Properties

Label 1274.2.d.i.883.4
Level $1274$
Weight $2$
Character 1274.883
Analytic conductor $10.173$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(883,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.883"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,0,0,20,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 883.4
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1274.883
Dual form 1274.2.d.i.883.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +2.82843 q^{3} -1.00000 q^{4} -1.41421i q^{5} +2.82843i q^{6} -1.00000i q^{8} +5.00000 q^{9} +1.41421 q^{10} -2.82843 q^{12} +(-0.707107 - 3.53553i) q^{13} -4.00000i q^{15} +1.00000 q^{16} +1.41421 q^{17} +5.00000i q^{18} -2.82843i q^{19} +1.41421i q^{20} +8.00000 q^{23} -2.82843i q^{24} +3.00000 q^{25} +(3.53553 - 0.707107i) q^{26} +5.65685 q^{27} +4.00000 q^{30} +1.00000i q^{32} +1.41421i q^{34} -5.00000 q^{36} +10.0000i q^{37} +2.82843 q^{38} +(-2.00000 - 10.0000i) q^{39} -1.41421 q^{40} -9.89949i q^{41} -8.00000 q^{43} -7.07107i q^{45} +8.00000i q^{46} +11.3137i q^{47} +2.82843 q^{48} +3.00000i q^{50} +4.00000 q^{51} +(0.707107 + 3.53553i) q^{52} -6.00000 q^{53} +5.65685i q^{54} -8.00000i q^{57} -2.82843i q^{59} +4.00000i q^{60} +12.7279 q^{61} -1.00000 q^{64} +(-5.00000 + 1.00000i) q^{65} -12.0000i q^{67} -1.41421 q^{68} +22.6274 q^{69} +8.00000i q^{71} -5.00000i q^{72} +12.7279i q^{73} -10.0000 q^{74} +8.48528 q^{75} +2.82843i q^{76} +(10.0000 - 2.00000i) q^{78} -4.00000 q^{79} -1.41421i q^{80} +1.00000 q^{81} +9.89949 q^{82} +2.82843i q^{83} -2.00000i q^{85} -8.00000i q^{86} -12.7279i q^{89} +7.07107 q^{90} -8.00000 q^{92} -11.3137 q^{94} -4.00000 q^{95} +2.82843i q^{96} +4.24264i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 20 q^{9} + 4 q^{16} + 32 q^{23} + 12 q^{25} + 16 q^{30} - 20 q^{36} - 8 q^{39} - 32 q^{43} + 16 q^{51} - 24 q^{53} - 4 q^{64} - 20 q^{65} - 40 q^{74} + 40 q^{78} - 16 q^{79} + 4 q^{81} - 32 q^{92}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.82843 1.63299 0.816497 0.577350i \(-0.195913\pi\)
0.816497 + 0.577350i \(0.195913\pi\)
\(4\) −1.00000 −0.500000
\(5\) 1.41421i 0.632456i −0.948683 0.316228i \(-0.897584\pi\)
0.948683 0.316228i \(-0.102416\pi\)
\(6\) 2.82843i 1.15470i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 5.00000 1.66667
\(10\) 1.41421 0.447214
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) −2.82843 −0.816497
\(13\) −0.707107 3.53553i −0.196116 0.980581i
\(14\) 0 0
\(15\) 4.00000i 1.03280i
\(16\) 1.00000 0.250000
\(17\) 1.41421 0.342997 0.171499 0.985184i \(-0.445139\pi\)
0.171499 + 0.985184i \(0.445139\pi\)
\(18\) 5.00000i 1.17851i
\(19\) 2.82843i 0.648886i −0.945905 0.324443i \(-0.894823\pi\)
0.945905 0.324443i \(-0.105177\pi\)
\(20\) 1.41421i 0.316228i
\(21\) 0 0
\(22\) 0 0
\(23\) 8.00000 1.66812 0.834058 0.551677i \(-0.186012\pi\)
0.834058 + 0.551677i \(0.186012\pi\)
\(24\) 2.82843i 0.577350i
\(25\) 3.00000 0.600000
\(26\) 3.53553 0.707107i 0.693375 0.138675i
\(27\) 5.65685 1.08866
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 4.00000 0.730297
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 1.41421i 0.242536i
\(35\) 0 0
\(36\) −5.00000 −0.833333
\(37\) 10.0000i 1.64399i 0.569495 + 0.821995i \(0.307139\pi\)
−0.569495 + 0.821995i \(0.692861\pi\)
\(38\) 2.82843 0.458831
\(39\) −2.00000 10.0000i −0.320256 1.60128i
\(40\) −1.41421 −0.223607
\(41\) 9.89949i 1.54604i −0.634381 0.773021i \(-0.718745\pi\)
0.634381 0.773021i \(-0.281255\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 0 0
\(45\) 7.07107i 1.05409i
\(46\) 8.00000i 1.17954i
\(47\) 11.3137i 1.65027i 0.564933 + 0.825137i \(0.308902\pi\)
−0.564933 + 0.825137i \(0.691098\pi\)
\(48\) 2.82843 0.408248
\(49\) 0 0
\(50\) 3.00000i 0.424264i
\(51\) 4.00000 0.560112
\(52\) 0.707107 + 3.53553i 0.0980581 + 0.490290i
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 5.65685i 0.769800i
\(55\) 0 0
\(56\) 0 0
\(57\) 8.00000i 1.05963i
\(58\) 0 0
\(59\) 2.82843i 0.368230i −0.982905 0.184115i \(-0.941058\pi\)
0.982905 0.184115i \(-0.0589419\pi\)
\(60\) 4.00000i 0.516398i
\(61\) 12.7279 1.62964 0.814822 0.579712i \(-0.196835\pi\)
0.814822 + 0.579712i \(0.196835\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −5.00000 + 1.00000i −0.620174 + 0.124035i
\(66\) 0 0
\(67\) 12.0000i 1.46603i −0.680211 0.733017i \(-0.738112\pi\)
0.680211 0.733017i \(-0.261888\pi\)
\(68\) −1.41421 −0.171499
\(69\) 22.6274 2.72402
\(70\) 0 0
\(71\) 8.00000i 0.949425i 0.880141 + 0.474713i \(0.157448\pi\)
−0.880141 + 0.474713i \(0.842552\pi\)
\(72\) 5.00000i 0.589256i
\(73\) 12.7279i 1.48969i 0.667237 + 0.744845i \(0.267477\pi\)
−0.667237 + 0.744845i \(0.732523\pi\)
\(74\) −10.0000 −1.16248
