818839i \(0.305382\pi\)
\(488\) −3.83640 2.21495i −0.173666 0.100266i
\(489\) 10.2422i 0.463170i
\(490\) 0 0
\(491\) 20.8281 + 36.0754i 0.939961 + 1.62806i 0.765540 + 0.643389i \(0.222472\pi\)
0.174421 + 0.984671i \(0.444195\pi\)
\(492\) 0.715206 0.412924i 0.0322440 0.0186161i
\(493\) 2.76210 0.124399
\(494\) 4.04888 11.4755i 0.182168 0.516308i
\(495\) 18.0670 0.812052
\(496\) −5.93263 + 3.42521i −0.266383 + 0.153796i
\(497\) 0 0
\(498\) 5.55625 9.62370i 0.248981 0.431248i
\(499\) 3.95418i 0.177013i 0.996076 + 0.0885066i \(0.0282094\pi\)
−0.996076 + 0.0885066i \(0.971791\pi\)
\(500\) 10.4865 + 6.05437i 0.468970 + 0.270760i
\(501\) −1.88623 1.08901i −0.0842703 0.0486535i
\(502\) 30.7063i 1.37049i
\(503\) −1.21662 + 2.10725i −0.0542464 + 0.0939574i −0.891873 0.452285i \(-0.850609\pi\)
0.837627 + 0.546243i \(0.183942\pi\)
\(504\) 0 0
\(505\) −18.5075 + 10.6853i −0.823575 + 0.475491i
\(506\) 20.8391 0.926412
\(507\) 1.49648 9.59077i 0.0664609 0.425941i
\(508\) −3.99164 −0.177100
\(509\) −29.7196 + 17.1586i −1.31730 + 0.760543i −0.983293 0.182028i \(-0.941734\pi\)
−0.334005 + 0.942571i \(0.608400\pi\)
\(510\) −0.187254 0.324334i −0.00829175 0.0143617i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 11.8779 + 6.85769i 0.524421 + 0.302774i
\(514\) 6.27619 + 3.62356i 0.276831 + 0.159829i
\(515\) 1.82898i 0.0805945i
\(516\) −0.746678 + 1.29328i −0.0328707 + 0.0569337i
\(517\) 12.1795 + 21.0955i 0.535654 + 0.927780i
\(518\) 0 0
\(519\) −13.2980 −0.583717
\(520\) 2.31756 6.56853i 0.101632 0.288049i
\(521\) −34.1422 −1.49580 −0.747898 0.663814i \(-0.768937\pi\)
−0.747898 + 0.663814i \(0.768937\pi\)
\(522\) −22.5033 + 12.9923i −0.984941 + 0.568656i
\(523\) −17.5069 30.3229i −0.765525 1.32593i −0.939968 0.341262i \(-0.889146\pi\)
0.174443 0.984667i \(-0.444188\pi\)
\(524\) 9.79074 16.9581i 0.427710 0.740816i
\(525\) 0 0
\(526\) 2.23467 + 1.29018i 0.0974360 + 0.0562547i
\(527\) −1.54029 0.889285i −0.0670960 0.0387379i
\(528\) 2.85902i 0.124423i
\(529\) −3.31025 + 5.73352i −0.143924 + 0.249283i
\(530\) 8.73629 + 15.1317i 0.379480 + 0.657279i
\(531\) 7.62692 4.40340i 0.330980 0.191091i
\(532\) 0 0
\(533\) 0.731226 + 3.92024i 0.0316729 + 0.169804i
\(534\) −11.5760 −0.500944
\(535\) −0.819910 + 0.473375i −0.0354478 + 0.0204658i
\(536\) 0.654458 + 1.13356i 0.0282683 + 0.0489621i
\(537\) 0.680214 1.17817i 0.0293534 0.0508416i
\(538\) 12.5446i 0.540837i
\(539\) 0 0
\(540\) 6.79883 + 3.92531i 0.292575 + 0.168918i
\(541\) 36.2358i 1.55790i −0.627086 0.778950i \(-0.715753\pi\)
0.627086 0.778950i \(-0.284247\pi\)
\(542\) 4.82231 8.35249i 0.207136 0.358770i
\(543\) −6.98605 12.1002i −0.299800 0.519269i
\(544\) 0.224846 0.129815i 0.00964019 0.00556576i
\(545\) −15.3986 −0.659603
\(546\) 0 0
\(547\) −30.8075 −1.31723 −0.658616 0.752479i \(-0.728858\pi\)
−0.658616 + 0.752479i \(0.728858\pi\)
\(548\) −2.61786 + 1.51142i −0.111829 + 0.0645647i
\(549\) 5.40995 + 9.37030i 0.230891 + 0.399915i
\(550\) −2.42748 + 4.20451i −0.103508 + 0.179281i
\(551\) 35.9057i 1.52963i
\(552\) 3.51933 + 2.03189i 0.149793 + 0.0864829i
\(553\) 0 0
\(554\) 17.0586i 0.724752i
\(555\) −5.22570 + 9.05118i −0.221819 + 0.384201i
\(556\) −1.83741 3.18249i −0.0779237 0.134968i
