Properties

Label 1274.2.f.z.79.1
Level $1274$
Weight $2$
Character 1274.79
Analytic conductor $10.173$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(79,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,-2,-4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.21913473024.16
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 11x^{6} - 2x^{5} + 51x^{4} + 162x^{2} + 112x + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(1.43998 + 2.49412i\) of defining polynomial
Character \(\chi\) \(=\) 1274.79
Dual form 1274.2.f.z.1145.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-1.43998 - 2.49412i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(2.03644 - 3.52722i) q^{5} -2.87996 q^{6} -1.00000 q^{8} +(-2.64709 + 4.58489i) q^{9} +(-2.03644 - 3.52722i) q^{10} +(0.889353 + 1.54040i) q^{11} +(-1.43998 + 2.49412i) q^{12} +1.00000 q^{13} -11.7297 q^{15} +(-0.500000 + 0.866025i) q^{16} +(-1.74355 - 3.01991i) q^{17} +(2.64709 + 4.58489i) q^{18} +(-3.70711 + 6.42090i) q^{19} -4.07288 q^{20} +1.77871 q^{22} +(-1.52486 + 2.64114i) q^{23} +(1.43998 + 2.49412i) q^{24} +(-5.79417 - 10.0358i) q^{25} +(0.500000 - 0.866025i) q^{26} +6.60713 q^{27} -9.72973 q^{29} +(-5.86487 + 10.1582i) q^{30} +(-1.88935 - 3.27245i) q^{31} +(0.500000 + 0.866025i) q^{32} +(2.56130 - 4.43630i) q^{33} -3.48709 q^{34} +5.29417 q^{36} +(-0.147087 + 0.254762i) q^{37} +(3.70711 + 6.42090i) q^{38} +(-1.43998 - 2.49412i) q^{39} +(-2.03644 + 3.52722i) q^{40} +4.56700 q^{41} +7.00437 q^{43} +(0.889353 - 1.54040i) q^{44} +(10.7813 + 18.6737i) q^{45} +(1.52486 + 2.64114i) q^{46} +(1.57639 - 2.73040i) q^{47} +2.87996 q^{48} -11.5883 q^{50} +(-5.02135 + 8.69723i) q^{51} +(-0.500000 - 0.866025i) q^{52} +(-6.69511 - 11.5963i) q^{53} +(3.30357 - 5.72194i) q^{54} +7.24445 q^{55} +21.3526 q^{57} +(-4.86487 + 8.42620i) q^{58} +(-6.22258 - 10.7778i) q^{59} +(5.86487 + 10.1582i) q^{60} +(-1.48842 + 2.57802i) q^{61} -3.77871 q^{62} +1.00000 q^{64} +(2.03644 - 3.52722i) q^{65} +(-2.56130 - 4.43630i) q^{66} +(4.99061 + 8.64399i) q^{67} +(-1.74355 + 3.01991i) q^{68} +8.78308 q^{69} +1.38146 q^{71} +(2.64709 - 4.58489i) q^{72} +(-2.54493 - 4.40794i) q^{73} +(0.147087 + 0.254762i) q^{74} +(-16.6870 + 28.9027i) q^{75} +7.41421 q^{76} -2.87996 q^{78} +(3.64927 - 6.32073i) q^{79} +(2.03644 + 3.52722i) q^{80} +(-1.57288 - 2.72431i) q^{81} +(2.28350 - 3.95514i) q^{82} +12.6285 q^{83} -14.2025 q^{85} +(3.50219 - 6.06597i) q^{86} +(14.0106 + 24.2671i) q^{87} +(-0.889353 - 1.54040i) q^{88} +(5.43059 - 9.40606i) q^{89} +21.5625 q^{90} +3.04972 q^{92} +(-5.44126 + 9.42454i) q^{93} +(-1.57639 - 2.73040i) q^{94} +(15.0986 + 26.1515i) q^{95} +(1.43998 - 2.49412i) q^{96} -3.68182 q^{97} -9.41678 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 2 q^{3} - 4 q^{4} - 4 q^{6} - 8 q^{8} - 6 q^{9} + 6 q^{11} - 2 q^{12} + 8 q^{13} - 16 q^{15} - 4 q^{16} + 8 q^{17} + 6 q^{18} - 24 q^{19} + 12 q^{22} - 2 q^{23} + 2 q^{24} - 16 q^{25} + 4 q^{26}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −1.43998 2.49412i −0.831373 1.43998i −0.896950 0.442133i \(-0.854222\pi\)
0.0655765 0.997848i \(-0.479111\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 2.03644 3.52722i 0.910724 1.57742i 0.0976791 0.995218i \(-0.468858\pi\)
0.813044 0.582202i \(-0.197809\pi\)
\(6\) −2.87996 −1.17574
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) −2.64709 + 4.58489i −0.882362 + 1.52830i
\(10\) −2.03644 3.52722i −0.643979 1.11540i
\(11\) 0.889353 + 1.54040i 0.268150 + 0.464449i 0.968384 0.249464i \(-0.0802544\pi\)
−0.700234 + 0.713913i \(0.746921\pi\)
\(12\) −1.43998 + 2.49412i −0.415687 + 0.719990i
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) −11.7297 −3.02860
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.74355 3.01991i −0.422872 0.732436i 0.573347 0.819313i \(-0.305645\pi\)
−0.996219 + 0.0868766i \(0.972311\pi\)
\(18\) 2.64709 + 4.58489i 0.623924 + 1.08067i
\(19\) −3.70711 + 6.42090i −0.850469 + 1.47305i 0.0303174 + 0.999540i \(0.490348\pi\)
−0.880786 + 0.473515i \(0.842985\pi\)
\(20\) −4.07288 −0.910724
\(21\) 0 0
\(22\) 1.77871 0.379221
\(23\) −1.52486 + 2.64114i −0.317955 + 0.550715i −0.980061 0.198695i \(-0.936330\pi\)
0.662106 + 0.749410i \(0.269663\pi\)
\(24\) 1.43998 + 2.49412i 0.293935 + 0.509110i
\(25\) −5.79417 10.0358i −1.15883 2.00716i
\(26\) 0.500000 0.866025i 0.0980581 0.169842i
\(27\) 6.60713 1.27154
\(28\) 0 0
\(29\) −9.72973 −1.80677 −0.903383 0.428834i \(-0.858924\pi\)
−0.903383 + 0.428834i \(0.858924\pi\)
\(30\) −5.86487 + 10.1582i −1.07077 + 1.85463i
\(31\) −1.88935 3.27245i −0.339338 0.587750i 0.644971 0.764207i \(-0.276870\pi\)
−0.984308 + 0.176457i \(0.943536\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 2.56130 4.43630i 0.445865 0.772261i
\(34\) −3.48709 −0.598032
\(35\) 0 0
\(36\) 5.29417 0.882362
\(37\) −0.147087 + 0.254762i −0.0241810 + 0.0418827i −0.877863 0.478912i \(-0.841031\pi\)
0.853682 + 0.520795i \(0.174364\pi\)
\(38\) 3.70711 + 6.42090i 0.601372 + 1.04161i
\(39\) −1.43998 2.49412i −0.230581 0.399379i
\(40\) −2.03644 + 3.52722i −0.321989 + 0.557702i
\(41\) 4.56700 0.713246 0.356623 0.934248i \(-0.383928\pi\)
0.356623 + 0.934248i \(0.383928\pi\)
\(42\) 0 0
\(43\) 7.00437 1.06816 0.534079 0.845435i \(-0.320659\pi\)
0.534079 + 0.845435i \(0.320659\pi\)
\(44\) 0.889353 1.54040i 0.134075 0.232225i
\(45\) 10.7813 + 18.6737i 1.60718 + 2.78371i
\(46\) 1.52486 + 2.64114i 0.224828 + 0.389414i
\(47\) 1.57639 2.73040i 0.229941 0.398269i −0.727850 0.685737i \(-0.759480\pi\)
0.957790 + 0.287468i \(0.0928134\pi\)
\(48\) 2.87996 0.415687
\(49\) 0 0
\(50\) −11.5883 −1.63884
\(51\) −5.02135 + 8.69723i −0.703129 + 1.21786i
\(52\) −0.500000 0.866025i −0.0693375 0.120096i
\(53\) −6.69511 11.5963i −0.919644 1.59287i −0.799957 0.600058i \(-0.795144\pi\)
−0.119687 0.992812i \(-0.538189\pi\)
\(54\) 3.30357 5.72194i 0.449558 0.778658i
\(55\) 7.24445 0.976842
\(56\) 0 0
\(57\) 21.3526 2.82823
\(58\) −4.86487 + 8.42620i −0.638788 + 1.10641i
\(59\) −6.22258 10.7778i −0.810110 1.40315i −0.912786 0.408437i \(-0.866074\pi\)
0.102676 0.994715i \(-0.467260\pi\)
\(60\) 5.86487 + 10.1582i 0.757151 + 1.31142i
\(61\) −1.48842 + 2.57802i −0.190573 + 0.330082i −0.945440 0.325796i \(-0.894368\pi\)
0.754867 + 0.655877i \(0.227701\pi\)
\(62\) −3.77871 −0.479896
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 2.03644 3.52722i 0.252589 0.437497i
\(66\) −2.56130 4.43630i −0.315274 0.546071i
\(67\) 4.99061 + 8.64399i 0.609700 + 1.05603i 0.991290 + 0.131699i \(0.0420433\pi\)
