Properties

Label 1274.2.f.t.79.1
Level $1274$
Weight $2$
Character 1274.79
Analytic conductor $10.173$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(79,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,1,-1,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1274.79
Dual form 1274.2.f.t.1145.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(2.00000 - 3.46410i) q^{5} +1.00000 q^{6} -1.00000 q^{8} +(1.00000 - 1.73205i) q^{9} +(-2.00000 - 3.46410i) q^{10} +(0.500000 + 0.866025i) q^{11} +(0.500000 - 0.866025i) q^{12} -1.00000 q^{13} +4.00000 q^{15} +(-0.500000 + 0.866025i) q^{16} +(2.00000 + 3.46410i) q^{17} +(-1.00000 - 1.73205i) q^{18} +(1.00000 - 1.73205i) q^{19} -4.00000 q^{20} +1.00000 q^{22} +(3.50000 - 6.06218i) q^{23} +(-0.500000 - 0.866025i) q^{24} +(-5.50000 - 9.52628i) q^{25} +(-0.500000 + 0.866025i) q^{26} +5.00000 q^{27} -8.00000 q^{29} +(2.00000 - 3.46410i) q^{30} +(1.50000 + 2.59808i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-0.500000 + 0.866025i) q^{33} +4.00000 q^{34} -2.00000 q^{36} +(-3.50000 + 6.06218i) q^{37} +(-1.00000 - 1.73205i) q^{38} +(-0.500000 - 0.866025i) q^{39} +(-2.00000 + 3.46410i) q^{40} +7.00000 q^{41} -8.00000 q^{43} +(0.500000 - 0.866025i) q^{44} +(-4.00000 - 6.92820i) q^{45} +(-3.50000 - 6.06218i) q^{46} +(1.50000 - 2.59808i) q^{47} -1.00000 q^{48} -11.0000 q^{50} +(-2.00000 + 3.46410i) q^{51} +(0.500000 + 0.866025i) q^{52} +(2.50000 - 4.33013i) q^{54} +4.00000 q^{55} +2.00000 q^{57} +(-4.00000 + 6.92820i) q^{58} +(-3.00000 - 5.19615i) q^{59} +(-2.00000 - 3.46410i) q^{60} +(-6.50000 + 11.2583i) q^{61} +3.00000 q^{62} +1.00000 q^{64} +(-2.00000 + 3.46410i) q^{65} +(0.500000 + 0.866025i) q^{66} +(-3.50000 - 6.06218i) q^{67} +(2.00000 - 3.46410i) q^{68} +7.00000 q^{69} +4.00000 q^{71} +(-1.00000 + 1.73205i) q^{72} +(4.50000 + 7.79423i) q^{73} +(3.50000 + 6.06218i) q^{74} +(5.50000 - 9.52628i) q^{75} -2.00000 q^{76} -1.00000 q^{78} +(6.50000 - 11.2583i) q^{79} +(2.00000 + 3.46410i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(3.50000 - 6.06218i) q^{82} +16.0000 q^{83} +16.0000 q^{85} +(-4.00000 + 6.92820i) q^{86} +(-4.00000 - 6.92820i) q^{87} +(-0.500000 - 0.866025i) q^{88} +(-3.00000 + 5.19615i) q^{89} -8.00000 q^{90} -7.00000 q^{92} +(-1.50000 + 2.59808i) q^{93} +(-1.50000 - 2.59808i) q^{94} +(-4.00000 - 6.92820i) q^{95} +(-0.500000 + 0.866025i) q^{96} -11.0000 q^{97} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + q^{3} - q^{4} + 4 q^{5} + 2 q^{6} - 2 q^{8} + 2 q^{9} - 4 q^{10} + q^{11} + q^{12} - 2 q^{13} + 8 q^{15} - q^{16} + 4 q^{17} - 2 q^{18} + 2 q^{19} - 8 q^{20} + 2 q^{22} + 7 q^{23} - q^{24}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i 0.973494 0.228714i \(-0.0734519\pi\)
−0.684819 + 0.728714i \(0.740119\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 2.00000 3.46410i 0.894427 1.54919i 0.0599153 0.998203i \(-0.480917\pi\)
0.834512 0.550990i \(-0.185750\pi\)
\(6\) 1.00000 0.408248
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) −2.00000 3.46410i −0.632456 1.09545i
\(11\) 0.500000 + 0.866025i 0.150756 + 0.261116i 0.931505 0.363727i \(-0.118496\pi\)
−0.780750 + 0.624844i \(0.785163\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 4.00000 1.03280
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.00000 + 3.46410i 0.485071 + 0.840168i 0.999853 0.0171533i \(-0.00546033\pi\)
−0.514782 + 0.857321i \(0.672127\pi\)
\(18\) −1.00000 1.73205i −0.235702 0.408248i
\(19\) 1.00000 1.73205i 0.229416 0.397360i −0.728219 0.685344i \(-0.759652\pi\)
0.957635 + 0.287984i \(0.0929851\pi\)
\(20\) −4.00000 −0.894427
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 3.50000 6.06218i 0.729800 1.26405i −0.227167 0.973856i \(-0.572946\pi\)
0.956967 0.290196i \(-0.0937204\pi\)
\(24\) −0.500000 0.866025i −0.102062 0.176777i
\(25\) −5.50000 9.52628i −1.10000 1.90526i
\(26\) −0.500000 + 0.866025i −0.0980581 + 0.169842i
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 2.00000 3.46410i 0.365148 0.632456i
\(31\) 1.50000 + 2.59808i 0.269408 + 0.466628i 0.968709 0.248199i \(-0.0798387\pi\)
−0.699301 + 0.714827i \(0.746505\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −0.500000 + 0.866025i −0.0870388 + 0.150756i
\(34\) 4.00000 0.685994
\(35\) 0 0
\(36\) −2.00000 −0.333333
\(37\) −3.50000 + 6.06218i −0.575396 + 0.996616i 0.420602 + 0.907245i \(0.361819\pi\)
−0.995998 + 0.0893706i \(0.971514\pi\)
\(38\) −1.00000 1.73205i −0.162221 0.280976i
\(39\) −0.500000 0.866025i −0.0800641 0.138675i
\(40\) −2.00000 + 3.46410i −0.316228 + 0.547723i
\(41\) 7.00000 1.09322 0.546608 0.837389i \(-0.315919\pi\)
0.546608 + 0.837389i \(0.315919\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 0.500000 0.866025i 0.0753778 0.130558i
\(45\) −4.00000 6.92820i −0.596285 1.03280i
\(46\) −3.50000 6.06218i −0.516047 0.893819i
\(47\) 1.50000 2.59808i 0.218797 0.378968i −0.735643 0.677369i \(-0.763120\pi\)
0.954441 + 0.298401i \(0.0964533\pi\)
\(48\) −1.00000 −0.144338
\(49\) 0 0
\(50\) −11.0000 −1.55563
\(51\) −2.00000 + 3.46410i −0.280056 + 0.485071i
\(52\) 0.500000 + 0.866025i 0.0693375 + 0.120096i
\(53\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(54\) 2.50000 4.33013i 0.340207 0.589256i
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) −4.00000 + 6.92820i −0.525226 + 0.909718i
\(59\) −3.00000 5.19615i −0.390567 0.676481i 0.601958 0.798528i \(-0.294388\pi\)
−0.992524 + 0.122047i \(0.961054\pi\)
\(60\) −2.00000 3.46410i −0.258199 0.447214i
\(61\) −6.50000 + 11.2583i −0.832240 + 1.44148i 0.0640184 + 0.997949i \(0.479608\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 3.00000 0.381000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.00000 + 3.46410i −0.248069 + 0.429669i
\(66\) 0.500000 + 0.866025i 0.0615457 + 0.106600i
\(67\) −3.50000 6.06218i −0.427593 0.740613i 0.569066 0.822292i \(-0.307305\pi\)
−0.996659 + 0.0816792i \(0.973972\pi\)
\(68\) 2.00000 3.46410i 0.242536 0.420084i
\(69\) 7.00000 0.842701
\(70\) 0 0
\(71\) 4.00000 0.474713 0.237356 0.971423i \(-0.423719\pi\)
0.237356 + 0.971423i \(0.423719\pi\)
\(72\) −1.00000 + 1.73205i −0.117851 + 0.204124i
\(73\) 4.50000 + 7.79423i 0.526685 + 0.912245i 0.999517 + 0.0310925i \(0.00989865\pi\)
−0.472831 + 0.881153i \(0.656768\pi\)