\(75\) 8.48528 0.979796
\(76\) 2.82843i 0.324443i
\(77\) 0 0
\(78\) 10.0000 2.00000i 1.13228 0.226455i
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 1.41421i 0.158114i
\(81\) 1.00000 0.111111
\(82\) 9.89949 1.09322
\(83\) 2.82843i 0.310460i 0.987878 + 0.155230i \(0.0496119\pi\)
−0.987878 + 0.155230i \(0.950388\pi\)
\(84\) 0 0
\(85\) 2.00000i 0.216930i
\(86\) 8.00000i 0.862662i
\(87\) 0 0
\(88\) 0 0
\(89\) 12.7279i 1.34916i −0.738203 0.674579i \(-0.764325\pi\)
0.738203 0.674579i \(-0.235675\pi\)
\(90\) 7.07107 0.745356
\(91\) 0 0
\(92\) −8.00000 −0.834058
\(93\) 0 0
\(94\) −11.3137 −1.16692
\(95\) −4.00000 −0.410391
\(96\) 2.82843i 0.288675i
\(97\) 4.24264i 0.430775i 0.976529 + 0.215387i \(0.0691014\pi\)
−0.976529 + 0.215387i \(0.930899\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −3.00000 −0.300000
\(101\) −4.24264 −0.422159 −0.211079 0.977469i \(-0.567698\pi\)
−0.211079 + 0.977469i \(0.567698\pi\)
\(102\) 4.00000i 0.396059i
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −3.53553 + 0.707107i −0.346688 + 0.0693375i
\(105\) 0 0
\(106\) 6.00000i 0.582772i
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) −5.65685 −0.544331
\(109\) 2.00000i 0.191565i 0.995402 + 0.0957826i \(0.0305354\pi\)
−0.995402 + 0.0957826i \(0.969465\pi\)
\(110\) 0 0
\(111\) 28.2843i 2.68462i
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 8.00000 0.749269
\(115\) 11.3137i 1.05501i
\(116\) 0 0
\(117\) −3.53553 17.6777i −0.326860 1.63430i
\(118\) 2.82843 0.260378
\(119\) 0 0
\(120\) −4.00000 −0.365148
\(121\) 11.0000 1.00000
\(122\) 12.7279i 1.15233i
\(123\) 28.0000i 2.52467i
\(124\) 0 0
\(125\) 11.3137i 1.01193i
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −22.6274 −1.99223
\(130\) −1.00000 5.00000i −0.0877058 0.438529i
\(131\) 8.48528 0.741362 0.370681 0.928760i \(-0.379124\pi\)
0.370681 + 0.928760i \(0.379124\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.0000 1.03664
\(135\) 8.00000i 0.688530i
\(136\) 1.41421i 0.121268i
\(137\) 18.0000i 1.53784i 0.639343 + 0.768922i \(0.279207\pi\)
−0.639343 + 0.768922i \(0.720793\pi\)
\(138\) 22.6274i 1.92617i
\(139\) −14.1421 −1.19952 −0.599760 0.800180i \(-0.704737\pi\)
−0.599760 + 0.800180i \(0.704737\pi\)
\(140\) 0 0
\(141\) 32.0000i 2.69489i
\(142\) −8.00000 −0.671345
\(143\) 0 0
\(144\) 5.00000 0.416667
\(145\) 0 0
\(146\) −12.7279 −1.05337
\(147\) 0 0
\(148\) 10.0000i 0.821995i
\(149\) 8.00000i 0.655386i 0.944784 + 0.327693i \(0.106271\pi\)
−0.944784 + 0.327693i \(0.893729\pi\)
\(150\) 8.48528i 0.692820i
\(151\) 20.0000i 1.62758i 0.581161 + 0.813788i \(0.302599\pi\)
−0.581161 + 0.813788i \(0.697401\pi\)
\(152\) −2.82843 −0.229416
\(153\) 7.07107 0.571662
\(154\) 0 0
\(155\) 0 0
\(156\) 2.00000 + 10.0000i 0.160128 + 0.800641i
\(157\) 12.7279 1.01580 0.507899 0.861416i \(-0.330422\pi\)
0.507899 + 0.861416i \(0.330422\pi\)
\(158\) 4.00000i 0.318223i
\(159\) −16.9706 −1.34585
\(160\) 1.41421 0.111803
\(161\) 0 0
\(162\) 1.00000i 0.0785674i
\(163\) 8.00000i 0.626608i −0.949653 0.313304i \(-0.898564\pi\)
0.949653 0.313304i \(-0.101436\pi\)
\(164\) 9.89949i 0.773021i
\(165\) 0 0
\(166\) −2.82843 −0.219529
\(167\) 5.65685i 0.437741i −0.975754 0.218870i \(-0.929763\pi\)
0.975754 0.218870i \(-0.0702371\pi\)
\(168\) 0 0
\(169\) −12.0000 + 5.00000i −0.923077 + 0.384615i
\(170\) 2.00000 0.153393
\(171\) 14.1421i 1.08148i
\(172\) 8.00000 0.609994
\(173\) −12.7279 −0.967686 −0.483843 0.875155i \(-0.660759\pi\)
−0.483843 + 0.875155i \(0.660759\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 8.00000i 0.601317i
\(178\) 12.7279 0.953998
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 7.07107i 0.527046i
\(181\) −15.5563 −1.15629 −0.578147 0.815933i \(-0.696224\pi\)
−0.578147 + 0.815933i \(0.696224\pi\)
\(182\) 0 0
\(183\) 36.0000 2.66120
\(184\) 8.00000i 0.589768i
\(185\) 14.1421 1.03975
\(186\) 0 0
\(187\) 0 0
\(188\) 11.3137i 0.825137i
\(189\) 0 0
\(190\) 4.00000i 0.290191i
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) −2.82843 −0.204124
\(193\) 8.00000i 0.575853i −0.957653 0.287926i \(-0.907034\pi\)
0.957653 0.287926i \(-0.0929658\pi\)
\(194\) −4.24264 −0.304604
\(195\) −14.1421 + 2.82843i −1.01274 + 0.202548i
\(196\) 0 0
\(197\) 24.0000i 1.70993i 0.518686 + 0.854965i \(0.326421\pi\)
−0.518686 + 0.854965i \(0.673579\pi\)
\(198\) 0 0
\(199\) 16.9706 1.20301 0.601506 0.798869i \(-0.294568\pi\)
0.601506 + 0.798869i \(0.294568\pi\)
\(200\) 3.00000i 0.212132i
\(201\) 33.9411i 2.39402i
\(202\) 4.24264i 0.298511i
\(203\) 0 0
\(204\) −4.00000 −0.280056
\(205\) −14.0000 −0.977802
\(206\) 0 0
\(207\) 40.0000 2.78019
\(208\) −0.707107 3.53553i −0.0490290 0.245145i
\(209\) 0 0
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 6.00000 0.412082