\(557\) −13.3209 + 7.69083i −0.564425 + 0.325871i −0.754920 0.655817i \(-0.772324\pi\)
0.190495 + 0.981688i \(0.438991\pi\)
\(558\) 16.7319 0.708320
\(559\) −4.68952 5.47799i −0.198346 0.231694i
\(560\) 0 0
\(561\) 0.642838 0.371143i 0.0271406 0.0156697i
\(562\) 7.27592 + 12.6023i 0.306916 + 0.531594i
\(563\) −20.8529 + 36.1183i −0.878845 + 1.52220i −0.0262347 + 0.999656i \(0.508352\pi\)
−0.852610 + 0.522548i \(0.824982\pi\)
\(564\) 4.75018i 0.200019i
\(565\) −5.14367 2.96970i −0.216396 0.124936i
\(566\) 17.9652 + 10.3722i 0.755135 + 0.435977i
\(567\) 0 0
\(568\) −3.39732 + 5.88434i −0.142549 + 0.246901i
\(569\) −15.8548 27.4613i −0.664667 1.15124i −0.979375 0.202049i \(-0.935240\pi\)
0.314708 0.949189i \(-0.398093\pi\)
\(570\) 4.21615 2.43420i 0.176595 0.101957i
\(571\) 45.7815 1.91590 0.957948 0.286943i \(-0.0926391\pi\)
0.957948 + 0.286943i \(0.0926391\pi\)
\(572\) 13.0190 + 4.59347i 0.544352 + 0.192062i
\(573\) −17.3905 −0.726500
\(574\) 0 0
\(575\) −3.45039 5.97625i −0.143891 0.249227i
\(576\) −1.22124 + 2.11524i −0.0508848 + 0.0881351i
\(577\) 12.9508i 0.539150i −0.962979 0.269575i \(-0.913117\pi\)
0.962979 0.269575i \(-0.0868832\pi\)
\(578\) −14.6641 8.46630i −0.609944 0.352151i
\(579\) 5.84461 + 3.37439i 0.242894 + 0.140235i
\(580\) 20.5522i 0.853385i
\(581\) 0 0
\(582\) 4.16310 + 7.21070i 0.172566 + 0.298893i
\(583\) −29.9914 + 17.3156i −1.24212 + 0.717137i
\(584\) −2.97832 −0.123244
\(585\) −12.9239 + 11.0637i −0.534339 + 0.457430i
\(586\) 3.45074 0.142549
\(587\) 18.4964 10.6789i 0.763430 0.440766i −0.0670960 0.997747i \(-0.521373\pi\)
0.830526 + 0.556980i \(0.188040\pi\)
\(588\) 0 0
\(589\) 11.5602 20.0228i 0.476329 0.825027i
\(590\) 6.96567i 0.286772i
\(591\) 0.914246 + 0.527840i 0.0376070 + 0.0217124i
\(592\) −6.27477 3.62274i −0.257891 0.148894i
\(593\) 29.5910i 1.21516i 0.794260 + 0.607578i \(0.207859\pi\)
−0.794260 + 0.607578i \(0.792141\pi\)
\(594\) −7.78006 + 13.4755i −0.319220 + 0.552905i
\(595\) 0 0
\(596\) 6.77213 3.90989i 0.277397 0.160155i
\(597\) 5.90209 0.241556
\(598\) −14.9069 + 12.7613i −0.609588 + 0.521848i
\(599\) −15.0581 −0.615256 −0.307628 0.951507i \(-0.599535\pi\)
−0.307628 + 0.951507i \(0.599535\pi\)
\(600\) −0.819910 + 0.473375i −0.0334727 + 0.0193255i
\(601\) 21.6117 + 37.4326i 0.881560 + 1.52691i 0.849607 + 0.527417i \(0.176839\pi\)
0.0319529 + 0.999489i \(0.489827\pi\)
\(602\) 0 0
\(603\) 3.19699i 0.130192i
\(604\) −18.3942 10.6199i −0.748449 0.432117i
\(605\) 6.12513 + 3.53634i 0.249022 + 0.143773i
\(606\) 8.25996i 0.335538i
\(607\) 14.6731 25.4146i 0.595563 1.03155i −0.397904 0.917427i \(-0.630262\pi\)
0.993467 0.114119i \(-0.0364045\pi\)
\(608\) 1.68752 + 2.92286i 0.0684378 + 0.118538i
\(609\) 0 0
\(610\) 8.55790 0.346499
\(611\) −21.6307 7.63192i −0.875085 0.308754i
\(612\) −0.634138 −0.0256335
\(613\) 3.29378 1.90167i 0.133035 0.0768076i −0.432006 0.901871i \(-0.642194\pi\)
0.565040 + 0.825063i \(0.308861\pi\)
\(614\) 7.55004 + 13.0771i 0.304695 + 0.527747i
\(615\) −0.797709 + 1.38167i −0.0321667 + 0.0557144i
\(616\) 0 0
\(617\) −13.3461 7.70535i −0.537292 0.310206i 0.206689 0.978407i \(-0.433731\pi\)
−0.743981 + 0.668201i \(0.767065\pi\)
\(618\) 0.612209 + 0.353459i 0.0246266 + 0.0142182i