−0.381590 + 0.924332i \(0.624623\pi\)
\(68\) −1.74355 + 3.01991i −0.211436 + 0.366218i
\(69\) 8.78308 1.05736
\(70\) 0 0
\(71\) 1.38146 0.163950 0.0819748 0.996634i \(-0.473877\pi\)
0.0819748 + 0.996634i \(0.473877\pi\)
\(72\) 2.64709 4.58489i 0.311962 0.540334i
\(73\) −2.54493 4.40794i −0.297861 0.515910i 0.677785 0.735260i \(-0.262940\pi\)
−0.975646 + 0.219349i \(0.929607\pi\)
\(74\) 0.147087 + 0.254762i 0.0170985 + 0.0296155i
\(75\) −16.6870 + 28.9027i −1.92685 + 3.33740i
\(76\) 7.41421 0.850469
\(77\) 0 0
\(78\) −2.87996 −0.326091
\(79\) 3.64927 6.32073i 0.410575 0.711138i −0.584377 0.811482i \(-0.698661\pi\)
0.994953 + 0.100345i \(0.0319945\pi\)
\(80\) 2.03644 + 3.52722i 0.227681 + 0.394355i
\(81\) −1.57288 2.72431i −0.174764 0.302701i
\(82\) 2.28350 3.95514i 0.252171 0.436772i
\(83\) 12.6285 1.38616 0.693078 0.720863i \(-0.256254\pi\)
0.693078 + 0.720863i \(0.256254\pi\)
\(84\) 0 0
\(85\) −14.2025 −1.54048
\(86\) 3.50219 6.06597i 0.377651 0.654110i
\(87\) 14.0106 + 24.2671i 1.50210 + 2.60171i
\(88\) −0.889353 1.54040i −0.0948053 0.164208i
\(89\) 5.43059 9.40606i 0.575641 0.997040i −0.420330 0.907371i \(-0.638086\pi\)
0.995972 0.0896688i \(-0.0285808\pi\)
\(90\) 21.5625 2.27289
\(91\) 0 0
\(92\) 3.04972 0.317955
\(93\) −5.44126 + 9.42454i −0.564233 + 0.977279i
\(94\) −1.57639 2.73040i −0.162593 0.281619i
\(95\) 15.0986 + 26.1515i 1.54908 + 2.68309i
\(96\) 1.43998 2.49412i 0.146967 0.254555i
\(97\) −3.68182 −0.373833 −0.186916 0.982376i \(-0.559849\pi\)
−0.186916 + 0.982376i \(0.559849\pi\)
\(98\) 0 0
\(99\) −9.41678 −0.946422
\(100\) −5.79417 + 10.0358i −0.579417 + 1.00358i
\(101\) −8.05021 13.9434i −0.801025 1.38742i −0.918942 0.394393i \(-0.870955\pi\)
0.117916 0.993024i \(-0.462379\pi\)
\(102\) 5.02135 + 8.69723i 0.497187 + 0.861154i
\(103\) 0.776893 1.34562i 0.0765496 0.132588i −0.825209 0.564827i \(-0.808943\pi\)
0.901759 + 0.432239i \(0.142276\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 0 0
\(106\) −13.3902 −1.30057
\(107\) 6.13770 10.6308i 0.593353 1.02772i −0.400424 0.916330i \(-0.631137\pi\)
0.993777 0.111388i \(-0.0355297\pi\)
\(108\) −3.30357 5.72194i −0.317886 0.550594i
\(109\) −0.362680 0.628180i −0.0347384 0.0601687i 0.848133 0.529783i \(-0.177726\pi\)
−0.882872 + 0.469614i \(0.844393\pi\)
\(110\) 3.62223 6.27388i 0.345366 0.598191i
\(111\) 0.847211 0.0804137
\(112\) 0 0
\(113\) −0.783079 −0.0736659 −0.0368330 0.999321i \(-0.511727\pi\)
−0.0368330 + 0.999321i \(0.511727\pi\)
\(114\) 10.6763 18.4919i 0.999929 1.73193i
\(115\) 6.21058 + 10.7570i 0.579139 + 1.00310i
\(116\) 4.86487 + 8.42620i 0.451692 + 0.782353i
\(117\) −2.64709 + 4.58489i −0.244723 + 0.423873i
\(118\) −12.4452 −1.14567
\(119\) 0 0
\(120\) 11.7297 1.07077
\(121\) 3.91810 6.78635i 0.356191 0.616941i
\(122\) 1.48842 + 2.57802i 0.134755 + 0.233403i
\(123\) −6.57639 11.3906i −0.592974 1.02706i
\(124\) −1.88935 + 3.27245i −0.169669 + 0.293875i
\(125\) −26.8336 −2.40007
\(126\) 0 0
\(127\) 1.39287 0.123597 0.0617985 0.998089i \(-0.480316\pi\)
0.0617985 + 0.998089i \(0.480316\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −10.0862 17.4697i −0.888037 1.53813i
\(130\) −2.03644 3.52722i −0.178608 0.309357i
\(131\) 3.57197 6.18684i 0.312085 0.540547i −0.666729 0.745300i \(-0.732306\pi\)
0.978814 + 0.204754i \(0.0656394\pi\)
\(132\) −5.12260 −0.445865
\(133\) 0 0
\(134\) 9.98122 0.862246
\(135\) 13.4550 23.3048i 1.15802 2.00576i
\(136\) 1.74355 + 3.01991i 0.149508 + 0.258955i
\(137\) 3.46575 + 6.00285i 0.296099 + 0.512858i 0.975240 0.221150i \(-0.0709809\pi\)
−0.679141 + 0.734008i \(0.737648\pi\)
\(138\) 4.39154 7.60637i 0.373833 0.647497i
\(139\) −11.3928 −0.966322 −0.483161 0.875531i \(-0.660512\pi\)
−0.483161 + 0.875531i \(0.660512\pi\)
\(140\) 0 0
\(141\) −9.07991 −0.764666
\(142\) 0.690732 1.19638i 0.0579649 0.100398i
\(143\) 0.889353 + 1.54040i 0.0743714 + 0.128815i
\(144\) −2.64709 4.58489i −0.220591 0.382074i
\(145\) −19.8140 + 34.3189i −1.64546 + 2.85003i
\(146\) −5.08985 −0.421239
\(147\) 0 0
\(148\) 0.294174 0.0241810
\(149\) −5.66437 + 9.81097i −0.464043 + 0.803746i −0.999158 0.0410332i \(-0.986935\pi\)
0.535115 + 0.844779i \(0.320268\pi\)
\(150\) 16.6870 + 28.9027i 1.36249 + 2.35990i
\(151\) 8.41859 + 14.5814i 0.685095 + 1.18662i 0.973407 + 0.229083i \(0.0735726\pi\)
−0.288312 + 0.957537i \(0.593094\pi\)
\(152\) 3.70711 6.42090i 0.300686 0.520804i
\(153\) 18.4613 1.49251
\(154\) 0 0
\(155\) −15.3902 −1.23617
\(156\) −1.43998 + 2.49412i −0.115291 + 0.199689i
\(157\) −8.21997 14.2374i −0.656025 1.13627i −0.981636 0.190764i \(-0.938903\pi\)
0.325611 0.945504i \(-0.394430\pi\)
\(158\) −3.64927 6.32073i −0.290321 0.502850i
\(159\) −19.2816 + 33.3968i −1.52913 + 2.64854i
\(160\) 4.07288 0.321989
\(161\) 0 0
\(162\) −3.14576 −0.247154
\(163\) −0.101256 + 0.175380i −0.00793095 + 0.0137368i −0.869964 0.493116i \(-0.835858\pi\)
0.862033 + 0.506853i \(0.169191\pi\)
\(164\) −2.28350 3.95514i −0.178312 0.308845i
\(165\) −10.4319 18.0685i −0.812120 1.40663i
\(166\) 6.31424 10.9366i 0.490080 0.848843i
\(167\) −21.4631 −1.66086 −0.830432 0.557120i \(-0.811906\pi\)
−0.830432 + 0.557120i \(0.811906\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −7.10126 + 12.2997i −0.544641 + 0.943347i
\(171\) −19.6261 33.9934i −1.50084 2.59954i
\(172\) −3.50219 6.06597i −0.267039 0.462526i
\(173\) 3.39724 5.88420i 0.258288 0.447367i −0.707496 0.706718i \(-0.750175\pi\)
0.965783 + 0.259350i \(0.0835085\pi\)
\(174\) 28.0213 2.12429
\(175\) 0 0
\(176\) −1.77871 −0.134075
\(177\) −17.9208 + 31.0397i −1.34701 + 2.33309i
\(178\) −5.43059 9.40606i −0.407040 0.705014i
\(179\) −4.16454 7.21320i −0.311273 0.539140i 0.667366 0.744730i \(-0.267422\pi\)
−0.978638 + 0.205590i \(0.934089\pi\)
\(180\) 10.7813 18.6737i 0.803588 1.39186i
\(181\) 20.0505 1.49034 0.745170 0.666875i \(-0.232368\pi\)
0.745170 + 0.666875i \(0.232368\pi\)
\(182\) 0 0
\(183\) 8.57319 0.633748
\(184\) 1.52486 2.64114i 0.112414 0.194707i
\(185\) 0.599068 + 1.03762i 0.0440444 + 0.0762871i
\(186\) 5.44126 + 9.42454i 0.398973 + 0.691041i
\(187\) 3.10126 5.37153i 0.226786 0.392805i
\(188\) −3.15279 −0.229941
\(189\) 0 0
\(190\) 30.1972 2.19074
\(191\) 4.24264 7.34847i 0.306987 0.531717i −0.670715 0.741715i \(-0.734013\pi\)
0.977702 + 0.209999i \(0.0673460\pi\)
\(192\) −1.43998 2.49412i −0.103922 0.179998i
\(193\) 3.55741 + 6.16162i 0.256068 + 0.443523i 0.965185 0.261568i \(-0.0842396\pi\)
−0.709117 + 0.705091i \(0.750906\pi\)
\(194\) −1.84091 + 3.18855i −0.132170 + 0.228925i
\(195\) −11.7297 −0.839984
\(196\) 0 0