\(74\) 3.50000 + 6.06218i 0.406867 + 0.704714i
\(75\) 5.50000 9.52628i 0.635085 1.10000i
\(76\) −2.00000 −0.229416
\(77\) 0 0
\(78\) −1.00000 −0.113228
\(79\) 6.50000 11.2583i 0.731307 1.26666i −0.225018 0.974355i \(-0.572244\pi\)
0.956325 0.292306i \(-0.0944227\pi\)
\(80\) 2.00000 + 3.46410i 0.223607 + 0.387298i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 3.50000 6.06218i 0.386510 0.669456i
\(83\) 16.0000 1.75623 0.878114 0.478451i \(-0.158802\pi\)
0.878114 + 0.478451i \(0.158802\pi\)
\(84\) 0 0
\(85\) 16.0000 1.73544
\(86\) −4.00000 + 6.92820i −0.431331 + 0.747087i
\(87\) −4.00000 6.92820i −0.428845 0.742781i
\(88\) −0.500000 0.866025i −0.0533002 0.0923186i
\(89\) −3.00000 + 5.19615i −0.317999 + 0.550791i −0.980071 0.198650i \(-0.936344\pi\)
0.662071 + 0.749441i \(0.269678\pi\)
\(90\) −8.00000 −0.843274
\(91\) 0 0
\(92\) −7.00000 −0.729800
\(93\) −1.50000 + 2.59808i −0.155543 + 0.269408i
\(94\) −1.50000 2.59808i −0.154713 0.267971i
\(95\) −4.00000 6.92820i −0.410391 0.710819i
\(96\) −0.500000 + 0.866025i −0.0510310 + 0.0883883i
\(97\) −11.0000 −1.11688 −0.558440 0.829545i \(-0.688600\pi\)
−0.558440 + 0.829545i \(0.688600\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) −5.50000 + 9.52628i −0.550000 + 0.952628i
\(101\) 4.50000 + 7.79423i 0.447767 + 0.775555i 0.998240 0.0592978i \(-0.0188862\pi\)
−0.550474 + 0.834853i \(0.685553\pi\)
\(102\) 2.00000 + 3.46410i 0.198030 + 0.342997i
\(103\) 5.00000 8.66025i 0.492665 0.853320i −0.507300 0.861770i \(-0.669356\pi\)
0.999964 + 0.00844953i \(0.00268960\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) 0 0
\(107\) −6.00000 + 10.3923i −0.580042 + 1.00466i 0.415432 + 0.909624i \(0.363630\pi\)
−0.995474 + 0.0950377i \(0.969703\pi\)
\(108\) −2.50000 4.33013i −0.240563 0.416667i
\(109\) −7.00000 12.1244i −0.670478 1.16130i −0.977769 0.209687i \(-0.932756\pi\)
0.307290 0.951616i \(-0.400578\pi\)
\(110\) 2.00000 3.46410i 0.190693 0.330289i
\(111\) −7.00000 −0.664411
\(112\) 0 0
\(113\) 1.00000 0.0940721 0.0470360 0.998893i \(-0.485022\pi\)
0.0470360 + 0.998893i \(0.485022\pi\)
\(114\) 1.00000 1.73205i 0.0936586 0.162221i
\(115\) −14.0000 24.2487i −1.30551 2.26120i
\(116\) 4.00000 + 6.92820i 0.371391 + 0.643268i
\(117\) −1.00000 + 1.73205i −0.0924500 + 0.160128i
\(118\) −6.00000 −0.552345
\(119\) 0 0
\(120\) −4.00000 −0.365148
\(121\) 5.00000 8.66025i 0.454545 0.787296i
\(122\) 6.50000 + 11.2583i 0.588482 + 1.01928i
\(123\) 3.50000 + 6.06218i 0.315584 + 0.546608i
\(124\) 1.50000 2.59808i 0.134704 0.233314i
\(125\) −24.0000 −2.14663
\(126\) 0 0
\(127\) 13.0000 1.15356 0.576782 0.816898i \(-0.304308\pi\)
0.576782 + 0.816898i \(0.304308\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −4.00000 6.92820i −0.352180 0.609994i
\(130\) 2.00000 + 3.46410i 0.175412 + 0.303822i
\(131\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(132\) 1.00000 0.0870388
\(133\) 0 0
\(134\) −7.00000 −0.604708
\(135\) 10.0000 17.3205i 0.860663 1.49071i
\(136\) −2.00000 3.46410i −0.171499 0.297044i
\(137\) 7.00000 + 12.1244i 0.598050 + 1.03585i 0.993109 + 0.117198i \(0.0373911\pi\)
−0.395058 + 0.918656i \(0.629276\pi\)
\(138\) 3.50000 6.06218i 0.297940 0.516047i
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) 3.00000 0.252646
\(142\) 2.00000 3.46410i 0.167836 0.290701i
\(143\) −0.500000 0.866025i −0.0418121 0.0724207i
\(144\) 1.00000 + 1.73205i 0.0833333 + 0.144338i
\(145\) −16.0000 + 27.7128i −1.32873 + 2.30142i
\(146\) 9.00000 0.744845
\(147\) 0 0
\(148\) 7.00000 0.575396
\(149\) −7.50000 + 12.9904i −0.614424 + 1.06421i 0.376061 + 0.926595i \(0.377278\pi\)
−0.990485 + 0.137619i \(0.956055\pi\)
\(150\) −5.50000 9.52628i −0.449073 0.777817i
\(151\) 2.00000 + 3.46410i 0.162758 + 0.281905i 0.935857 0.352381i \(-0.114628\pi\)
−0.773099 + 0.634285i \(0.781294\pi\)
\(152\) −1.00000 + 1.73205i −0.0811107 + 0.140488i
\(153\) 8.00000 0.646762
\(154\) 0 0
\(155\) 12.0000 0.963863
\(156\) −0.500000 + 0.866025i −0.0400320 + 0.0693375i
\(157\) 3.50000 + 6.06218i 0.279330 + 0.483814i 0.971219 0.238190i \(-0.0765542\pi\)
−0.691888 + 0.722005i \(0.743221\pi\)
\(158\) −6.50000 11.2583i −0.517112 0.895665i
\(159\) 0 0
\(160\) 4.00000 0.316228
\(161\) 0 0
\(162\) −1.00000 −0.0785674
\(163\) −6.00000 + 10.3923i −0.469956 + 0.813988i −0.999410 0.0343508i \(-0.989064\pi\)
0.529454 + 0.848339i \(0.322397\pi\)
\(164\) −3.50000 6.06218i −0.273304 0.473377i
\(165\) 2.00000 + 3.46410i 0.155700 + 0.269680i
\(166\) 8.00000 13.8564i 0.620920 1.07547i
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 8.00000 13.8564i 0.613572 1.06274i
\(171\) −2.00000 3.46410i −0.152944 0.264906i
\(172\) 4.00000 + 6.92820i 0.304997 + 0.528271i
\(173\) 7.00000 12.1244i 0.532200 0.921798i −0.467093 0.884208i \(-0.654699\pi\)
0.999293 0.0375896i \(-0.0119679\pi\)
\(174\) −8.00000 −0.606478
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) 3.00000 5.19615i 0.225494 0.390567i
\(178\) 3.00000 + 5.19615i 0.224860 + 0.389468i
\(179\) 9.00000 + 15.5885i 0.672692 + 1.16514i 0.977138 + 0.212607i \(0.0681952\pi\)
−0.304446 + 0.952529i \(0.598471\pi\)
\(180\) −4.00000 + 6.92820i −0.298142 + 0.516398i
\(181\) −13.0000 −0.966282 −0.483141 0.875542i \(-0.660504\pi\)
−0.483141 + 0.875542i \(0.660504\pi\)
\(182\) 0 0
\(183\) −13.0000 −0.960988
\(184\) −3.50000 + 6.06218i −0.258023 + 0.446910i
\(185\) 14.0000 + 24.2487i 1.02930 + 1.78280i
\(186\) 1.50000 + 2.59808i 0.109985 + 0.190500i
\(187\) −2.00000 + 3.46410i −0.146254 + 0.253320i
\(188\) −3.00000 −0.218797
\(189\) 0 0
\(190\) −8.00000 −0.580381
\(191\) −12.0000 + 20.7846i −0.868290 + 1.50392i −0.00454614 + 0.999990i \(0.501447\pi\)
−0.863743 + 0.503932i \(0.831886\pi\)
\(192\) 0.500000 + 0.866025i 0.0360844 + 0.0625000i
\(193\) 2.00000 + 3.46410i 0.143963 + 0.249351i 0.928986 0.370116i \(-0.120682\pi\)
−0.785022 + 0.619467i \(0.787349\pi\)
\(194\) −5.50000 + 9.52628i −0.394877 + 0.683947i
\(195\) −4.00000 −0.286446
\(196\) 0 0
\(197\) 3.00000 0.213741 0.106871 0.994273i \(-0.465917\pi\)
0.106871 + 0.994273i \(0.465917\pi\)
\(198\) 1.00000 1.73205i 0.0710669 0.123091i
\(199\) 8.00000 + 13.8564i 0.567105 + 0.982255i 0.996850 + 0.0793045i \(0.0252700\pi\)
−0.429745 + 0.902950i \(0.641397\pi\)