\(213\) 22.6274i 1.55041i
\(214\) 12.0000i 0.820303i
\(215\) 11.3137i 0.771589i
\(216\) 5.65685i 0.384900i
\(217\) 0 0
\(218\) −2.00000 −0.135457
\(219\) 36.0000i 2.43265i
\(220\) 0 0
\(221\) −1.00000 5.00000i −0.0672673 0.336336i
\(222\) −28.2843 −1.89832
\(223\) 5.65685i 0.378811i 0.981899 + 0.189405i \(0.0606561\pi\)
−0.981899 + 0.189405i \(0.939344\pi\)
\(224\) 0 0
\(225\) 15.0000 1.00000
\(226\) 6.00000i 0.399114i
\(227\) 25.4558i 1.68956i −0.535111 0.844782i \(-0.679730\pi\)
0.535111 0.844782i \(-0.320270\pi\)
\(228\) 8.00000i 0.529813i
\(229\) 24.0416i 1.58872i 0.607450 + 0.794358i \(0.292192\pi\)
−0.607450 + 0.794358i \(0.707808\pi\)
\(230\) 11.3137 0.746004
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 17.6777 3.53553i 1.15563 0.231125i
\(235\) 16.0000 1.04372
\(236\) 2.82843i 0.184115i
\(237\) −11.3137 −0.734904
\(238\) 0 0
\(239\) 12.0000i 0.776215i −0.921614 0.388108i \(-0.873129\pi\)
0.921614 0.388108i \(-0.126871\pi\)
\(240\) 4.00000i 0.258199i
\(241\) 15.5563i 1.00207i 0.865426 + 0.501036i \(0.167048\pi\)
−0.865426 + 0.501036i \(0.832952\pi\)
\(242\) 11.0000i 0.707107i
\(243\) −14.1421 −0.907218
\(244\) −12.7279 −0.814822
\(245\) 0 0
\(246\) 28.0000 1.78521
\(247\) −10.0000 + 2.00000i −0.636285 + 0.127257i
\(248\) 0 0
\(249\) 8.00000i 0.506979i
\(250\) 11.3137 0.715542
\(251\) −14.1421 −0.892644 −0.446322 0.894873i \(-0.647266\pi\)
−0.446322 + 0.894873i \(0.647266\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 16.0000i 1.00393i
\(255\) 5.65685i 0.354246i
\(256\) 1.00000 0.0625000
\(257\) 1.41421 0.0882162 0.0441081 0.999027i \(-0.485955\pi\)
0.0441081 + 0.999027i \(0.485955\pi\)
\(258\) 22.6274i 1.40872i
\(259\) 0 0
\(260\) 5.00000 1.00000i 0.310087 0.0620174i
\(261\) 0 0
\(262\) 8.48528i 0.524222i
\(263\) −4.00000 −0.246651 −0.123325 0.992366i \(-0.539356\pi\)
−0.123325 + 0.992366i \(0.539356\pi\)
\(264\) 0 0
\(265\) 8.48528i 0.521247i
\(266\) 0 0
\(267\) 36.0000i 2.20316i
\(268\) 12.0000i 0.733017i
\(269\) 9.89949 0.603583 0.301791 0.953374i \(-0.402415\pi\)
0.301791 + 0.953374i \(0.402415\pi\)
\(270\) 8.00000 0.486864
\(271\) 16.9706i 1.03089i 0.856923 + 0.515444i \(0.172373\pi\)
−0.856923 + 0.515444i \(0.827627\pi\)
\(272\) 1.41421 0.0857493
\(273\) 0 0
\(274\) −18.0000 −1.08742
\(275\) 0 0
\(276\) −22.6274 −1.36201
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 14.1421i 0.848189i
\(279\) 0 0
\(280\) 0 0
\(281\) 2.00000i 0.119310i −0.998219 0.0596550i \(-0.981000\pi\)
0.998219 0.0596550i \(-0.0190001\pi\)
\(282\) −32.0000 −1.90557
\(283\) 8.48528 0.504398 0.252199 0.967675i \(-0.418846\pi\)
0.252199 + 0.967675i \(0.418846\pi\)
\(284\) 8.00000i 0.474713i
\(285\) −11.3137 −0.670166
\(286\) 0 0
\(287\) 0 0
\(288\) 5.00000i 0.294628i
\(289\) −15.0000 −0.882353
\(290\) 0 0
\(291\) 12.0000i 0.703452i
\(292\) 12.7279i 0.744845i
\(293\) 24.0416i 1.40453i −0.711917 0.702264i \(-0.752173\pi\)
0.711917 0.702264i \(-0.247827\pi\)
\(294\) 0 0
\(295\) −4.00000 −0.232889
\(296\) 10.0000 0.581238
\(297\) 0 0
\(298\) −8.00000 −0.463428
\(299\) −5.65685 28.2843i −0.327144 1.63572i
\(300\) −8.48528 −0.489898
\(301\) 0 0
\(302\) −20.0000 −1.15087
\(303\) −12.0000 −0.689382
\(304\) 2.82843i 0.162221i
\(305\) 18.0000i 1.03068i
\(306\) 7.07107i 0.404226i
\(307\) 8.48528i 0.484281i 0.970241 + 0.242140i \(0.0778494\pi\)
−0.970241 + 0.242140i \(0.922151\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −28.2843 −1.60385 −0.801927 0.597422i \(-0.796192\pi\)
−0.801927 + 0.597422i \(0.796192\pi\)
\(312\) −10.0000 + 2.00000i −0.566139 + 0.113228i
\(313\) 15.5563 0.879297 0.439648 0.898170i \(-0.355103\pi\)
0.439648 + 0.898170i \(0.355103\pi\)
\(314\) 12.7279i 0.718278i
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) 24.0000i 1.34797i −0.738743 0.673987i \(-0.764580\pi\)
0.738743 0.673987i \(-0.235420\pi\)
\(318\) 16.9706i 0.951662i
\(319\) 0 0
\(320\) 1.41421i 0.0790569i
\(321\) −33.9411 −1.89441
\(322\) 0 0
\(323\) 4.00000i 0.222566i
\(324\) −1.00000 −0.0555556
\(325\) −2.12132 10.6066i −0.117670 0.588348i
\(326\) 8.00000 0.443079
\(327\) 5.65685i 0.312825i
\(328\) −9.89949 −0.546608
\(329\) 0 0
\(330\) 0 0
\(331\) 16.0000i 0.879440i 0.898135 + 0.439720i \(0.144922\pi\)
−0.898135 + 0.439720i \(0.855078\pi\)
\(332\) 2.82843i 0.155230i
\(333\) 50.0000i 2.73998i
\(334\) 5.65685 0.309529
\(335\) −16.9706 −0.927201
\(336\) 0 0
\(337\) −8.00000 −0.435788 −0.217894 0.975972i \(-0.569919\pi\)
−0.217894 + 0.975972i \(0.569919\pi\)
\(338\) −5.00000 12.0000i −0.271964 0.652714i
\(339\) −16.9706 −0.921714
\(340\) 2.00000i 0.108465i
\(341\) 0 0
\(342\) 14.1421 0.764719
\(343\) 0 0
\(344\) 8.00000i 0.431331i
\(345\) 32.0000i 1.72282i