\(197\) 15.5048 1.10467 0.552336 0.833621i \(-0.313736\pi\)
0.552336 + 0.833621i \(0.313736\pi\)
\(198\) −4.70839 + 8.15517i −0.334611 + 0.579562i
\(199\) 1.47903 + 2.56175i 0.104846 + 0.181598i 0.913675 0.406445i \(-0.133232\pi\)
−0.808830 + 0.588043i \(0.799898\pi\)
\(200\) 5.79417 + 10.0358i 0.409710 + 0.709639i
\(201\) 14.3728 24.8943i 1.01378 1.75591i
\(202\) −16.1004 −1.13282
\(203\) 0 0
\(204\) 10.0427 0.703129
\(205\) 9.30043 16.1088i 0.649570 1.12509i
\(206\) −0.776893 1.34562i −0.0541287 0.0937537i
\(207\) −8.07288 13.9826i −0.561104 0.971861i
\(208\) −0.500000 + 0.866025i −0.0346688 + 0.0600481i
\(209\) −13.1877 −0.912212
\(210\) 0 0
\(211\) −4.66485 −0.321142 −0.160571 0.987024i \(-0.551334\pi\)
−0.160571 + 0.987024i \(0.551334\pi\)
\(212\) −6.69511 + 11.5963i −0.459822 + 0.796435i
\(213\) −1.98928 3.44553i −0.136303 0.236084i
\(214\) −6.13770 10.6308i −0.419564 0.726707i
\(215\) 14.2640 24.7059i 0.972796 1.68493i
\(216\) −6.60713 −0.449558
\(217\) 0 0
\(218\) −0.725360 −0.0491276
\(219\) −7.32929 + 12.6947i −0.495267 + 0.857828i
\(220\) −3.62223 6.27388i −0.244210 0.422985i
\(221\) −1.74355 3.01991i −0.117284 0.203141i
\(222\) 0.423605 0.733706i 0.0284305 0.0492431i
\(223\) 5.74476 0.384698 0.192349 0.981327i \(-0.438389\pi\)
0.192349 + 0.981327i \(0.438389\pi\)
\(224\) 0 0
\(225\) 61.3507 4.09005
\(226\) −0.391540 + 0.678167i −0.0260448 + 0.0451110i
\(227\) −2.55244 4.42096i −0.169411 0.293429i 0.768802 0.639487i \(-0.220853\pi\)
−0.938213 + 0.346058i \(0.887520\pi\)
\(228\) −10.6763 18.4919i −0.707057 1.22466i
\(229\) 1.13770 1.97055i 0.0751810 0.130217i −0.825984 0.563694i \(-0.809380\pi\)
0.901165 + 0.433476i \(0.142713\pi\)
\(230\) 12.4212 0.819026
\(231\) 0 0
\(232\) 9.72973 0.638788
\(233\) 7.33819 12.7101i 0.480741 0.832668i −0.519015 0.854765i \(-0.673701\pi\)
0.999756 + 0.0220973i \(0.00703436\pi\)
\(234\) 2.64709 + 4.58489i 0.173046 + 0.299724i
\(235\) −6.42047 11.1206i −0.418825 0.725426i
\(236\) −6.22258 + 10.7778i −0.405055 + 0.701576i
\(237\) −21.0195 −1.36537
\(238\) 0 0
\(239\) 5.27976 0.341520 0.170760 0.985313i \(-0.445378\pi\)
0.170760 + 0.985313i \(0.445378\pi\)
\(240\) 5.86487 10.1582i 0.378576 0.655712i
\(241\) −9.81643 17.0025i −0.632332 1.09523i −0.987074 0.160266i \(-0.948765\pi\)
0.354742 0.934964i \(-0.384569\pi\)
\(242\) −3.91810 6.78635i −0.251865 0.436243i
\(243\) 5.38087 9.31993i 0.345183 0.597874i
\(244\) 2.97684 0.190573
\(245\) 0 0
\(246\) −13.1528 −0.838591
\(247\) −3.70711 + 6.42090i −0.235878 + 0.408552i
\(248\) 1.88935 + 3.27245i 0.119974 + 0.207801i
\(249\) −18.1848 31.4969i −1.15241 1.99604i
\(250\) −13.4168 + 23.2385i −0.848551 + 1.46973i
\(251\) −2.77689 −0.175276 −0.0876380 0.996152i \(-0.527932\pi\)
−0.0876380 + 0.996152i \(0.527932\pi\)
\(252\) 0 0
\(253\) −5.42456 −0.341039
\(254\) 0.696434 1.20626i 0.0436981 0.0756874i
\(255\) 20.4513 + 35.4228i 1.28071 + 2.21826i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 3.59779 6.23155i 0.224424 0.388713i −0.731723 0.681603i \(-0.761283\pi\)
0.956146 + 0.292889i \(0.0946167\pi\)
\(258\) −20.1723 −1.25587
\(259\) 0 0
\(260\) −4.07288 −0.252589
\(261\) 25.7555 44.6098i 1.59422 2.76127i
\(262\) −3.57197 6.18684i −0.220677 0.382224i
\(263\) 3.34133 + 5.78736i 0.206035 + 0.356864i 0.950462 0.310840i \(-0.100610\pi\)
−0.744427 + 0.667704i \(0.767277\pi\)
\(264\) −2.56130 + 4.43630i −0.157637 + 0.273036i
\(265\) −54.5367 −3.35016
\(266\) 0 0
\(267\) −31.2798 −1.91429
\(268\) 4.99061 8.64399i 0.304850 0.528016i
\(269\) 4.05542 + 7.02420i 0.247264 + 0.428273i 0.962766 0.270338i \(-0.0871353\pi\)
−0.715502 + 0.698611i \(0.753802\pi\)
\(270\) −13.4550 23.3048i −0.818847 1.41828i
\(271\) 0.529235 0.916662i 0.0321487 0.0556833i −0.849503 0.527583i \(-0.823098\pi\)
0.881652 + 0.471900i \(0.156432\pi\)
\(272\) 3.48709 0.211436
\(273\) 0 0
\(274\) 6.93149 0.418747
\(275\) 10.3061 17.8507i 0.621483 1.07644i
\(276\) −4.39154 7.60637i −0.264340 0.457850i
\(277\) 12.3066 + 21.3157i 0.739433 + 1.28073i 0.952751 + 0.303752i \(0.0982395\pi\)
−0.213318 + 0.976983i \(0.568427\pi\)
\(278\) −5.69639 + 9.86643i −0.341647 + 0.591749i
\(279\) 20.0051 1.19768
\(280\) 0 0
\(281\) 5.13776 0.306493 0.153247 0.988188i \(-0.451027\pi\)
0.153247 + 0.988188i \(0.451027\pi\)
\(282\) −4.53995 + 7.86343i −0.270350 + 0.468261i
\(283\) −0.814064 1.41000i −0.0483911 0.0838159i 0.840815 0.541322i \(-0.182076\pi\)
−0.889206 + 0.457506i \(0.848743\pi\)
\(284\) −0.690732 1.19638i −0.0409874 0.0709922i
\(285\) 43.4834 75.3154i 2.57573 4.46130i
\(286\) 1.77871 0.105177
\(287\) 0 0
\(288\) −5.29417 −0.311962
\(289\) 2.42009 4.19172i 0.142358 0.246572i
\(290\) 19.8140 + 34.3189i 1.16352 + 2.01527i
\(291\) 5.30175 + 9.18291i 0.310794 + 0.538312i
\(292\) −2.54493 + 4.40794i −0.148931 + 0.257955i
\(293\) 14.1509 0.826703 0.413352 0.910571i \(-0.364358\pi\)
0.413352 + 0.910571i \(0.364358\pi\)
\(294\) 0 0
\(295\) −50.6876 −2.95115
\(296\) 0.147087 0.254762i 0.00854927 0.0148078i
\(297\) 5.87607 + 10.1777i 0.340964 + 0.590567i
\(298\) 5.66437 + 9.81097i 0.328128 + 0.568334i
\(299\) −1.52486 + 2.64114i −0.0881850 + 0.152741i
\(300\) 33.3740 1.92685
\(301\) 0 0
\(302\) 16.8372 0.968871
\(303\) −23.1843 + 40.1563i −1.33190 + 2.30692i
\(304\) −3.70711 6.42090i −0.212617 0.368264i
\(305\) 6.06216 + 10.5000i 0.347118 + 0.601226i
\(306\) 9.23064 15.9879i 0.527681 0.913970i
\(307\) 16.4347 0.937979 0.468989 0.883204i \(-0.344618\pi\)
0.468989 + 0.883204i \(0.344618\pi\)
\(308\) 0 0
\(309\) −4.47485 −0.254565
\(310\) −7.69511 + 13.3283i −0.437053 + 0.756997i
\(311\) 6.25955 + 10.8419i 0.354946 + 0.614785i 0.987109 0.160051i \(-0.0511658\pi\)
−0.632162 + 0.774836i \(0.717832\pi\)
\(312\) 1.43998 + 2.49412i 0.0815228 + 0.141202i
\(313\) −7.96740 + 13.7999i −0.450344 + 0.780019i −0.998407 0.0564179i \(-0.982032\pi\)
0.548063 + 0.836437i \(0.315365\pi\)
\(314\) −16.4399 −0.927759
\(315\) 0 0
\(316\) −7.29855 −0.410575
\(317\) 6.93538 12.0124i 0.389530 0.674686i −0.602856 0.797850i \(-0.705971\pi\)
0.992386 + 0.123164i \(0.0393041\pi\)
\(318\) 19.2816 + 33.3968i 1.08126 + 1.87280i
\(319\) −8.65316 14.9877i −0.484484 0.839151i
\(320\) 2.03644 3.52722i 0.113840 0.197177i
\(321\) −35.3526 −1.97319
\(322\) 0 0
\(323\) 25.8541 1.43856
\(324\) −1.57288 + 2.72431i −0.0873822 + 0.151350i
\(325\) −5.79417 10.0358i −0.321403 0.556686i
\(326\) 0.101256 + 0.175380i 0.00560803 + 0.00971339i
\(327\) −1.04450 + 1.80913i −0.0577612 + 0.100045i
\(328\) −4.56700 −0.252171
\(329\) 0 0
\(330\) −20.8637 −1.14851
