Properties

Label 127.2.c.a.107.9
Level $127$
Weight $2$
Character 127.107
Analytic conductor $1.014$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [127,2,Mod(19,127)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("127.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(127, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 127.c (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.01410010567\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 12 x^{16} - 7 x^{15} + 92 x^{14} - 46 x^{13} + 388 x^{12} - 105 x^{11} + 1128 x^{10} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 107.9
Root \(-1.14539 + 1.98387i\) of defining polynomial
Character \(\chi\) \(=\) 127.107
Dual form 127.2.c.a.19.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.29077 q^{2} +(0.483029 + 0.836631i) q^{3} +3.24763 q^{4} -4.03893 q^{5} +(1.10651 + 1.91653i) q^{6} +(0.0980034 + 0.169747i) q^{7} +2.85803 q^{8} +(1.03337 - 1.78984i) q^{9} -9.25226 q^{10} +(1.05139 - 1.82107i) q^{11} +(1.56870 + 2.71707i) q^{12} +(-1.12015 - 1.94016i) q^{13} +(0.224503 + 0.388851i) q^{14} +(-1.95092 - 3.37909i) q^{15} +0.0518359 q^{16} +(-3.12095 + 5.40565i) q^{17} +(2.36720 - 4.10012i) q^{18} +2.17425 q^{19} -13.1169 q^{20} +(-0.0946770 + 0.163985i) q^{21} +(2.40850 - 4.17165i) q^{22} +(3.86745 + 6.69862i) q^{23} +(1.38051 + 2.39112i) q^{24} +11.3130 q^{25} +(-2.56601 - 4.44447i) q^{26} +4.89476 q^{27} +(0.318279 + 0.551275i) q^{28} +(-2.53526 + 4.39120i) q^{29} +(-4.46911 - 7.74073i) q^{30} +(-3.42896 - 5.93913i) q^{31} -5.59732 q^{32} +2.03142 q^{33} +(-7.14938 + 12.3831i) q^{34} +(-0.395829 - 0.685595i) q^{35} +(3.35599 - 5.81274i) q^{36} +(1.06283 - 1.84087i) q^{37} +4.98070 q^{38} +(1.08213 - 1.87431i) q^{39} -11.5434 q^{40} +(-0.903577 + 1.56504i) q^{41} +(-0.216883 + 0.375653i) q^{42} +(-2.82883 + 4.89969i) q^{43} +(3.41454 - 5.91415i) q^{44} +(-4.17369 + 7.22904i) q^{45} +(8.85943 + 15.3450i) q^{46} -1.13665 q^{47} +(0.0250382 + 0.0433675i) q^{48} +(3.48079 - 6.02891i) q^{49} +25.9154 q^{50} -6.03004 q^{51} +(-3.63784 - 6.30093i) q^{52} +(4.46561 - 7.73466i) q^{53} +11.2128 q^{54} +(-4.24651 + 7.35517i) q^{55} +(0.280097 + 0.485142i) q^{56} +(1.05022 + 1.81904i) q^{57} +(-5.80770 + 10.0592i) q^{58} +(3.31019 - 5.73342i) q^{59} +(-6.33587 - 10.9740i) q^{60} -3.84677 q^{61} +(-7.85495 - 13.6052i) q^{62} +0.405093 q^{63} -12.9258 q^{64} +(4.52422 + 7.83618i) q^{65} +4.65351 q^{66} +(-6.16321 - 10.6750i) q^{67} +(-10.1357 + 17.5555i) q^{68} +(-3.73618 + 6.47126i) q^{69} +(-0.906753 - 1.57054i) q^{70} +(-5.76341 - 9.98251i) q^{71} +(2.95339 - 5.11542i) q^{72} +15.5578 q^{73} +(2.43469 - 4.21700i) q^{74} +(5.46449 + 9.46477i) q^{75} +7.06114 q^{76} +0.412161 q^{77} +(2.47892 - 4.29362i) q^{78} +(5.01100 + 8.67931i) q^{79} -0.209361 q^{80} +(-0.735785 - 1.27442i) q^{81} +(-2.06989 + 3.58515i) q^{82} +(-3.65263 + 6.32654i) q^{83} +(-0.307476 + 0.532564i) q^{84} +(12.6053 - 21.8330i) q^{85} +(-6.48021 + 11.2241i) q^{86} -4.89842 q^{87} +(3.00492 - 5.20467i) q^{88} +5.40131 q^{89} +(-9.56097 + 16.5601i) q^{90} +(0.219558 - 0.380285i) q^{91} +(12.5600 + 21.7546i) q^{92} +(3.31257 - 5.73754i) q^{93} -2.60381 q^{94} -8.78162 q^{95} +(-2.70367 - 4.68289i) q^{96} +(6.27345 + 10.8659i) q^{97} +(7.97369 - 13.8108i) q^{98} +(-2.17295 - 3.76366i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + q^{3} + 10 q^{4} - 8 q^{5} + 5 q^{7} - 6 q^{8} - 2 q^{9} - 4 q^{10} + 5 q^{12} - 8 q^{14} + 3 q^{15} - 6 q^{16} - 6 q^{17} + 16 q^{19} - 32 q^{20} + 3 q^{21} + 6 q^{22} + 13 q^{23} - 6 q^{24}+ \cdots + 17 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/127\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.29077 1.61982 0.809910 0.586555i \(-0.199516\pi\)
0.809910 + 0.586555i \(0.199516\pi\)
\(3\) 0.483029 + 0.836631i 0.278877 + 0.483029i 0.971106 0.238649i \(-0.0767045\pi\)
−0.692229 + 0.721678i \(0.743371\pi\)
\(4\) 3.24763 1.62381
\(5\) −4.03893 −1.80626 −0.903132 0.429363i \(-0.858738\pi\)
−0.903132 + 0.429363i \(0.858738\pi\)
\(6\) 1.10651 + 1.91653i 0.451730 + 0.782420i
\(7\) 0.0980034 + 0.169747i 0.0370418 + 0.0641583i 0.883952 0.467578i \(-0.154873\pi\)
−0.846910 + 0.531736i \(0.821540\pi\)
\(8\) 2.85803 1.01047
\(9\) 1.03337 1.78984i 0.344455 0.596614i
\(10\) −9.25226 −2.92582
\(11\) 1.05139 1.82107i 0.317007 0.549073i −0.662855 0.748748i \(-0.730655\pi\)
0.979862 + 0.199675i \(0.0639887\pi\)
\(12\) 1.56870 + 2.71707i 0.452845 + 0.784350i
\(13\) −1.12015 1.94016i −0.310675 0.538104i 0.667834 0.744310i \(-0.267222\pi\)
−0.978509 + 0.206206i \(0.933888\pi\)
\(14\) 0.224503 + 0.388851i 0.0600010 + 0.103925i
\(15\) −1.95092 3.37909i −0.503726 0.872478i
\(16\) 0.0518359 0.0129590
\(17\) −3.12095 + 5.40565i −0.756942 + 1.31106i 0.187462 + 0.982272i \(0.439974\pi\)
−0.944403 + 0.328790i \(0.893359\pi\)
\(18\) 2.36720 4.10012i 0.557955 0.966407i
\(19\) 2.17425 0.498806 0.249403 0.968400i \(-0.419766\pi\)
0.249403 + 0.968400i \(0.419766\pi\)
\(20\) −13.1169 −2.93304
\(21\) −0.0946770 + 0.163985i −0.0206602 + 0.0357845i
\(22\) 2.40850 4.17165i 0.513495 0.889399i
\(23\) 3.86745 + 6.69862i 0.806419 + 1.39676i 0.915329 + 0.402706i \(0.131930\pi\)
−0.108911 + 0.994052i \(0.534736\pi\)
\(24\) 1.38051 + 2.39112i 0.281796 + 0.488085i
\(25\) 11.3130 2.26259
\(26\) −2.56601 4.44447i −0.503237 0.871632i
\(27\) 4.89476 0.941997
\(28\) 0.318279 + 0.551275i 0.0601490 + 0.104181i
\(29\) −2.53526 + 4.39120i −0.470786 + 0.815425i −0.999442 0.0334112i \(-0.989363\pi\)
0.528656 + 0.848836i \(0.322696\pi\)
\(30\) −4.46911 7.74073i −0.815945 1.41326i
\(31\) −3.42896 5.93913i −0.615859 1.06670i −0.990233 0.139421i \(-0.955476\pi\)
0.374374 0.927278i \(-0.377857\pi\)
\(32\) −5.59732 −0.989476
\(33\) 2.03142 0.353624
\(34\) −7.14938 + 12.3831i −1.22611 + 2.12368i
\(35\) −0.395829 0.685595i −0.0669073 0.115887i
\(36\) 3.35599 5.81274i 0.559331 0.968790i
\(37\) 1.06283 1.84087i 0.174727 0.302637i −0.765340 0.643627i \(-0.777429\pi\)
0.940067 + 0.340990i \(0.110762\pi\)
\(38\) 4.98070 0.807976
\(39\) 1.08213 1.87431i 0.173280 0.300130i
\(40\) −11.5434 −1.82517
\(41\) −0.903577 + 1.56504i −0.141115 + 0.244418i −0.927917 0.372787i \(-0.878402\pi\)
0.786802 + 0.617206i \(0.211735\pi\)
\(42\) −0.216883 + 0.375653i −0.0334658 + 0.0579645i
\(43\) −2.82883 + 4.89969i −0.431393 + 0.747195i −0.996994 0.0774845i \(-0.975311\pi\)
0.565600 + 0.824680i \(0.308645\pi\)
\(44\) 3.41454 5.91415i 0.514761 0.891592i
\(45\) −4.17369 + 7.22904i −0.622177 + 1.07764i
\(46\) 8.85943 + 15.3450i 1.30625 + 2.26250i
\(47\) −1.13665 −0.165798 −0.0828990 0.996558i \(-0.526418\pi\)
−0.0828990 + 0.996558i \(0.526418\pi\)
\(48\) 0.0250382 + 0.0433675i 0.00361396 + 0.00625956i
\(49\) 3.48079 6.02891i 0.497256 0.861272i
\(50\) 25.9154 3.66499
\(51\) −6.03004 −0.844375
\(52\) −3.63784 6.30093i −0.504478 0.873782i
\(53\) 4.46561 7.73466i 0.613398 1.06244i −0.377265 0.926105i \(-0.623135\pi\)
0.990663 0.136332i \(-0.0435313\pi\)
\(54\) 11.2128 1.52586
\(55\) −4.24651 + 7.35517i −0.572599 + 0.991771i
\(56\) 0.280097 + 0.485142i 0.0374295 + 0.0648298i
\(57\) 1.05022 + 1.81904i 0.139106 + 0.240938i