\(200\) 5.50000 + 9.52628i 0.388909 + 0.673610i
\(201\) 3.50000 6.06218i 0.246871 0.427593i
\(202\) 9.00000 0.633238
\(203\) 0 0
\(204\) 4.00000 0.280056
\(205\) 14.0000 24.2487i 0.977802 1.69360i
\(206\) −5.00000 8.66025i −0.348367 0.603388i
\(207\) −7.00000 12.1244i −0.486534 0.842701i
\(208\) 0.500000 0.866025i 0.0346688 0.0600481i
\(209\) 2.00000 0.138343
\(210\) 0 0
\(211\) 22.0000 1.51454 0.757271 0.653101i \(-0.226532\pi\)
0.757271 + 0.653101i \(0.226532\pi\)
\(212\) 0 0
\(213\) 2.00000 + 3.46410i 0.137038 + 0.237356i
\(214\) 6.00000 + 10.3923i 0.410152 + 0.710403i
\(215\) −16.0000 + 27.7128i −1.09119 + 1.89000i
\(216\) −5.00000 −0.340207
\(217\) 0 0
\(218\) −14.0000 −0.948200
\(219\) −4.50000 + 7.79423i −0.304082 + 0.526685i
\(220\) −2.00000 3.46410i −0.134840 0.233550i
\(221\) −2.00000 3.46410i −0.134535 0.233021i
\(222\) −3.50000 + 6.06218i −0.234905 + 0.406867i
\(223\) −9.00000 −0.602685 −0.301342 0.953516i \(-0.597435\pi\)
−0.301342 + 0.953516i \(0.597435\pi\)
\(224\) 0 0
\(225\) −22.0000 −1.46667
\(226\) 0.500000 0.866025i 0.0332595 0.0576072i
\(227\) 14.0000 + 24.2487i 0.929213 + 1.60944i 0.784642 + 0.619949i \(0.212847\pi\)
0.144571 + 0.989494i \(0.453820\pi\)
\(228\) −1.00000 1.73205i −0.0662266 0.114708i
\(229\) −10.0000 + 17.3205i −0.660819 + 1.14457i 0.319582 + 0.947559i \(0.396457\pi\)
−0.980401 + 0.197013i \(0.936876\pi\)
\(230\) −28.0000 −1.84627
\(231\) 0 0
\(232\) 8.00000 0.525226
\(233\) 6.50000 11.2583i 0.425829 0.737558i −0.570668 0.821181i \(-0.693316\pi\)
0.996497 + 0.0836229i \(0.0266491\pi\)
\(234\) 1.00000 + 1.73205i 0.0653720 + 0.113228i
\(235\) −6.00000 10.3923i −0.391397 0.677919i
\(236\) −3.00000 + 5.19615i −0.195283 + 0.338241i
\(237\) 13.0000 0.844441
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) −2.00000 + 3.46410i −0.129099 + 0.223607i
\(241\) −5.00000 8.66025i −0.322078 0.557856i 0.658838 0.752285i \(-0.271048\pi\)
−0.980917 + 0.194429i \(0.937715\pi\)
\(242\) −5.00000 8.66025i −0.321412 0.556702i
\(243\) 8.00000 13.8564i 0.513200 0.888889i
\(244\) 13.0000 0.832240
\(245\) 0 0
\(246\) 7.00000 0.446304
\(247\) −1.00000 + 1.73205i −0.0636285 + 0.110208i
\(248\) −1.50000 2.59808i −0.0952501 0.164978i
\(249\) 8.00000 + 13.8564i 0.506979 + 0.878114i
\(250\) −12.0000 + 20.7846i −0.758947 + 1.31453i
\(251\) −17.0000 −1.07303 −0.536515 0.843891i \(-0.680260\pi\)
−0.536515 + 0.843891i \(0.680260\pi\)
\(252\) 0 0
\(253\) 7.00000 0.440086
\(254\) 6.50000 11.2583i 0.407846 0.706410i
\(255\) 8.00000 + 13.8564i 0.500979 + 0.867722i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −6.00000 + 10.3923i −0.374270 + 0.648254i −0.990217 0.139533i \(-0.955440\pi\)
0.615948 + 0.787787i \(0.288773\pi\)
\(258\) −8.00000 −0.498058
\(259\) 0 0
\(260\) 4.00000 0.248069
\(261\) −8.00000 + 13.8564i −0.495188 + 0.857690i
\(262\) 0 0
\(263\) −8.00000 13.8564i −0.493301 0.854423i 0.506669 0.862141i \(-0.330877\pi\)
−0.999970 + 0.00771799i \(0.997543\pi\)
\(264\) 0.500000 0.866025i 0.0307729 0.0533002i
\(265\) 0 0
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) −3.50000 + 6.06218i −0.213797 + 0.370306i
\(269\) 1.50000 + 2.59808i 0.0914566 + 0.158408i 0.908124 0.418701i \(-0.137514\pi\)
−0.816668 + 0.577108i \(0.804181\pi\)
\(270\) −10.0000 17.3205i −0.608581 1.05409i
\(271\) −1.50000 + 2.59808i −0.0911185 + 0.157822i −0.907982 0.419009i \(-0.862378\pi\)
0.816864 + 0.576831i \(0.195711\pi\)
\(272\) −4.00000 −0.242536
\(273\) 0 0
\(274\) 14.0000 0.845771
\(275\) 5.50000 9.52628i 0.331662 0.574456i
\(276\) −3.50000 6.06218i −0.210675 0.364900i
\(277\) 7.00000 + 12.1244i 0.420589 + 0.728482i 0.995997 0.0893846i \(-0.0284900\pi\)
−0.575408 + 0.817867i \(0.695157\pi\)
\(278\) 10.0000 17.3205i 0.599760 1.03882i
\(279\) 6.00000 0.359211
\(280\) 0 0
\(281\) −20.0000 −1.19310 −0.596550 0.802576i \(-0.703462\pi\)
−0.596550 + 0.802576i \(0.703462\pi\)
\(282\) 1.50000 2.59808i 0.0893237 0.154713i
\(283\) 8.50000 + 14.7224i 0.505273 + 0.875158i 0.999981 + 0.00609896i \(0.00194137\pi\)
−0.494709 + 0.869059i \(0.664725\pi\)
\(284\) −2.00000 3.46410i −0.118678 0.205557i
\(285\) 4.00000 6.92820i 0.236940 0.410391i
\(286\) −1.00000 −0.0591312
\(287\) 0 0
\(288\) 2.00000 0.117851
\(289\) 0.500000 0.866025i 0.0294118 0.0509427i
\(290\) 16.0000 + 27.7128i 0.939552 + 1.62735i
\(291\) −5.50000 9.52628i −0.322416 0.558440i
\(292\) 4.50000 7.79423i 0.263343 0.456123i
\(293\) −14.0000 −0.817889 −0.408944 0.912559i \(-0.634103\pi\)
−0.408944 + 0.912559i \(0.634103\pi\)
\(294\) 0 0
\(295\) −24.0000 −1.39733
\(296\) 3.50000 6.06218i 0.203433 0.352357i
\(297\) 2.50000 + 4.33013i 0.145065 + 0.251259i
\(298\) 7.50000 + 12.9904i 0.434463 + 0.752513i
\(299\) −3.50000 + 6.06218i −0.202410 + 0.350585i
\(300\) −11.0000 −0.635085
\(301\) 0 0
\(302\) 4.00000 0.230174
\(303\) −4.50000 + 7.79423i −0.258518 + 0.447767i
\(304\) 1.00000 + 1.73205i 0.0573539 + 0.0993399i
\(305\) 26.0000 + 45.0333i 1.48876 + 2.57860i
\(306\) 4.00000 6.92820i 0.228665 0.396059i
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) 10.0000 0.568880
\(310\) 6.00000 10.3923i 0.340777 0.590243i
\(311\) −15.0000 25.9808i −0.850572 1.47323i −0.880693 0.473688i \(-0.842923\pi\)
0.0301210 0.999546i \(-0.490411\pi\)
\(312\) 0.500000 + 0.866025i 0.0283069 + 0.0490290i
\(313\) 3.00000 5.19615i 0.169570 0.293704i −0.768699 0.639611i \(-0.779095\pi\)
0.938269 + 0.345907i \(0.112429\pi\)
\(314\) 7.00000 0.395033
\(315\) 0 0
\(316\) −13.0000 −0.731307
\(317\) 6.50000 11.2583i 0.365076 0.632331i −0.623712 0.781654i \(-0.714376\pi\)
0.988788 + 0.149323i \(0.0477095\pi\)
\(318\) 0 0
\(319\) −4.00000 6.92820i −0.223957 0.387905i
\(320\) 2.00000 3.46410i 0.111803 0.193649i
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) 8.00000 0.445132
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) 5.50000 + 9.52628i 0.305085 + 0.528423i
\(326\) 6.00000 + 10.3923i 0.332309 + 0.575577i
\(327\) 7.00000 12.1244i 0.387101 0.670478i
\(328\) −7.00000 −0.386510
\(329\) 0 0
\(330\) 4.00000 0.220193
\(331\) −7.50000 + 12.9904i −0.412237 + 0.714016i −0.995134 0.0985303i \(-0.968586\pi\)
0.582897 + 0.812546i \(0.301919\pi\)
\(332\) −8.00000 13.8564i −0.439057 0.760469i
\(333\) 7.00000 + 12.1244i 0.383598 + 0.664411i
\(334\) 0 0