\(331\) 0.115022 0.199223i 0.00632216 0.0109503i −0.862847 0.505465i \(-0.831321\pi\)
0.869169 + 0.494515i \(0.164654\pi\)
\(332\) −6.31424 10.9366i −0.346539 0.600223i
\(333\) −0.778705 1.34876i −0.0426728 0.0739114i
\(334\) −10.7315 + 18.5876i −0.587204 + 1.01707i
\(335\) 40.6523 2.22107
\(336\) 0 0
\(337\) −7.05710 −0.384425 −0.192212 0.981353i \(-0.561566\pi\)
−0.192212 + 0.981353i \(0.561566\pi\)
\(338\) 0.500000 0.866025i 0.0271964 0.0471056i
\(339\) 1.12762 + 1.95309i 0.0612439 + 0.106077i
\(340\) 7.10126 + 12.2997i 0.385120 + 0.667047i
\(341\) 3.36060 5.82073i 0.181987 0.315210i
\(342\) −39.2521 −2.12251
\(343\) 0 0
\(344\) −7.00437 −0.377651
\(345\) 17.8862 30.9798i 0.962961 1.66790i
\(346\) −3.39724 5.88420i −0.182637 0.316336i
\(347\) −13.2702 22.9846i −0.712380 1.23388i −0.963961 0.266042i \(-0.914284\pi\)
0.251581 0.967836i \(-0.419049\pi\)
\(348\) 14.0106 24.2671i 0.751048 1.30085i
\(349\) 8.59573 0.460119 0.230059 0.973177i \(-0.426108\pi\)
0.230059 + 0.973177i \(0.426108\pi\)
\(350\) 0 0
\(351\) 6.60713 0.352663
\(352\) −0.889353 + 1.54040i −0.0474027 + 0.0821038i
\(353\) 14.3450 + 24.8462i 0.763506 + 1.32243i 0.941033 + 0.338315i \(0.109857\pi\)
−0.177527 + 0.984116i \(0.556810\pi\)
\(354\) 17.9208 + 31.0397i 0.952478 + 1.64974i
\(355\) 2.81327 4.87272i 0.149313 0.258617i
\(356\) −10.8612 −0.575641
\(357\) 0 0
\(358\) −8.32909 −0.440206
\(359\) −12.7662 + 22.1117i −0.673773 + 1.16701i 0.303053 + 0.952974i \(0.401994\pi\)
−0.976826 + 0.214035i \(0.931339\pi\)
\(360\) −10.7813 18.6737i −0.568223 0.984191i
\(361\) −17.9853 31.1514i −0.946594 1.63955i
\(362\) 10.0252 17.3642i 0.526915 0.912643i
\(363\) −22.5680 −1.18451
\(364\) 0 0
\(365\) −20.7304 −1.08508
\(366\) 4.28659 7.42460i 0.224064 0.388090i
\(367\) 16.3563 + 28.3300i 0.853794 + 1.47881i 0.877760 + 0.479101i \(0.159037\pi\)
−0.0239659 + 0.999713i \(0.507629\pi\)
\(368\) −1.52486 2.64114i −0.0794889 0.137679i
\(369\) −12.0893 + 20.9392i −0.629341 + 1.09005i
\(370\) 1.19814 0.0622882
\(371\) 0 0
\(372\) 10.8825 0.564233
\(373\) −2.07657 + 3.59672i −0.107521 + 0.186231i −0.914765 0.403986i \(-0.867625\pi\)
0.807245 + 0.590217i \(0.200958\pi\)
\(374\) −3.10126 5.37153i −0.160362 0.277755i
\(375\) 38.6398 + 66.9261i 1.99535 + 3.45605i
\(376\) −1.57639 + 2.73040i −0.0812963 + 0.140809i
\(377\) −9.72973 −0.501107
\(378\) 0 0
\(379\) −16.4390 −0.844413 −0.422206 0.906500i \(-0.638744\pi\)
−0.422206 + 0.906500i \(0.638744\pi\)
\(380\) 15.0986 26.1515i 0.774542 1.34155i
\(381\) −2.00570 3.47398i −0.102755 0.177977i
\(382\) −4.24264 7.34847i −0.217072 0.375980i
\(383\) −15.8945 + 27.5300i −0.812170 + 1.40672i 0.0991725 + 0.995070i \(0.468380\pi\)
−0.911342 + 0.411649i \(0.864953\pi\)
\(384\) −2.87996 −0.146967
\(385\) 0 0
\(386\) 7.11482 0.362135
\(387\) −18.5412 + 32.1143i −0.942502 + 1.63246i
\(388\) 1.84091 + 3.18855i 0.0934581 + 0.161874i
\(389\) 5.95284 + 10.3106i 0.301821 + 0.522769i 0.976548 0.215298i \(-0.0690722\pi\)
−0.674727 + 0.738067i \(0.735739\pi\)
\(390\) −5.86487 + 10.1582i −0.296979 + 0.514383i
\(391\) 10.6347 0.537818
\(392\) 0 0
\(393\) −20.5743 −1.03784
\(394\) 7.75241 13.4276i 0.390561 0.676471i
\(395\) −14.8631 25.7436i −0.747841 1.29530i
\(396\) 4.70839 + 8.15517i 0.236605 + 0.409813i
\(397\) −12.7146 + 22.0223i −0.638126 + 1.10527i 0.347717 + 0.937599i \(0.386957\pi\)
−0.985844 + 0.167668i \(0.946376\pi\)
\(398\) 2.95806 0.148274
\(399\) 0 0
\(400\) 11.5883 0.579417
\(401\) 14.7217 25.4987i 0.735165 1.27334i −0.219486 0.975616i \(-0.570438\pi\)
0.954651 0.297728i \(-0.0962287\pi\)
\(402\) −14.3728 24.8943i −0.716848 1.24162i
\(403\) −1.88935 3.27245i −0.0941154 0.163013i
\(404\) −8.05021 + 13.9434i −0.400513 + 0.693708i
\(405\) −12.8123 −0.636648
\(406\) 0 0
\(407\) −0.523250 −0.0259365
\(408\) 5.02135 8.69723i 0.248594 0.430577i
\(409\) 6.66364 + 11.5418i 0.329496 + 0.570703i 0.982412 0.186727i \(-0.0597880\pi\)
−0.652916 + 0.757430i \(0.726455\pi\)
\(410\) −9.30043 16.1088i −0.459315 0.795557i
\(411\) 9.98122 17.2880i 0.492337 0.852753i
\(412\) −1.55379 −0.0765496
\(413\) 0 0
\(414\) −16.1458 −0.793521
\(415\) 25.7171 44.5434i 1.26240 2.18655i
\(416\) 0.500000 + 0.866025i 0.0245145 + 0.0424604i
\(417\) 16.4054 + 28.4149i 0.803375 + 1.39149i
\(418\) −6.59385 + 11.4209i −0.322516 + 0.558614i
\(419\) −40.1045 −1.95923 −0.979616 0.200880i \(-0.935620\pi\)
−0.979616 + 0.200880i \(0.935620\pi\)
\(420\) 0 0
\(421\) −14.8486 −0.723675 −0.361838 0.932241i \(-0.617851\pi\)
−0.361838 + 0.932241i \(0.617851\pi\)
\(422\) −2.33243 + 4.03988i −0.113541 + 0.196658i
\(423\) 8.34571 + 14.4552i 0.405782 + 0.702835i
\(424\) 6.69511 + 11.5963i 0.325143 + 0.563164i
\(425\) −20.2048 + 34.9958i −0.980078 + 1.69754i
\(426\) −3.97856 −0.192762
\(427\) 0 0
\(428\) −12.2754 −0.593353
\(429\) 2.56130 4.43630i 0.123661 0.214187i
\(430\) −14.2640 24.7059i −0.687871 1.19143i
\(431\) 4.77689 + 8.27382i 0.230095 + 0.398536i 0.957836 0.287316i \(-0.0927630\pi\)
−0.727741 + 0.685852i \(0.759430\pi\)
\(432\) −3.30357 + 5.72194i −0.158943 + 0.275297i
\(433\) −20.4150 −0.981081 −0.490540 0.871419i \(-0.663201\pi\)
−0.490540 + 0.871419i \(0.663201\pi\)
\(434\) 0 0
\(435\) 114.127 5.47198
\(436\) −0.362680 + 0.628180i −0.0173692 + 0.0300844i
\(437\) −11.3056 19.5820i −0.540822 0.936732i
\(438\) 7.32929 + 12.6947i 0.350207 + 0.606576i
\(439\) 0.641760 1.11156i 0.0306296 0.0530519i −0.850304 0.526291i \(-0.823582\pi\)
0.880934 + 0.473239i \(0.156915\pi\)
\(440\) −7.24445 −0.345366
\(441\) 0 0
\(442\) −3.48709 −0.165864
\(443\) −7.35196 + 12.7340i −0.349302 + 0.605009i −0.986126 0.166001i \(-0.946915\pi\)
0.636823 + 0.771010i \(0.280248\pi\)
\(444\) −0.423605 0.733706i −0.0201034 0.0348201i
\(445\) −22.1181 38.3097i −1.04850 1.81606i
\(446\) 2.87238 4.97511i 0.136011 0.235578i
\(447\) 32.6263 1.54317
\(448\) 0 0
\(449\) 36.3320 1.71461 0.857306 0.514808i \(-0.172137\pi\)
0.857306 + 0.514808i \(0.172137\pi\)
\(450\) 30.6754 53.1313i 1.44605 2.50463i
\(451\) 4.06168 + 7.03503i 0.191257 + 0.331267i
\(452\) 0.391540 + 0.678167i 0.0184165 + 0.0318983i
\(453\) 24.2452 41.9939i 1.13914 1.97305i
\(454\) −5.10488 −0.239584
\(455\) 0 0
\(456\) −21.3526 −0.999929
\(457\) 14.9823 25.9500i 0.700840 1.21389i −0.267332 0.963605i \(-0.586142\pi\)
0.968172 0.250286i \(-0.0805247\pi\)
\(458\) −1.13770 1.97055i −0.0531610 0.0920776i
\(459\) −11.5198 19.9530i −0.537700 0.931324i
\(460\) 6.21058 10.7570i 0.289570 0.501549i
\(461\) 4.50503 0.209820 0.104910 0.994482i \(-0.466544\pi\)
0.104910 + 0.994482i \(0.466544\pi\)