\(619\) 5.88560i 0.236562i 0.992980 + 0.118281i \(0.0377384\pi\)
−0.992980 + 0.118281i \(0.962262\pi\)
\(620\) 6.61699 11.4610i 0.265745 0.460284i
\(621\) −11.0585 19.1539i −0.443762 0.768618i
\(622\) −12.5615 + 7.25241i −0.503672 + 0.290795i
\(623\) 0 0
\(624\) 1.75078 + 2.04515i 0.0700874 + 0.0818714i
\(625\) −17.0526 −0.682102
\(626\) 0.223530 0.129055i 0.00893405 0.00515807i
\(627\) 4.82464 + 8.35652i 0.192677 + 0.333727i
\(628\) −9.89002 + 17.1300i −0.394655 + 0.683562i
\(629\) 1.88114i 0.0750060i
\(630\) 0 0
\(631\) 37.6719 + 21.7499i 1.49969 + 0.865849i 1.00000 0.000353231i \(-0.000112437\pi\)
0.499694 + 0.866202i \(0.333446\pi\)
\(632\) 8.80301i 0.350165i
\(633\) −8.50639 + 14.7335i −0.338098 + 0.585604i
\(634\) 11.6992 + 20.2636i 0.464634 + 0.804770i
\(635\) 6.67814 3.85563i 0.265014 0.153006i
\(636\) −6.75331 −0.267786
\(637\) 0 0
\(638\) −40.7351 −1.61272
\(639\) 14.3723 8.29787i 0.568561 0.328259i
\(640\) 0.965926 + 1.67303i 0.0381816 + 0.0661324i
\(641\) −9.86953 + 17.0945i −0.389823 + 0.675193i −0.992425 0.122848i \(-0.960797\pi\)
0.602603 + 0.798041i \(0.294130\pi\)
\(642\) 0.365928i 0.0144420i
\(643\) 27.0556 + 15.6205i 1.06697 + 0.616014i 0.927352 0.374191i \(-0.122080\pi\)
0.139617 + 0.990206i \(0.455413\pi\)
\(644\) 0 0
\(645\) 2.88494i 0.113595i
\(646\) −0.438129 + 0.758862i −0.0172380 + 0.0298570i
\(647\) −0.463136 0.802175i −0.0182078 0.0315368i 0.856778 0.515685i \(-0.172463\pi\)
−0.874986 + 0.484149i \(0.839129\pi\)
\(648\) 3.71792 2.14654i 0.146054 0.0843241i
\(649\) 13.8061 0.541938
\(650\) −0.838275 4.49414i −0.0328798 0.176275i
\(651\) 0 0
\(652\) 11.8793 6.85853i 0.465230 0.268601i
\(653\) 22.8647 + 39.6028i 0.894765 + 1.54978i 0.834096 + 0.551620i \(0.185990\pi\)
0.0606690 + 0.998158i \(0.480677\pi\)
\(654\) 2.97585 5.15432i 0.116365 0.201550i
\(655\) 37.8285i 1.47808i
\(656\) −0.957850 0.553015i −0.0373978 0.0215916i
\(657\) 6.29988 + 3.63724i 0.245782 + 0.141902i
\(658\) 0 0
\(659\) 1.19349 2.06718i 0.0464917 0.0805260i −0.841843 0.539722i \(-0.818529\pi\)
0.888335 + 0.459196i \(0.151863\pi\)
\(660\) 2.76160 + 4.78323i 0.107495 + 0.186187i
\(661\) −27.8930 + 16.1040i −1.08491 + 0.626374i −0.932217 0.361899i \(-0.882128\pi\)
−0.152695 + 0.988273i \(0.548795\pi\)
\(662\) 4.06866 0.158133
\(663\) −0.232565 + 0.659147i −0.00903209 + 0.0255991i
\(664\) −14.8826 −0.577556
\(665\) 0 0
\(666\) 8.84844 + 15.3259i 0.342870 + 0.593868i
\(667\) 28.9502 50.1432i 1.12096 1.94155i
\(668\) 2.91695i 0.112860i
\(669\) 15.4069 + 8.89515i 0.595664 + 0.343906i
\(670\) −2.18986 1.26432i −0.0846017 0.0488448i
\(671\) 16.9620i 0.654810i
\(672\) 0 0
\(673\) −22.4907 38.9550i −0.866953 1.50161i −0.865095 0.501608i \(-0.832742\pi\)
−0.00185793 0.999998i \(-0.500591\pi\)
\(674\) 16.6751 9.62739i 0.642302 0.370833i
\(675\) 5.15266 0.198326
\(676\) −12.1258 + 4.68662i −0.466378 + 0.180255i
\(677\) 17.4725 0.671522 0.335761 0.941947i \(-0.391007\pi\)
0.335761 + 0.941947i \(0.391007\pi\)
\(678\) 1.98808 1.14782i 0.0763516 0.0440816i
\(679\) 0 0
\(680\) −0.250783 + 0.434369i −0.00961709 + 0.0166573i
\(681\) 18.1036i 0.693730i
\(682\) 22.7159 + 13.1151i 0.869838 + 0.502201i
\(683\) 10.5640 + 6.09915i 0.404222 + 0.233378i 0.688304 0.725422i \(-0.258356\pi\)