\(58\) −5.80770 + 10.0592i −0.762588 + 1.32084i
\(59\) 3.31019 5.73342i 0.430950 0.746428i −0.566005 0.824402i \(-0.691512\pi\)
0.996955 + 0.0779739i \(0.0248451\pi\)
\(60\) −6.33587 10.9740i −0.817957 1.41674i
\(61\) −3.84677 −0.492528 −0.246264 0.969203i \(-0.579203\pi\)
−0.246264 + 0.969203i \(0.579203\pi\)
\(62\) −7.85495 13.6052i −0.997580 1.72786i
\(63\) 0.405093 0.0510369
\(64\) −12.9258 −1.61573
\(65\) 4.52422 + 7.83618i 0.561161 + 0.971959i
\(66\) 4.65351 0.572807
\(67\) −6.16321 10.6750i −0.752956 1.30416i −0.946384 0.323043i \(-0.895294\pi\)
0.193429 0.981114i \(-0.438039\pi\)
\(68\) −10.1357 + 17.5555i −1.22913 + 2.12892i
\(69\) −3.73618 + 6.47126i −0.449783 + 0.779048i
\(70\) −0.906753 1.57054i −0.108378 0.187716i
\(71\) −5.76341 9.98251i −0.683991 1.18471i −0.973753 0.227608i \(-0.926910\pi\)
0.289762 0.957099i \(-0.406424\pi\)
\(72\) 2.95339 5.11542i 0.348060 0.602858i
\(73\) 15.5578 1.82091 0.910454 0.413610i \(-0.135732\pi\)
0.910454 + 0.413610i \(0.135732\pi\)
\(74\) 2.43469 4.21700i 0.283027 0.490217i
\(75\) 5.46449 + 9.46477i 0.630985 + 1.09290i
\(76\) 7.06114 0.809969
\(77\) 0.412161 0.0469701
\(78\) 2.47892 4.29362i 0.280682 0.486156i
\(79\) 5.01100 + 8.67931i 0.563782 + 0.976499i 0.997162 + 0.0752876i \(0.0239875\pi\)
−0.433380 + 0.901211i \(0.642679\pi\)
\(80\) −0.209361 −0.0234073
\(81\) −0.735785 1.27442i −0.0817539 0.141602i
\(82\) −2.06989 + 3.58515i −0.228581 + 0.395913i
\(83\) −3.65263 + 6.32654i −0.400928 + 0.694428i −0.993838 0.110841i \(-0.964646\pi\)
0.592910 + 0.805269i \(0.297979\pi\)
\(84\) −0.307476 + 0.532564i −0.0335484 + 0.0581075i
\(85\) 12.6053 21.8330i 1.36724 2.36812i
\(86\) −6.48021 + 11.2241i −0.698779 + 1.21032i
\(87\) −4.89842 −0.525166
\(88\) 3.00492 5.20467i 0.320325 0.554820i
\(89\) 5.40131 0.572537 0.286269 0.958149i \(-0.407585\pi\)
0.286269 + 0.958149i \(0.407585\pi\)
\(90\) −9.56097 + 16.5601i −1.00781 + 1.74559i
\(91\) 0.219558 0.380285i 0.0230159 0.0398647i
\(92\) 12.5600 + 21.7546i 1.30947 + 2.26808i
\(93\) 3.31257 5.73754i 0.343498 0.594956i
\(94\) −2.60381 −0.268563
\(95\) −8.78162 −0.900976
\(96\) −2.70367 4.68289i −0.275942 0.477946i
\(97\) 6.27345 + 10.8659i 0.636973 + 1.10327i 0.986094 + 0.166191i \(0.0531469\pi\)
−0.349121 + 0.937078i \(0.613520\pi\)
\(98\) 7.97369 13.8108i 0.805465 1.39511i
\(99\) −2.17295 3.76366i −0.218390 0.378262i
\(100\) 36.7403 3.67403
\(101\) 0.463054 + 0.802033i 0.0460756 + 0.0798052i 0.888143 0.459566i \(-0.151995\pi\)
−0.842068 + 0.539372i \(0.818662\pi\)
\(102\) −13.8134 −1.36773
\(103\) −0.0315208 0.0545956i −0.00310584 0.00537947i 0.864468 0.502687i \(-0.167655\pi\)
−0.867574 + 0.497308i \(0.834322\pi\)
\(104\) −3.20143 5.54505i −0.313926 0.543737i
\(105\) 0.382394 0.662325i 0.0373178 0.0646363i
\(106\) 10.2297 17.7183i 0.993594 1.72096i
\(107\) −15.3210 −1.48113 −0.740566 0.671983i \(-0.765443\pi\)
−0.740566 + 0.671983i \(0.765443\pi\)
\(108\) 15.8964 1.52963
\(109\) −5.33182 + 9.23497i −0.510695 + 0.884550i 0.489228 + 0.872156i \(0.337279\pi\)
−0.999923 + 0.0123942i \(0.996055\pi\)
\(110\) −9.72777 + 16.8490i −0.927507 + 1.60649i
\(111\) 2.05350 0.194910
\(112\) 0.00508009 + 0.00879898i 0.000480023 + 0.000831425i
\(113\) 5.85614 + 10.1431i 0.550899 + 0.954185i 0.998210 + 0.0598064i \(0.0190483\pi\)
−0.447311 + 0.894378i \(0.647618\pi\)
\(114\) 2.40582 + 4.16701i 0.225326 + 0.390276i
\(115\) −15.6203 27.0552i −1.45661 2.52291i
\(116\) −8.23358 + 14.2610i −0.764469 + 1.32410i
\(117\) −4.63011 −0.428054
\(118\) 7.58289 13.1340i 0.698062 1.20908i
\(119\) −1.22345 −0.112154
\(120\) −5.57579 9.65756i −0.508998 0.881610i
\(121\) 3.28914 + 5.69696i 0.299013 + 0.517905i
\(122\) −8.81206 −0.797807
\(123\) −1.74582 −0.157415
\(124\) −11.1360 19.2881i −1.00004 1.73212i
\(125\) −25.4976 −2.28057
\(126\) 0.927976 0.0826706
\(127\) −9.20080 6.50732i −0.816439 0.577431i
\(128\) −18.4155 −1.62772
\(129\) −5.46564 −0.481223
\(130\) 10.3640 + 17.9509i 0.908979 + 1.57440i
\(131\) −0.219763 −0.0192008 −0.00960038 0.999954i \(-0.503056\pi\)
−0.00960038 + 0.999954i \(0.503056\pi\)
\(132\) 6.59729 0.574220
\(133\) 0.213083 + 0.369071i 0.0184767 + 0.0320025i
\(134\) −14.1185 24.4539i −1.21965 2.11250i
\(135\) −19.7696 −1.70149
\(136\) −8.91977 + 15.4495i −0.764864 + 1.32478i
\(137\) −9.25296 −0.790534 −0.395267 0.918566i \(-0.629348\pi\)
−0.395267 + 0.918566i \(0.629348\pi\)
\(138\) −8.55873 + 14.8242i −0.728568 + 1.26192i
\(139\) −3.77088 6.53136i −0.319842 0.553983i 0.660613 0.750727i \(-0.270296\pi\)
−0.980455 + 0.196744i \(0.936963\pi\)
\(140\) −1.28550 2.22656i −0.108645 0.188179i
\(141\) −0.549037 0.950961i −0.0462373 0.0800853i
\(142\) −13.2026 22.8676i −1.10794 1.91901i
\(143\) −4.71089 −0.393945
\(144\) 0.0535654 0.0927780i 0.00446378 0.00773150i
\(145\) 10.2397 17.7357i 0.850364 1.47287i
\(146\) 35.6395 2.94954
\(147\) 6.72529 0.554693
\(148\) 3.45166 5.97845i 0.283725 0.491426i
\(149\) 3.59996 6.23532i 0.294921 0.510817i −0.680046 0.733170i \(-0.738040\pi\)
0.974966 + 0.222352i \(0.0713735\pi\)
\(150\) 12.5179 + 21.6816i 1.02208 + 1.77030i
\(151\) 7.61514 + 13.1898i 0.619711 + 1.07337i 0.989538 + 0.144271i \(0.0460837\pi\)
−0.369827 + 0.929101i \(0.620583\pi\)
\(152\) 6.21406 0.504027
\(153\) 6.45017 + 11.1720i 0.521465 + 0.903204i
\(154\) 0.944166 0.0760830
\(155\) 13.8493 + 23.9877i 1.11240 + 1.92674i
\(156\) 3.51437 6.08707i 0.281375 0.487355i
\(157\) 0.909296 + 1.57495i 0.0725697 + 0.125694i 0.900027 0.435834i \(-0.143547\pi\)
−0.827457 + 0.561529i \(0.810213\pi\)
\(158\) 11.4791 + 19.8823i 0.913225 + 1.58175i
\(159\) 8.62808 0.684251
\(160\) 22.6072 1.78725
\(161\) −0.758046 + 1.31297i −0.0597424 + 0.103477i
\(162\) −1.68551 2.91940i −0.132427 0.229369i
\(163\) 2.92926 5.07363i 0.229438 0.397398i −0.728204 0.685360i \(-0.759645\pi\)
0.957642 + 0.287963i \(0.0929780\pi\)
\(164\) −2.93448 + 5.08267i −0.229145 + 0.396890i
\(165\) −8.20475 −0.638739
\(166\) −8.36733 + 14.4926i −0.649431 + 1.12485i
\(167\) −14.8075 −1.14584 −0.572918 0.819613i \(-0.694189\pi\)
−0.572918 + 0.819613i \(0.694189\pi\)
\(168\) −0.270590 + 0.468675i −0.0208765 + 0.0361591i
\(169\) 3.99051 6.91177i 0.306962 0.531675i
\(170\) 28.8758 50.0144i 2.21468 3.83593i
\(171\) 2.24679 3.89155i 0.171816 0.297595i
\(172\) −9.18701 + 15.9124i −0.700503 + 1.21331i
\(173\) −6.75967 11.7081i −0.513928 0.890150i −0.999869 0.0161581i \(-0.994856\pi\)
0.485941 0.873991i \(-0.338477\pi\)
\(174\) −11.2212 −0.850673
\(175\) 1.10871 + 1.92034i 0.0838104 + 0.145164i
\(176\) 0.0545000 0.0943967i 0.00410809 0.00711542i
\(177\) 6.39568 0.480729
\(178\) 12.3732 0.927407
\(179\) −2.59343 4.49195i −0.193842 0.335744i 0.752678 0.658388i \(-0.228762\pi\)
−0.946520 + 0.322644i \(0.895428\pi\)
\(180\) −13.5546 + 23.4773i −1.01030 + 1.74989i
\(181\) −19.3594 −1.43897 −0.719485 0.694508i \(-0.755622\pi\)
−0.719485 + 0.694508i \(0.755622\pi\)
\(182\) 0.502956 0.871146i 0.0372816 0.0645736i
\(183\) −1.85810 3.21833i −0.137355 0.237906i
\(184\) 11.0533 + 19.1449i 0.814859 + 1.41138i
\(185\) −4.29268 + 7.43513i −0.315604 + 0.546642i
\(186\) 7.58834 13.1434i 0.556404 0.963721i
\(187\) 6.56270 + 11.3669i 0.479912 + 0.831232i