\(462\) 0 0
\(463\) −24.0854 −1.11934 −0.559671 0.828715i \(-0.689073\pi\)
−0.559671 + 0.828715i \(0.689073\pi\)
\(464\) 4.86487 8.42620i 0.225846 0.391176i
\(465\) 22.1616 + 38.3850i 1.02772 + 1.78006i
\(466\) −7.33819 12.7101i −0.339935 0.588785i
\(467\) −18.3852 + 31.8442i −0.850767 + 1.47357i 0.0297492 + 0.999557i \(0.490529\pi\)
−0.880517 + 0.474015i \(0.842804\pi\)
\(468\) 5.29417 0.244723
\(469\) 0 0
\(470\) −12.8409 −0.592308
\(471\) −23.6732 + 41.0032i −1.09080 + 1.88933i
\(472\) 6.22258 + 10.7778i 0.286417 + 0.496089i
\(473\) 6.22936 + 10.7896i 0.286426 + 0.496105i
\(474\) −10.5098 + 18.2035i −0.482730 + 0.836112i
\(475\) 85.9185 3.94221
\(476\) 0 0
\(477\) 70.8901 3.24584
\(478\) 2.63988 4.57241i 0.120745 0.209137i
\(479\) 12.5180 + 21.6819i 0.571963 + 0.990670i 0.996364 + 0.0851953i \(0.0271514\pi\)
−0.424401 + 0.905474i \(0.639515\pi\)
\(480\) −5.86487 10.1582i −0.267693 0.463658i
\(481\) −0.147087 + 0.254762i −0.00670660 + 0.0116162i
\(482\) −19.6329 −0.894252
\(483\) 0 0
\(484\) −7.83621 −0.356191
\(485\) −7.49781 + 12.9866i −0.340458 + 0.589691i
\(486\) −5.38087 9.31993i −0.244081 0.422761i
\(487\) −3.88365 6.72668i −0.175985 0.304815i 0.764517 0.644604i \(-0.222978\pi\)
−0.940502 + 0.339789i \(0.889644\pi\)
\(488\) 1.48842 2.57802i 0.0673777 0.116702i
\(489\) 0.583224 0.0263743
\(490\) 0 0
\(491\) 13.9470 0.629419 0.314710 0.949188i \(-0.398093\pi\)
0.314710 + 0.949188i \(0.398093\pi\)
\(492\) −6.57639 + 11.3906i −0.296487 + 0.513530i
\(493\) 16.9642 + 29.3829i 0.764031 + 1.32334i
\(494\) 3.70711 + 6.42090i 0.166791 + 0.288890i
\(495\) −19.1767 + 33.2150i −0.861928 + 1.49290i
\(496\) 3.77871 0.169669
\(497\) 0 0
\(498\) −36.3695 −1.62976
\(499\) −15.8466 + 27.4471i −0.709390 + 1.22870i 0.255694 + 0.966758i \(0.417696\pi\)
−0.965084 + 0.261941i \(0.915637\pi\)
\(500\) 13.4168 + 23.2385i 0.600016 + 1.03926i
\(501\) 30.9064 + 53.5315i 1.38080 + 2.39161i
\(502\) −1.38845 + 2.40486i −0.0619694 + 0.107334i
\(503\) 13.1767 0.587520 0.293760 0.955879i \(-0.405093\pi\)
0.293760 + 0.955879i \(0.405093\pi\)
\(504\) 0 0
\(505\) −65.5750 −2.91805
\(506\) −2.71228 + 4.69780i −0.120575 + 0.208843i
\(507\) −1.43998 2.49412i −0.0639518 0.110768i
\(508\) −0.696434 1.20626i −0.0308993 0.0535191i
\(509\) 1.88546 3.26572i 0.0835717 0.144750i −0.821210 0.570626i \(-0.806701\pi\)
0.904782 + 0.425876i \(0.140034\pi\)
\(510\) 40.9027 1.81120
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) −24.4933 + 42.4237i −1.08141 + 1.87305i
\(514\) −3.59779 6.23155i −0.158692 0.274862i
\(515\) −3.16419 5.48054i −0.139431 0.241502i
\(516\) −10.0862 + 17.4697i −0.444019 + 0.769063i
\(517\) 5.60788 0.246634
\(518\) 0 0
\(519\) −19.5678 −0.858933
\(520\) −2.03644 + 3.52722i −0.0893038 + 0.154679i
\(521\) 10.2696 + 17.7875i 0.449921 + 0.779286i 0.998380 0.0568910i \(-0.0181187\pi\)
−0.548459 + 0.836177i \(0.684785\pi\)
\(522\) −25.7555 44.6098i −1.12729 1.95252i
\(523\) 17.3269 30.0110i 0.757651 1.31229i −0.186394 0.982475i \(-0.559680\pi\)
0.944045 0.329816i \(-0.106987\pi\)
\(524\) −7.14395 −0.312085
\(525\) 0 0
\(526\) 6.68267 0.291378
\(527\) −6.58835 + 11.4114i −0.286993 + 0.497086i
\(528\) 2.56130 + 4.43630i 0.111466 + 0.193065i
\(529\) 6.84960 + 11.8639i 0.297809 + 0.515820i
\(530\) −27.2684 + 47.2302i −1.18446 + 2.05155i
\(531\) 65.8868 2.85924
\(532\) 0 0
\(533\) 4.56700 0.197819
\(534\) −15.6399 + 27.0891i −0.676804 + 1.17226i
\(535\) −24.9981 43.2980i −1.08076 1.87193i
\(536\) −4.99061 8.64399i −0.215561 0.373363i
\(537\) −11.9937 + 20.7737i −0.517567 + 0.896453i
\(538\) 8.11085 0.349683
\(539\) 0 0
\(540\) −26.9101 −1.15802
\(541\) −9.19729 + 15.9302i −0.395423 + 0.684892i −0.993155 0.116804i \(-0.962735\pi\)
0.597733 + 0.801696i \(0.296068\pi\)
\(542\) −0.529235 0.916662i −0.0227326 0.0393740i
\(543\) −28.8723 50.0083i −1.23903 2.14606i
\(544\) 1.74355 3.01991i 0.0747539 0.129478i
\(545\) −2.95430 −0.126548
\(546\) 0 0
\(547\) 28.4403 1.21602 0.608010 0.793929i \(-0.291968\pi\)
0.608010 + 0.793929i \(0.291968\pi\)
\(548\) 3.46575 6.00285i 0.148049 0.256429i
\(549\) −7.87996 13.6485i −0.336309 0.582503i
\(550\) −10.3061 17.8507i −0.439455 0.761158i
\(551\) 36.0692 62.4736i 1.53660 2.66147i
\(552\) −8.78308 −0.373833
\(553\) 0 0
\(554\) 24.6132 1.04572
\(555\) 1.72529 2.98830i 0.0732346 0.126846i
\(556\) 5.69639 + 9.86643i 0.241581 + 0.418430i
\(557\) 8.34341 + 14.4512i 0.353522 + 0.612318i 0.986864 0.161554i \(-0.0516507\pi\)
−0.633342 + 0.773872i \(0.718317\pi\)
\(558\) 10.0026 17.3249i 0.423442 0.733423i
\(559\) 7.00437 0.296253
\(560\) 0 0
\(561\) −17.8630 −0.754176
\(562\) 2.56888 4.44943i 0.108362 0.187688i
\(563\) 5.75550 + 9.96882i 0.242565 + 0.420136i 0.961444 0.275000i \(-0.0886778\pi\)
−0.718879 + 0.695135i \(0.755344\pi\)
\(564\) 4.53995 + 7.86343i 0.191167 + 0.331110i
\(565\) −1.59469 + 2.76209i −0.0670893 + 0.116202i
\(566\) −1.62813 −0.0684354
\(567\) 0 0
\(568\) −1.38146 −0.0579649
\(569\) −16.1522 + 27.9765i −0.677136 + 1.17283i 0.298704 + 0.954346i \(0.403446\pi\)
−0.975840 + 0.218488i \(0.929888\pi\)
\(570\) −43.4834 75.3154i −1.82132 3.15462i
\(571\) −4.94137 8.55870i −0.206790 0.358171i 0.743912 0.668278i \(-0.232968\pi\)
−0.950702 + 0.310107i \(0.899635\pi\)
\(572\) 0.889353 1.54040i 0.0371857 0.0644075i
\(573\) −24.4373 −1.02088
\(574\) 0 0
\(575\) 35.3412 1.47383
\(576\) −2.64709 + 4.58489i −0.110295 + 0.191037i
\(577\) 13.4795 + 23.3471i 0.561158 + 0.971953i 0.997396 + 0.0721222i \(0.0229771\pi\)
−0.436238 + 0.899831i \(0.643690\pi\)
\(578\) −2.42009 4.19172i −0.100662 0.174353i
\(579\) 10.2452 17.7452i 0.425776 0.737466i
\(580\) 39.6280 1.64546
\(581\) 0 0
\(582\) 10.6035 0.439530
\(583\) 11.9086 20.6263i 0.493205 0.854256i
\(584\) 2.54493 + 4.40794i 0.105310 + 0.182402i
\(585\) 10.7813 + 18.6737i 0.445751 + 0.772063i
\(586\) 7.07544 12.2550i 0.292284 0.506250i
\(587\) −6.80955 −0.281060 −0.140530 0.990076i \(-0.544881\pi\)
−0.140530 + 0.990076i \(0.544881\pi\)
\(588\) 0 0
\(589\) 28.0161 1.15438
\(590\) −25.3438 + 43.8968i −1.04339 + 1.80720i
\(591\) −22.3266 38.6709i −0.918395 1.59071i
\(592\) −0.147087 0.254762i −0.00604525 0.0104707i
\(593\) 12.8849 22.3174i 0.529121 0.916464i −0.470303 0.882505i \(-0.655855\pi\)
0.999423 0.0339587i \(-0.0108115\pi\)
\(594\) 11.7521 0.482196
\(595\) 0 0
\(596\) 11.3287 0.464043
\(597\) 4.25955 7.37775i 0.174332 0.301951i
\(598\) 1.52486 + 2.64114i 0.0623562 + 0.108004i
\(599\) −6.82085 11.8141i −0.278692 0.482709i 0.692368 0.721545i \(-0.256568\pi\)