−0.284082 + 0.958800i \(0.591689\pi\)
\(684\) 8.24342i 0.315195i
\(685\) 2.91984 5.05731i 0.111561 0.193230i
\(686\) 0 0
\(687\) 13.0024 7.50692i 0.496071 0.286407i
\(688\) 2.00000 0.0762493
\(689\) 10.8503 30.7523i 0.413362 1.17157i
\(690\) −7.85061 −0.298868
\(691\) −29.9974 + 17.3190i −1.14116 + 0.658847i −0.946717 0.322067i \(-0.895622\pi\)
−0.194440 + 0.980914i \(0.562289\pi\)
\(692\) 8.90477 + 15.4235i 0.338508 + 0.586314i
\(693\) 0 0
\(694\) 11.4120i 0.433194i
\(695\) 6.14811 + 3.54961i 0.233211 + 0.134644i
\(696\) −6.87938 3.97181i −0.260762 0.150551i
\(697\) 0.287158i 0.0108769i
\(698\) 12.2484 21.2148i 0.463607 0.802991i
\(699\) 3.55850 + 6.16351i 0.134595 + 0.233125i
\(700\) 0 0
\(701\) 33.1229 1.25104 0.625518 0.780210i \(-0.284888\pi\)
0.625518 + 0.780210i \(0.284888\pi\)
\(702\) −2.68667 14.4037i −0.101402 0.543634i
\(703\) 24.4537 0.922290
\(704\) −3.31599 + 1.91449i −0.124976 + 0.0721551i
\(705\) −4.58832 7.94720i −0.172806 0.299309i
\(706\) −2.26950 + 3.93089i −0.0854138 + 0.147941i
\(707\) 0 0
\(708\) 2.33159 + 1.34615i 0.0876267 + 0.0505913i
\(709\) −26.3801 15.2305i −0.990724 0.571995i −0.0852333 0.996361i \(-0.527164\pi\)
−0.905491 + 0.424366i \(0.860497\pi\)
\(710\) 13.1263i 0.492619i
\(711\) −10.7505 + 18.6205i −0.403177 + 0.698323i
\(712\) 7.75168 + 13.4263i 0.290507 + 0.503172i
\(713\) −32.2882 + 18.6416i −1.20920 + 0.698133i
\(714\) 0 0
\(715\) −26.2182 + 4.89037i −0.980503 + 0.182889i
\(716\) −1.82197 −0.0680904
\(717\) 15.6679 9.04587i 0.585129 0.337824i
\(718\) 4.17826 + 7.23696i 0.155931 + 0.270081i
\(719\) 0.576532 0.998583i 0.0215010 0.0372409i −0.855075 0.518505i \(-0.826489\pi\)
0.876576 + 0.481264i \(0.159822\pi\)
\(720\) 4.71849i 0.175848i
\(721\) 0 0
\(722\) 6.58972 + 3.80457i 0.245244 + 0.141592i
\(723\) 9.01014i 0.335091i
\(724\) −9.35618 + 16.2054i −0.347720 + 0.602268i
\(725\) 6.74462 + 11.6820i 0.250489 + 0.433859i
\(726\) −2.36742 + 1.36683i −0.0878631 + 0.0507278i
\(727\) −12.1545 −0.450785 −0.225393 0.974268i \(-0.572366\pi\)
−0.225393 + 0.974268i \(0.572366\pi\)
\(728\) 0 0
\(729\) −1.38273 −0.0512124
\(730\) 4.98283 2.87684i 0.184423 0.106477i
\(731\) 0.259630 + 0.449692i 0.00960275 + 0.0166324i
\(732\) −1.65385 + 2.86456i −0.0611282 + 0.105877i
\(733\) 50.4631i 1.86390i 0.362588 + 0.931949i \(0.381893\pi\)
−0.362588 + 0.931949i \(0.618107\pi\)
\(734\) −21.5834 12.4612i −0.796659 0.459951i
\(735\) 0 0
\(736\) 5.44247i 0.200612i
\(737\) 2.50591 4.34036i 0.0923063 0.159879i
\(738\) 1.35072 + 2.33952i 0.0497208 + 0.0861190i
\(739\) −6.87096 + 3.96695i −0.252752 + 0.145927i −0.621024 0.783792i \(-0.713283\pi\)
0.368272 + 0.929718i \(0.379950\pi\)
\(740\) 13.9972 0.514547
\(741\) −8.56852 3.02321i −0.314773 0.111061i
\(742\) 0 0
\(743\) 42.5950 24.5922i 1.56266 0.902201i 0.565672 0.824630i \(-0.308617\pi\)
0.996987 0.0775712i \(-0.0247165\pi\)
\(744\) 2.55753 + 4.42977i 0.0937635 + 0.162403i
\(745\) −7.55333 + 13.0827i −0.276733 + 0.479315i
\(746\) 20.4953i 0.750386i
\(747\) 31.4802 + 18.1751i 1.15180 + 0.664993i
\(748\) −0.860930 0.497058i −0.0314787 0.0181743i
\(749\) 0 0
\(750\) 4.52067 7.83003i 0.165072 0.285912i
\(751\) −10.8332 18.7636i −0.395308 0.684693i 0.597833 0.801621i \(-0.296029\pi\)