\(188\) −3.69143 −0.269225
\(189\) 0.479703 + 0.830870i 0.0348932 + 0.0604369i
\(190\) −20.1167 −1.45942
\(191\) 13.8955 1.00544 0.502721 0.864449i \(-0.332332\pi\)
0.502721 + 0.864449i \(0.332332\pi\)
\(192\) −6.24356 10.8142i −0.450590 0.780445i
\(193\) 8.23013 0.592418 0.296209 0.955123i \(-0.404278\pi\)
0.296209 + 0.955123i \(0.404278\pi\)
\(194\) 14.3710 + 24.8914i 1.03178 + 1.78710i
\(195\) −4.37066 + 7.57021i −0.312990 + 0.542114i
\(196\) 11.3043 19.5797i 0.807451 1.39855i
\(197\) 5.62470 + 9.74227i 0.400743 + 0.694108i 0.993816 0.111041i \(-0.0354186\pi\)
−0.593073 + 0.805149i \(0.702085\pi\)
\(198\) −4.97773 8.62168i −0.353752 0.612716i
\(199\) −2.50451 + 4.33794i −0.177540 + 0.307509i −0.941037 0.338302i \(-0.890147\pi\)
0.763497 + 0.645811i \(0.223481\pi\)
\(200\) 32.3328 2.28627
\(201\) 5.95402 10.3127i 0.419964 0.727399i
\(202\) 1.06075 + 1.83727i 0.0746341 + 0.129270i
\(203\) −0.993856 −0.0697550
\(204\) −19.5833 −1.37111
\(205\) 3.64948 6.32109i 0.254891 0.441484i
\(206\) −0.0722069 0.125066i −0.00503090 0.00871377i
\(207\) 15.9859 1.11110
\(208\) −0.0580641 0.100570i −0.00402602 0.00697328i
\(209\) 2.28599 3.95945i 0.158125 0.273881i
\(210\) 0.875976 1.51724i 0.0604481 0.104699i
\(211\) −7.73138 + 13.3911i −0.532250 + 0.921884i 0.467041 + 0.884236i \(0.345320\pi\)
−0.999291 + 0.0376483i \(0.988013\pi\)
\(212\) 14.5026 25.1193i 0.996045 1.72520i
\(213\) 5.56779 9.64369i 0.381499 0.660775i
\(214\) −35.0968 −2.39917
\(215\) 11.4255 19.7895i 0.779210 1.34963i
\(216\) 13.9894 0.951856
\(217\) 0.672099 1.16411i 0.0456250 0.0790249i
\(218\) −12.2140 + 21.1552i −0.827234 + 1.43281i
\(219\) 7.51490 + 13.0162i 0.507810 + 0.879552i
\(220\) −13.7911 + 23.8869i −0.929795 + 1.61045i
\(221\) 13.9838 0.940650
\(222\) 4.70410 0.315719
\(223\) 10.5780 + 18.3217i 0.708358 + 1.22691i 0.965466 + 0.260529i \(0.0838969\pi\)
−0.257108 + 0.966383i \(0.582770\pi\)
\(224\) −0.548556 0.950127i −0.0366519 0.0634830i
\(225\) 11.6904 20.2484i 0.779361 1.34989i
\(226\) 13.4151 + 23.2356i 0.892357 + 1.54561i
\(227\) 15.2122 1.00967 0.504833 0.863217i \(-0.331554\pi\)
0.504833 + 0.863217i \(0.331554\pi\)
\(228\) 3.41074 + 5.90757i 0.225882 + 0.391238i
\(229\) −3.41189 −0.225464 −0.112732 0.993625i \(-0.535960\pi\)
−0.112732 + 0.993625i \(0.535960\pi\)
\(230\) −35.7826 61.9773i −2.35944 4.08666i
\(231\) 0.199086 + 0.344827i 0.0130989 + 0.0226879i
\(232\) −7.24585 + 12.5502i −0.475713 + 0.823960i
\(233\) −2.54006 + 4.39951i −0.166405 + 0.288222i −0.937153 0.348918i \(-0.886549\pi\)
0.770748 + 0.637140i \(0.219883\pi\)
\(234\) −10.6065 −0.693370
\(235\) 4.59087 0.299475
\(236\) 10.7503 18.6200i 0.699783 1.21206i
\(237\) −4.84092 + 8.38472i −0.314452 + 0.544646i
\(238\) −2.80265 −0.181669
\(239\) 0.667352 + 1.15589i 0.0431674 + 0.0747681i 0.886802 0.462150i \(-0.152922\pi\)
−0.843634 + 0.536918i \(0.819588\pi\)
\(240\) −0.101128 0.175158i −0.00652777 0.0113064i
\(241\) −3.26175 5.64952i −0.210108 0.363918i 0.741640 0.670798i \(-0.234048\pi\)
−0.951748 + 0.306880i \(0.900715\pi\)
\(242\) 7.53466 + 13.0504i 0.484347 + 0.838913i
\(243\) 8.05295 13.9481i 0.516597 0.894772i
\(244\) −12.4929 −0.799775
\(245\) −14.0587 + 24.3503i −0.898175 + 1.55569i
\(246\) −3.99926 −0.254984
\(247\) −2.43549 4.21839i −0.154966 0.268410i
\(248\) −9.80007 16.9742i −0.622305 1.07786i
\(249\) −7.05731 −0.447239
\(250\) −58.4091 −3.69411
\(251\) −1.14257 1.97898i −0.0721181 0.124912i 0.827711 0.561154i \(-0.189643\pi\)
−0.899829 + 0.436242i \(0.856309\pi\)
\(252\) 1.31559 0.0828745
\(253\) 16.2649 1.02256
\(254\) −21.0769 14.9068i −1.32248 0.935335i
\(255\) 24.3549 1.52516
\(256\) −16.3340 −1.02088
\(257\) −3.97362 6.88252i −0.247868 0.429320i 0.715066 0.699057i \(-0.246397\pi\)
−0.962934 + 0.269737i \(0.913063\pi\)
\(258\) −12.5205 −0.779494
\(259\) 0.416642 0.0258889
\(260\) 14.6930 + 25.4490i 0.911221 + 1.57828i
\(261\) 5.23970 + 9.07543i 0.324329 + 0.561755i
\(262\) −0.503426 −0.0311018
\(263\) −1.75362 + 3.03735i −0.108133 + 0.187291i −0.915014 0.403423i \(-0.867820\pi\)
0.806881 + 0.590714i \(0.201154\pi\)
\(264\) 5.80585 0.357326
\(265\) −18.0363 + 31.2397i −1.10796 + 1.91904i
\(266\) 0.488125 + 0.845457i 0.0299289 + 0.0518383i
\(267\) 2.60899 + 4.51890i 0.159668 + 0.276552i
\(268\) −20.0158 34.6684i −1.22266 2.11771i
\(269\) 14.6943 + 25.4513i 0.895930 + 1.55180i 0.832650 + 0.553800i \(0.186823\pi\)
0.0632797 + 0.997996i \(0.479844\pi\)
\(270\) −45.2876 −2.75611
\(271\) 2.81358 4.87326i 0.170913 0.296030i −0.767826 0.640658i \(-0.778662\pi\)
0.938739 + 0.344628i \(0.111995\pi\)
\(272\) −0.161777 + 0.280206i −0.00980918 + 0.0169900i
\(273\) 0.424211 0.0256744
\(274\) −21.1964 −1.28052
\(275\) 11.8944 20.6017i 0.717258 1.24233i
\(276\) −12.1337 + 21.0162i −0.730365 + 1.26503i
\(277\) 2.37513 + 4.11385i 0.142708 + 0.247177i 0.928515 0.371294i \(-0.121086\pi\)
−0.785808 + 0.618471i \(0.787752\pi\)
\(278\) −8.63822 14.9618i −0.518086 0.897352i
\(279\) −14.1735 −0.848543
\(280\) −1.13129 1.95945i −0.0676076 0.117100i
\(281\) −26.3749 −1.57340 −0.786699 0.617337i \(-0.788211\pi\)
−0.786699 + 0.617337i \(0.788211\pi\)
\(282\) −1.25772 2.17843i −0.0748960 0.129724i
\(283\) 11.0033 19.0583i 0.654078 1.13290i −0.328046 0.944662i \(-0.606390\pi\)
0.982124 0.188235i \(-0.0602765\pi\)
\(284\) −18.7174 32.4195i −1.11067 1.92374i
\(285\) −4.24178 7.34698i −0.251261 0.435198i
\(286\) −10.7916 −0.638119
\(287\) −0.354214 −0.0209086
\(288\) −5.78408 + 10.0183i −0.340830 + 0.590335i
\(289\) −10.9807 19.0191i −0.645921 1.11877i
\(290\) 23.4569 40.6285i 1.37744 2.38579i
\(291\) −6.06052 + 10.4971i −0.355274 + 0.615353i
\(292\) 50.5261 2.95682
\(293\) 0.852791 1.47708i 0.0498206 0.0862918i −0.840040 0.542525i \(-0.817468\pi\)
0.889860 + 0.456233i \(0.150802\pi\)
\(294\) 15.4061 0.898502
\(295\) −13.3696 + 23.1569i −0.778410 + 1.34825i
\(296\) 3.03759 5.26126i 0.176556 0.305804i
\(297\) 5.14632 8.91369i 0.298620 0.517225i
\(298\) 8.24669 14.2837i 0.477718 0.827432i
\(299\) 8.66427 15.0070i 0.501068 0.867875i
\(300\) 17.7466 + 30.7381i 1.02460 + 1.77466i
\(301\) −1.10894 −0.0639183
\(302\) 17.4445 + 30.2148i 1.00382 + 1.73867i
\(303\) −0.447337 + 0.774810i −0.0256988 + 0.0445117i
\(304\) 0.112704 0.00646401
\(305\) 15.5368 0.889636
\(306\) 14.7758 + 25.5925i 0.844679 + 1.46303i
\(307\) 7.86393 13.6207i 0.448818 0.777375i −0.549491 0.835499i \(-0.685179\pi\)
0.998309 + 0.0581239i \(0.0185118\pi\)
\(308\) 1.33855 0.0762707
\(309\) 0.0304509 0.0527426i 0.00173229 0.00300042i
\(310\) 31.7256 + 54.9503i 1.80189 + 3.12097i
\(311\) −9.46136 16.3876i −0.536505 0.929253i −0.999089 0.0426779i \(-0.986411\pi\)
0.462584 0.886575i \(-0.346922\pi\)
\(312\) 3.09277 5.35684i 0.175094 0.303271i
\(313\) 3.44226 5.96217i 0.194568 0.337002i −0.752191 0.658945i \(-0.771003\pi\)
0.946759 + 0.321944i \(0.104336\pi\)
\(314\) 2.08299 + 3.60784i 0.117550 + 0.203602i
\(315\) −1.63614 −0.0921862
\(316\) 16.2739 + 28.1872i 0.915477 + 1.58565i
\(317\) 13.6422 0.766221 0.383110 0.923703i \(-0.374853\pi\)
0.383110 + 0.923703i \(0.374853\pi\)
\(318\) 19.7649 1.10836
\(319\) 5.33112 + 9.23376i 0.298485 + 0.516991i