\(346\) 12.7279i 0.684257i
\(347\) −16.0000 −0.858925 −0.429463 0.903085i \(-0.641297\pi\)
−0.429463 + 0.903085i \(0.641297\pi\)
\(348\) 0 0
\(349\) 29.6985i 1.58972i −0.606791 0.794862i \(-0.707543\pi\)
0.606791 0.794862i \(-0.292457\pi\)
\(350\) 0 0
\(351\) −4.00000 20.0000i −0.213504 1.06752i
\(352\) 0 0
\(353\) 7.07107i 0.376355i −0.982135 0.188177i \(-0.939742\pi\)
0.982135 0.188177i \(-0.0602580\pi\)
\(354\) 8.00000 0.425195
\(355\) 11.3137 0.600469
\(356\) 12.7279i 0.674579i
\(357\) 0 0
\(358\) 20.0000i 1.05703i
\(359\) 4.00000i 0.211112i −0.994413 0.105556i \(-0.966338\pi\)
0.994413 0.105556i \(-0.0336622\pi\)
\(360\) −7.07107 −0.372678
\(361\) 11.0000 0.578947
\(362\) 15.5563i 0.817624i
\(363\) 31.1127 1.63299
\(364\) 0 0
\(365\) 18.0000 0.942163
\(366\) 36.0000i 1.88175i
\(367\) 16.9706 0.885856 0.442928 0.896557i \(-0.353940\pi\)
0.442928 + 0.896557i \(0.353940\pi\)
\(368\) 8.00000 0.417029
\(369\) 49.4975i 2.57674i
\(370\) 14.1421i 0.735215i
\(371\) 0 0
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 32.0000i 1.65247i
\(376\) 11.3137 0.583460
\(377\) 0 0
\(378\) 0 0
\(379\) 8.00000i 0.410932i 0.978664 + 0.205466i \(0.0658711\pi\)
−0.978664 + 0.205466i \(0.934129\pi\)
\(380\) 4.00000 0.205196
\(381\) −45.2548 −2.31848
\(382\) 12.0000i 0.613973i
\(383\) 5.65685i 0.289052i 0.989501 + 0.144526i \(0.0461657\pi\)
−0.989501 + 0.144526i \(0.953834\pi\)
\(384\) 2.82843i 0.144338i
\(385\) 0 0
\(386\) 8.00000 0.407189
\(387\) −40.0000 −2.03331
\(388\) 4.24264i 0.215387i
\(389\) −16.0000 −0.811232 −0.405616 0.914044i \(-0.632943\pi\)
−0.405616 + 0.914044i \(0.632943\pi\)
\(390\) −2.82843 14.1421i −0.143223 0.716115i
\(391\) 11.3137 0.572159
\(392\) 0 0
\(393\) 24.0000 1.21064
\(394\) −24.0000 −1.20910
\(395\) 5.65685i 0.284627i
\(396\) 0 0
\(397\) 18.3848i 0.922705i 0.887217 + 0.461353i \(0.152636\pi\)
−0.887217 + 0.461353i \(0.847364\pi\)
\(398\) 16.9706i 0.850657i
\(399\) 0 0
\(400\) 3.00000 0.150000
\(401\) 2.00000i 0.0998752i 0.998752 + 0.0499376i \(0.0159023\pi\)
−0.998752 + 0.0499376i \(0.984098\pi\)
\(402\) 33.9411 1.69283
\(403\) 0 0
\(404\) 4.24264 0.211079
\(405\) 1.41421i 0.0702728i
\(406\) 0 0
\(407\) 0 0
\(408\) 4.00000i 0.198030i
\(409\) 12.7279i 0.629355i −0.949199 0.314678i \(-0.898104\pi\)
0.949199 0.314678i \(-0.101896\pi\)
\(410\) 14.0000i 0.691411i
\(411\) 50.9117i 2.51129i
\(412\) 0 0
\(413\) 0 0
\(414\) 40.0000i 1.96589i
\(415\) 4.00000 0.196352
\(416\) 3.53553 0.707107i 0.173344 0.0346688i
\(417\) −40.0000 −1.95881
\(418\) 0 0
\(419\) 36.7696 1.79631 0.898155 0.439679i \(-0.144908\pi\)
0.898155 + 0.439679i \(0.144908\pi\)
\(420\) 0 0
\(421\) 8.00000i 0.389896i −0.980814 0.194948i \(-0.937546\pi\)
0.980814 0.194948i \(-0.0624538\pi\)
\(422\) 12.0000i 0.584151i
\(423\) 56.5685i 2.75046i
\(424\) 6.00000i 0.291386i
\(425\) 4.24264 0.205798
\(426\) −22.6274 −1.09630
\(427\) 0 0
\(428\) 12.0000 0.580042
\(429\) 0 0
\(430\) −11.3137 −0.545595
\(431\) 20.0000i 0.963366i 0.876346 + 0.481683i \(0.159974\pi\)
−0.876346 + 0.481683i \(0.840026\pi\)
\(432\) 5.65685 0.272166
\(433\) 21.2132 1.01944 0.509721 0.860340i \(-0.329749\pi\)
0.509721 + 0.860340i \(0.329749\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2.00000i 0.0957826i
\(437\) 22.6274i 1.08242i
\(438\) −36.0000 −1.72015
\(439\) −11.3137 −0.539974 −0.269987 0.962864i \(-0.587019\pi\)
−0.269987 + 0.962864i \(0.587019\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 5.00000 1.00000i 0.237826 0.0475651i
\(443\) −28.0000 −1.33032 −0.665160 0.746701i \(-0.731637\pi\)
−0.665160 + 0.746701i \(0.731637\pi\)
\(444\) 28.2843i 1.34231i
\(445\) −18.0000 −0.853282
\(446\) −5.65685 −0.267860
\(447\) 22.6274i 1.07024i
\(448\) 0 0
\(449\) 32.0000i 1.51017i −0.655625 0.755087i \(-0.727595\pi\)
0.655625 0.755087i \(-0.272405\pi\)
\(450\) 15.0000i 0.707107i
\(451\) 0 0
\(452\) 6.00000 0.282216
\(453\) 56.5685i 2.65782i
\(454\) 25.4558 1.19470
\(455\) 0 0
\(456\) −8.00000 −0.374634
\(457\) 24.0000i 1.12267i −0.827588 0.561336i \(-0.810287\pi\)
0.827588 0.561336i \(-0.189713\pi\)
\(458\) −24.0416 −1.12339
\(459\) 8.00000 0.373408
\(460\) 11.3137i 0.527504i
\(461\) 26.8701i 1.25146i −0.780038 0.625732i \(-0.784800\pi\)
0.780038 0.625732i \(-0.215200\pi\)
\(462\) 0 0
\(463\) 32.0000i 1.48717i 0.668644 + 0.743583i \(0.266875\pi\)
−0.668644 + 0.743583i \(0.733125\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −25.4558 −1.17796 −0.588978 0.808149i \(-0.700470\pi\)
−0.588978 + 0.808149i \(0.700470\pi\)
\(468\) 3.53553 + 17.6777i 0.163430 + 0.817151i
\(469\) 0 0
\(470\) 16.0000i 0.738025i
\(471\) 36.0000 1.65879
\(472\) −2.82843 −0.130189
\(473\) 0 0
\(474\) 11.3137i 0.519656i
\(475\) 8.48528i 0.389331i
\(476\) 0 0