−0.993140 + 0.116928i \(0.962695\pi\)
\(752\) 5.50943 3.18087i 0.200908 0.115995i
\(753\) 22.9277 0.835533
\(754\) 29.1391 24.9450i 1.06118 0.908445i
\(755\) 41.0321 1.49331
\(756\) 0 0
\(757\) 16.8793 + 29.2358i 0.613489 + 1.06259i 0.990648 + 0.136446i \(0.0435679\pi\)
−0.377158 + 0.926149i \(0.623099\pi\)
\(758\) −1.32041 + 2.28701i −0.0479594 + 0.0830681i
\(759\) 15.5601i 0.564796i
\(760\) −5.64654 3.26003i −0.204822 0.118254i
\(761\) −30.5727 17.6512i −1.10826 0.639855i −0.169882 0.985464i \(-0.554339\pi\)
−0.938378 + 0.345610i \(0.887672\pi\)
\(762\) 2.98047i 0.107971i
\(763\) 0 0
\(764\) 11.6453 + 20.1702i 0.421311 + 0.729732i
\(765\) 1.06093 0.612530i 0.0383581 0.0221461i
\(766\) −15.8705 −0.573424
\(767\) −9.87598 + 8.45450i −0.356601 + 0.305274i
\(768\) −0.746678 −0.0269434
\(769\) −18.0964 + 10.4480i −0.652574 + 0.376764i −0.789442 0.613825i \(-0.789630\pi\)
0.136867 + 0.990589i \(0.456297\pi\)
\(770\) 0 0
\(771\) 2.70564 4.68630i 0.0974411 0.168773i
\(772\) 9.03840i 0.325299i
\(773\) 8.96397 + 5.17535i 0.322412 + 0.186145i 0.652467 0.757817i \(-0.273734\pi\)
−0.330055 + 0.943962i \(0.607067\pi\)
\(774\) −4.23048 2.44247i −0.152062 0.0877928i
\(775\) 8.68598i 0.312010i
\(776\) 5.57550 9.65704i 0.200149 0.346668i
\(777\) 0 0
\(778\) 19.7346 11.3938i 0.707519 0.408487i
\(779\) 3.73289 0.133745
\(780\) −4.90458 1.73047i −0.175612 0.0619608i
\(781\) 26.0166 0.930946
\(782\) 1.22372 0.706513i 0.0437600 0.0252649i
\(783\) 21.6165 + 37.4409i 0.772510 + 1.33803i
\(784\) 0 0
\(785\) 38.2121i 1.36385i
\(786\) −12.6622 7.31053i −0.451646 0.260758i
\(787\) −5.30505 3.06287i −0.189105 0.109180i 0.402459 0.915438i \(-0.368156\pi\)
−0.591563 + 0.806259i \(0.701489\pi\)
\(788\) 1.41384i 0.0503658i
\(789\) 0.963353 1.66858i 0.0342963 0.0594029i
\(790\) 8.50305 + 14.7277i 0.302525 + 0.523989i
\(791\) 0 0
\(792\) 9.35218 0.332315
\(793\) −10.3871 12.1335i −0.368855 0.430872i
\(794\) 23.6695 0.839998
\(795\) 11.2985 6.52320i 0.400717 0.231354i
\(796\) −3.95223 6.84546i −0.140083 0.242631i
\(797\) 2.97989 5.16133i 0.105553 0.182824i −0.808411 0.588619i \(-0.799672\pi\)
0.913964 + 0.405795i \(0.133005\pi\)
\(798\) 0 0
\(799\) 1.43041 + 0.825849i 0.0506043 + 0.0292164i
\(800\) 1.09808 + 0.633975i 0.0388229 + 0.0224144i
\(801\) 37.8665i 1.33795i
\(802\) −4.17669 + 7.23425i −0.147484 + 0.255450i
\(803\) 5.70197 + 9.87611i 0.201218 + 0.348520i
\(804\) 0.846401 0.488670i 0.0298503 0.0172341i
\(805\) 0 0
\(806\) −24.2808 + 4.52899i −0.855253 + 0.159527i
\(807\) 9.36680 0.329727
\(808\) −9.58021 + 5.53114i −0.337031 + 0.194585i
\(809\) 10.1525 + 17.5846i 0.356943 + 0.618243i 0.987448 0.157942i \(-0.0504858\pi\)
−0.630506 + 0.776185i \(0.717152\pi\)
\(810\) −4.14680 + 7.18247i −0.145704 + 0.252366i
\(811\) 17.2012i 0.604017i −0.953305 0.302008i \(-0.902343\pi\)
0.953305 0.302008i \(-0.0976570\pi\)
\(812\) 0 0
\(813\) −6.23662 3.60072i −0.218728 0.126283i
\(814\) 27.7428i 0.972385i
\(815\) −13.2497 + 22.9491i −0.464115 + 0.803871i
\(816\) −0.0969299 0.167887i −0.00339322 0.00587724i
\(817\) −5.84573 + 3.37503i −0.204516 + 0.118077i
\(818\) 18.9124 0.661257
\(819\) 0 0
\(820\) 2.13669 0.0746163