\(320\) 52.2066 2.91844
\(321\) −7.40047 12.8180i −0.413054 0.715430i
\(322\) −1.73651 + 3.00772i −0.0967719 + 0.167614i
\(323\) −6.78571 + 11.7532i −0.377567 + 0.653965i
\(324\) −2.38956 4.13883i −0.132753 0.229935i
\(325\) −12.6722 21.9490i −0.702929 1.21751i
\(326\) 6.71027 11.6225i 0.371647 0.643712i
\(327\) −10.3017 −0.569685
\(328\) −2.58245 + 4.47294i −0.142592 + 0.246977i
\(329\) −0.111396 0.192943i −0.00614146 0.0106373i
\(330\) −18.7952 −1.03464
\(331\) −22.3751 −1.22984 −0.614922 0.788588i \(-0.710813\pi\)
−0.614922 + 0.788588i \(0.710813\pi\)
\(332\) −11.8624 + 20.5462i −0.651033 + 1.12762i
\(333\) −2.19657 3.80458i −0.120372 0.208490i
\(334\) −33.9205 −1.85605
\(335\) 24.8928 + 43.1155i 1.36004 + 2.35565i
\(336\) −0.00490767 + 0.00850033i −0.000267735 + 0.000463731i
\(337\) −15.6868 + 27.1704i −0.854515 + 1.48006i 0.0225785 + 0.999745i \(0.492812\pi\)
−0.877094 + 0.480319i \(0.840521\pi\)
\(338\) 9.14135 15.8333i 0.497224 0.861217i
\(339\) −5.65737 + 9.79885i −0.307266 + 0.532201i
\(340\) 40.9373 70.9055i 2.22014 3.84539i
\(341\) −14.4207 −0.780927
\(342\) 5.14688 8.91466i 0.278311 0.482049i
\(343\) 2.73656 0.147761
\(344\) −8.08490 + 14.0035i −0.435909 + 0.755016i
\(345\) 15.0902 26.1369i 0.812427 1.40717i
\(346\) −15.4848 26.8205i −0.832471 1.44188i
\(347\) 14.9278 25.8558i 0.801369 1.38801i −0.117346 0.993091i \(-0.537439\pi\)
0.918715 0.394921i \(-0.129228\pi\)
\(348\) −15.9082 −0.852771
\(349\) 12.0868 0.646991 0.323496 0.946230i \(-0.395142\pi\)
0.323496 + 0.946230i \(0.395142\pi\)
\(350\) 2.53979 + 4.39905i 0.135758 + 0.235139i
\(351\) −5.48288 9.49663i −0.292655 0.506893i
\(352\) −5.88499 + 10.1931i −0.313671 + 0.543294i
\(353\) 15.7376 + 27.2584i 0.837629 + 1.45082i 0.891872 + 0.452288i \(0.149392\pi\)
−0.0542429 + 0.998528i \(0.517275\pi\)
\(354\) 14.6510 0.778694
\(355\) 23.2780 + 40.3187i 1.23547 + 2.13989i
\(356\) 17.5414 0.929694
\(357\) −0.590964 1.02358i −0.0312772 0.0541736i
\(358\) −5.94095 10.2900i −0.313989 0.543844i
\(359\) 14.6979 25.4575i 0.775724 1.34359i −0.158663 0.987333i \(-0.550718\pi\)
0.934387 0.356260i \(-0.115948\pi\)
\(360\) −11.9285 + 20.6608i −0.628689 + 1.08892i
\(361\) −14.2727 −0.751193
\(362\) −44.3479 −2.33087
\(363\) −3.17750 + 5.50359i −0.166776 + 0.288864i
\(364\) 0.713042 1.23502i 0.0373735 0.0647329i
\(365\) −62.8371 −3.28904
\(366\) −4.25648 7.37245i −0.222490 0.385364i
\(367\) 5.97466 + 10.3484i 0.311875 + 0.540183i 0.978768 0.204970i \(-0.0657097\pi\)
−0.666893 + 0.745153i \(0.732376\pi\)
\(368\) 0.200473 + 0.347229i 0.0104504 + 0.0181005i
\(369\) 1.86745 + 3.23452i 0.0972155 + 0.168382i
\(370\) −9.83354 + 17.0322i −0.511221 + 0.885461i
\(371\) 1.75058 0.0908855
\(372\) 10.7580 18.6334i 0.557777 0.966097i
\(373\) 21.7720 1.12731 0.563655 0.826010i \(-0.309395\pi\)
0.563655 + 0.826010i \(0.309395\pi\)
\(374\) 15.0336 + 26.0390i 0.777371 + 1.34645i
\(375\) −12.3161 21.3321i −0.635999 1.10158i
\(376\) −3.24859 −0.167533
\(377\) 11.3595 0.585045
\(378\) 1.09889 + 1.90333i 0.0565208 + 0.0978968i
\(379\) −17.9436 −0.921699 −0.460850 0.887478i \(-0.652455\pi\)
−0.460850 + 0.887478i \(0.652455\pi\)
\(380\) −28.5195 −1.46302
\(381\) 0.999972 10.8409i 0.0512301 0.555396i
\(382\) 31.8314 1.62863
\(383\) −0.445217 −0.0227496 −0.0113748 0.999935i \(-0.503621\pi\)
−0.0113748 + 0.999935i \(0.503621\pi\)
\(384\) −8.89523 15.4070i −0.453933 0.786234i
\(385\) −1.66469 −0.0848404
\(386\) 18.8533 0.959610
\(387\) 5.84644 + 10.1263i 0.297191 + 0.514750i
\(388\) 20.3738 + 35.2885i 1.03433 + 1.79150i
\(389\) −3.91158 −0.198325 −0.0991626 0.995071i \(-0.531616\pi\)
−0.0991626 + 0.995071i \(0.531616\pi\)
\(390\) −10.0122 + 17.3416i −0.506987 + 0.878127i
\(391\) −48.2805 −2.44165
\(392\) 9.94821 17.2308i 0.502460 0.870287i
\(393\) −0.106152 0.183860i −0.00535465 0.00927453i
\(394\) 12.8849 + 22.3173i 0.649132 + 1.12433i
\(395\) −20.2391 35.0551i −1.01834 1.76381i
\(396\) −7.05693 12.2230i −0.354624 0.614227i
\(397\) 17.4764 0.877114 0.438557 0.898703i \(-0.355490\pi\)
0.438557 + 0.898703i \(0.355490\pi\)
\(398\) −5.73726 + 9.93723i −0.287583 + 0.498108i
\(399\) −0.205851 + 0.356544i −0.0103054 + 0.0178495i
\(400\) 0.586417 0.0293208
\(401\) 8.56031 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(402\) 13.6393 23.6239i 0.680266 1.17826i
\(403\) −7.68191 + 13.3055i −0.382663 + 0.662793i
\(404\) 1.50383 + 2.60470i 0.0748182 + 0.129589i
\(405\) 2.97178 + 5.14728i 0.147669 + 0.255770i
\(406\) −2.27670 −0.112991
\(407\) −2.23490 3.87096i −0.110780 0.191876i
\(408\) −17.2340 −0.853213
\(409\) 2.19831 + 3.80759i 0.108700 + 0.188273i 0.915244 0.402901i \(-0.131998\pi\)
−0.806544 + 0.591174i \(0.798665\pi\)
\(410\) 8.36013 14.4802i 0.412877 0.715124i
\(411\) −4.46945 7.74132i −0.220462 0.381851i
\(412\) −0.102368 0.177306i −0.00504330 0.00873526i
\(413\) 1.29764 0.0638527
\(414\) 36.6201 1.79978
\(415\) 14.7527 25.5524i 0.724182 1.25432i
\(416\) 6.26986 + 10.8597i 0.307405 + 0.532441i
\(417\) 3.64289 6.30967i 0.178393 0.308986i
\(418\) 5.23668 9.07019i 0.256134 0.443637i
\(419\) −12.8908 −0.629758 −0.314879 0.949132i \(-0.601964\pi\)
−0.314879 + 0.949132i \(0.601964\pi\)
\(420\) 1.24187 2.15099i 0.0605972 0.104957i
\(421\) −0.628897 −0.0306506 −0.0153253 0.999883i \(-0.504878\pi\)
−0.0153253 + 0.999883i \(0.504878\pi\)
\(422\) −17.7108 + 30.6760i −0.862149 + 1.49329i
\(423\) −1.17458 + 2.03443i −0.0571100 + 0.0989174i
\(424\) 12.7628 22.1059i 0.619819 1.07356i
\(425\) −35.3072 + 61.1538i −1.71265 + 2.96639i
\(426\) 12.7545 22.0915i 0.617959 1.07034i
\(427\) −0.376996 0.652977i −0.0182441 0.0315998i
\(428\) −49.7568 −2.40508
\(429\) −2.27550 3.94128i −0.109862 0.190287i
\(430\) 26.1731 45.3332i 1.26218 2.18616i
\(431\) −12.0526 −0.580553 −0.290276 0.956943i \(-0.593747\pi\)
−0.290276 + 0.956943i \(0.593747\pi\)
\(432\) 0.253724 0.0122073
\(433\) −5.83676 10.1096i −0.280497 0.485834i 0.691011 0.722845i \(-0.257166\pi\)
−0.971507 + 0.237010i \(0.923832\pi\)
\(434\) 1.53962 2.66671i 0.0739043 0.128006i
\(435\) 19.7844 0.948588
\(436\) −17.3158 + 29.9918i −0.829274 + 1.43635i
\(437\) 8.40878 + 14.5644i 0.402246 + 0.696711i
\(438\) 17.2149 + 29.8171i 0.822560 + 1.42472i
\(439\) 7.42256 12.8562i 0.354259 0.613595i −0.632732 0.774371i \(-0.718066\pi\)
0.986991 + 0.160776i \(0.0513997\pi\)
\(440\) −12.1367 + 21.0213i −0.578592 + 1.00215i
\(441\) −7.19386 12.4601i −0.342565 0.593339i
\(442\) 32.0336 1.52368
\(443\) 9.89563 + 17.1397i 0.470156 + 0.814334i 0.999418 0.0341250i \(-0.0108644\pi\)
−0.529262 + 0.848459i \(0.677531\pi\)
\(444\) 6.66901 0.316497
\(445\) −21.8155 −1.03415
\(446\) 24.2319 + 41.9708i 1.14741 + 1.98737i
\(447\) 6.95555 0.328986
\(448\) −1.26678 2.19412i −0.0598496 0.103662i
\(449\) 12.6142 21.8484i 0.595300 1.03109i −0.398204 0.917297i \(-0.630367\pi\)
0.993504 0.113793i \(-0.0363001\pi\)
\(450\) 26.7801 46.3844i 1.26242 2.18658i
\(451\) 1.90003 + 3.29095i 0.0894690 + 0.154965i
\(452\) 19.0186 + 32.9411i 0.894558 + 1.54942i
\(453\) −7.35667 + 12.7421i −0.345647 + 0.598678i
\(454\) 34.8476 1.63548
\(455\) −0.886778 + 1.53594i −0.0415728 + 0.0720062i