\(335\) −28.0000 −1.52980
\(336\) 0 0
\(337\) 9.00000 0.490261 0.245131 0.969490i \(-0.421169\pi\)
0.245131 + 0.969490i \(0.421169\pi\)
\(338\) 0.500000 0.866025i 0.0271964 0.0471056i
\(339\) 0.500000 + 0.866025i 0.0271563 + 0.0470360i
\(340\) −8.00000 13.8564i −0.433861 0.751469i
\(341\) −1.50000 + 2.59808i −0.0812296 + 0.140694i
\(342\) −4.00000 −0.216295
\(343\) 0 0
\(344\) 8.00000 0.431331
\(345\) 14.0000 24.2487i 0.753735 1.30551i
\(346\) −7.00000 12.1244i −0.376322 0.651809i
\(347\) 16.0000 + 27.7128i 0.858925 + 1.48770i 0.872955 + 0.487800i \(0.162201\pi\)
−0.0140303 + 0.999902i \(0.504466\pi\)
\(348\) −4.00000 + 6.92820i −0.214423 + 0.371391i
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) −5.00000 −0.266880
\(352\) −0.500000 + 0.866025i −0.0266501 + 0.0461593i
\(353\) −5.50000 9.52628i −0.292735 0.507033i 0.681720 0.731613i \(-0.261232\pi\)
−0.974456 + 0.224580i \(0.927899\pi\)
\(354\) −3.00000 5.19615i −0.159448 0.276172i
\(355\) 8.00000 13.8564i 0.424596 0.735422i
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) 18.0000 0.951330
\(359\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(360\) 4.00000 + 6.92820i 0.210819 + 0.365148i
\(361\) 7.50000 + 12.9904i 0.394737 + 0.683704i
\(362\) −6.50000 + 11.2583i −0.341632 + 0.591725i
\(363\) 10.0000 0.524864
\(364\) 0 0
\(365\) 36.0000 1.88433
\(366\) −6.50000 + 11.2583i −0.339760 + 0.588482i
\(367\) 6.00000 + 10.3923i 0.313197 + 0.542474i 0.979053 0.203607i \(-0.0652665\pi\)
−0.665855 + 0.746081i \(0.731933\pi\)
\(368\) 3.50000 + 6.06218i 0.182450 + 0.316013i
\(369\) 7.00000 12.1244i 0.364405 0.631169i
\(370\) 28.0000 1.45565
\(371\) 0 0
\(372\) 3.00000 0.155543
\(373\) 16.0000 27.7128i 0.828449 1.43492i −0.0708063 0.997490i \(-0.522557\pi\)
0.899255 0.437425i \(-0.144109\pi\)
\(374\) 2.00000 + 3.46410i 0.103418 + 0.179124i
\(375\) −12.0000 20.7846i −0.619677 1.07331i
\(376\) −1.50000 + 2.59808i −0.0773566 + 0.133986i
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) −4.00000 + 6.92820i −0.205196 + 0.355409i
\(381\) 6.50000 + 11.2583i 0.333005 + 0.576782i
\(382\) 12.0000 + 20.7846i 0.613973 + 1.06343i
\(383\) 10.5000 18.1865i 0.536525 0.929288i −0.462563 0.886586i \(-0.653070\pi\)
0.999088 0.0427020i \(-0.0135966\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 4.00000 0.203595
\(387\) −8.00000 + 13.8564i −0.406663 + 0.704361i
\(388\) 5.50000 + 9.52628i 0.279220 + 0.483624i
\(389\) −4.00000 6.92820i −0.202808 0.351274i 0.746624 0.665246i \(-0.231673\pi\)
−0.949432 + 0.313972i \(0.898340\pi\)
\(390\) −2.00000 + 3.46410i −0.101274 + 0.175412i
\(391\) 28.0000 1.41602
\(392\) 0 0
\(393\) 0 0
\(394\) 1.50000 2.59808i 0.0755689 0.130889i
\(395\) −26.0000 45.0333i −1.30820 2.26587i
\(396\) −1.00000 1.73205i −0.0502519 0.0870388i
\(397\) 4.00000 6.92820i 0.200754 0.347717i −0.748017 0.663679i \(-0.768994\pi\)
0.948772 + 0.315963i \(0.102327\pi\)
\(398\) 16.0000 0.802008
\(399\) 0 0
\(400\) 11.0000 0.550000
\(401\) −4.00000 + 6.92820i −0.199750 + 0.345978i −0.948447 0.316934i \(-0.897346\pi\)
0.748697 + 0.662912i \(0.230680\pi\)
\(402\) −3.50000 6.06218i −0.174564 0.302354i
\(403\) −1.50000 2.59808i −0.0747203 0.129419i
\(404\) 4.50000 7.79423i 0.223883 0.387777i
\(405\) −4.00000 −0.198762
\(406\) 0 0
\(407\) −7.00000 −0.346977
\(408\) 2.00000 3.46410i 0.0990148 0.171499i
\(409\) −5.00000 8.66025i −0.247234 0.428222i 0.715523 0.698589i \(-0.246188\pi\)
−0.962757 + 0.270367i \(0.912855\pi\)
\(410\) −14.0000 24.2487i −0.691411 1.19756i
\(411\) −7.00000 + 12.1244i −0.345285 + 0.598050i
\(412\) −10.0000 −0.492665
\(413\) 0 0
\(414\) −14.0000 −0.688062
\(415\) 32.0000 55.4256i 1.57082 2.72074i
\(416\) −0.500000 0.866025i −0.0245145 0.0424604i
\(417\) 10.0000 + 17.3205i 0.489702 + 0.848189i
\(418\) 1.00000 1.73205i 0.0489116 0.0847174i
\(419\) 19.0000 0.928211 0.464105 0.885780i \(-0.346376\pi\)
0.464105 + 0.885780i \(0.346376\pi\)
\(420\) 0 0
\(421\) −11.0000 −0.536107 −0.268054 0.963404i \(-0.586380\pi\)
−0.268054 + 0.963404i \(0.586380\pi\)
\(422\) 11.0000 19.0526i 0.535472 0.927464i
\(423\) −3.00000 5.19615i −0.145865 0.252646i
\(424\) 0 0
\(425\) 22.0000 38.1051i 1.06716 1.84837i
\(426\) 4.00000 0.193801
\(427\) 0 0
\(428\) 12.0000 0.580042
\(429\) 0.500000 0.866025i 0.0241402 0.0418121i
\(430\) 16.0000 + 27.7128i 0.771589 + 1.33643i
\(431\) −1.00000 1.73205i −0.0481683 0.0834300i 0.840936 0.541135i \(-0.182005\pi\)
−0.889104 + 0.457705i \(0.848672\pi\)
\(432\) −2.50000 + 4.33013i −0.120281 + 0.208333i
\(433\) 18.0000 0.865025 0.432512 0.901628i \(-0.357627\pi\)
0.432512 + 0.901628i \(0.357627\pi\)
\(434\) 0 0
\(435\) −32.0000 −1.53428
\(436\) −7.00000 + 12.1244i −0.335239 + 0.580651i
\(437\) −7.00000 12.1244i −0.334855 0.579987i
\(438\) 4.50000 + 7.79423i 0.215018 + 0.372423i
\(439\) −1.00000 + 1.73205i −0.0477274 + 0.0826663i −0.888902 0.458097i \(-0.848531\pi\)
0.841175 + 0.540763i \(0.181865\pi\)
\(440\) −4.00000 −0.190693
\(441\) 0 0
\(442\) −4.00000 −0.190261
\(443\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(444\) 3.50000 + 6.06218i 0.166103 + 0.287698i
\(445\) 12.0000 + 20.7846i 0.568855 + 0.985285i
\(446\) −4.50000 + 7.79423i −0.213081 + 0.369067i
\(447\) −15.0000 −0.709476
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) −11.0000 + 19.0526i −0.518545 + 0.898146i
\(451\) 3.50000 + 6.06218i 0.164809 + 0.285457i
\(452\) −0.500000 0.866025i −0.0235180 0.0407344i
\(453\) −2.00000 + 3.46410i −0.0939682 + 0.162758i
\(454\) 28.0000 1.31411
\(455\) 0 0
\(456\) −2.00000 −0.0936586
\(457\) −9.00000 + 15.5885i −0.421002 + 0.729197i −0.996038 0.0889312i \(-0.971655\pi\)
0.575036 + 0.818128i \(0.304988\pi\)
\(458\) 10.0000 + 17.3205i 0.467269 + 0.809334i
\(459\) 10.0000 + 17.3205i 0.466760 + 0.808452i
\(460\) −14.0000 + 24.2487i −0.652753 + 1.13060i
\(461\) −16.0000 −0.745194 −0.372597 0.927993i \(-0.621533\pi\)
−0.372597 + 0.927993i \(0.621533\pi\)
\(462\) 0 0
\(463\) −12.0000 −0.557687 −0.278844 0.960337i \(-0.589951\pi\)
−0.278844 + 0.960337i \(0.589951\pi\)
\(464\) 4.00000 6.92820i 0.185695 0.321634i
\(465\) 6.00000 + 10.3923i 0.278243 + 0.481932i
\(466\) −6.50000 11.2583i −0.301107 0.521532i
\(467\) −10.0000 + 17.3205i −0.462745 + 0.801498i −0.999097 0.0424970i \(-0.986469\pi\)