\(821\) −24.3160 + 14.0388i −0.848634 + 0.489959i −0.860190 0.509974i \(-0.829655\pi\)
0.0115557 + 0.999933i \(0.496322\pi\)
\(822\) 1.12854 + 1.95470i 0.0393625 + 0.0681779i
\(823\) 16.2766 28.1920i 0.567368 0.982710i −0.429457 0.903087i \(-0.641295\pi\)
0.996825 0.0796230i \(-0.0253717\pi\)
\(824\) 0.946750i 0.0329816i
\(825\) 3.13942 + 1.81254i 0.109301 + 0.0631047i
\(826\) 0 0
\(827\) 51.9965i 1.80810i 0.427432 + 0.904048i \(0.359419\pi\)
−0.427432 + 0.904048i \(0.640581\pi\)
\(828\) −6.64654 + 11.5121i −0.230983 + 0.400075i
\(829\) −0.941056 1.62996i −0.0326842 0.0566107i 0.849221 0.528038i \(-0.177072\pi\)
−0.881905 + 0.471428i \(0.843739\pi\)
\(830\) 24.8990 14.3755i 0.864258 0.498980i
\(831\) 12.7373 0.441852
\(832\) 1.19966 3.40012i 0.0415906 0.117878i
\(833\) 0 0
\(834\) −2.37630 + 1.37196i −0.0822845 + 0.0475070i
\(835\) −2.81756 4.88016i −0.0975057 0.168885i
\(836\) 6.46147 11.1916i 0.223475 0.387069i
\(837\) 27.8386i 0.962241i
\(838\) 5.57900 + 3.22104i 0.192723 + 0.111269i
\(839\) −6.73034 3.88577i −0.232357 0.134152i 0.379302 0.925273i \(-0.376164\pi\)
−0.611659 + 0.791121i \(0.709498\pi\)
\(840\) 0 0
\(841\) −42.0902 + 72.9023i −1.45138 + 2.51387i
\(842\) −2.06949 3.58446i −0.0713193 0.123529i
\(843\) 9.40983 5.43277i 0.324092 0.187114i
\(844\) 22.7846 0.784279
\(845\) 15.7600 19.5535i 0.542159 0.672661i
\(846\) −15.5384 −0.534221
\(847\) 0 0
\(848\) 4.52224 + 7.83274i 0.155294 + 0.268977i
\(849\) 7.74472 13.4142i 0.265798 0.460376i
\(850\) 0.329197i 0.0112914i
\(851\) −34.1503 19.7167i −1.17066 0.675878i
\(852\) 4.39371 + 2.53671i 0.150526 + 0.0869062i
\(853\) 42.8107i 1.46581i −0.680330 0.732906i \(-0.738164\pi\)
0.680330 0.732906i \(-0.261836\pi\)
\(854\) 0 0
\(855\) 7.96254 + 13.7915i 0.272313 + 0.471660i
\(856\) −0.424416 + 0.245037i −0.0145063 + 0.00837519i
\(857\) −32.1321 −1.09761 −0.548805 0.835950i \(-0.684917\pi\)
−0.548805 + 0.835950i \(0.684917\pi\)
\(858\) 3.42984 9.72100i 0.117093 0.331870i
\(859\) −41.4827 −1.41537 −0.707686 0.706527i \(-0.750261\pi\)
−0.707686 + 0.706527i \(0.750261\pi\)
\(860\) −3.34607 + 1.93185i −0.114100 + 0.0658756i
\(861\) 0 0
\(862\) −1.45457 + 2.51939i −0.0495428 + 0.0858107i
\(863\) 26.9806i 0.918429i 0.888325 + 0.459215i \(0.151869\pi\)
−0.888325 + 0.459215i \(0.848131\pi\)
\(864\) 3.51933 + 2.03189i 0.119730 + 0.0691262i
\(865\) −29.7959 17.2027i −1.01309 0.584909i
\(866\) 5.94879i 0.202148i
\(867\) −6.32160 + 10.9493i −0.214693 + 0.371859i
\(868\) 0 0
\(869\) −29.1907 + 16.8533i −0.990228 + 0.571708i
\(870\) 15.3459 0.520275
\(871\) 0.865359 + 4.63935i 0.0293216 + 0.157198i
\(872\) −7.97090 −0.269929
\(873\) −23.5871 + 13.6180i −0.798301 + 0.460899i
\(874\) 9.18426 + 15.9076i 0.310662 + 0.538083i
\(875\) 0 0
\(876\) 2.22385i 0.0751369i
\(877\) 27.1342 + 15.6659i 0.916256 + 0.529001i 0.882439 0.470427i \(-0.155900\pi\)
0.0338175 + 0.999428i \(0.489234\pi\)
\(878\) 28.3953 + 16.3940i 0.958295 + 0.553272i
\(879\) 2.57659i 0.0869064i
\(880\) 3.69851 6.40601i 0.124677 0.215947i
\(881\) −16.6444 28.8289i −0.560763 0.971270i −0.997430 0.0716470i \(-0.977174\pi\)
0.436667 0.899623i \(-0.356159\pi\)
\(882\) 0 0
\(883\) −30.3862 −1.02258 −0.511288 0.859409i \(-0.670832\pi\)
−0.511288 + 0.859409i \(0.670832\pi\)