\(477\) −30.0000 −1.37361
\(478\) 12.0000 0.548867
\(479\) 11.3137i 0.516937i −0.966020 0.258468i \(-0.916782\pi\)
0.966020 0.258468i \(-0.0832177\pi\)
\(480\) 4.00000 0.182574
\(481\) 35.3553 7.07107i 1.61206 0.322413i
\(482\) −15.5563 −0.708572
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) 6.00000 0.272446
\(486\) 14.1421i 0.641500i
\(487\) 12.0000i 0.543772i −0.962329 0.271886i \(-0.912353\pi\)
0.962329 0.271886i \(-0.0876473\pi\)
\(488\) 12.7279i 0.576166i
\(489\) 22.6274i 1.02325i
\(490\) 0 0
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) 28.0000i 1.26234i
\(493\) 0 0
\(494\) −2.00000 10.0000i −0.0899843 0.449921i
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −8.00000 −0.358489
\(499\) 20.0000i 0.895323i 0.894203 + 0.447661i \(0.147743\pi\)
−0.894203 + 0.447661i \(0.852257\pi\)
\(500\) 11.3137i 0.505964i
\(501\) 16.0000i 0.714827i
\(502\) 14.1421i 0.631194i
\(503\) −22.6274 −1.00891 −0.504453 0.863439i \(-0.668306\pi\)
−0.504453 + 0.863439i \(0.668306\pi\)
\(504\) 0 0
\(505\) 6.00000i 0.266996i
\(506\) 0 0
\(507\) −33.9411 + 14.1421i −1.50738 + 0.628074i
\(508\) 16.0000 0.709885
\(509\) 7.07107i 0.313420i 0.987645 + 0.156710i \(0.0500887\pi\)
−0.987645 + 0.156710i \(0.949911\pi\)
\(510\) 5.65685 0.250490
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 16.0000i 0.706417i
\(514\) 1.41421i 0.0623783i
\(515\) 0 0
\(516\) 22.6274 0.996116
\(517\) 0 0
\(518\) 0 0
\(519\) −36.0000 −1.58022
\(520\) 1.00000 + 5.00000i 0.0438529 + 0.219265i
\(521\) −7.07107 −0.309789 −0.154895 0.987931i \(-0.549504\pi\)
−0.154895 + 0.987931i \(0.549504\pi\)
\(522\) 0 0
\(523\) 25.4558 1.11311 0.556553 0.830812i \(-0.312124\pi\)
0.556553 + 0.830812i \(0.312124\pi\)
\(524\) −8.48528 −0.370681
\(525\) 0 0
\(526\) 4.00000i 0.174408i
\(527\) 0 0
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) −8.48528 −0.368577
\(531\) 14.1421i 0.613716i
\(532\) 0 0
\(533\) −35.0000 + 7.00000i −1.51602 + 0.303204i
\(534\) 36.0000 1.55787
\(535\) 16.9706i 0.733701i
\(536\) −12.0000 −0.518321
\(537\) −56.5685 −2.44111
\(538\) 9.89949i 0.426798i
\(539\) 0 0
\(540\) 8.00000i 0.344265i
\(541\) 8.00000i 0.343947i −0.985102 0.171973i \(-0.944986\pi\)
0.985102 0.171973i \(-0.0550143\pi\)
\(542\) −16.9706 −0.728948
\(543\) −44.0000 −1.88822
\(544\) 1.41421i 0.0606339i
\(545\) 2.82843 0.121157
\(546\) 0 0
\(547\) −16.0000 −0.684111 −0.342055 0.939680i \(-0.611123\pi\)
−0.342055 + 0.939680i \(0.611123\pi\)
\(548\) 18.0000i 0.768922i
\(549\) 63.6396 2.71607
\(550\) 0 0
\(551\) 0 0
\(552\) 22.6274i 0.963087i
\(553\) 0 0
\(554\) 22.0000i 0.934690i
\(555\) 40.0000 1.69791
\(556\) 14.1421 0.599760
\(557\) 8.00000i 0.338971i 0.985533 + 0.169485i \(0.0542106\pi\)
−0.985533 + 0.169485i \(0.945789\pi\)
\(558\) 0 0
\(559\) 5.65685 + 28.2843i 0.239259 + 1.19630i
\(560\) 0 0
\(561\) 0 0
\(562\) 2.00000 0.0843649
\(563\) 8.48528 0.357612 0.178806 0.983884i \(-0.442777\pi\)
0.178806 + 0.983884i \(0.442777\pi\)
\(564\) 32.0000i 1.34744i
\(565\) 8.48528i 0.356978i
\(566\) 8.48528i 0.356663i
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) 24.0000 1.00613 0.503066 0.864248i \(-0.332205\pi\)
0.503066 + 0.864248i \(0.332205\pi\)
\(570\) 11.3137i 0.473879i
\(571\) 40.0000 1.67395 0.836974 0.547243i \(-0.184323\pi\)
0.836974 + 0.547243i \(0.184323\pi\)
\(572\) 0 0
\(573\) 33.9411 1.41791
\(574\) 0 0
\(575\) 24.0000 1.00087
\(576\) −5.00000 −0.208333
\(577\) 29.6985i 1.23636i 0.786035 + 0.618182i \(0.212131\pi\)
−0.786035 + 0.618182i \(0.787869\pi\)
\(578\) 15.0000i 0.623918i
\(579\) 22.6274i 0.940363i
\(580\) 0 0
\(581\) 0 0
\(582\) −12.0000 −0.497416
\(583\) 0 0
\(584\) 12.7279 0.526685
\(585\) −25.0000 + 5.00000i −1.03362 + 0.206725i
\(586\) 24.0416 0.993151
\(587\) 8.48528i 0.350225i 0.984548 + 0.175113i \(0.0560289\pi\)
−0.984548 + 0.175113i \(0.943971\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 4.00000i 0.164677i
\(591\) 67.8823i 2.79230i
\(592\) 10.0000i 0.410997i
\(593\) 7.07107i 0.290374i 0.989404 + 0.145187i \(0.0463784\pi\)
−0.989404 + 0.145187i \(0.953622\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 8.00000i 0.327693i
\(597\) 48.0000 1.96451
\(598\) 28.2843 5.65685i 1.15663 0.231326i
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 8.48528i 0.346410i
\(601\) 4.24264 0.173061 0.0865305 0.996249i \(-0.472422\pi\)
0.0865305 + 0.996249i \(0.472422\pi\)
\(602\) 0 0
\(603\) 60.0000i 2.44339i
\(604\) 20.0000i 0.813788i
\(605\) 15.5563i 0.632456i
\(606\) 12.0000i 0.487467i
\(607\) −16.9706 −0.688814 −0.344407 0.938820i \(-0.611920\pi\)
−0.344407 + 0.938820i \(0.611920\pi\)
\(608\) 2.82843 0.114708
\(609\) 0 0
\(610\) 18.0000 0.728799
\(611\) 40.0000 8.00000i 1.61823 0.323645i