0.536352 + 0.843995i \(0.319802\pi\)
\(468\) 2.00000 0.0924500
\(469\) 0 0
\(470\) −12.0000 −0.553519
\(471\) −3.50000 + 6.06218i −0.161271 + 0.279330i
\(472\) 3.00000 + 5.19615i 0.138086 + 0.239172i
\(473\) −4.00000 6.92820i −0.183920 0.318559i
\(474\) 6.50000 11.2583i 0.298555 0.517112i
\(475\) −22.0000 −1.00943
\(476\) 0 0
\(477\) 0 0
\(478\) −3.00000 + 5.19615i −0.137217 + 0.237666i
\(479\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(480\) 2.00000 + 3.46410i 0.0912871 + 0.158114i
\(481\) 3.50000 6.06218i 0.159586 0.276412i
\(482\) −10.0000 −0.455488
\(483\) 0 0
\(484\) −10.0000 −0.454545
\(485\) −22.0000 + 38.1051i −0.998969 + 1.73026i
\(486\) −8.00000 13.8564i −0.362887 0.628539i
\(487\) −13.0000 22.5167i −0.589086 1.02033i −0.994352 0.106129i \(-0.966154\pi\)
0.405266 0.914199i \(-0.367179\pi\)
\(488\) 6.50000 11.2583i 0.294241 0.509641i
\(489\) −12.0000 −0.542659
\(490\) 0 0
\(491\) 40.0000 1.80517 0.902587 0.430507i \(-0.141665\pi\)
0.902587 + 0.430507i \(0.141665\pi\)
\(492\) 3.50000 6.06218i 0.157792 0.273304i
\(493\) −16.0000 27.7128i −0.720604 1.24812i
\(494\) 1.00000 + 1.73205i 0.0449921 + 0.0779287i
\(495\) 4.00000 6.92820i 0.179787 0.311400i
\(496\) −3.00000 −0.134704
\(497\) 0 0
\(498\) 16.0000 0.716977
\(499\) −18.5000 + 32.0429i −0.828174 + 1.43444i 0.0712957 + 0.997455i \(0.477287\pi\)
−0.899469 + 0.436984i \(0.856047\pi\)
\(500\) 12.0000 + 20.7846i 0.536656 + 0.929516i
\(501\) 0 0
\(502\) −8.50000 + 14.7224i −0.379374 + 0.657094i
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) 0 0
\(505\) 36.0000 1.60198
\(506\) 3.50000 6.06218i 0.155594 0.269497i
\(507\) 0.500000 + 0.866025i 0.0222058 + 0.0384615i
\(508\) −6.50000 11.2583i −0.288391 0.499508i
\(509\) −9.00000 + 15.5885i −0.398918 + 0.690946i −0.993593 0.113020i \(-0.963948\pi\)
0.594675 + 0.803966i \(0.297281\pi\)
\(510\) 16.0000 0.708492
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 5.00000 8.66025i 0.220755 0.382360i
\(514\) 6.00000 + 10.3923i 0.264649 + 0.458385i
\(515\) −20.0000 34.6410i −0.881305 1.52647i
\(516\) −4.00000 + 6.92820i −0.176090 + 0.304997i
\(517\) 3.00000 0.131940
\(518\) 0 0
\(519\) 14.0000 0.614532
\(520\) 2.00000 3.46410i 0.0877058 0.151911i
\(521\) −15.0000 25.9808i −0.657162 1.13824i −0.981347 0.192244i \(-0.938423\pi\)
0.324185 0.945994i \(-0.394910\pi\)
\(522\) 8.00000 + 13.8564i 0.350150 + 0.606478i
\(523\) −7.50000 + 12.9904i −0.327952 + 0.568030i −0.982105 0.188332i \(-0.939692\pi\)
0.654153 + 0.756362i \(0.273025\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −16.0000 −0.697633
\(527\) −6.00000 + 10.3923i −0.261364 + 0.452696i
\(528\) −0.500000 0.866025i −0.0217597 0.0376889i
\(529\) −13.0000 22.5167i −0.565217 0.978985i
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) −7.00000 −0.303204
\(534\) −3.00000 + 5.19615i −0.129823 + 0.224860i
\(535\) 24.0000 + 41.5692i 1.03761 + 1.79719i
\(536\) 3.50000 + 6.06218i 0.151177 + 0.261846i
\(537\) −9.00000 + 15.5885i −0.388379 + 0.672692i
\(538\) 3.00000 0.129339
\(539\) 0 0
\(540\) −20.0000 −0.860663
\(541\) 19.0000 32.9090i 0.816874 1.41487i −0.0911008 0.995842i \(-0.529039\pi\)
0.907975 0.419025i \(-0.137628\pi\)
\(542\) 1.50000 + 2.59808i 0.0644305 + 0.111597i
\(543\) −6.50000 11.2583i −0.278942 0.483141i
\(544\) −2.00000 + 3.46410i −0.0857493 + 0.148522i
\(545\) −56.0000 −2.39878
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) 7.00000 12.1244i 0.299025 0.517927i
\(549\) 13.0000 + 22.5167i 0.554826 + 0.960988i
\(550\) −5.50000 9.52628i −0.234521 0.406202i
\(551\) −8.00000 + 13.8564i −0.340811 + 0.590303i
\(552\) −7.00000 −0.297940
\(553\) 0 0
\(554\) 14.0000 0.594803
\(555\) −14.0000 + 24.2487i −0.594267 + 1.02930i
\(556\) −10.0000 17.3205i −0.424094 0.734553i
\(557\) −15.5000 26.8468i −0.656756 1.13753i −0.981450 0.191716i \(-0.938595\pi\)
0.324694 0.945819i \(-0.394739\pi\)
\(558\) 3.00000 5.19615i 0.127000 0.219971i
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) −4.00000 −0.168880
\(562\) −10.0000 + 17.3205i −0.421825 + 0.730622i
\(563\) −15.5000 26.8468i −0.653247 1.13146i −0.982330 0.187156i \(-0.940073\pi\)
0.329083 0.944301i \(-0.393260\pi\)
\(564\) −1.50000 2.59808i −0.0631614 0.109399i
\(565\) 2.00000 3.46410i 0.0841406 0.145736i
\(566\) 17.0000 0.714563
\(567\) 0 0
\(568\) −4.00000 −0.167836
\(569\) −14.5000 + 25.1147i −0.607872 + 1.05286i 0.383719 + 0.923450i \(0.374643\pi\)
−0.991591 + 0.129415i \(0.958690\pi\)
\(570\) −4.00000 6.92820i −0.167542 0.290191i
\(571\) −13.0000 22.5167i −0.544033 0.942293i −0.998667 0.0516146i \(-0.983563\pi\)
0.454634 0.890678i \(-0.349770\pi\)
\(572\) −0.500000 + 0.866025i −0.0209061 + 0.0362103i
\(573\) −24.0000 −1.00261
\(574\) 0 0
\(575\) −77.0000 −3.21112
\(576\) 1.00000 1.73205i 0.0416667 0.0721688i
\(577\) −9.00000 15.5885i −0.374675 0.648956i 0.615603 0.788056i \(-0.288912\pi\)
−0.990278 + 0.139100i \(0.955579\pi\)
\(578\) −0.500000 0.866025i −0.0207973 0.0360219i
\(579\) −2.00000 + 3.46410i −0.0831172 + 0.143963i
\(580\) 32.0000 1.32873
\(581\) 0 0
\(582\) −11.0000 −0.455965
\(583\) 0 0
\(584\) −4.50000 7.79423i −0.186211 0.322527i
\(585\) 4.00000 + 6.92820i 0.165380 + 0.286446i
\(586\) −7.00000 + 12.1244i −0.289167 + 0.500853i
\(587\) 18.0000 0.742940 0.371470 0.928445i \(-0.378854\pi\)
0.371470 + 0.928445i \(0.378854\pi\)
\(588\) 0 0
\(589\) 6.00000 0.247226
\(590\) −12.0000 + 20.7846i −0.494032 + 0.855689i
\(591\) 1.50000 + 2.59808i 0.0617018 + 0.106871i
\(592\) −3.50000 6.06218i −0.143849 0.249154i
\(593\) −5.00000 + 8.66025i −0.205325 + 0.355634i −0.950236 0.311530i \(-0.899159\pi\)
0.744911 + 0.667164i \(0.232492\pi\)
\(594\) 5.00000 0.205152
\(595\) 0 0
\(596\) 15.0000 0.614424
\(597\) −8.00000 + 13.8564i −0.327418 + 0.567105i
\(598\) 3.50000 + 6.06218i 0.143126 + 0.247901i
\(599\) −13.5000 23.3827i −0.551595 0.955391i −0.998160 0.0606393i \(-0.980686\pi\)
0.446565 0.894751i \(-0.352647\pi\)
\(600\) −5.50000 + 9.52628i −0.224537 + 0.388909i
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) 0 0
\(603\) −14.0000 −0.570124
\(604\) 2.00000 3.46410i 0.0813788 0.140952i
\(605\) −20.0000 34.6410i −0.813116 1.40836i
\(606\) 4.50000 + 7.79423i 0.182800 + 0.316619i