\(456\) 3.00157 + 5.19888i 0.140562 + 0.243460i
\(457\) 18.9512 0.886500 0.443250 0.896398i \(-0.353825\pi\)
0.443250 + 0.896398i \(0.353825\pi\)
\(458\) −7.81585 −0.365211
\(459\) −15.2763 + 26.4593i −0.713037 + 1.23502i
\(460\) −50.7291 87.8654i −2.36526 4.09674i
\(461\) −14.3130 −0.666624 −0.333312 0.942817i \(-0.608166\pi\)
−0.333312 + 0.942817i \(0.608166\pi\)
\(462\) 0.456060 + 0.789919i 0.0212178 + 0.0367503i
\(463\) 18.0830 31.3206i 0.840386 1.45559i −0.0491823 0.998790i \(-0.515662\pi\)
0.889568 0.456802i \(-0.151005\pi\)
\(464\) −0.131417 + 0.227622i −0.00610090 + 0.0105671i
\(465\) −13.3792 + 23.1735i −0.620448 + 1.07465i
\(466\) −5.81869 + 10.0783i −0.269546 + 0.466867i
\(467\) 3.55041 6.14948i 0.164293 0.284564i −0.772111 0.635488i \(-0.780799\pi\)
0.936404 + 0.350924i \(0.114132\pi\)
\(468\) −15.0369 −0.695080
\(469\) 1.20803 2.09237i 0.0557817 0.0966167i
\(470\) 10.5166 0.485096
\(471\) −0.878433 + 1.52149i −0.0404761 + 0.0701066i
\(472\) 9.46063 16.3863i 0.435461 0.754240i
\(473\) 5.94844 + 10.3030i 0.273510 + 0.473733i
\(474\) −11.0894 + 19.2075i −0.509355 + 0.882229i
\(475\) 24.5971 1.12859
\(476\) −3.97333 −0.182117
\(477\) −9.22921 15.9855i −0.422576 0.731924i
\(478\) 1.52875 + 2.64787i 0.0699234 + 0.121111i
\(479\) 11.2972 19.5674i 0.516183 0.894056i −0.483640 0.875267i \(-0.660686\pi\)
0.999823 0.0187889i \(-0.00598106\pi\)
\(480\) 10.9199 + 18.9139i 0.498424 + 0.863296i
\(481\) −4.76211 −0.217133
\(482\) −7.47193 12.9418i −0.340337 0.589481i
\(483\) −1.46463 −0.0666431
\(484\) 10.6819 + 18.5016i 0.485541 + 0.840982i
\(485\) −25.3380 43.8868i −1.15054 1.99280i
\(486\) 18.4475 31.9519i 0.836794 1.44937i
\(487\) −14.7068 + 25.4730i −0.666431 + 1.15429i 0.312464 + 0.949929i \(0.398846\pi\)
−0.978895 + 0.204363i \(0.934488\pi\)
\(488\) −10.9942 −0.497683
\(489\) 5.65968 0.255940
\(490\) −32.2052 + 55.7810i −1.45488 + 2.51993i
\(491\) −3.39665 + 5.88317i −0.153289 + 0.265504i −0.932435 0.361339i \(-0.882320\pi\)
0.779146 + 0.626843i \(0.215653\pi\)
\(492\) −5.66976 −0.255613
\(493\) −15.8248 27.4094i −0.712715 1.23446i
\(494\) −5.57914 9.66336i −0.251018 0.434775i
\(495\) 8.77639 + 15.2012i 0.394469 + 0.683241i
\(496\) −0.177743 0.307860i −0.00798089 0.0138233i
\(497\) 1.12967 1.95664i 0.0506725 0.0877673i
\(498\) −16.1667 −0.724446
\(499\) −9.30823 + 16.1223i −0.416694 + 0.721735i −0.995605 0.0936561i \(-0.970145\pi\)
0.578911 + 0.815391i \(0.303478\pi\)
\(500\) −82.8066 −3.70322
\(501\) −7.15244 12.3884i −0.319547 0.553472i
\(502\) −2.61735 4.53339i −0.116818 0.202335i
\(503\) −7.65271 −0.341217 −0.170609 0.985339i \(-0.554573\pi\)
−0.170609 + 0.985339i \(0.554573\pi\)
\(504\) 1.15777 0.0515711
\(505\) −1.87024 3.23935i −0.0832246 0.144149i
\(506\) 37.2590 1.65637
\(507\) 7.71014 0.342419
\(508\) −29.8808 21.1334i −1.32575 0.937642i
\(509\) −9.59328 −0.425215 −0.212607 0.977138i \(-0.568196\pi\)
−0.212607 + 0.977138i \(0.568196\pi\)
\(510\) 55.7915 2.47049
\(511\) 1.52472 + 2.64090i 0.0674497 + 0.116826i
\(512\) −0.586439 −0.0259172
\(513\) 10.6424 0.469874
\(514\) −9.10266 15.7663i −0.401501 0.695420i
\(515\) 0.127310 + 0.220508i 0.00560996 + 0.00971674i
\(516\) −17.7504 −0.781416
\(517\) −1.19507 + 2.06993i −0.0525592 + 0.0910352i
\(518\) 0.954431 0.0419353
\(519\) 6.53024 11.3107i 0.286646 0.496485i
\(520\) 12.9304 + 22.3960i 0.567034 + 0.982132i
\(521\) −3.00310 5.20153i −0.131568 0.227883i 0.792713 0.609595i \(-0.208668\pi\)
−0.924281 + 0.381712i \(0.875335\pi\)
\(522\) 12.0029 + 20.7897i 0.525355 + 0.909941i
\(523\) −2.29949 3.98284i −0.100550 0.174157i 0.811362 0.584545i \(-0.198727\pi\)
−0.911911 + 0.410387i \(0.865394\pi\)
\(524\) −0.713708 −0.0311785
\(525\) −1.07108 + 1.85516i −0.0467456 + 0.0809658i
\(526\) −4.01713 + 6.95788i −0.175155 + 0.303378i
\(527\) 42.8064 1.86468
\(528\) 0.105300 0.00458261
\(529\) −18.4143 + 31.8945i −0.800622 + 1.38672i
\(530\) −41.3170 + 71.5631i −1.79469 + 3.10850i
\(531\) −6.84128 11.8494i −0.296886 0.514222i
\(532\) 0.692016 + 1.19861i 0.0300027 + 0.0519662i
\(533\) 4.04858 0.175363
\(534\) 5.97660 + 10.3518i 0.258633 + 0.447965i
\(535\) 61.8802 2.67532
\(536\) −17.6146 30.5095i −0.760837 1.31781i
\(537\) 2.50540 4.33948i 0.108116 0.187263i
\(538\) 33.6614 + 58.3032i 1.45124 + 2.51363i
\(539\) −7.31937 12.6775i −0.315267 0.546059i
\(540\) −64.2043 −2.76291
\(541\) −2.03663 −0.0875615 −0.0437808 0.999041i \(-0.513940\pi\)
−0.0437808 + 0.999041i \(0.513940\pi\)
\(542\) 6.44527 11.1635i 0.276848 0.479515i
\(543\) −9.35114 16.1967i −0.401296 0.695065i
\(544\) 17.4690 30.2571i 0.748975 1.29726i
\(545\) 21.5348 37.2994i 0.922451 1.59773i
\(546\) 0.971770 0.0415879
\(547\) −16.0254 + 27.7568i −0.685198 + 1.18680i 0.288177 + 0.957577i \(0.406951\pi\)
−0.973375 + 0.229220i \(0.926383\pi\)
\(548\) −30.0502 −1.28368
\(549\) −3.97512 + 6.88511i −0.169654 + 0.293849i
\(550\) 27.2473 47.1937i 1.16183 2.01234i
\(551\) −5.51228 + 9.54754i −0.234831 + 0.406739i
\(552\) −10.6781 + 18.4951i −0.454491 + 0.787202i
\(553\) −0.982190 + 1.70120i −0.0417670 + 0.0723425i
\(554\) 5.44088 + 9.42389i 0.231161 + 0.400383i
\(555\) −8.29395 −0.352059
\(556\) −12.2464 21.2114i −0.519364 0.899565i
\(557\) 12.4171 21.5070i 0.526128 0.911280i −0.473409 0.880843i \(-0.656977\pi\)
0.999537 0.0304372i \(-0.00968996\pi\)
\(558\) −32.4681 −1.37449
\(559\) 12.6749 0.536092
\(560\) −0.0205181 0.0355384i −0.000867049 0.00150177i
\(561\) −6.33995 + 10.9811i −0.267673 + 0.463623i
\(562\) −60.4189 −2.54862
\(563\) −5.88558 + 10.1941i −0.248048 + 0.429631i −0.962984 0.269558i \(-0.913122\pi\)
0.714936 + 0.699189i \(0.246456\pi\)
\(564\) −1.78307 3.08837i −0.0750808 0.130044i
\(565\) −23.6525 40.9674i −0.995069 1.72351i
\(566\) 25.2060 43.6581i 1.05949 1.83509i
\(567\) 0.144219 0.249794i 0.00605662 0.0104904i
\(568\) −16.4720 28.5303i −0.691150 1.19711i
\(569\) 1.34809 0.0565148 0.0282574 0.999601i \(-0.491004\pi\)
0.0282574 + 0.999601i \(0.491004\pi\)
\(570\) −9.71695 16.8302i −0.406998 0.704941i
\(571\) 11.0148 0.460953 0.230477 0.973078i \(-0.425971\pi\)
0.230477 + 0.973078i \(0.425971\pi\)
\(572\) −15.2992 −0.639693
\(573\) 6.71192 + 11.6254i 0.280395 + 0.485658i
\(574\) −0.811423 −0.0338682
\(575\) 43.7522 + 75.7811i 1.82459 + 3.16029i
\(576\) −13.3571 + 23.1352i −0.556547 + 0.963967i
\(577\) −10.4841 + 18.1591i −0.436461 + 0.755972i −0.997414 0.0718755i \(-0.977102\pi\)
0.560953 + 0.827848i \(0.310435\pi\)
\(578\) −25.1542 43.5683i −1.04628 1.81220i
\(579\) 3.97539 + 6.88559i 0.165212 + 0.286155i
\(580\) 33.2549 57.5991i 1.38083 2.39167i
\(581\) −1.43188 −0.0594044
\(582\) −13.8833 + 24.0465i −0.575480 + 0.996760i
\(583\) −9.39023 16.2644i −0.388904 0.673601i
\(584\) 44.4648 1.83997
\(585\) 18.7007 0.773179
\(586\) 1.95355 3.38365i 0.0807004 0.139777i
\(587\) 3.63197 + 6.29076i 0.149908 + 0.259647i 0.931193 0.364526i \(-0.118769\pi\)
−0.781286 + 0.624174i \(0.785436\pi\)
\(588\) 21.8413 0.900718
\(589\) −7.45539 12.9131i −0.307194 0.532076i
\(590\) −30.6268 + 53.0471i −1.26088 + 2.18391i
\(591\) −5.43379 + 9.41160i −0.223516 + 0.387141i
\(592\) 0.0550925 0.0954230i 0.00226429 0.00392186i