\(612\) −7.07107 −0.285831
\(613\) 6.00000i 0.242338i 0.992632 + 0.121169i \(0.0386643\pi\)
−0.992632 + 0.121169i \(0.961336\pi\)
\(614\) −8.48528 −0.342438
\(615\) −39.5980 −1.59674
\(616\) 0 0
\(617\) 26.0000i 1.04672i −0.852111 0.523360i \(-0.824678\pi\)
0.852111 0.523360i \(-0.175322\pi\)
\(618\) 0 0
\(619\) 31.1127i 1.25052i 0.780415 + 0.625262i \(0.215008\pi\)
−0.780415 + 0.625262i \(0.784992\pi\)
\(620\) 0 0
\(621\) 45.2548 1.81601
\(622\) 28.2843i 1.13410i
\(623\) 0 0
\(624\) −2.00000 10.0000i −0.0800641 0.400320i
\(625\) −1.00000 −0.0400000
\(626\) 15.5563i 0.621757i
\(627\) 0 0
\(628\) −12.7279 −0.507899
\(629\) 14.1421i 0.563884i
\(630\) 0 0
\(631\) 8.00000i 0.318475i −0.987240 0.159237i \(-0.949096\pi\)
0.987240 0.159237i \(-0.0509036\pi\)
\(632\) 4.00000i 0.159111i
\(633\) 33.9411 1.34904
\(634\) 24.0000 0.953162
\(635\) 22.6274i 0.897942i
\(636\) 16.9706 0.672927
\(637\) 0 0
\(638\) 0 0
\(639\) 40.0000i 1.58238i
\(640\) −1.41421 −0.0559017
\(641\) 24.0000 0.947943 0.473972 0.880540i \(-0.342820\pi\)
0.473972 + 0.880540i \(0.342820\pi\)
\(642\) 33.9411i 1.33955i
\(643\) 36.7696i 1.45005i 0.688723 + 0.725025i \(0.258172\pi\)
−0.688723 + 0.725025i \(0.741828\pi\)
\(644\) 0 0
\(645\) 32.0000i 1.26000i
\(646\) 4.00000 0.157378
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 0 0
\(650\) 10.6066 2.12132i 0.416025 0.0832050i
\(651\) 0 0
\(652\) 8.00000i 0.313304i
\(653\) 48.0000 1.87839 0.939193 0.343391i \(-0.111576\pi\)
0.939193 + 0.343391i \(0.111576\pi\)
\(654\) −5.65685 −0.221201
\(655\) 12.0000i 0.468879i
\(656\) 9.89949i 0.386510i
\(657\) 63.6396i 2.48282i
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 35.3553i 1.37516i −0.726107 0.687582i \(-0.758672\pi\)
0.726107 0.687582i \(-0.241328\pi\)
\(662\) −16.0000 −0.621858
\(663\) −2.82843 14.1421i −0.109847 0.549235i
\(664\) 2.82843 0.109764
\(665\) 0 0
\(666\) −50.0000 −1.93746
\(667\) 0 0
\(668\) 5.65685i 0.218870i
\(669\) 16.0000i 0.618596i
\(670\) 16.9706i 0.655630i
\(671\) 0 0
\(672\) 0 0
\(673\) 48.0000 1.85026 0.925132 0.379646i \(-0.123954\pi\)
0.925132 + 0.379646i \(0.123954\pi\)
\(674\) 8.00000i 0.308148i
\(675\) 16.9706 0.653197
\(676\) 12.0000 5.00000i 0.461538 0.192308i
\(677\) −41.0122 −1.57623 −0.788113 0.615530i \(-0.788942\pi\)
−0.788113 + 0.615530i \(0.788942\pi\)
\(678\) 16.9706i 0.651751i
\(679\) 0 0
\(680\) −2.00000 −0.0766965
\(681\) 72.0000i 2.75905i
\(682\) 0 0
\(683\) 20.0000i 0.765279i 0.923898 + 0.382639i \(0.124985\pi\)
−0.923898 + 0.382639i \(0.875015\pi\)
\(684\) 14.1421i 0.540738i
\(685\) 25.4558 0.972618
\(686\) 0 0
\(687\) 68.0000i 2.59436i
\(688\) −8.00000 −0.304997
\(689\) 4.24264 + 21.2132i 0.161632 + 0.808159i
\(690\) 32.0000 1.21822
\(691\) 19.7990i 0.753189i 0.926378 + 0.376595i \(0.122905\pi\)
−0.926378 + 0.376595i \(0.877095\pi\)
\(692\) 12.7279 0.483843
\(693\) 0 0
\(694\) 16.0000i 0.607352i
\(695\) 20.0000i 0.758643i
\(696\) 0 0
\(697\) 14.0000i 0.530288i
\(698\) 29.6985 1.12410
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 20.0000 4.00000i 0.754851 0.150970i
\(703\) 28.2843 1.06676
\(704\) 0 0
\(705\) 45.2548 1.70440
\(706\) 7.07107 0.266123
\(707\) 0 0
\(708\) 8.00000i 0.300658i
\(709\) 22.0000i 0.826227i 0.910679 + 0.413114i \(0.135559\pi\)
−0.910679 + 0.413114i \(0.864441\pi\)
\(710\) 11.3137i 0.424596i
\(711\) −20.0000 −0.750059
\(712\) −12.7279 −0.476999
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 20.0000 0.747435
\(717\) 33.9411i 1.26755i
\(718\) 4.00000 0.149279
\(719\) 39.5980 1.47676 0.738378 0.674387i \(-0.235592\pi\)
0.738378 + 0.674387i \(0.235592\pi\)
\(720\) 7.07107i 0.263523i
\(721\) 0 0
\(722\) 11.0000i 0.409378i
\(723\) 44.0000i 1.63638i
\(724\) 15.5563 0.578147
\(725\) 0 0
\(726\) 31.1127i 1.15470i
\(727\) 39.5980 1.46861 0.734304 0.678821i \(-0.237509\pi\)
0.734304 + 0.678821i \(0.237509\pi\)
\(728\) 0 0
\(729\) −43.0000 −1.59259
\(730\) 18.0000i 0.666210i
\(731\) −11.3137 −0.418453
\(732\) −36.0000 −1.33060
\(733\) 4.24264i 0.156706i −0.996926 0.0783528i \(-0.975034\pi\)
0.996926 0.0783528i \(-0.0249660\pi\)
\(734\) 16.9706i 0.626395i
\(735\) 0 0
\(736\) 8.00000i 0.294884i
\(737\) 0 0
\(738\) 49.4975 1.82203
\(739\) 48.0000i 1.76571i 0.469647 + 0.882854i \(0.344381\pi\)
−0.469647 + 0.882854i \(0.655619\pi\)
\(740\) −14.1421 −0.519875
\(741\) −28.2843 + 5.65685i −1.03905 + 0.207810i
\(742\) 0 0
\(743\) 4.00000i 0.146746i −0.997305 0.0733729i \(-0.976624\pi\)
0.997305 0.0733729i \(-0.0233763\pi\)
\(744\) 0 0
\(745\) 11.3137 0.414502
\(746\) 10.0000i 0.366126i
\(747\) 14.1421i 0.517434i
\(748\) 0 0
\(749\) 0 0
\(750\) 32.0000 1.16847
\(751\) −24.0000 −0.875772 −0.437886 0.899030i \(-0.644273\pi\)
−0.437886 + 0.899030i \(0.644273\pi\)