−0.971060 + 0.238836i \(0.923234\pi\)
\(600\) 16.6870 28.9027i 0.681244 1.17995i
\(601\) −2.52541 −0.103014 −0.0515068 0.998673i \(-0.516402\pi\)
−0.0515068 + 0.998673i \(0.516402\pi\)
\(602\) 0 0
\(603\) −52.8423 −2.15190
\(604\) 8.41859 14.5814i 0.342547 0.593310i
\(605\) −15.9580 27.6400i −0.648784 1.12373i
\(606\) 23.1843 + 40.1563i 0.941797 + 1.63124i
\(607\) −0.183043 + 0.317040i −0.00742949 + 0.0128683i −0.869716 0.493552i \(-0.835698\pi\)
0.862287 + 0.506420i \(0.169032\pi\)
\(608\) −7.41421 −0.300686
\(609\) 0 0
\(610\) 12.1243 0.490899
\(611\) 1.57639 2.73040i 0.0637741 0.110460i
\(612\) −9.23064 15.9879i −0.373127 0.646274i
\(613\) −4.95673 8.58531i −0.200200 0.346757i 0.748392 0.663256i \(-0.230826\pi\)
−0.948593 + 0.316499i \(0.897493\pi\)
\(614\) 8.21736 14.2329i 0.331626 0.574392i
\(615\) −53.5697 −2.16014
\(616\) 0 0
\(617\) 31.2835 1.25943 0.629714 0.776827i \(-0.283172\pi\)
0.629714 + 0.776827i \(0.283172\pi\)
\(618\) −2.23742 + 3.87533i −0.0900023 + 0.155889i
\(619\) −18.8245 32.6050i −0.756620 1.31050i −0.944565 0.328325i \(-0.893516\pi\)
0.187945 0.982180i \(-0.439817\pi\)
\(620\) 7.69511 + 13.3283i 0.309043 + 0.535278i
\(621\) −10.0750 + 17.4503i −0.404294 + 0.700258i
\(622\) 12.5191 0.501970
\(623\) 0 0
\(624\) 2.87996 0.115291
\(625\) −25.6740 + 44.4687i −1.02696 + 1.77875i
\(626\) 7.96740 + 13.7999i 0.318441 + 0.551557i
\(627\) 18.9900 + 32.8917i 0.758389 + 1.31357i
\(628\) −8.21997 + 14.2374i −0.328012 + 0.568134i
\(629\) 1.02581 0.0409019
\(630\) 0 0
\(631\) 6.19207 0.246503 0.123251 0.992375i \(-0.460668\pi\)
0.123251 + 0.992375i \(0.460668\pi\)
\(632\) −3.64927 + 6.32073i −0.145160 + 0.251425i
\(633\) 6.71730 + 11.6347i 0.266989 + 0.462438i
\(634\) −6.93538 12.0124i −0.275439 0.477075i
\(635\) 2.83649 4.91295i 0.112563 0.194964i
\(636\) 38.5633 1.52913
\(637\) 0 0
\(638\) −17.3063 −0.685164
\(639\) −3.65685 + 6.33386i −0.144663 + 0.250564i
\(640\) −2.03644 3.52722i −0.0804974 0.139426i
\(641\) −2.15071 3.72514i −0.0849480 0.147134i 0.820421 0.571760i \(-0.193739\pi\)
−0.905369 + 0.424626i \(0.860406\pi\)
\(642\) −17.6763 + 30.6163i −0.697629 + 1.20833i
\(643\) −12.4113 −0.489455 −0.244728 0.969592i \(-0.578699\pi\)
−0.244728 + 0.969592i \(0.578699\pi\)
\(644\) 0 0
\(645\) −82.1594 −3.23503
\(646\) 12.9270 22.3903i 0.508607 0.880933i
\(647\) 11.5217 + 19.9562i 0.452966 + 0.784559i 0.998569 0.0534843i \(-0.0170327\pi\)
−0.545603 + 0.838044i \(0.683699\pi\)
\(648\) 1.57288 + 2.72431i 0.0617885 + 0.107021i
\(649\) 11.0681 19.1706i 0.434462 0.752510i
\(650\) −11.5883 −0.454532
\(651\) 0 0
\(652\) 0.202511 0.00793095
\(653\) 12.1446 21.0351i 0.475256 0.823168i −0.524342 0.851508i \(-0.675689\pi\)
0.999598 + 0.0283398i \(0.00902205\pi\)
\(654\) 1.04450 + 1.80913i 0.0408433 + 0.0707427i
\(655\) −14.5482 25.1983i −0.568446 0.984577i
\(656\) −2.28350 + 3.95514i −0.0891558 + 0.154422i
\(657\) 26.9466 1.05129
\(658\) 0 0
\(659\) −0.990314 −0.0385772 −0.0192886 0.999814i \(-0.506140\pi\)
−0.0192886 + 0.999814i \(0.506140\pi\)
\(660\) −10.4319 + 18.0685i −0.406060 + 0.703317i
\(661\) −23.7020 41.0531i −0.921903 1.59678i −0.796468 0.604680i \(-0.793301\pi\)
−0.125434 0.992102i \(-0.540032\pi\)
\(662\) −0.115022 0.199223i −0.00447044 0.00774303i
\(663\) −5.02135 + 8.69723i −0.195013 + 0.337772i
\(664\) −12.6285 −0.490080
\(665\) 0 0
\(666\) −1.55741 −0.0603484
\(667\) 14.8365 25.6976i 0.574471 0.995013i
\(668\) 10.7315 + 18.5876i 0.415216 + 0.719175i
\(669\) −8.27234 14.3281i −0.319827 0.553957i
\(670\) 20.3261 35.2059i 0.785268 1.36012i
\(671\) −5.29492 −0.204408
\(672\) 0 0
\(673\) 41.4037 1.59599 0.797997 0.602661i \(-0.205893\pi\)
0.797997 + 0.602661i \(0.205893\pi\)
\(674\) −3.52855 + 6.11163i −0.135915 + 0.235411i
\(675\) −38.2829 66.3079i −1.47351 2.55219i
\(676\) −0.500000 0.866025i −0.0192308 0.0333087i
\(677\) 11.3728 19.6982i 0.437091 0.757063i −0.560373 0.828240i \(-0.689342\pi\)
0.997464 + 0.0711773i \(0.0226756\pi\)
\(678\) 2.25524 0.0866119
\(679\) 0 0
\(680\) 14.2025 0.544641
\(681\) −7.35093 + 12.7322i −0.281688 + 0.487898i
\(682\) −3.36060 5.82073i −0.128684 0.222887i
\(683\) 13.6216 + 23.5934i 0.521218 + 0.902776i 0.999695 + 0.0246761i \(0.00785546\pi\)
−0.478478 + 0.878100i \(0.658811\pi\)
\(684\) −19.6261 + 33.9934i −0.750422 + 1.29977i
\(685\) 28.2311 1.07866
\(686\) 0 0
\(687\) −6.55304 −0.250014
\(688\) −3.50219 + 6.06597i −0.133520 + 0.231263i
\(689\) −6.69511 11.5963i −0.255063 0.441782i
\(690\) −17.8862 30.9798i −0.680916 1.17938i
\(691\) 24.0447 41.6466i 0.914702 1.58431i 0.107365 0.994220i \(-0.465759\pi\)
0.807337 0.590090i \(-0.200908\pi\)
\(692\) −6.79448 −0.258288
\(693\) 0 0
\(694\) −26.5403 −1.00746
\(695\) −23.2007 + 40.1848i −0.880053 + 1.52430i
\(696\) −14.0106 24.2671i −0.531071 0.919843i
\(697\) −7.96278 13.7919i −0.301612 0.522407i
\(698\) 4.29786 7.44412i 0.162677 0.281764i
\(699\) −42.2674 −1.59870
\(700\) 0 0
\(701\) 0.0656322 0.00247890 0.00123945 0.999999i \(-0.499605\pi\)
0.00123945 + 0.999999i \(0.499605\pi\)
\(702\) 3.30357 5.72194i 0.124685 0.215961i
\(703\) −1.09054 1.88886i −0.0411303 0.0712398i
\(704\) 0.889353 + 1.54040i 0.0335187 + 0.0580562i
\(705\) −18.4907 + 32.0268i −0.696400 + 1.20620i
\(706\) 28.6900 1.07976
\(707\) 0 0
\(708\) 35.8415 1.34701
\(709\) 2.69274 4.66397i 0.101128 0.175159i −0.811022 0.585016i \(-0.801088\pi\)
0.912150 + 0.409857i \(0.134421\pi\)
\(710\) −2.81327 4.87272i −0.105580 0.182870i
\(711\) 19.3199 + 33.4630i 0.724553 + 1.25496i
\(712\) −5.43059 + 9.40606i −0.203520 + 0.352507i
\(713\) 11.5240 0.431577
\(714\) 0 0
\(715\) 7.24445 0.270927
\(716\) −4.16454 + 7.21320i −0.155636 + 0.269570i
\(717\) −7.60276 13.1684i −0.283930 0.491782i
\(718\) 12.7662 + 22.1117i 0.476429 + 0.825200i
\(719\) −10.9794 + 19.0169i −0.409463 + 0.709210i −0.994830 0.101558i \(-0.967617\pi\)
0.585367 + 0.810769i \(0.300950\pi\)
\(720\) −21.5625 −0.803588
\(721\) 0 0
\(722\) −35.9706 −1.33869
\(723\) −28.2709 + 48.9667i −1.05141 + 1.82109i
\(724\) −10.0252 17.3642i −0.372585 0.645336i
\(725\) 56.3758 + 97.6457i 2.09374 + 3.62647i
\(726\) −11.2840 + 19.5444i −0.418788 + 0.725362i
\(727\) −2.73773 −0.101537 −0.0507684 0.998710i \(-0.516167\pi\)
−0.0507684 + 0.998710i \(0.516167\pi\)
\(728\) 0 0
\(729\) −40.4306 −1.49743
\(730\) −10.3652 + 17.9530i −0.383632 + 0.664471i
\(731\) −12.2125 21.1526i −0.451694 0.782357i
\(732\) −4.28659 7.42460i −0.158437 0.274421i
\(733\) −2.39543 + 4.14901i −0.0884772 + 0.153247i −0.906868 0.421416i \(-0.861533\pi\)
0.818390 + 0.574663i \(0.194867\pi\)