\(607\) 7.00000 12.1244i 0.284121 0.492112i −0.688274 0.725450i \(-0.741632\pi\)
0.972396 + 0.233338i \(0.0749648\pi\)
\(608\) 2.00000 0.0811107
\(609\) 0 0
\(610\) 52.0000 2.10542
\(611\) −1.50000 + 2.59808i −0.0606835 + 0.105107i
\(612\) −4.00000 6.92820i −0.161690 0.280056i
\(613\) −8.50000 14.7224i −0.343312 0.594633i 0.641734 0.766927i \(-0.278215\pi\)
−0.985046 + 0.172294i \(0.944882\pi\)
\(614\) 6.00000 10.3923i 0.242140 0.419399i
\(615\) 28.0000 1.12907
\(616\) 0 0
\(617\) −38.0000 −1.52982 −0.764911 0.644136i \(-0.777217\pi\)
−0.764911 + 0.644136i \(0.777217\pi\)
\(618\) 5.00000 8.66025i 0.201129 0.348367i
\(619\) 7.00000 + 12.1244i 0.281354 + 0.487319i 0.971718 0.236143i \(-0.0758832\pi\)
−0.690365 + 0.723462i \(0.742550\pi\)
\(620\) −6.00000 10.3923i −0.240966 0.417365i
\(621\) 17.5000 30.3109i 0.702251 1.21633i
\(622\) −30.0000 −1.20289
\(623\) 0 0
\(624\) 1.00000 0.0400320
\(625\) −20.5000 + 35.5070i −0.820000 + 1.42028i
\(626\) −3.00000 5.19615i −0.119904 0.207680i
\(627\) 1.00000 + 1.73205i 0.0399362 + 0.0691714i
\(628\) 3.50000 6.06218i 0.139665 0.241907i
\(629\) −28.0000 −1.11643
\(630\) 0 0
\(631\) 22.0000 0.875806 0.437903 0.899022i \(-0.355721\pi\)
0.437903 + 0.899022i \(0.355721\pi\)
\(632\) −6.50000 + 11.2583i −0.258556 + 0.447832i
\(633\) 11.0000 + 19.0526i 0.437211 + 0.757271i
\(634\) −6.50000 11.2583i −0.258148 0.447125i
\(635\) 26.0000 45.0333i 1.03178 1.78709i
\(636\) 0 0
\(637\) 0 0
\(638\) −8.00000 −0.316723
\(639\) 4.00000 6.92820i 0.158238 0.274075i
\(640\) −2.00000 3.46410i −0.0790569 0.136931i
\(641\) 12.5000 + 21.6506i 0.493720 + 0.855149i 0.999974 0.00723604i \(-0.00230332\pi\)
−0.506254 + 0.862385i \(0.668970\pi\)
\(642\) −6.00000 + 10.3923i −0.236801 + 0.410152i
\(643\) 28.0000 1.10421 0.552106 0.833774i \(-0.313824\pi\)
0.552106 + 0.833774i \(0.313824\pi\)
\(644\) 0 0
\(645\) −32.0000 −1.26000
\(646\) 4.00000 6.92820i 0.157378 0.272587i
\(647\) −24.0000 41.5692i −0.943537 1.63425i −0.758654 0.651494i \(-0.774142\pi\)
−0.184884 0.982760i \(-0.559191\pi\)
\(648\) 0.500000 + 0.866025i 0.0196419 + 0.0340207i
\(649\) 3.00000 5.19615i 0.117760 0.203967i
\(650\) 11.0000 0.431455
\(651\) 0 0
\(652\) 12.0000 0.469956
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) −7.00000 12.1244i −0.273722 0.474100i
\(655\) 0 0
\(656\) −3.50000 + 6.06218i −0.136652 + 0.236688i
\(657\) 18.0000 0.702247
\(658\) 0 0
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 2.00000 3.46410i 0.0778499 0.134840i
\(661\) −4.00000 6.92820i −0.155582 0.269476i 0.777689 0.628649i \(-0.216392\pi\)
−0.933271 + 0.359174i \(0.883059\pi\)
\(662\) 7.50000 + 12.9904i 0.291496 + 0.504885i
\(663\) 2.00000 3.46410i 0.0776736 0.134535i
\(664\) −16.0000 −0.620920
\(665\) 0 0
\(666\) 14.0000 0.542489
\(667\) −28.0000 + 48.4974i −1.08416 + 1.87783i
\(668\) 0 0
\(669\) −4.50000 7.79423i −0.173980 0.301342i
\(670\) −14.0000 + 24.2487i −0.540867 + 0.936809i
\(671\) −13.0000 −0.501859
\(672\) 0 0
\(673\) −33.0000 −1.27206 −0.636028 0.771666i \(-0.719424\pi\)
−0.636028 + 0.771666i \(0.719424\pi\)
\(674\) 4.50000 7.79423i 0.173334 0.300222i
\(675\) −27.5000 47.6314i −1.05848 1.83333i
\(676\) −0.500000 0.866025i −0.0192308 0.0333087i
\(677\) 6.50000 11.2583i 0.249815 0.432693i −0.713659 0.700493i \(-0.752963\pi\)
0.963474 + 0.267800i \(0.0862968\pi\)
\(678\) 1.00000 0.0384048
\(679\) 0 0
\(680\) −16.0000 −0.613572
\(681\) −14.0000 + 24.2487i −0.536481 + 0.929213i
\(682\) 1.50000 + 2.59808i 0.0574380 + 0.0994855i
\(683\) −15.5000 26.8468i −0.593091 1.02726i −0.993813 0.111064i \(-0.964574\pi\)
0.400722 0.916200i \(-0.368759\pi\)
\(684\) −2.00000 + 3.46410i −0.0764719 + 0.132453i
\(685\) 56.0000 2.13965
\(686\) 0 0
\(687\) −20.0000 −0.763048
\(688\) 4.00000 6.92820i 0.152499 0.264135i
\(689\) 0 0
\(690\) −14.0000 24.2487i −0.532971 0.923133i
\(691\) −10.0000 + 17.3205i −0.380418 + 0.658903i −0.991122 0.132956i \(-0.957553\pi\)
0.610704 + 0.791859i \(0.290887\pi\)
\(692\) −14.0000 −0.532200
\(693\) 0 0
\(694\) 32.0000 1.21470
\(695\) 40.0000 69.2820i 1.51729 2.62802i
\(696\) 4.00000 + 6.92820i 0.151620 + 0.262613i
\(697\) 14.0000 + 24.2487i 0.530288 + 0.918485i
\(698\) −1.00000 + 1.73205i −0.0378506 + 0.0655591i
\(699\) 13.0000 0.491705
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) −2.50000 + 4.33013i −0.0943564 + 0.163430i
\(703\) 7.00000 + 12.1244i 0.264010 + 0.457279i
\(704\) 0.500000 + 0.866025i 0.0188445 + 0.0326396i
\(705\) 6.00000 10.3923i 0.225973 0.391397i
\(706\) −11.0000 −0.413990
\(707\) 0 0
\(708\) −6.00000 −0.225494
\(709\) 25.5000 44.1673i 0.957673 1.65874i 0.229543 0.973299i \(-0.426277\pi\)
0.728130 0.685439i \(-0.240390\pi\)
\(710\) −8.00000 13.8564i −0.300235 0.520022i
\(711\) −13.0000 22.5167i −0.487538 0.844441i
\(712\) 3.00000 5.19615i 0.112430 0.194734i
\(713\) 21.0000 0.786456
\(714\) 0 0
\(715\) −4.00000 −0.149592
\(716\) 9.00000 15.5885i 0.336346 0.582568i
\(717\) −3.00000 5.19615i −0.112037 0.194054i
\(718\) 0 0
\(719\) −11.0000 + 19.0526i −0.410231 + 0.710541i −0.994915 0.100721i \(-0.967885\pi\)
0.584684 + 0.811261i \(0.301219\pi\)
\(720\) 8.00000 0.298142
\(721\) 0 0
\(722\) 15.0000 0.558242
\(723\) 5.00000 8.66025i 0.185952 0.322078i
\(724\) 6.50000 + 11.2583i 0.241571 + 0.418413i
\(725\) 44.0000 + 76.2102i 1.63412 + 2.83038i
\(726\) 5.00000 8.66025i 0.185567 0.321412i
\(727\) −18.0000 −0.667583 −0.333792 0.942647i \(-0.608328\pi\)
−0.333792 + 0.942647i \(0.608328\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 18.0000 31.1769i 0.666210 1.15391i
\(731\) −16.0000 27.7128i −0.591781 1.02500i
\(732\) 6.50000 + 11.2583i 0.240247 + 0.416120i
\(733\) −6.00000 + 10.3923i −0.221615 + 0.383849i −0.955299 0.295643i \(-0.904466\pi\)
0.733683 + 0.679491i \(0.237800\pi\)
\(734\) 12.0000 0.442928
\(735\) 0 0
\(736\) 7.00000 0.258023
\(737\) 3.50000 6.06218i 0.128924 0.223303i
\(738\) −7.00000 12.1244i −0.257674 0.446304i
\(739\) 4.00000 + 6.92820i 0.147142 + 0.254858i 0.930170 0.367129i \(-0.119659\pi\)
−0.783028 + 0.621987i \(0.786326\pi\)
\(740\) 14.0000 24.2487i 0.514650 0.891400i
\(741\) −2.00000 −0.0734718
\(742\) 0 0
\(743\) −44.0000 −1.61420 −0.807102 0.590412i \(-0.798965\pi\)
−0.807102 + 0.590412i \(0.798965\pi\)
\(744\) 1.50000 2.59808i 0.0549927 0.0952501i