\(593\) −10.8990 + 18.8777i −0.447570 + 0.775213i −0.998227 0.0595178i \(-0.981044\pi\)
0.550658 + 0.834731i \(0.314377\pi\)
\(594\) 11.7890 20.4192i 0.483710 0.837811i
\(595\) 4.94145 0.202580
\(596\) 11.6913 20.2500i 0.478896 0.829473i
\(597\) −4.83901 −0.198048
\(598\) 19.8479 34.3775i 0.811639 1.40580i
\(599\) 0.542120 0.938979i 0.0221504 0.0383656i −0.854738 0.519060i \(-0.826282\pi\)
0.876888 + 0.480695i \(0.159615\pi\)
\(600\) 15.6177 + 27.0506i 0.637589 + 1.10434i
\(601\) −8.46487 + 14.6616i −0.345289 + 0.598059i −0.985406 0.170219i \(-0.945553\pi\)
0.640117 + 0.768277i \(0.278886\pi\)
\(602\) −2.54033 −0.103536
\(603\) −25.4754 −1.03744
\(604\) 24.7312 + 42.8356i 1.00630 + 1.74296i
\(605\) −13.2846 23.0096i −0.540096 0.935474i
\(606\) −1.02475 + 1.77491i −0.0416275 + 0.0721009i
\(607\) −17.7666 30.7726i −0.721123 1.24902i −0.960550 0.278107i \(-0.910293\pi\)
0.239427 0.970914i \(-0.423040\pi\)
\(608\) −12.1699 −0.493556
\(609\) −0.480062 0.831491i −0.0194531 0.0336937i
\(610\) 35.5913 1.44105
\(611\) 1.27323 + 2.20529i 0.0515093 + 0.0892167i
\(612\) 20.9477 + 36.2826i 0.846762 + 1.46664i
\(613\) −4.05128 + 7.01703i −0.163630 + 0.283415i −0.936168 0.351553i \(-0.885654\pi\)
0.772538 + 0.634968i \(0.218987\pi\)
\(614\) 18.0144 31.2019i 0.727004 1.25921i
\(615\) 7.05123 0.284333
\(616\) 1.17797 0.0474617
\(617\) 11.7219 20.3030i 0.471908 0.817369i −0.527575 0.849508i \(-0.676899\pi\)
0.999483 + 0.0321397i \(0.0102321\pi\)
\(618\) 0.0697561 0.120821i 0.00280600 0.00486014i
\(619\) 43.9360 1.76594 0.882969 0.469431i \(-0.155541\pi\)
0.882969 + 0.469431i \(0.155541\pi\)
\(620\) 44.9774 + 77.9032i 1.80634 + 3.12867i
\(621\) 18.9302 + 32.7881i 0.759644 + 1.31574i
\(622\) −21.6738 37.5401i −0.869040 1.50522i
\(623\) 0.529346 + 0.916855i 0.0212078 + 0.0367330i
\(624\) 0.0560934 0.0971565i 0.00224553 0.00388937i
\(625\) 46.4181 1.85672
\(626\) 7.88543 13.6580i 0.315165 0.545882i
\(627\) 4.41680 0.176390
\(628\) 2.95306 + 5.11485i 0.117840 + 0.204105i
\(629\) 6.63405 + 11.4905i 0.264517 + 0.458157i
\(630\) −3.74803 −0.149325
\(631\) −3.43451 −0.136726 −0.0683628 0.997661i \(-0.521778\pi\)
−0.0683628 + 0.997661i \(0.521778\pi\)
\(632\) 14.3216 + 24.8057i 0.569683 + 0.986720i
\(633\) −14.9379 −0.593729
\(634\) 31.2511 1.24114
\(635\) 37.1614 + 26.2826i 1.47470 + 1.04299i
\(636\) 28.0208 1.11110
\(637\) −15.5961 −0.617939
\(638\) 12.2124 + 21.1524i 0.483492 + 0.837433i
\(639\) −23.8228 −0.942416
\(640\) 74.3789 2.94008
\(641\) −20.4851 35.4813i −0.809115 1.40143i −0.913478 0.406888i \(-0.866614\pi\)
0.104363 0.994539i \(-0.466720\pi\)
\(642\) −16.9528 29.3631i −0.669073 1.15887i
\(643\) −49.3793 −1.94733 −0.973665 0.227984i \(-0.926787\pi\)
−0.973665 + 0.227984i \(0.926787\pi\)
\(644\) −2.46185 + 4.26405i −0.0970106 + 0.168027i
\(645\) 22.0753 0.869215
\(646\) −15.5445 + 26.9239i −0.611590 + 1.05931i
\(647\) −14.5468 25.1957i −0.571892 0.990546i −0.996372 0.0851082i \(-0.972876\pi\)
0.424480 0.905437i \(-0.360457\pi\)
\(648\) −2.10290 3.64232i −0.0826096 0.143084i
\(649\) −6.96064 12.0562i −0.273229 0.473246i
\(650\) −29.0292 50.2800i −1.13862 1.97215i
\(651\) 1.29857 0.0508951
\(652\) 9.51316 16.4773i 0.372564 0.645300i
\(653\) −21.5722 + 37.3642i −0.844186 + 1.46217i 0.0421407 + 0.999112i \(0.486582\pi\)
−0.886326 + 0.463061i \(0.846751\pi\)
\(654\) −23.5988 −0.922786
\(655\) 0.887607 0.0346817
\(656\) −0.0468377 + 0.0811253i −0.00182870 + 0.00316741i
\(657\) 16.0769 27.8461i 0.627221 1.08638i
\(658\) −0.255183 0.441989i −0.00994805 0.0172305i
\(659\) 4.37577 + 7.57905i 0.170456 + 0.295238i 0.938579 0.345064i \(-0.112143\pi\)
−0.768124 + 0.640302i \(0.778809\pi\)
\(660\) −26.6460 −1.03719
\(661\) 17.8867 + 30.9807i 0.695713 + 1.20501i 0.969940 + 0.243346i \(0.0782449\pi\)
−0.274226 + 0.961665i \(0.588422\pi\)
\(662\) −51.2561 −1.99213
\(663\) 6.75457 + 11.6993i 0.262326 + 0.454362i
\(664\) −10.4393 + 18.0814i −0.405124 + 0.701696i
\(665\) −0.860629 1.49065i −0.0333738 0.0578050i
\(666\) −5.03185 8.71541i −0.194980 0.337715i
\(667\) −39.2199 −1.51860
\(668\) −48.0891 −1.86062
\(669\) −10.2190 + 17.6998i −0.395089 + 0.684315i
\(670\) 57.0236 + 98.7678i 2.20301 + 3.81573i
\(671\) −4.04447 + 7.00523i −0.156135 + 0.270434i
\(672\) 0.529937 0.917878i 0.0204428 0.0354079i
\(673\) 12.0114 0.463005 0.231502 0.972834i \(-0.425636\pi\)
0.231502 + 0.972834i \(0.425636\pi\)
\(674\) −35.9349 + 62.2411i −1.38416 + 2.39744i
\(675\) 55.3742 2.13135
\(676\) 12.9597 22.4469i 0.498450 0.863341i
\(677\) 6.99572 12.1169i 0.268867 0.465692i −0.699702 0.714435i \(-0.746684\pi\)
0.968570 + 0.248743i \(0.0800173\pi\)
\(678\) −12.9597 + 22.4469i −0.497716 + 0.862069i
\(679\) −1.22964 + 2.12980i −0.0471892 + 0.0817341i
\(680\) 36.0263 62.3995i 1.38155 2.39291i
\(681\) 7.34792 + 12.7270i 0.281573 + 0.487699i
\(682\) −33.0346 −1.26496
\(683\) −5.77771 10.0073i −0.221078 0.382918i 0.734058 0.679087i \(-0.237624\pi\)
−0.955136 + 0.296169i \(0.904291\pi\)
\(684\) 7.29674 12.6383i 0.278998 0.483238i
\(685\) 37.3721 1.42791
\(686\) 6.26884 0.239345
\(687\) −1.64804 2.85449i −0.0628767 0.108906i
\(688\) −0.146635 + 0.253979i −0.00559041 + 0.00968288i
\(689\) −20.0087 −0.762269
\(690\) 34.5681 59.8737i 1.31599 2.27935i
\(691\) −15.8040 27.3733i −0.601212 1.04133i −0.992638 0.121120i \(-0.961351\pi\)
0.391426 0.920210i \(-0.371982\pi\)
\(692\) −21.9529 38.0235i −0.834524 1.44544i
\(693\) 0.425913 0.737703i 0.0161791 0.0280230i
\(694\) 34.1963 59.2297i 1.29807 2.24833i
\(695\) 15.2303 + 26.3797i 0.577719 + 1.00064i
\(696\) −13.9998 −0.530662
\(697\) −5.64004 9.76883i −0.213632 0.370021i
\(698\) 27.6881 1.04801
\(699\) −4.90769 −0.185626
\(700\) 3.60067 + 6.23654i 0.136093 + 0.235719i
\(701\) 25.8678 0.977012 0.488506 0.872561i \(-0.337542\pi\)
0.488506 + 0.872561i \(0.337542\pi\)
\(702\) −12.5600 21.7546i −0.474047 0.821074i
\(703\) 2.31084 4.00250i 0.0871551 0.150957i
\(704\) −13.5902 + 23.5388i −0.512198 + 0.887154i
\(705\) 2.21752 + 3.84086i 0.0835168 + 0.144655i
\(706\) 36.0513 + 62.4426i 1.35681 + 2.35006i
\(707\) −0.0907617 + 0.157204i −0.00341344 + 0.00591226i
\(708\) 20.7708 0.780614
\(709\) −7.18674 + 12.4478i −0.269904 + 0.467487i −0.968837 0.247700i \(-0.920325\pi\)
0.698933 + 0.715187i \(0.253659\pi\)
\(710\) 53.3245 + 92.3608i 2.00123 + 3.46624i
\(711\) 20.7128 0.776790
\(712\) 15.4371 0.578530
\(713\) 26.5226 45.9385i 0.993280 1.72041i
\(714\) −1.35376 2.34479i −0.0506633 0.0877515i
\(715\) 19.0270 0.711568
\(716\) −8.42249 14.5882i −0.314763 0.545186i
\(717\) −0.644701 + 1.11665i −0.0240768 + 0.0417022i
\(718\) 33.6694 58.3172i 1.25653 2.17638i
\(719\) 13.5229 23.4223i 0.504317 0.873503i −0.495670 0.868511i \(-0.665078\pi\)
0.999988 0.00499235i \(-0.00158912\pi\)
\(720\) −0.216347 + 0.374724i −0.00806277 + 0.0139651i
\(721\) 0.00617829 0.0107011i 0.000230092 0.000398530i
\(722\) −32.6954 −1.21680
\(723\) 3.15104 5.45777i 0.117189 0.202977i
\(724\) −62.8720 −2.33662
\(725\) −28.6813 + 49.6774i −1.06520 + 1.84497i
\(726\) −7.27893 + 12.6075i −0.270146 + 0.467907i
\(727\) 4.76044 + 8.24533i 0.176555 + 0.305802i 0.940698 0.339244i \(-0.110171\pi\)
−0.764143 + 0.645046i \(0.776838\pi\)