\(734\) 32.7127 1.20745
\(735\) 0 0
\(736\) −3.04972 −0.112414
\(737\) −8.87682 + 15.3751i −0.326982 + 0.566349i
\(738\) 12.0893 + 20.9392i 0.445012 + 0.770783i
\(739\) −2.22823 3.85941i −0.0819668 0.141971i 0.822128 0.569303i \(-0.192787\pi\)
−0.904095 + 0.427332i \(0.859453\pi\)
\(740\) 0.599068 1.03762i 0.0220222 0.0381436i
\(741\) 21.3526 0.784409
\(742\) 0 0
\(743\) 39.8769 1.46294 0.731470 0.681874i \(-0.238835\pi\)
0.731470 + 0.681874i \(0.238835\pi\)
\(744\) 5.44126 9.42454i 0.199486 0.345520i
\(745\) 23.0703 + 39.9589i 0.845230 + 1.46398i
\(746\) 2.07657 + 3.59672i 0.0760286 + 0.131685i
\(747\) −33.4287 + 57.9002i −1.22309 + 2.11846i
\(748\) −6.20251 −0.226786
\(749\) 0 0
\(750\) 77.2796 2.82185
\(751\) 12.2892 21.2854i 0.448438 0.776717i −0.549847 0.835265i \(-0.685314\pi\)
0.998285 + 0.0585486i \(0.0186473\pi\)
\(752\) 1.57639 + 2.73040i 0.0574852 + 0.0995673i
\(753\) 3.99867 + 6.92590i 0.145720 + 0.252394i
\(754\) −4.86487 + 8.42620i −0.177168 + 0.306864i
\(755\) 68.5758 2.49573
\(756\) 0 0
\(757\) −31.3276 −1.13862 −0.569310 0.822123i \(-0.692790\pi\)
−0.569310 + 0.822123i \(0.692790\pi\)
\(758\) −8.21948 + 14.2366i −0.298545 + 0.517095i
\(759\) 7.81125 + 13.5295i 0.283531 + 0.491089i
\(760\) −15.0986 26.1515i −0.547684 0.948616i
\(761\) 1.34838 2.33547i 0.0488789 0.0846607i −0.840551 0.541733i \(-0.817769\pi\)
0.889430 + 0.457072i \(0.151102\pi\)
\(762\) −4.01140 −0.145318
\(763\) 0 0
\(764\) −8.48528 −0.306987
\(765\) 37.5953 65.1169i 1.35926 2.35431i
\(766\) 15.8945 + 27.5300i 0.574291 + 0.994701i
\(767\) −6.22258 10.7778i −0.224684 0.389164i
\(768\) −1.43998 + 2.49412i −0.0519608 + 0.0899988i
\(769\) 16.6046 0.598776 0.299388 0.954131i \(-0.403217\pi\)
0.299388 + 0.954131i \(0.403217\pi\)
\(770\) 0 0
\(771\) −20.7230 −0.746320
\(772\) 3.55741 6.16162i 0.128034 0.221761i
\(773\) −12.1439 21.0339i −0.436787 0.756538i 0.560652 0.828051i \(-0.310550\pi\)
−0.997440 + 0.0715134i \(0.977217\pi\)
\(774\) 18.5412 + 32.1143i 0.666449 + 1.15432i
\(775\) −21.8945 + 37.9223i −0.786473 + 1.36221i
\(776\) 3.68182 0.132170
\(777\) 0 0
\(778\) 11.9057 0.426839
\(779\) −16.9304 + 29.3243i −0.606593 + 1.05065i
\(780\) 5.86487 + 10.1582i 0.209996 + 0.363724i
\(781\) 1.22861 + 2.12801i 0.0439631 + 0.0761462i
\(782\) 5.31733 9.20989i 0.190147 0.329345i
\(783\) −64.2856 −2.29738
\(784\) 0 0
\(785\) −66.9579 −2.38983
\(786\) −10.2871 + 17.8179i −0.366930 + 0.635542i
\(787\) −10.6846 18.5063i −0.380866 0.659679i 0.610320 0.792155i \(-0.291041\pi\)
−0.991186 + 0.132475i \(0.957707\pi\)
\(788\) −7.75241 13.4276i −0.276168 0.478337i
\(789\) 9.62291 16.6674i 0.342585 0.593374i
\(790\) −29.7261 −1.05761
\(791\) 0 0
\(792\) 9.41678 0.334611
\(793\) −1.48842 + 2.57802i −0.0528554 + 0.0915482i
\(794\) 12.7146 + 22.0223i 0.451223 + 0.781542i
\(795\) 78.5318 + 136.021i 2.78524 + 4.82417i
\(796\) 1.47903 2.56175i 0.0524228 0.0907990i
\(797\) 0.537876 0.0190526 0.00952628 0.999955i \(-0.496968\pi\)
0.00952628 + 0.999955i \(0.496968\pi\)
\(798\) 0 0
\(799\) −10.9941 −0.388942
\(800\) 5.79417 10.0358i 0.204855 0.354819i
\(801\) 28.7505 + 49.7973i 1.01585 + 1.75950i
\(802\) −14.7217 25.4987i −0.519840 0.900390i
\(803\) 4.52667 7.84043i 0.159743 0.276683i
\(804\) −28.7455 −1.01378
\(805\) 0 0
\(806\) −3.77871 −0.133099
\(807\) 11.6795 20.2294i 0.411137 0.712109i
\(808\) 8.05021 + 13.9434i 0.283205 + 0.490526i
\(809\) −8.27901 14.3397i −0.291075 0.504156i 0.682989 0.730428i \(-0.260679\pi\)
−0.974064 + 0.226272i \(0.927346\pi\)
\(810\) −6.40615 + 11.0958i −0.225089 + 0.389866i
\(811\) 19.1866 0.673734 0.336867 0.941552i \(-0.390633\pi\)
0.336867 + 0.941552i \(0.390633\pi\)
\(812\) 0 0
\(813\) −3.04835 −0.106910
\(814\) −0.261625 + 0.453147i −0.00916994 + 0.0158828i
\(815\) 0.412402 + 0.714301i 0.0144458 + 0.0250209i
\(816\) −5.02135 8.69723i −0.175782 0.304464i
\(817\) −25.9660 + 44.9744i −0.908434 + 1.57345i
\(818\) 13.3273 0.465977
\(819\) 0 0
\(820\) −18.6009 −0.649570
\(821\) 21.3431 36.9673i 0.744878 1.29017i −0.205374 0.978684i \(-0.565841\pi\)
0.950252 0.311482i \(-0.100826\pi\)
\(822\) −9.98122 17.2880i −0.348135 0.602987i
\(823\) 5.50351 + 9.53237i 0.191840 + 0.332277i 0.945860 0.324574i \(-0.105221\pi\)
−0.754020 + 0.656852i \(0.771888\pi\)
\(824\) −0.776893 + 1.34562i −0.0270644 + 0.0468769i
\(825\) −59.3625 −2.06674
\(826\) 0 0
\(827\) 18.2076 0.633142 0.316571 0.948569i \(-0.397469\pi\)
0.316571 + 0.948569i \(0.397469\pi\)
\(828\) −8.07288 + 13.9826i −0.280552 + 0.485930i
\(829\) −4.74596 8.22024i −0.164834 0.285501i 0.771762 0.635911i \(-0.219375\pi\)
−0.936596 + 0.350410i \(0.886042\pi\)
\(830\) −25.7171 44.5434i −0.892655 1.54612i
\(831\) 35.4426 61.3883i 1.22949 2.12954i
\(832\) 1.00000 0.0346688
\(833\) 0 0
\(834\) 32.8107 1.13614
\(835\) −43.7083 + 75.7050i −1.51259 + 2.61988i
\(836\) 6.59385 + 11.4209i 0.228053 + 0.395000i
\(837\) −12.4832 21.6215i −0.431483 0.747350i
\(838\) −20.0522 + 34.7315i −0.692693 + 1.19978i
\(839\) −36.0098 −1.24320 −0.621599 0.783336i \(-0.713517\pi\)
−0.621599 + 0.783336i \(0.713517\pi\)
\(840\) 0 0
\(841\) 65.6677 2.26440
\(842\) −7.42429 + 12.8592i −0.255858 + 0.443159i
\(843\) −7.39828 12.8142i −0.254810 0.441344i
\(844\) 2.33243 + 4.03988i 0.0802854 + 0.139058i
\(845\) 2.03644 3.52722i 0.0700557 0.121340i
\(846\) 16.6914 0.573863
\(847\) 0 0
\(848\) 13.3902 0.459822
\(849\) −2.34447 + 4.06075i −0.0804621 + 0.139364i
\(850\) 20.2048 + 34.9958i 0.693020 + 1.20035i
\(851\) −0.448575 0.776955i −0.0153770 0.0266337i
\(852\) −1.98928 + 3.44553i −0.0681516 + 0.118042i
\(853\) −27.3815 −0.937523 −0.468762 0.883325i \(-0.655300\pi\)
−0.468762 + 0.883325i \(0.655300\pi\)
\(854\) 0 0
\(855\) −159.869 −5.46741
\(856\) −6.13770 + 10.6308i −0.209782 + 0.363353i
\(857\) 3.61460 + 6.26067i 0.123472 + 0.213860i 0.921135 0.389244i \(-0.127264\pi\)
−0.797662 + 0.603104i \(0.793930\pi\)
\(858\) −2.56130 4.43630i −0.0874414 0.151453i
\(859\) 10.1314 17.5481i 0.345679 0.598733i −0.639798 0.768543i \(-0.720982\pi\)
0.985477 + 0.169810i \(0.0543153\pi\)
\(860\) −28.5280 −0.972796
\(861\) 0 0
\(862\) 9.55379 0.325403
\(863\) −12.3910 + 21.4618i −0.421793 + 0.730567i −0.996115 0.0880623i \(-0.971933\pi\)
0.574322 + 0.818630i \(0.305266\pi\)
\(864\) 3.30357 + 5.72194i 0.112390 + 0.194665i
\(865\) −13.8366 23.9656i −0.470457 0.814856i
\(866\) −10.2075 + 17.6799i −0.346864 + 0.600787i
\(867\) −13.9395 −0.473411
\(868\) 0 0
\(869\) 12.9820 0.440383
\(870\) 57.0636 98.8370i 1.93464 3.35089i
\(871\) 4.99061 + 8.64399i 0.169100 + 0.292890i