\(884\) 0.920236 0.171648i 0.0309509 0.00577315i
\(885\) −5.20111 −0.174833
\(886\) 24.8770 14.3628i 0.835760 0.482526i
\(887\) −5.10315 8.83891i −0.171347 0.296782i 0.767544 0.640996i \(-0.221479\pi\)
−0.938891 + 0.344215i \(0.888145\pi\)
\(888\) −2.70502 + 4.68523i −0.0907746 + 0.157226i
\(889\) 0 0
\(890\) −25.9376 14.9751i −0.869432 0.501967i
\(891\) −14.2358 8.21906i −0.476919 0.275349i
\(892\) 23.8259i 0.797751i
\(893\) −10.7356 + 18.5945i −0.359252 + 0.622242i
\(894\) −2.91943 5.05660i −0.0976404 0.169118i
\(895\) 3.04822 1.75989i 0.101891 0.0588267i
\(896\) 0 0
\(897\) 9.52859 + 11.1307i 0.318150 + 0.371642i
\(898\) −26.2358 −0.875499
\(899\) 63.1151 36.4395i 2.10501 1.21533i
\(900\) −1.54846 2.68202i −0.0516155 0.0894007i
\(901\) −1.17411 + 2.03361i −0.0391151 + 0.0677494i
\(902\) 4.23497i 0.141009i
\(903\) 0 0
\(904\) −2.66256 1.53723i −0.0885555 0.0511275i
\(905\) 36.1495i 1.20165i
\(906\) −7.92964 + 13.7345i −0.263445 + 0.456300i
\(907\) −18.1221 31.3883i −0.601733 1.04223i −0.992559 0.121768i \(-0.961144\pi\)
0.390825 0.920465i \(-0.372190\pi\)
\(908\) −20.9972 + 12.1227i −0.696816 + 0.402307i
\(909\) 27.0193 0.896173
\(910\) 0 0
\(911\) −0.198769 −0.00658552 −0.00329276 0.999995i \(-0.501048\pi\)
−0.00329276 + 0.999995i \(0.501048\pi\)
\(912\) 2.18244 1.26003i 0.0722678 0.0417238i
\(913\) 28.4925 + 49.3505i 0.942965 + 1.63326i
\(914\) −7.98587 + 13.8319i −0.264149 + 0.457520i
\(915\) 6.39000i 0.211247i
\(916\) −17.4136 10.0538i −0.575362 0.332185i
\(917\) 0 0
\(918\) 1.05508i 0.0348227i
\(919\) 7.63839 13.2301i 0.251967 0.436420i −0.712100 0.702078i \(-0.752256\pi\)
0.964067 + 0.265658i \(0.0855891\pi\)
\(920\) 5.25702 + 9.10543i 0.173319 + 0.300197i
\(921\) 9.76435 5.63745i 0.321746 0.185760i
\(922\) −19.5013 −0.642242
\(923\) −18.6105 + 15.9318i −0.612572 + 0.524403i
\(924\) 0 0
\(925\) 7.95609 4.59345i 0.261595 0.151032i
\(926\) 19.8949 + 34.4590i 0.653788 + 1.13239i
\(927\) −1.15621 + 2.00261i −0.0379748 + 0.0657742i
\(928\) 10.6386i 0.349230i
\(929\) 15.4387 + 8.91353i 0.506527 + 0.292444i 0.731405 0.681943i \(-0.238865\pi\)
−0.224878 + 0.974387i \(0.572198\pi\)
\(930\) −8.55766 4.94077i −0.280617 0.162014i
\(931\) 0 0
\(932\) 4.76578 8.25457i 0.156108 0.270387i
\(933\) 5.41522 + 9.37943i 0.177286 + 0.307069i
\(934\) −3.12262 + 1.80285i −0.102175 + 0.0589910i
\(935\) 1.92049 0.0628066
\(936\) −6.68992 + 5.72702i −0.218667 + 0.187193i
\(937\) −20.0868 −0.656206 −0.328103 0.944642i \(-0.606409\pi\)
−0.328103 + 0.944642i \(0.606409\pi\)
\(938\) 0 0
\(939\) −0.0963625 0.166905i −0.00314467 0.00544673i
\(940\) −6.14498 + 10.6434i −0.200427 + 0.347150i
\(941\) 37.5519i 1.22416i −0.790797 0.612079i \(-0.790334\pi\)
0.790797 0.612079i \(-0.209666\pi\)
\(942\) 12.7906 + 7.38466i 0.416740 + 0.240605i
\(943\) −5.21307 3.00977i −0.169761 0.0980116i
\(944\) 3.60569i 0.117355i
\(945\) 0 0
\(946\) −3.82898 6.63199i −0.124491 0.215625i
\(947\) −26.4181 + 15.2525i −0.858472 + 0.495639i −0.863500 0.504348i \(-0.831733\pi\)
0.00502811 + 0.999987i \(0.498399\pi\)
\(948\) −6.57301 −0.213482
\(949\) −10.1267 3.57297i −0.328725 0.115983i
\(950\) −4.27937 −0.138841
\(951\) 15.1304 8.73553i 0.490636 0.283269i
\(952\) 0 0