\(728\) 0.627503 1.08687i 0.0232568 0.0402820i
\(729\) 11.1445 0.412760
\(730\) −143.945 −5.32765
\(731\) −17.6573 30.5834i −0.653079 1.13117i
\(732\) −6.03443 10.4519i −0.223039 0.386315i
\(733\) −7.09897 + 12.2958i −0.262207 + 0.454155i −0.966828 0.255428i \(-0.917783\pi\)
0.704621 + 0.709583i \(0.251117\pi\)
\(734\) 13.6866 + 23.7058i 0.505181 + 0.874999i
\(735\) −27.1630 −1.00192
\(736\) −21.6473 37.4943i −0.797931 1.38206i
\(737\) −25.9198 −0.954770
\(738\) 4.27790 + 7.40954i 0.157472 + 0.272749i
\(739\) 22.0592 + 38.2076i 0.811459 + 1.40549i 0.911843 + 0.410540i \(0.134660\pi\)
−0.100383 + 0.994949i \(0.532007\pi\)
\(740\) −13.9410 + 24.1466i −0.512482 + 0.887645i
\(741\) 2.35282 4.07521i 0.0864332 0.149707i
\(742\) 4.01017 0.147218
\(743\) −12.1824 −0.446928 −0.223464 0.974712i \(-0.571737\pi\)
−0.223464 + 0.974712i \(0.571737\pi\)
\(744\) 9.46744 16.3981i 0.347093 0.601183i
\(745\) −14.5400 + 25.1840i −0.532704 + 0.922671i
\(746\) 49.8746 1.82604
\(747\) 7.54900 + 13.0753i 0.276203 + 0.478398i
\(748\) 21.3132 + 36.9156i 0.779288 + 1.34977i
\(749\) −1.50151 2.60068i −0.0548638 0.0950269i
\(750\) −28.2133 48.8668i −1.03020 1.78436i
\(751\) −4.99370 + 8.64935i −0.182223 + 0.315619i −0.942637 0.333819i \(-0.891663\pi\)
0.760414 + 0.649438i \(0.224996\pi\)
\(752\) −0.0589195 −0.00214857
\(753\) 1.10378 1.91181i 0.0402242 0.0696703i
\(754\) 26.0220 0.947667
\(755\) −30.7570 53.2727i −1.11936 1.93879i
\(756\) 1.55790 + 2.69836i 0.0566602 + 0.0981383i
\(757\) −29.1469 −1.05936 −0.529681 0.848197i \(-0.677688\pi\)
−0.529681 + 0.848197i \(0.677688\pi\)
\(758\) −41.1046 −1.49299
\(759\) 7.85640 + 13.6077i 0.285169 + 0.493928i
\(760\) −25.0982 −0.910406
\(761\) −13.6940 −0.496407 −0.248204 0.968708i \(-0.579840\pi\)
−0.248204 + 0.968708i \(0.579840\pi\)
\(762\) 2.29071 24.8340i 0.0829835 0.899642i
\(763\) −2.09014 −0.0756683
\(764\) 45.1274 1.63265
\(765\) −26.0518 45.1230i −0.941903 1.63142i
\(766\) −1.01989 −0.0368502
\(767\) −14.8317 −0.535541
\(768\) −7.88980 13.6655i −0.284699 0.493113i
\(769\) 4.84167 + 8.38602i 0.174595 + 0.302408i 0.940021 0.341116i \(-0.110805\pi\)
−0.765426 + 0.643524i \(0.777472\pi\)
\(770\) −3.81342 −0.137426
\(771\) 3.83875 6.64892i 0.138249 0.239455i
\(772\) 26.7284 0.961977
\(773\) 24.4963 42.4288i 0.881069 1.52606i 0.0309160 0.999522i \(-0.490158\pi\)
0.850153 0.526535i \(-0.176509\pi\)
\(774\) 13.3929 + 23.1971i 0.481396 + 0.833803i
\(775\) −38.7916 67.1890i −1.39344 2.41350i
\(776\) 17.9297 + 31.0552i 0.643640 + 1.11482i
\(777\) 0.201250 + 0.348576i 0.00721981 + 0.0125051i
\(778\) −8.96054 −0.321251
\(779\) −1.96460 + 3.40278i −0.0703890 + 0.121917i
\(780\) −14.1943 + 24.5852i −0.508237 + 0.880292i
\(781\) −24.2385 −0.867320
\(782\) −110.599 −3.95503
\(783\) −12.4095 + 21.4939i −0.443479 + 0.768128i
\(784\) 0.180430 0.312514i 0.00644392 0.0111612i
\(785\) −3.67258 6.36110i −0.131080 0.227037i
\(786\) −0.243170 0.421182i −0.00867357 0.0150231i
\(787\) −38.5688 −1.37483 −0.687414 0.726266i \(-0.741254\pi\)
−0.687414 + 0.726266i \(0.741254\pi\)
\(788\) 18.2669 + 31.6393i 0.650733 + 1.12710i
\(789\) −3.38819 −0.120623
\(790\) −46.3631 80.3032i −1.64953 2.85706i
\(791\) −1.14784 + 1.98812i −0.0408126 + 0.0706894i
\(792\) −6.21036 10.7567i −0.220675 0.382221i
\(793\) 4.30897 + 7.46336i 0.153016 + 0.265032i
\(794\) 40.0344 1.42077
\(795\) −34.8482 −1.23594
\(796\) −8.13373 + 14.0880i −0.288292 + 0.499337i
\(797\) 21.9506 + 38.0196i 0.777531 + 1.34672i 0.933361 + 0.358939i \(0.116861\pi\)
−0.155831 + 0.987784i \(0.549805\pi\)
\(798\) −0.471557 + 0.816761i −0.0166930 + 0.0289130i
\(799\) 3.54744 6.14435i 0.125499 0.217371i
\(800\) −63.3222 −2.23878
\(801\) 5.58152 9.66748i 0.197213 0.341584i
\(802\) 19.6097 0.692443
\(803\) 16.3574 28.3319i 0.577241 0.999811i
\(804\) 19.3364 33.4917i 0.681944 1.18116i
\(805\) 3.06169 5.30301i 0.107911 0.186907i
\(806\) −17.5975 + 30.4798i −0.619846 + 1.07360i
\(807\) −14.1956 + 24.5875i −0.499708 + 0.865520i
\(808\) 1.32342 + 2.29223i 0.0465578 + 0.0806405i
\(809\) 25.4482 0.894710 0.447355 0.894357i \(-0.352366\pi\)
0.447355 + 0.894357i \(0.352366\pi\)
\(810\) 6.80767 + 11.7912i 0.239197 + 0.414302i
\(811\) 1.19195 2.06452i 0.0418551 0.0724952i −0.844339 0.535809i \(-0.820007\pi\)
0.886194 + 0.463314i \(0.153340\pi\)
\(812\) −3.22768 −0.113269
\(813\) 5.43617 0.190655
\(814\) −5.11964 8.86747i −0.179443 0.310805i
\(815\) −11.8311 + 20.4920i −0.414425 + 0.717805i
\(816\) −0.312573 −0.0109422
\(817\) −6.15058 + 10.6531i −0.215182 + 0.372705i
\(818\) 5.03583 + 8.72231i 0.176074 + 0.304969i
\(819\) −0.453767 0.785947i −0.0158559 0.0274632i
\(820\) 11.8522 20.5285i 0.413896 0.716888i
\(821\) 10.1849 17.6407i 0.355454 0.615665i −0.631741 0.775179i \(-0.717659\pi\)
0.987196 + 0.159514i \(0.0509928\pi\)
\(822\) −10.2385 17.7336i −0.357108 0.618530i
\(823\) 5.00707 0.174535 0.0872677 0.996185i \(-0.472186\pi\)
0.0872677 + 0.996185i \(0.472186\pi\)
\(824\) −0.0900875 0.156036i −0.00313835 0.00543577i
\(825\) 22.9813 0.800107
\(826\) 2.97260 0.103430
\(827\) 12.9930 + 22.5045i 0.451809 + 0.782556i 0.998498 0.0547791i \(-0.0174455\pi\)
−0.546689 + 0.837336i \(0.684112\pi\)
\(828\) 51.9164 1.80422
\(829\) 2.17764 + 3.77178i 0.0756324 + 0.130999i 0.901361 0.433068i \(-0.142569\pi\)
−0.825729 + 0.564067i \(0.809236\pi\)
\(830\) 33.7951 58.5348i 1.17304 2.03177i
\(831\) −2.29452 + 3.97422i −0.0795959 + 0.137864i
\(832\) 14.4789 + 25.0782i 0.501967 + 0.869432i
\(833\) 21.7268 + 37.6318i 0.752787 + 1.30387i
\(834\) 8.34503 14.4540i 0.288965 0.500502i
\(835\) 59.8063 2.06968
\(836\) 7.42404 12.8588i 0.256766 0.444732i
\(837\) −16.7839 29.0706i −0.580137 1.00483i
\(838\) −29.5299 −1.02009
\(839\) −26.4316 −0.912520 −0.456260 0.889846i \(-0.650811\pi\)
−0.456260 + 0.889846i \(0.650811\pi\)
\(840\) 1.09289 1.89295i 0.0377084 0.0653129i
\(841\) 1.64492 + 2.84908i 0.0567213 + 0.0982443i
\(842\) −1.44066 −0.0496484
\(843\) −12.7399 22.0661i −0.438784 0.759997i
\(844\) −25.1086 + 43.4894i −0.864275 + 1.49697i
\(845\) −16.1174 + 27.9162i −0.554455 + 0.960345i
\(846\) −2.69069 + 4.66042i −0.0925079 + 0.160228i
\(847\) −0.644694 + 1.11664i −0.0221519 + 0.0383683i
\(848\) 0.231479 0.400933i 0.00794901 0.0137681i
\(849\) 21.2597 0.729629
\(850\) −80.8806 + 140.089i −2.77418 + 4.80502i
\(851\) 16.4417 0.563614
\(852\) 18.0821 31.3191i 0.619483 1.07298i
\(853\) 14.6521 25.3781i 0.501677 0.868930i −0.498321 0.866992i \(-0.666050\pi\)
0.999998 0.00193738i \(-0.000616687\pi\)
\(854\) −0.863612 1.49582i −0.0295522 0.0511859i
\(855\) −9.07463 + 15.7177i −0.310346 + 0.537534i
\(856\) −43.7878 −1.49663
\(857\) −6.86506 −0.234506 −0.117253 0.993102i \(-0.537409\pi\)
−0.117253 + 0.993102i \(0.537409\pi\)
\(858\) −5.21265 9.02857i −0.177957 0.308230i
\(859\) −23.5362 40.7658i −0.803043 1.39091i −0.917604 0.397495i \(-0.869880\pi\)
0.114561 0.993416i \(-0.463454\pi\)
\(860\) 37.1057 64.2689i 1.26529 2.19155i
\(861\) −0.171096 0.296347i −0.00583093 0.0100995i
\(862\) −27.6097 −0.940391
\(863\) −4.73356 8.19877i −0.161132 0.279089i 0.774143 0.633011i \(-0.218181\pi\)
−0.935275 + 0.353922i \(0.884848\pi\)