\(872\) 0.362680 + 0.628180i 0.0122819 + 0.0212729i
\(873\) 9.74611 16.8808i 0.329856 0.571327i
\(874\) −22.6113 −0.764838
\(875\) 0 0
\(876\) 14.6586 0.495267
\(877\) 13.3691 23.1560i 0.451444 0.781923i −0.547032 0.837111i \(-0.684243\pi\)
0.998476 + 0.0551883i \(0.0175759\pi\)
\(878\) −0.641760 1.11156i −0.0216584 0.0375134i
\(879\) −20.3770 35.2940i −0.687299 1.19044i
\(880\) −3.62223 + 6.27388i −0.122105 + 0.211492i
\(881\) 44.1409 1.48715 0.743573 0.668655i \(-0.233130\pi\)
0.743573 + 0.668655i \(0.233130\pi\)
\(882\) 0 0
\(883\) −33.5058 −1.12756 −0.563780 0.825925i \(-0.690653\pi\)
−0.563780 + 0.825925i \(0.690653\pi\)
\(884\) −1.74355 + 3.01991i −0.0586418 + 0.101571i
\(885\) 72.9892 + 126.421i 2.45350 + 4.24959i
\(886\) 7.35196 + 12.7340i 0.246994 + 0.427806i
\(887\) −25.5832 + 44.3114i −0.859000 + 1.48783i 0.0138845 + 0.999904i \(0.495580\pi\)
−0.872884 + 0.487927i \(0.837753\pi\)
\(888\) −0.847211 −0.0284305
\(889\) 0 0
\(890\) −44.2363 −1.48280
\(891\) 2.79769 4.84574i 0.0937261 0.162338i
\(892\) −2.87238 4.97511i −0.0961744 0.166579i
\(893\) 11.6877 + 20.2437i 0.391115 + 0.677431i
\(894\) 16.3132 28.2552i 0.545594 0.944996i
\(895\) −33.9234 −1.13393
\(896\) 0 0
\(897\) 8.78308 0.293258
\(898\) 18.1660 31.4644i 0.606207 1.04998i
\(899\) 18.3829 + 31.8401i 0.613104 + 1.06193i
\(900\) −30.6754 53.1313i −1.02251 1.77104i
\(901\) −23.3465 + 40.4373i −0.777783 + 1.34716i
\(902\) 8.12335 0.270478
\(903\) 0 0
\(904\) 0.783079 0.0260448
\(905\) 40.8316 70.7224i 1.35729 2.35089i
\(906\) −24.2452 41.9939i −0.805493 1.39515i
\(907\) 0.164543 + 0.284997i 0.00546356 + 0.00946316i 0.868744 0.495261i \(-0.164928\pi\)
−0.863281 + 0.504724i \(0.831594\pi\)
\(908\) −2.55244 + 4.42096i −0.0847057 + 0.146715i
\(909\) 85.2384 2.82718
\(910\) 0 0
\(911\) −3.64811 −0.120867 −0.0604336 0.998172i \(-0.519248\pi\)
−0.0604336 + 0.998172i \(0.519248\pi\)
\(912\) −10.6763 + 18.4919i −0.353528 + 0.612329i
\(913\) 11.2312 + 19.4530i 0.371697 + 0.643799i
\(914\) −14.9823 25.9500i −0.495569 0.858350i
\(915\) 17.4588 30.2395i 0.577170 0.999687i
\(916\) −2.27539 −0.0751810
\(917\) 0 0
\(918\) −23.0397 −0.760423
\(919\) −16.2678 + 28.1767i −0.536626 + 0.929463i 0.462457 + 0.886642i \(0.346968\pi\)
−0.999083 + 0.0428211i \(0.986365\pi\)
\(920\) −6.21058 10.7570i −0.204757 0.354649i
\(921\) −23.6657 40.9901i −0.779810 1.35067i
\(922\) 2.25252 3.90147i 0.0741827 0.128488i
\(923\) 1.38146 0.0454714
\(924\) 0 0
\(925\) 3.40900 0.112087
\(926\) −12.0427 + 20.8586i −0.395747 + 0.685455i
\(927\) 4.11301 + 7.12394i 0.135089 + 0.233981i
\(928\) −4.86487 8.42620i −0.159697 0.276603i
\(929\) 4.99273 8.64767i 0.163806 0.283721i −0.772424 0.635107i \(-0.780956\pi\)
0.936231 + 0.351386i \(0.114289\pi\)
\(930\) 44.3232 1.45342
\(931\) 0 0
\(932\) −14.6764 −0.480741
\(933\) 18.0272 31.2241i 0.590186 1.02223i
\(934\) 18.3852 + 31.8442i 0.601583 + 1.04197i
\(935\) −12.6310 21.8776i −0.413079 0.715474i
\(936\) 2.64709 4.58489i 0.0865228 0.149862i
\(937\) −38.1800 −1.24729 −0.623643 0.781709i \(-0.714348\pi\)
−0.623643 + 0.781709i \(0.714348\pi\)
\(938\) 0 0
\(939\) 45.8916 1.49762
\(940\) −6.42047 + 11.1206i −0.209412 + 0.362713i
\(941\) 3.60525 + 6.24448i 0.117528 + 0.203564i 0.918787 0.394753i \(-0.129170\pi\)
−0.801260 + 0.598317i \(0.795836\pi\)
\(942\) 23.6732 + 41.0032i 0.771314 + 1.33595i
\(943\) −6.96404 + 12.0621i −0.226780 + 0.392795i
\(944\) 12.4452 0.405055
\(945\) 0 0
\(946\) 12.4587 0.405068
\(947\) 21.8887 37.9124i 0.711287 1.23199i −0.253087 0.967444i \(-0.581446\pi\)
0.964374 0.264542i \(-0.0852209\pi\)
\(948\) 10.5098 + 18.2035i 0.341341 + 0.591221i
\(949\) −2.54493 4.40794i −0.0826118 0.143088i
\(950\) 42.9592 74.4076i 1.39378 2.41410i
\(951\) −39.9473 −1.29538
\(952\) 0 0
\(953\) 26.9227 0.872113 0.436057 0.899919i \(-0.356375\pi\)
0.436057 + 0.899919i \(0.356375\pi\)
\(954\) 35.4451 61.3926i 1.14758 1.98766i
\(955\) −17.2798 29.9294i −0.559160 0.968494i
\(956\) −2.63988 4.57241i −0.0853799 0.147882i
\(957\) −24.9208 + 43.1640i −0.805574 + 1.39530i
\(958\) 25.0361 0.808878
\(959\) 0 0
\(960\) −11.7297 −0.378576
\(961\) 8.36069 14.4811i 0.269700 0.467134i
\(962\) 0.147087 + 0.254762i 0.00474228 + 0.00821387i
\(963\) 32.4940 + 56.2813i 1.04711 + 1.81364i
\(964\) −9.81643 + 17.0025i −0.316166 + 0.547615i
\(965\) 28.9778 0.932829
\(966\) 0 0
\(967\) −11.8218 −0.380163 −0.190082 0.981768i \(-0.560875\pi\)
−0.190082 + 0.981768i \(0.560875\pi\)
\(968\) −3.91810 + 6.78635i −0.125933 + 0.218122i
\(969\) −37.2293 64.4831i −1.19598 2.07150i
\(970\) 7.49781 + 12.9866i 0.240740 + 0.416974i
\(971\) −14.0435 + 24.3240i −0.450677 + 0.780595i −0.998428 0.0560458i \(-0.982151\pi\)
0.547751 + 0.836641i \(0.315484\pi\)
\(972\) −10.7617 −0.345183
\(973\) 0 0
\(974\) −7.76730 −0.248880
\(975\) −16.6870 + 28.9027i −0.534412 + 0.925628i
\(976\) −1.48842 2.57802i −0.0476432 0.0825204i
\(977\) −12.0541 20.8783i −0.385645 0.667956i 0.606214 0.795302i \(-0.292688\pi\)
−0.991858 + 0.127346i \(0.959354\pi\)
\(978\) 0.291612 0.505087i 0.00932472 0.0161509i
\(979\) 19.3188 0.617433
\(980\) 0 0
\(981\) 3.84018 0.122608
\(982\) 6.97350 12.0785i 0.222533 0.385439i
\(983\) 3.53606 + 6.12464i 0.112783 + 0.195346i 0.916891 0.399137i \(-0.130690\pi\)
−0.804108 + 0.594483i \(0.797357\pi\)
\(984\) 6.57639 + 11.3906i 0.209648 + 0.363121i
\(985\) 31.5746 54.6889i 1.00605 1.74253i
\(986\) 33.9285 1.08050
\(987\) 0 0
\(988\) 7.41421 0.235878
\(989\) −10.6807 + 18.4995i −0.339626 + 0.588250i
\(990\) 19.1767 + 33.2150i 0.609475 + 1.05564i
\(991\) −3.45720 5.98804i −0.109822 0.190217i 0.805876 0.592084i \(-0.201695\pi\)
−0.915698 + 0.401867i \(0.868361\pi\)
\(992\) 1.88935 3.27245i 0.0599870 0.103901i
\(993\) −0.662515 −0.0210243
\(994\) 0 0
\(995\) 12.0478 0.381941
\(996\) −18.1848 + 31.4969i −0.576206 + 0.998018i
\(997\) 25.7877 + 44.6656i 0.816705 + 1.41458i 0.908097 + 0.418760i \(0.137535\pi\)
−0.0913916 + 0.995815i \(0.529132\pi\)
\(998\) 15.8466 + 27.4471i 0.501614 + 0.868821i
\(999\) −0.971825 + 1.68325i −0.0307472 + 0.0532557i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.f.z.79.1 8
7.2 even 3 1274.2.a.u.1.4 yes 4
7.3 odd 6 1274.2.f.ba.1145.4 8
7.4 even 3 inner 1274.2.f.z.1145.1 8
7.5 odd 6 1274.2.a.t.1.1 4
7.6 odd 2 1274.2.f.ba.79.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1274.2.a.t.1.1 4 7.5 odd 6
1274.2.a.u.1.4 yes 4 7.2 even 3
1274.2.f.z.79.1 8 1.1 even 1 trivial
1274.2.f.z.1145.1 8 7.4 even 3 inner
1274.2.f.ba.79.4 8 7.6 odd 2
1274.2.f.ba.1145.4 8 7.3 odd 6