\(752\) 11.3137i 0.412568i
\(753\) −40.0000 −1.45768
\(754\) 0 0
\(755\) 28.2843 1.02937
\(756\) 0 0
\(757\) −16.0000 −0.581530 −0.290765 0.956795i \(-0.593910\pi\)
−0.290765 + 0.956795i \(0.593910\pi\)
\(758\) −8.00000 −0.290573
\(759\) 0 0
\(760\) 4.00000i 0.145095i
\(761\) 43.8406i 1.58922i −0.607119 0.794611i \(-0.707675\pi\)
0.607119 0.794611i \(-0.292325\pi\)
\(762\) 45.2548i 1.63941i
\(763\) 0 0
\(764\) −12.0000 −0.434145
\(765\) 10.0000i 0.361551i
\(766\) −5.65685 −0.204390
\(767\) −10.0000 + 2.00000i −0.361079 + 0.0722158i
\(768\) 2.82843 0.102062
\(769\) 18.3848i 0.662972i −0.943460 0.331486i \(-0.892450\pi\)
0.943460 0.331486i \(-0.107550\pi\)
\(770\) 0 0
\(771\) 4.00000 0.144056
\(772\) 8.00000i 0.287926i
\(773\) 9.89949i 0.356060i 0.984025 + 0.178030i \(0.0569724\pi\)
−0.984025 + 0.178030i \(0.943028\pi\)
\(774\) 40.0000i 1.43777i
\(775\) 0 0
\(776\) 4.24264 0.152302
\(777\) 0 0
\(778\) 16.0000i 0.573628i
\(779\) −28.0000 −1.00320
\(780\) 14.1421 2.82843i 0.506370 0.101274i
\(781\) 0 0
\(782\) 11.3137i 0.404577i
\(783\) 0 0
\(784\) 0 0
\(785\) 18.0000i 0.642448i
\(786\) 24.0000i 0.856052i
\(787\) 25.4558i 0.907403i −0.891154 0.453701i \(-0.850103\pi\)
0.891154 0.453701i \(-0.149897\pi\)
\(788\) 24.0000i 0.854965i
\(789\) −11.3137 −0.402779
\(790\) −5.65685 −0.201262
\(791\) 0 0
\(792\) 0 0
\(793\) −9.00000 45.0000i −0.319599 1.59800i
\(794\) −18.3848 −0.652451
\(795\) 24.0000i 0.851192i
\(796\) −16.9706 −0.601506
\(797\) −1.41421 −0.0500940 −0.0250470 0.999686i \(-0.507974\pi\)
−0.0250470 + 0.999686i \(0.507974\pi\)
\(798\) 0 0
\(799\) 16.0000i 0.566039i
\(800\) 3.00000i 0.106066i
\(801\) 63.6396i 2.24860i
\(802\) −2.00000 −0.0706225
\(803\) 0 0
\(804\) 33.9411i 1.19701i
\(805\) 0 0
\(806\) 0 0
\(807\) 28.0000 0.985647
\(808\) 4.24264i 0.149256i
\(809\) −34.0000 −1.19538 −0.597688 0.801729i \(-0.703914\pi\)
−0.597688 + 0.801729i \(0.703914\pi\)
\(810\) 1.41421 0.0496904
\(811\) 19.7990i 0.695237i −0.937636 0.347618i \(-0.886991\pi\)
0.937636 0.347618i \(-0.113009\pi\)
\(812\) 0 0
\(813\) 48.0000i 1.68343i
\(814\) 0 0
\(815\) −11.3137 −0.396302
\(816\) 4.00000 0.140028
\(817\) 22.6274i 0.791633i
\(818\) 12.7279 0.445021
\(819\) 0 0
\(820\) 14.0000 0.488901
\(821\) 24.0000i 0.837606i 0.908077 + 0.418803i \(0.137550\pi\)
−0.908077 + 0.418803i \(0.862450\pi\)
\(822\) −50.9117 −1.77575
\(823\) 28.0000 0.976019 0.488009 0.872838i \(-0.337723\pi\)
0.488009 + 0.872838i \(0.337723\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 4.00000i 0.139094i 0.997579 + 0.0695468i \(0.0221553\pi\)
−0.997579 + 0.0695468i \(0.977845\pi\)
\(828\) −40.0000 −1.39010
\(829\) −32.5269 −1.12971 −0.564853 0.825191i \(-0.691067\pi\)
−0.564853 + 0.825191i \(0.691067\pi\)
\(830\) 4.00000i 0.138842i
\(831\) 62.2254 2.15858
\(832\) 0.707107 + 3.53553i 0.0245145 + 0.122573i
\(833\) 0 0
\(834\) 40.0000i 1.38509i
\(835\) −8.00000 −0.276851
\(836\) 0 0
\(837\) 0 0
\(838\) 36.7696i 1.27018i
\(839\) 11.3137i 0.390593i 0.980744 + 0.195296i \(0.0625668\pi\)
−0.980744 + 0.195296i \(0.937433\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 8.00000 0.275698
\(843\) 5.65685i 0.194832i
\(844\) −12.0000 −0.413057
\(845\) 7.07107 + 16.9706i 0.243252 + 0.583805i
\(846\) −56.5685 −1.94487
\(847\) 0 0
\(848\) −6.00000 −0.206041
\(849\) 24.0000 0.823678
\(850\) 4.24264i 0.145521i
\(851\) 80.0000i 2.74236i
\(852\) 22.6274i 0.775203i
\(853\) 1.41421i 0.0484218i 0.999707 + 0.0242109i \(0.00770731\pi\)
−0.999707 + 0.0242109i \(0.992293\pi\)
\(854\) 0 0
\(855\) −20.0000 −0.683986
\(856\) 12.0000i 0.410152i
\(857\) −41.0122 −1.40095 −0.700475 0.713677i \(-0.747028\pi\)
−0.700475 + 0.713677i \(0.747028\pi\)
\(858\) 0 0
\(859\) 25.4558 0.868542 0.434271 0.900782i \(-0.357006\pi\)
0.434271 + 0.900782i \(0.357006\pi\)
\(860\) 11.3137i 0.385794i
\(861\) 0 0
\(862\) −20.0000 −0.681203
\(863\) 24.0000i 0.816970i 0.912765 + 0.408485i \(0.133943\pi\)
−0.912765 + 0.408485i \(0.866057\pi\)
\(864\) 5.65685i 0.192450i
\(865\) 18.0000i 0.612018i
\(866\) 21.2132i 0.720854i
\(867\) −42.4264 −1.44088
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −42.4264 + 8.48528i −1.43756 + 0.287513i
\(872\) 2.00000 0.0677285
\(873\) 21.2132i 0.717958i
\(874\) 22.6274 0.765384
\(875\) 0 0
\(876\) 36.0000i 1.21633i
\(877\) 46.0000i 1.55331i −0.629926 0.776655i \(-0.716915\pi\)
0.629926 0.776655i \(-0.283085\pi\)
\(878\) 11.3137i 0.381819i
\(879\) 68.0000i 2.29358i
\(880\) 0 0
\(881\) 43.8406 1.47703 0.738514 0.674238i \(-0.235528\pi\)
0.738514 + 0.674238i \(0.235528\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) 1.00000 + 5.00000i 0.0336336 + 0.168168i
\(885\) −11.3137 −0.380306
\(886\) 28.0000i 0.940678i