\(745\) 30.0000 + 51.9615i 1.09911 + 1.90372i
\(746\) −16.0000 27.7128i −0.585802 1.01464i
\(747\) 16.0000 27.7128i 0.585409 1.01396i
\(748\) 4.00000 0.146254
\(749\) 0 0
\(750\) −24.0000 −0.876356
\(751\) −18.5000 + 32.0429i −0.675075 + 1.16926i 0.301373 + 0.953506i \(0.402555\pi\)
−0.976447 + 0.215757i \(0.930778\pi\)
\(752\) 1.50000 + 2.59808i 0.0546994 + 0.0947421i
\(753\) −8.50000 14.7224i −0.309757 0.536515i
\(754\) 4.00000 6.92820i 0.145671 0.252310i
\(755\) 16.0000 0.582300
\(756\) 0 0
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) −4.00000 + 6.92820i −0.145287 + 0.251644i
\(759\) 3.50000 + 6.06218i 0.127042 + 0.220043i
\(760\) 4.00000 + 6.92820i 0.145095 + 0.251312i
\(761\) 0.500000 0.866025i 0.0181250 0.0313934i −0.856821 0.515615i \(-0.827564\pi\)
0.874946 + 0.484221i \(0.160897\pi\)
\(762\) 13.0000 0.470940
\(763\) 0 0
\(764\) 24.0000 0.868290
\(765\) 16.0000 27.7128i 0.578481 1.00196i
\(766\) −10.5000 18.1865i −0.379380 0.657106i
\(767\) 3.00000 + 5.19615i 0.108324 + 0.187622i
\(768\) 0.500000 0.866025i 0.0180422 0.0312500i
\(769\) −25.0000 −0.901523 −0.450762 0.892644i \(-0.648848\pi\)
−0.450762 + 0.892644i \(0.648848\pi\)
\(770\) 0 0
\(771\) −12.0000 −0.432169
\(772\) 2.00000 3.46410i 0.0719816 0.124676i
\(773\) 19.0000 + 32.9090i 0.683383 + 1.18365i 0.973942 + 0.226796i \(0.0728252\pi\)
−0.290560 + 0.956857i \(0.593841\pi\)
\(774\) 8.00000 + 13.8564i 0.287554 + 0.498058i
\(775\) 16.5000 28.5788i 0.592697 1.02658i
\(776\) 11.0000 0.394877
\(777\) 0 0
\(778\) −8.00000 −0.286814
\(779\) 7.00000 12.1244i 0.250801 0.434400i
\(780\) 2.00000 + 3.46410i 0.0716115 + 0.124035i
\(781\) 2.00000 + 3.46410i 0.0715656 + 0.123955i
\(782\) 14.0000 24.2487i 0.500639 0.867132i
\(783\) −40.0000 −1.42948
\(784\) 0 0
\(785\) 28.0000 0.999363
\(786\) 0 0
\(787\) −20.0000 34.6410i −0.712923 1.23482i −0.963755 0.266788i \(-0.914038\pi\)
0.250832 0.968031i \(-0.419296\pi\)
\(788\) −1.50000 2.59808i −0.0534353 0.0925526i
\(789\) 8.00000 13.8564i 0.284808 0.493301i
\(790\) −52.0000 −1.85008
\(791\) 0 0
\(792\) −2.00000 −0.0710669
\(793\) 6.50000 11.2583i 0.230822 0.399795i
\(794\) −4.00000 6.92820i −0.141955 0.245873i
\(795\) 0 0
\(796\) 8.00000 13.8564i 0.283552 0.491127i
\(797\) −21.0000 −0.743858 −0.371929 0.928261i \(-0.621304\pi\)
−0.371929 + 0.928261i \(0.621304\pi\)
\(798\) 0 0
\(799\) 12.0000 0.424529
\(800\) 5.50000 9.52628i 0.194454 0.336805i
\(801\) 6.00000 + 10.3923i 0.212000 + 0.367194i
\(802\) 4.00000 + 6.92820i 0.141245 + 0.244643i
\(803\) −4.50000 + 7.79423i −0.158802 + 0.275052i
\(804\) −7.00000 −0.246871
\(805\) 0 0
\(806\) −3.00000 −0.105670
\(807\) −1.50000 + 2.59808i −0.0528025 + 0.0914566i
\(808\) −4.50000 7.79423i −0.158309 0.274200i
\(809\) −15.0000 25.9808i −0.527372 0.913435i −0.999491 0.0319002i \(-0.989844\pi\)
0.472119 0.881535i \(-0.343489\pi\)
\(810\) −2.00000 + 3.46410i −0.0702728 + 0.121716i
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) −3.00000 −0.105215
\(814\) −3.50000 + 6.06218i −0.122675 + 0.212479i
\(815\) 24.0000 + 41.5692i 0.840683 + 1.45611i
\(816\) −2.00000 3.46410i −0.0700140 0.121268i
\(817\) −8.00000 + 13.8564i −0.279885 + 0.484774i
\(818\) −10.0000 −0.349642
\(819\) 0 0
\(820\) −28.0000 −0.977802
\(821\) −23.0000 + 39.8372i −0.802706 + 1.39033i 0.115124 + 0.993351i \(0.463274\pi\)
−0.917829 + 0.396976i \(0.870060\pi\)
\(822\) 7.00000 + 12.1244i 0.244153 + 0.422885i
\(823\) 17.5000 + 30.3109i 0.610012 + 1.05657i 0.991238 + 0.132089i \(0.0421686\pi\)
−0.381226 + 0.924482i \(0.624498\pi\)
\(824\) −5.00000 + 8.66025i −0.174183 + 0.301694i
\(825\) 11.0000 0.382971
\(826\) 0 0
\(827\) 4.00000 0.139094 0.0695468 0.997579i \(-0.477845\pi\)
0.0695468 + 0.997579i \(0.477845\pi\)
\(828\) −7.00000 + 12.1244i −0.243267 + 0.421350i
\(829\) −9.00000 15.5885i −0.312583 0.541409i 0.666338 0.745650i \(-0.267861\pi\)
−0.978921 + 0.204240i \(0.934528\pi\)
\(830\) −32.0000 55.4256i −1.11074 1.92385i
\(831\) −7.00000 + 12.1244i −0.242827 + 0.420589i
\(832\) −1.00000 −0.0346688
\(833\) 0 0
\(834\) 20.0000 0.692543
\(835\) 0 0
\(836\) −1.00000 1.73205i −0.0345857 0.0599042i
\(837\) 7.50000 + 12.9904i 0.259238 + 0.449013i
\(838\) 9.50000 16.4545i 0.328172 0.568411i
\(839\) −21.0000 −0.725001 −0.362500 0.931984i \(-0.618077\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) −5.50000 + 9.52628i −0.189543 + 0.328297i
\(843\) −10.0000 17.3205i −0.344418 0.596550i
\(844\) −11.0000 19.0526i −0.378636 0.655816i
\(845\) 2.00000 3.46410i 0.0688021 0.119169i
\(846\) −6.00000 −0.206284
\(847\) 0 0
\(848\) 0 0
\(849\) −8.50000 + 14.7224i −0.291719 + 0.505273i
\(850\) −22.0000 38.1051i −0.754594 1.30699i
\(851\) 24.5000 + 42.4352i 0.839849 + 1.45466i
\(852\) 2.00000 3.46410i 0.0685189 0.118678i
\(853\) 44.0000 1.50653 0.753266 0.657716i \(-0.228477\pi\)
0.753266 + 0.657716i \(0.228477\pi\)
\(854\) 0 0
\(855\) −16.0000 −0.547188
\(856\) 6.00000 10.3923i 0.205076 0.355202i
\(857\) 21.0000 + 36.3731i 0.717346 + 1.24248i 0.962048 + 0.272882i \(0.0879768\pi\)
−0.244701 + 0.969599i \(0.578690\pi\)
\(858\) −0.500000 0.866025i −0.0170697 0.0295656i
\(859\) 15.5000 26.8468i 0.528853 0.916001i −0.470581 0.882357i \(-0.655956\pi\)
0.999434 0.0336436i \(-0.0107111\pi\)
\(860\) 32.0000 1.09119
\(861\) 0 0
\(862\) −2.00000 −0.0681203
\(863\) 12.0000 20.7846i 0.408485 0.707516i −0.586235 0.810141i \(-0.699391\pi\)
0.994720 + 0.102624i \(0.0327240\pi\)
\(864\) 2.50000 + 4.33013i 0.0850517 + 0.147314i
\(865\) −28.0000 48.4974i −0.952029 1.64896i
\(866\) 9.00000 15.5885i 0.305832 0.529717i
\(867\) 1.00000 0.0339618
\(868\) 0 0
\(869\) 13.0000 0.440995
\(870\) −16.0000 + 27.7128i −0.542451 + 0.939552i
\(871\) 3.50000 + 6.06218i 0.118593 + 0.205409i
\(872\) 7.00000 + 12.1244i 0.237050 + 0.410582i
\(873\) −11.0000 + 19.0526i −0.372294 + 0.644831i
\(874\) −14.0000 −0.473557
\(875\) 0 0
\(876\) 9.00000 0.304082
\(877\) −14.5000 + 25.1147i −0.489630 + 0.848064i −0.999929 0.0119329i \(-0.996202\pi\)
0.510299 + 0.859997i \(0.329535\pi\)
\(878\) 1.00000 + 1.73205i 0.0337484 + 0.0584539i
\(879\) −7.00000 12.1244i −0.236104 0.408944i
\(880\) −2.00000 + 3.46410i −0.0674200 + 0.116775i
\(881\) 14.0000 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(882\) 0 0