\(864\) −27.3975 −0.932083
\(865\) 27.3018 + 47.2881i 0.928290 + 1.60785i
\(866\) −13.3707 23.1587i −0.454354 0.786964i
\(867\) 10.6080 18.3735i 0.360265 0.623998i
\(868\) 2.18273 3.78059i 0.0740866 0.128322i
\(869\) 21.0742 0.714892
\(870\) 45.3214 1.53654
\(871\) −13.8075 + 23.9153i −0.467849 + 0.810337i
\(872\) −15.2385 + 26.3938i −0.516041 + 0.893808i
\(873\) 25.9311 0.877634
\(874\) 19.2626 + 33.3638i 0.651567 + 1.12855i
\(875\) −2.49885 4.32813i −0.0844765 0.146318i
\(876\) 24.4056 + 42.2717i 0.824589 + 1.42823i
\(877\) 0.197358 + 0.341833i 0.00666429 + 0.0115429i 0.869338 0.494217i \(-0.164545\pi\)
−0.862674 + 0.505760i \(0.831212\pi\)
\(878\) 17.0034 29.4507i 0.573836 0.993913i
\(879\) 1.64769 0.0555753
\(880\) −0.220121 + 0.381262i −0.00742029 + 0.0128523i
\(881\) 37.9366 1.27811 0.639057 0.769159i \(-0.279325\pi\)
0.639057 + 0.769159i \(0.279325\pi\)
\(882\) −16.4795 28.5433i −0.554893 0.961103i
\(883\) 5.05492 + 8.75538i 0.170112 + 0.294642i 0.938459 0.345391i \(-0.112254\pi\)
−0.768347 + 0.640033i \(0.778920\pi\)
\(884\) 45.4141 1.52744
\(885\) −25.8317 −0.868323
\(886\) 22.6686 + 39.2632i 0.761567 + 1.31907i
\(887\) 11.0010 0.369376 0.184688 0.982797i \(-0.440873\pi\)
0.184688 + 0.982797i \(0.440873\pi\)
\(888\) 5.86898 0.196950
\(889\) 0.202888 2.19955i 0.00680463 0.0737704i
\(890\) −49.9743 −1.67514
\(891\) −3.09440 −0.103666
\(892\) 34.3535 + 59.5021i 1.15024 + 1.99228i
\(893\) −2.47137 −0.0827011
\(894\) 15.9336 0.532898
\(895\) 10.4747 + 18.1427i 0.350130 + 0.606442i
\(896\) −1.80478 3.12597i −0.0602935 0.104431i
\(897\) 16.7404 0.558945
\(898\) 28.8962 50.0497i 0.964278 1.67018i
\(899\) 34.7732 1.15975
\(900\) 37.9661 65.7593i 1.26554 2.19198i
\(901\) 27.8739 + 48.2790i 0.928614 + 1.60841i
\(902\) 4.35253 + 7.53881i 0.144924 + 0.251015i
\(903\) −0.535651 0.927775i −0.0178254 0.0308744i
\(904\) 16.7370 + 28.9894i 0.556665 + 0.964172i
\(905\) 78.1911 2.59916
\(906\) −16.8524 + 29.1893i −0.559885 + 0.969749i
\(907\) −10.3231 + 17.8802i −0.342773 + 0.593701i −0.984947 0.172859i \(-0.944700\pi\)
0.642173 + 0.766560i \(0.278033\pi\)
\(908\) 49.4035 1.63951
\(909\) 1.91402 0.0634839
\(910\) −2.03140 + 3.51850i −0.0673404 + 0.116637i
\(911\) 13.4043 23.2170i 0.444105 0.769212i −0.553884 0.832594i \(-0.686855\pi\)
0.997989 + 0.0633813i \(0.0201884\pi\)
\(912\) 0.0544393 + 0.0942916i 0.00180266 + 0.00312231i
\(913\) 7.68071 + 13.3034i 0.254194 + 0.440277i
\(914\) 43.4129 1.43597
\(915\) 7.50474 + 12.9986i 0.248099 + 0.429720i
\(916\) −11.0805 −0.366111
\(917\) −0.0215375 0.0373040i −0.000711231 0.00123189i
\(918\) −34.9945 + 60.6122i −1.15499 + 2.00050i
\(919\) 11.1050 + 19.2345i 0.366321 + 0.634486i 0.988987 0.148001i \(-0.0472840\pi\)
−0.622666 + 0.782487i \(0.713951\pi\)
\(920\) −44.6434 77.3247i −1.47185 2.54932i
\(921\) 15.1940 0.500660
\(922\) −32.7879 −1.07981
\(923\) −12.9118 + 22.3639i −0.424997 + 0.736117i
\(924\) 0.646557 + 1.11987i 0.0212701 + 0.0368410i
\(925\) 12.0237 20.8256i 0.395336 0.684743i
\(926\) 41.4239 71.7483i 1.36127 2.35780i
\(927\) −0.130290 −0.00427929
\(928\) 14.1907 24.5789i 0.465831 0.806843i
\(929\) 6.32303 0.207452 0.103726 0.994606i \(-0.466924\pi\)
0.103726 + 0.994606i \(0.466924\pi\)
\(930\) −30.6488 + 53.0852i −1.00501 + 1.74073i
\(931\) 7.56809 13.1083i 0.248034 0.429608i
\(932\) −8.24917 + 14.2880i −0.270211 + 0.468019i
\(933\) 9.14023 15.8313i 0.299238 0.518295i
\(934\) 8.13316 14.0871i 0.266125 0.460942i
\(935\) −26.5063 45.9102i −0.866848 1.50142i
\(936\) −13.2330 −0.432534
\(937\) −3.04258 5.26990i −0.0993966 0.172160i 0.812038 0.583604i \(-0.198358\pi\)
−0.911435 + 0.411444i \(0.865025\pi\)
\(938\) 2.76732 4.79314i 0.0903562 0.156502i
\(939\) 6.65085 0.217042
\(940\) 14.9094 0.486292
\(941\) −14.0188 24.2812i −0.456998 0.791544i 0.541802 0.840506i \(-0.317742\pi\)
−0.998801 + 0.0489616i \(0.984409\pi\)
\(942\) −2.01229 + 3.48539i −0.0655639 + 0.113560i
\(943\) −13.9781 −0.455191
\(944\) 0.171587 0.297197i 0.00558467 0.00967294i
\(945\) −1.93749 3.35582i −0.0630264 0.109165i
\(946\) 13.6265 + 23.6018i 0.443036 + 0.767361i
\(947\) −16.9952 + 29.4366i −0.552271 + 0.956562i 0.445839 + 0.895113i \(0.352905\pi\)
−0.998110 + 0.0614486i \(0.980428\pi\)
\(948\) −15.7215 + 27.2305i −0.510611 + 0.884405i
\(949\) −17.4272 30.1848i −0.565710 0.979839i
\(950\) 56.3464 1.82812
\(951\) 6.58957 + 11.4135i 0.213681 + 0.370107i
\(952\) −3.49667 −0.113328
\(953\) −7.02791 −0.227656 −0.113828 0.993500i \(-0.536311\pi\)
−0.113828 + 0.993500i \(0.536311\pi\)
\(954\) −21.1420 36.6190i −0.684497 1.18558i
\(955\) −56.1229 −1.81609
\(956\) 2.16731 + 3.75389i 0.0700958 + 0.121410i
\(957\) −5.15017 + 8.92035i −0.166481 + 0.288354i
\(958\) 25.8794 44.8244i 0.836124 1.44821i
\(959\) −0.906822 1.57066i −0.0292828 0.0507193i
\(960\) 25.2173 + 43.6776i 0.813885 + 1.40969i
\(961\) −8.01548 + 13.8832i −0.258564 + 0.447846i
\(962\) −10.9089 −0.351717
\(963\) −15.8321 + 27.4221i −0.510184 + 0.883664i
\(964\) −10.5930 18.3476i −0.341176 0.590935i
\(965\) −33.2409 −1.07006
\(966\) −3.35514 −0.107950
\(967\) −6.70528 + 11.6139i −0.215627 + 0.373477i −0.953466 0.301499i \(-0.902513\pi\)
0.737839 + 0.674977i \(0.235846\pi\)
\(968\) 9.40046 + 16.2821i 0.302142 + 0.523326i
\(969\) −13.1108 −0.421179
\(970\) −58.0436 100.534i −1.86367 3.22797i
\(971\) −8.34883 + 14.4606i −0.267927 + 0.464062i −0.968326 0.249688i \(-0.919672\pi\)
0.700400 + 0.713751i \(0.253005\pi\)
\(972\) 26.1530 45.2983i 0.838858 1.45294i
\(973\) 0.739118 1.28019i 0.0236950 0.0410410i
\(974\) −33.6900 + 58.3528i −1.07950 + 1.86974i
\(975\) 12.2421 21.2040i 0.392062 0.679071i
\(976\) −0.199401 −0.00638266
\(977\) 19.9544 34.5620i 0.638396 1.10574i −0.347388 0.937721i \(-0.612931\pi\)
0.985785 0.168014i \(-0.0537353\pi\)
\(978\) 12.9650 0.414576
\(979\) 5.67890 9.83615i 0.181499 0.314365i
\(980\) −45.6573 + 79.0808i −1.45847 + 2.52614i
\(981\) 11.0194 + 19.0862i 0.351823 + 0.609376i
\(982\) −7.78094 + 13.4770i −0.248300 + 0.430068i
\(983\) 17.8050 0.567892 0.283946 0.958840i \(-0.408356\pi\)
0.283946 + 0.958840i \(0.408356\pi\)
\(984\) −4.98960 −0.159063
\(985\) −22.7178 39.3483i −0.723848 1.25374i
\(986\) −36.2511 62.7887i −1.15447 1.99960i
\(987\) 0.107615 0.186395i 0.00342542 0.00593301i
\(988\) −7.90956 13.6998i −0.251637 0.435848i
\(989\) −43.7615 −1.39153
\(990\) 20.1047 + 34.8223i 0.638969 + 1.10673i
\(991\) 5.50326 0.174817 0.0874084 0.996173i \(-0.472141\pi\)
0.0874084 + 0.996173i \(0.472141\pi\)
\(992\) 19.1930 + 33.2432i 0.609377 + 1.05547i
\(993\) −10.8078 18.7197i −0.342975 0.594051i
\(994\) 2.58781 4.48221i 0.0820803 0.142167i
\(995\) 10.1155 17.5206i 0.320684 0.555442i
\(996\) −22.9195 −0.726233
\(997\) 38.3183 1.21355 0.606776 0.794873i \(-0.292463\pi\)
0.606776 + 0.794873i \(0.292463\pi\)
\(998\) −21.3230 + 36.9326i −0.674969 + 1.16908i
\(999\) 5.20227 9.01060i 0.164593 0.285083i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 127.2.c.a.107.9 yes 18
127.19 even 3 inner 127.2.c.a.19.9 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
127.2.c.a.19.9 18 127.19 even 3 inner
127.2.c.a.107.9 yes 18 1.1 even 1 trivial