\(887\) −45.2548 −1.51951 −0.759754 0.650210i \(-0.774681\pi\)
−0.759754 + 0.650210i \(0.774681\pi\)
\(888\) 28.2843 0.949158
\(889\) 0 0
\(890\) 18.0000i 0.603361i
\(891\) 0 0
\(892\) 5.65685i 0.189405i
\(893\) 32.0000 1.07084
\(894\) −22.6274 −0.756774
\(895\) 28.2843i 0.945439i
\(896\) 0 0
\(897\) −16.0000 80.0000i −0.534224 2.67112i
\(898\) 32.0000 1.06785
\(899\) 0 0
\(900\) −15.0000 −0.500000
\(901\) −8.48528 −0.282686
\(902\) 0 0
\(903\) 0 0
\(904\) 6.00000i 0.199557i
\(905\) 22.0000i 0.731305i
\(906\) −56.5685 −1.87936
\(907\) −52.0000 −1.72663 −0.863316 0.504664i \(-0.831616\pi\)
−0.863316 + 0.504664i \(0.831616\pi\)
\(908\) 25.4558i 0.844782i
\(909\) −21.2132 −0.703598
\(910\) 0 0
\(911\) −16.0000 −0.530104 −0.265052 0.964234i \(-0.585389\pi\)
−0.265052 + 0.964234i \(0.585389\pi\)
\(912\) 8.00000i 0.264906i
\(913\) 0 0
\(914\) 24.0000 0.793849
\(915\) 50.9117i 1.68309i
\(916\) 24.0416i 0.794358i
\(917\) 0 0
\(918\) 8.00000i 0.264039i
\(919\) −20.0000 −0.659739 −0.329870 0.944027i \(-0.607005\pi\)
−0.329870 + 0.944027i \(0.607005\pi\)
\(920\) −11.3137 −0.373002
\(921\) 24.0000i 0.790827i
\(922\) 26.8701 0.884918
\(923\) 28.2843 5.65685i 0.930988 0.186198i
\(924\) 0 0
\(925\) 30.0000i 0.986394i
\(926\) −32.0000 −1.05159
\(927\) 0 0
\(928\) 0 0
\(929\) 7.07107i 0.231994i −0.993250 0.115997i \(-0.962994\pi\)
0.993250 0.115997i \(-0.0370063\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −80.0000 −2.61908
\(934\) 25.4558i 0.832941i
\(935\) 0 0
\(936\) −17.6777 + 3.53553i −0.577813 + 0.115563i
\(937\) −4.24264 −0.138601 −0.0693005 0.997596i \(-0.522077\pi\)
−0.0693005 + 0.997596i \(0.522077\pi\)
\(938\) 0 0
\(939\) 44.0000 1.43589
\(940\) −16.0000 −0.521862
\(941\) 41.0122i 1.33696i −0.743730 0.668480i \(-0.766945\pi\)
0.743730 0.668480i \(-0.233055\pi\)
\(942\) 36.0000i 1.17294i
\(943\) 79.1960i 2.57898i
\(944\) 2.82843i 0.0920575i
\(945\) 0 0
\(946\) 0 0
\(947\) 48.0000i 1.55979i 0.625910 + 0.779895i \(0.284728\pi\)
−0.625910 + 0.779895i \(0.715272\pi\)
\(948\) 11.3137 0.367452
\(949\) 45.0000 9.00000i 1.46076 0.292152i
\(950\) 8.48528 0.275299
\(951\) 67.8823i 2.20123i
\(952\) 0 0
\(953\) 58.0000 1.87880 0.939402 0.342817i \(-0.111381\pi\)
0.939402 + 0.342817i \(0.111381\pi\)
\(954\) 30.0000i 0.971286i
\(955\) 16.9706i 0.549155i
\(956\) 12.0000i 0.388108i
\(957\) 0 0
\(958\) 11.3137 0.365529
\(959\) 0 0
\(960\) 4.00000i 0.129099i
\(961\) 31.0000 1.00000
\(962\) 7.07107 + 35.3553i 0.227980 + 1.13990i
\(963\) −60.0000 −1.93347
\(964\) 15.5563i 0.501036i
\(965\) −11.3137 −0.364201
\(966\) 0 0
\(967\) 4.00000i 0.128631i −0.997930 0.0643157i \(-0.979514\pi\)
0.997930 0.0643157i \(-0.0204865\pi\)
\(968\) 11.0000i 0.353553i
\(969\) 11.3137i 0.363449i
\(970\) 6.00000i 0.192648i
\(971\) −36.7696 −1.17999 −0.589996 0.807406i \(-0.700871\pi\)
−0.589996 + 0.807406i \(0.700871\pi\)
\(972\) 14.1421 0.453609
\(973\) 0 0
\(974\) 12.0000 0.384505
\(975\) −6.00000 30.0000i −0.192154 0.960769i
\(976\) 12.7279 0.407411
\(977\) 54.0000i 1.72761i −0.503824 0.863807i \(-0.668074\pi\)
0.503824 0.863807i \(-0.331926\pi\)
\(978\) 22.6274 0.723545
\(979\) 0 0
\(980\) 0 0
\(981\) 10.0000i 0.319275i
\(982\) 20.0000i 0.638226i
\(983\) 5.65685i 0.180426i 0.995923 + 0.0902128i \(0.0287547\pi\)
−0.995923 + 0.0902128i \(0.971245\pi\)
\(984\) −28.0000 −0.892607
\(985\) 33.9411 1.08145
\(986\) 0 0
\(987\) 0 0
\(988\) 10.0000 2.00000i 0.318142 0.0636285i
\(989\) −64.0000 −2.03508
\(990\) 0 0
\(991\) 44.0000 1.39771 0.698853 0.715265i \(-0.253694\pi\)
0.698853 + 0.715265i \(0.253694\pi\)
\(992\) 0 0
\(993\) 45.2548i 1.43612i
\(994\) 0 0
\(995\) 24.0000i 0.760851i
\(996\) 8.00000i 0.253490i
\(997\) 26.8701 0.850983 0.425492 0.904962i \(-0.360101\pi\)
0.425492 + 0.904962i \(0.360101\pi\)
\(998\) −20.0000 −0.633089
\(999\) 56.5685i 1.78975i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.d.i.883.4 yes 4
7.2 even 3 1274.2.n.i.753.3 8
7.3 odd 6 1274.2.n.i.961.2 8
7.4 even 3 1274.2.n.i.961.1 8
7.5 odd 6 1274.2.n.i.753.4 8
7.6 odd 2 inner 1274.2.d.i.883.3 yes 4
13.12 even 2 inner 1274.2.d.i.883.2 yes 4
91.12 odd 6 1274.2.n.i.753.2 8
91.25 even 6 1274.2.n.i.961.3 8
91.38 odd 6 1274.2.n.i.961.4 8
91.51 even 6 1274.2.n.i.753.1 8
91.90 odd 2 inner 1274.2.d.i.883.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1274.2.d.i.883.1 4 91.90 odd 2 inner
1274.2.d.i.883.2 yes 4 13.12 even 2 inner
1274.2.d.i.883.3 yes 4 7.6 odd 2 inner
1274.2.d.i.883.4 yes 4 1.1 even 1 trivial
1274.2.n.i.753.1 8 91.51 even 6
1274.2.n.i.753.2 8 91.12 odd 6
1274.2.n.i.753.3 8 7.2 even 3
1274.2.n.i.753.4 8 7.5 odd 6
1274.2.n.i.961.1 8 7.4 even 3
1274.2.n.i.961.2 8 7.3 odd 6
1274.2.n.i.961.3 8 91.25 even 6
1274.2.n.i.961.4 8 91.38 odd 6