\(953\) 0.723085 1.25242i 0.0234230 0.0405699i −0.854076 0.520148i \(-0.825877\pi\)
0.877499 + 0.479578i \(0.159210\pi\)
\(954\) 22.0909i 0.715218i
\(955\) −38.9658 22.4969i −1.26090 0.727983i
\(956\) −20.9835 12.1148i −0.678655 0.391821i
\(957\) 30.4160i 0.983210i
\(958\) 13.3135 23.0597i 0.430140 0.745024i
\(959\) 0 0
\(960\) 1.24922 0.721236i 0.0403183 0.0232778i
\(961\) −15.9282 −0.513813
\(962\) −16.9889 19.8453i −0.547745 0.639839i
\(963\) 1.19699 0.0385725
\(964\) −10.4503 + 6.03348i −0.336581 + 0.194325i
\(965\) 8.73043 + 15.1215i 0.281042 + 0.486780i
\(966\) 0 0
\(967\) 15.7699i 0.507125i −0.967319 0.253563i \(-0.918398\pi\)
0.967319 0.253563i \(-0.0816024\pi\)
\(968\) 3.17060 + 1.83055i 0.101907 + 0.0588360i
\(969\) 0.566626 + 0.327142i 0.0182026 + 0.0105093i
\(970\) 21.5421i 0.691674i
\(971\) 10.5050 18.1952i 0.337122 0.583912i −0.646768 0.762687i \(-0.723880\pi\)
0.983890 + 0.178774i \(0.0572132\pi\)
\(972\) −7.69844 13.3341i −0.246928 0.427691i
\(973\) 0 0
\(974\) −40.0111 −1.28204
\(975\) −3.35568 + 0.625922i −0.107468 + 0.0200455i
\(976\) 4.42989 0.141797
\(977\) −19.0301 + 10.9870i −0.608826 + 0.351506i −0.772506 0.635008i \(-0.780997\pi\)
0.163680 + 0.986513i \(0.447664\pi\)
\(978\) −5.12111 8.87003i −0.163755 0.283632i
\(979\) 29.6810 51.4091i 0.948610 1.64304i
\(980\) 0 0
\(981\) 16.8604 + 9.73434i 0.538310 + 0.310794i
\(982\) −36.0754 20.8281i −1.15121 0.664653i
\(983\) 55.7317i 1.77756i 0.458330 + 0.888782i \(0.348448\pi\)
−0.458330 + 0.888782i \(0.651552\pi\)
\(984\) −0.412924 + 0.715206i −0.0131636 + 0.0227999i
\(985\) 1.36566 + 2.36539i 0.0435135 + 0.0753677i
\(986\) −2.39205 + 1.38105i −0.0761784 + 0.0439816i
\(987\) 0 0
\(988\) 2.23132 + 11.9625i 0.0709879 + 0.380579i
\(989\) 10.8849 0.346121
\(990\) −15.6465 + 9.03351i −0.497278 + 0.287104i
\(991\) −15.9210 27.5759i −0.505746 0.875978i −0.999978 0.00664774i \(-0.997884\pi\)
0.494232 0.869330i \(-0.335449\pi\)
\(992\) 3.42521 5.93263i 0.108750 0.188361i
\(993\) 3.03798i 0.0964075i
\(994\) 0 0
\(995\) 13.2244 + 7.63512i 0.419242 + 0.242050i
\(996\) 11.1125i 0.352113i
\(997\) 11.1418 19.2982i 0.352864 0.611179i −0.633886 0.773427i \(-0.718541\pi\)
0.986750 + 0.162248i \(0.0518744\pi\)
\(998\) −1.97709 3.42442i −0.0625836 0.108398i
\(999\) 25.4993 14.7220i 0.806761 0.465783i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.m.e.491.3 yes 16
7.2 even 3 1274.2.v.f.361.6 16
7.3 odd 6 1274.2.o.g.569.2 16
7.4 even 3 1274.2.o.g.569.3 16
7.5 odd 6 1274.2.v.f.361.7 16
7.6 odd 2 inner 1274.2.m.e.491.2 16
13.4 even 6 inner 1274.2.m.e.589.3 yes 16
91.4 even 6 1274.2.v.f.667.6 16
91.17 odd 6 1274.2.v.f.667.7 16
91.30 even 6 1274.2.o.g.459.7 16
91.69 odd 6 inner 1274.2.m.e.589.2 yes 16
91.82 odd 6 1274.2.o.g.459.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1274.2.m.e.491.2 16 7.6 odd 2 inner
1274.2.m.e.491.3 yes 16 1.1 even 1 trivial
1274.2.m.e.589.2 yes 16 91.69 odd 6 inner
1274.2.m.e.589.3 yes 16 13.4 even 6 inner
1274.2.o.g.459.6 16 91.82 odd 6
1274.2.o.g.459.7 16 91.30 even 6
1274.2.o.g.569.2 16 7.3 odd 6
1274.2.o.g.569.3 16 7.4 even 3
1274.2.v.f.361.6 16 7.2 even 3
1274.2.v.f.361.7 16 7.5 odd 6
1274.2.v.f.667.6 16 91.4 even 6
1274.2.v.f.667.7 16 91.17 odd 6