\(883\) −34.0000 −1.14419 −0.572096 0.820187i \(-0.693869\pi\)
−0.572096 + 0.820187i \(0.693869\pi\)
\(884\) −2.00000 + 3.46410i −0.0672673 + 0.116510i
\(885\) −12.0000 20.7846i −0.403376 0.698667i
\(886\) 0 0
\(887\) 7.00000 12.1244i 0.235037 0.407096i −0.724246 0.689541i \(-0.757812\pi\)
0.959283 + 0.282445i \(0.0911455\pi\)
\(888\) 7.00000 0.234905
\(889\) 0 0
\(890\) 24.0000 0.804482
\(891\) 0.500000 0.866025i 0.0167506 0.0290129i
\(892\) 4.50000 + 7.79423i 0.150671 + 0.260970i
\(893\) −3.00000 5.19615i −0.100391 0.173883i
\(894\) −7.50000 + 12.9904i −0.250838 + 0.434463i
\(895\) 72.0000 2.40669
\(896\) 0 0
\(897\) −7.00000 −0.233723
\(898\) 3.00000 5.19615i 0.100111 0.173398i
\(899\) −12.0000 20.7846i −0.400222 0.693206i
\(900\) 11.0000 + 19.0526i 0.366667 + 0.635085i
\(901\) 0 0
\(902\) 7.00000 0.233075
\(903\) 0 0
\(904\) −1.00000 −0.0332595
\(905\) −26.0000 + 45.0333i −0.864269 + 1.49696i
\(906\) 2.00000 + 3.46410i 0.0664455 + 0.115087i
\(907\) −27.0000 46.7654i −0.896520 1.55282i −0.831912 0.554908i \(-0.812753\pi\)
−0.0646086 0.997911i \(-0.520580\pi\)
\(908\) 14.0000 24.2487i 0.464606 0.804722i
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) −1.00000 + 1.73205i −0.0331133 + 0.0573539i
\(913\) 8.00000 + 13.8564i 0.264761 + 0.458580i
\(914\) 9.00000 + 15.5885i 0.297694 + 0.515620i
\(915\) −26.0000 + 45.0333i −0.859533 + 1.48876i
\(916\) 20.0000 0.660819
\(917\) 0 0
\(918\) 20.0000 0.660098
\(919\) 18.5000 32.0429i 0.610259 1.05700i −0.380938 0.924601i \(-0.624399\pi\)
0.991197 0.132398i \(-0.0422678\pi\)
\(920\) 14.0000 + 24.2487i 0.461566 + 0.799456i
\(921\) 6.00000 + 10.3923i 0.197707 + 0.342438i
\(922\) −8.00000 + 13.8564i −0.263466 + 0.456336i
\(923\) −4.00000 −0.131662
\(924\) 0 0
\(925\) 77.0000 2.53174
\(926\) −6.00000 + 10.3923i −0.197172 + 0.341512i
\(927\) −10.0000 17.3205i −0.328443 0.568880i
\(928\) −4.00000 6.92820i −0.131306 0.227429i
\(929\) −13.5000 + 23.3827i −0.442921 + 0.767161i −0.997905 0.0646999i \(-0.979391\pi\)
0.554984 + 0.831861i \(0.312724\pi\)
\(930\) 12.0000 0.393496
\(931\) 0 0
\(932\) −13.0000 −0.425829
\(933\) 15.0000 25.9808i 0.491078 0.850572i
\(934\) 10.0000 + 17.3205i 0.327210 + 0.566744i
\(935\) 8.00000 + 13.8564i 0.261628 + 0.453153i
\(936\) 1.00000 1.73205i 0.0326860 0.0566139i
\(937\) 48.0000 1.56809 0.784046 0.620703i \(-0.213153\pi\)
0.784046 + 0.620703i \(0.213153\pi\)
\(938\) 0 0
\(939\) 6.00000 0.195803
\(940\) −6.00000 + 10.3923i −0.195698 + 0.338960i
\(941\) 7.00000 + 12.1244i 0.228193 + 0.395243i 0.957273 0.289187i \(-0.0933848\pi\)
−0.729079 + 0.684429i \(0.760051\pi\)
\(942\) 3.50000 + 6.06218i 0.114036 + 0.197516i
\(943\) 24.5000 42.4352i 0.797830 1.38188i
\(944\) 6.00000 0.195283
\(945\) 0 0
\(946\) −8.00000 −0.260102
\(947\) 4.00000 6.92820i 0.129983 0.225136i −0.793687 0.608326i \(-0.791841\pi\)
0.923670 + 0.383190i \(0.125175\pi\)
\(948\) −6.50000 11.2583i −0.211110 0.365654i
\(949\) −4.50000 7.79423i −0.146076 0.253011i
\(950\) −11.0000 + 19.0526i −0.356887 + 0.618147i
\(951\) 13.0000 0.421554
\(952\) 0 0
\(953\) −34.0000 −1.10137 −0.550684 0.834714i \(-0.685633\pi\)
−0.550684 + 0.834714i \(0.685633\pi\)
\(954\) 0 0
\(955\) 48.0000 + 83.1384i 1.55324 + 2.69030i
\(956\) 3.00000 + 5.19615i 0.0970269 + 0.168056i
\(957\) 4.00000 6.92820i 0.129302 0.223957i
\(958\) 0 0
\(959\) 0 0
\(960\) 4.00000 0.129099
\(961\) 11.0000 19.0526i 0.354839 0.614599i
\(962\) −3.50000 6.06218i −0.112845 0.195452i
\(963\) 12.0000 + 20.7846i 0.386695 + 0.669775i
\(964\) −5.00000 + 8.66025i −0.161039 + 0.278928i
\(965\) 16.0000 0.515058
\(966\) 0 0
\(967\) 18.0000 0.578841 0.289420 0.957202i \(-0.406537\pi\)
0.289420 + 0.957202i \(0.406537\pi\)
\(968\) −5.00000 + 8.66025i −0.160706 + 0.278351i
\(969\) 4.00000 + 6.92820i 0.128499 + 0.222566i
\(970\) 22.0000 + 38.1051i 0.706377 + 1.22348i
\(971\) −22.5000 + 38.9711i −0.722059 + 1.25064i 0.238114 + 0.971237i \(0.423471\pi\)
−0.960173 + 0.279406i \(0.909862\pi\)
\(972\) −16.0000 −0.513200
\(973\) 0 0
\(974\) −26.0000 −0.833094
\(975\) −5.50000 + 9.52628i −0.176141 + 0.305085i
\(976\) −6.50000 11.2583i −0.208060 0.360370i
\(977\) −15.0000 25.9808i −0.479893 0.831198i 0.519841 0.854263i \(-0.325991\pi\)
−0.999734 + 0.0230645i \(0.992658\pi\)
\(978\) −6.00000 + 10.3923i −0.191859 + 0.332309i
\(979\) −6.00000 −0.191761
\(980\) 0 0
\(981\) −28.0000 −0.893971
\(982\) 20.0000 34.6410i 0.638226 1.10544i
\(983\) 16.0000 + 27.7128i 0.510321 + 0.883901i 0.999928 + 0.0119587i \(0.00380665\pi\)
−0.489608 + 0.871943i \(0.662860\pi\)
\(984\) −3.50000 6.06218i −0.111576 0.193255i
\(985\) 6.00000 10.3923i 0.191176 0.331126i
\(986\) −32.0000 −1.01909
\(987\) 0 0
\(988\) 2.00000 0.0636285
\(989\) −28.0000 + 48.4974i −0.890348 + 1.54213i
\(990\) −4.00000 6.92820i −0.127128 0.220193i
\(991\) 16.5000 + 28.5788i 0.524140 + 0.907837i 0.999605 + 0.0281022i \(0.00894640\pi\)
−0.475465 + 0.879734i \(0.657720\pi\)
\(992\) −1.50000 + 2.59808i −0.0476250 + 0.0824890i
\(993\) −15.0000 −0.476011
\(994\) 0 0
\(995\) 64.0000 2.02894
\(996\) 8.00000 13.8564i 0.253490 0.439057i
\(997\) 15.5000 + 26.8468i 0.490890 + 0.850246i 0.999945 0.0104877i \(-0.00333839\pi\)
−0.509055 + 0.860734i \(0.670005\pi\)
\(998\) 18.5000 + 32.0429i 0.585607 + 1.01430i
\(999\) −17.5000 + 30.3109i −0.553675 + 0.958994i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.f.t.79.1 2
7.2 even 3 1274.2.a.b.1.1 1
7.3 odd 6 1274.2.f.n.1145.1 2
7.4 even 3 inner 1274.2.f.t.1145.1 2
7.5 odd 6 182.2.a.a.1.1 1
7.6 odd 2 1274.2.f.n.79.1 2
21.5 even 6 1638.2.a.k.1.1 1
28.19 even 6 1456.2.a.e.1.1 1
35.19 odd 6 4550.2.a.t.1.1 1
56.5 odd 6 5824.2.a.g.1.1 1
56.19 even 6 5824.2.a.w.1.1 1
91.5 even 12 2366.2.d.g.337.2 2
91.12 odd 6 2366.2.a.m.1.1 1
91.47 even 12 2366.2.d.g.337.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.a.a.1.1 1 7.5 odd 6
1274.2.a.b.1.1 1 7.2 even 3
1274.2.f.n.79.1 2 7.6 odd 2
1274.2.f.n.1145.1 2 7.3 odd 6
1274.2.f.t.79.1 2 1.1 even 1 trivial
1274.2.f.t.1145.1 2 7.4 even 3 inner
1456.2.a.e.1.1 1 28.19 even 6
1638.2.a.k.1.1 1 21.5 even 6
2366.2.a.m.1.1 1 91.12 odd 6
2366.2.d.g.337.1 2 91.47 even 12
2366.2.d.g.337.2 2 91.5 even 12
4550.2.a.t.1.1 1 35.19 odd 6
5824.2.a.g.1.1 1 56.5 odd 6
5824.2.a.w.1.1 1 56.19 even 6