Properties

Label 1274.2.d.a
Level $1274$
Weight $2$
Character orbit 1274.d
Analytic conductor $10.173$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(883,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.883"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-6,-2,0,0,0,0,12,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - i q^{2} - 3 q^{3} - q^{4} + 4 i q^{5} + 3 i q^{6} + i q^{8} + 6 q^{9} + 4 q^{10} - 3 i q^{11} + 3 q^{12} + ( - 2 i - 3) q^{13} - 12 i q^{15} + q^{16} + 6 q^{17} - 6 i q^{18} - 2 i q^{19} - 4 i q^{20} + \cdots - 18 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 2 q^{4} + 12 q^{9} + 8 q^{10} + 6 q^{12} - 6 q^{13} + 2 q^{16} + 12 q^{17} - 6 q^{22} + 14 q^{23} - 22 q^{25} - 4 q^{26} - 18 q^{27} - 4 q^{29} - 24 q^{30} - 12 q^{36} - 4 q^{38} + 18 q^{39}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
883.1
1.00000i
1.00000i
1.00000i −3.00000 −1.00000 4.00000i 3.00000i 0 1.00000i 6.00000 4.00000
883.2 1.00000i −3.00000 −1.00000 4.00000i 3.00000i 0 1.00000i 6.00000 4.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1274.2.d.a 2
7.b odd 2 1 1274.2.d.f yes 2
7.c even 3 2 1274.2.n.g 4
7.d odd 6 2 1274.2.n.a 4
13.b even 2 1 inner 1274.2.d.a 2
91.b odd 2 1 1274.2.d.f yes 2
91.r even 6 2 1274.2.n.g 4
91.s odd 6 2 1274.2.n.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1274.2.d.a 2 1.a even 1 1 trivial
1274.2.d.a 2 13.b even 2 1 inner
1274.2.d.f yes 2 7.b odd 2 1
1274.2.d.f yes 2 91.b odd 2 1
1274.2.n.a 4 7.d odd 6 2
1274.2.n.a 4 91.s odd 6 2
1274.2.n.g 4 7.c even 3 2
1274.2.n.g 4 91.r even 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1274, [\chi])\):

\( T_{3} + 3 \) Copy content Toggle raw display
\( T_{5}^{2} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 16 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 9 \) Copy content Toggle raw display
$13$ \( T^{2} + 6T + 13 \) Copy content Toggle raw display
$17$ \( (T - 6)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 4 \) Copy content Toggle raw display
$23$ \( (T - 7)^{2} \) Copy content Toggle raw display
$29$ \( (T + 2)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 9 \) Copy content Toggle raw display
$37$ \( T^{2} + 81 \) Copy content Toggle raw display
$41$ \( T^{2} + 25 \) Copy content Toggle raw display
$43$ \( (T - 6)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 1 \) Copy content Toggle raw display
$53$ \( (T + 4)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 64 \) Copy content Toggle raw display
$61$ \( (T - 3)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 9 \) Copy content Toggle raw display
$71$ \( T^{2} + 36 \) Copy content Toggle raw display
$73$ \( T^{2} + 81 \) Copy content Toggle raw display
$79$ \( (T + 9)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 16 \) Copy content Toggle raw display
$89$ \( T^{2} + 100 \) Copy content Toggle raw display
$97$ \( T^{2} + 361 \) Copy content Toggle raw display
show more
show less