Properties

Label 127.2.c.a.107.6
Level $127$
Weight $2$
Character 127.107
Analytic conductor $1.014$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [127,2,Mod(19,127)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("127.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(127, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 127.c (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.01410010567\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 12 x^{16} - 7 x^{15} + 92 x^{14} - 46 x^{13} + 388 x^{12} - 105 x^{11} + 1128 x^{10} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 107.6
Root \(-0.267368 + 0.463096i\) of defining polynomial
Character \(\chi\) \(=\) 127.107
Dual form 127.2.c.a.19.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.534737 q^{2} +(-1.38643 - 2.40137i) q^{3} -1.71406 q^{4} -0.988660 q^{5} +(-0.741376 - 1.28410i) q^{6} +(-0.163967 - 0.283999i) q^{7} -1.98604 q^{8} +(-2.34438 + 4.06058i) q^{9} -0.528673 q^{10} +(2.49207 - 4.31640i) q^{11} +(2.37642 + 4.11608i) q^{12} +(-1.76368 - 3.05478i) q^{13} +(-0.0876791 - 0.151865i) q^{14} +(1.37071 + 2.37414i) q^{15} +2.36610 q^{16} +(0.276879 - 0.479568i) q^{17} +(-1.25363 + 2.17134i) q^{18} +5.21195 q^{19} +1.69462 q^{20} +(-0.454657 + 0.787489i) q^{21} +(1.33260 - 2.30814i) q^{22} +(2.05171 + 3.55366i) q^{23} +(2.75351 + 4.76922i) q^{24} -4.02255 q^{25} +(-0.943104 - 1.63350i) q^{26} +4.68270 q^{27} +(0.281048 + 0.486790i) q^{28} +(2.93487 - 5.08335i) q^{29} +(0.732968 + 1.26954i) q^{30} +(-2.61179 - 4.52376i) q^{31} +5.23733 q^{32} -13.8203 q^{33} +(0.148057 - 0.256443i) q^{34} +(0.162107 + 0.280778i) q^{35} +(4.01840 - 6.96007i) q^{36} +(-4.37338 + 7.57492i) q^{37} +2.78702 q^{38} +(-4.89044 + 8.47049i) q^{39} +1.96352 q^{40} +(-0.970700 + 1.68130i) q^{41} +(-0.243122 + 0.421100i) q^{42} +(-2.43046 + 4.20967i) q^{43} +(-4.27155 + 7.39855i) q^{44} +(2.31779 - 4.01454i) q^{45} +(1.09712 + 1.90027i) q^{46} +2.39356 q^{47} +(-3.28044 - 5.68188i) q^{48} +(3.44623 - 5.96905i) q^{49} -2.15101 q^{50} -1.53549 q^{51} +(3.02305 + 5.23607i) q^{52} +(1.39912 - 2.42335i) q^{53} +2.50401 q^{54} +(-2.46381 + 4.26745i) q^{55} +(0.325645 + 0.564034i) q^{56} +(-7.22601 - 12.5158i) q^{57} +(1.56939 - 2.71825i) q^{58} +(6.81913 - 11.8111i) q^{59} +(-2.34947 - 4.06940i) q^{60} +2.72107 q^{61} +(-1.39662 - 2.41902i) q^{62} +1.53760 q^{63} -1.93161 q^{64} +(1.74368 + 3.02014i) q^{65} -7.39025 q^{66} +(4.67954 + 8.10521i) q^{67} +(-0.474586 + 0.822006i) q^{68} +(5.68909 - 9.85380i) q^{69} +(0.0866848 + 0.150142i) q^{70} +(5.95907 + 10.3214i) q^{71} +(4.65604 - 8.06450i) q^{72} -14.1420 q^{73} +(-2.33861 + 4.05059i) q^{74} +(5.57699 + 9.65963i) q^{75} -8.93358 q^{76} -1.63447 q^{77} +(-2.61510 + 4.52948i) q^{78} +(-7.78350 - 13.4814i) q^{79} -2.33927 q^{80} +(0.540907 + 0.936878i) q^{81} +(-0.519069 + 0.899054i) q^{82} +(8.60664 - 14.9071i) q^{83} +(0.779308 - 1.34980i) q^{84} +(-0.273739 + 0.474129i) q^{85} +(-1.29965 + 2.25107i) q^{86} -16.2760 q^{87} +(-4.94936 + 8.57255i) q^{88} +16.4473 q^{89} +(1.23941 - 2.14672i) q^{90} +(-0.578370 + 1.00177i) q^{91} +(-3.51674 - 6.09117i) q^{92} +(-7.24214 + 12.5438i) q^{93} +1.27992 q^{94} -5.15285 q^{95} +(-7.26119 - 12.5768i) q^{96} +(0.114046 + 0.197534i) q^{97} +(1.84283 - 3.19187i) q^{98} +(11.6847 + 20.2385i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + q^{3} + 10 q^{4} - 8 q^{5} + 5 q^{7} - 6 q^{8} - 2 q^{9} - 4 q^{10} + 5 q^{12} - 8 q^{14} + 3 q^{15} - 6 q^{16} - 6 q^{17} + 16 q^{19} - 32 q^{20} + 3 q^{21} + 6 q^{22} + 13 q^{23} - 6 q^{24}+ \cdots + 17 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/127\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.534737 0.378116 0.189058 0.981966i \(-0.439457\pi\)
0.189058 + 0.981966i \(0.439457\pi\)
\(3\) −1.38643 2.40137i −0.800456 1.38643i −0.919316 0.393520i \(-0.871257\pi\)
0.118860 0.992911i \(-0.462076\pi\)
\(4\) −1.71406 −0.857028
\(5\) −0.988660 −0.442142 −0.221071 0.975258i \(-0.570955\pi\)
−0.221071 + 0.975258i \(0.570955\pi\)
\(6\) −0.741376 1.28410i −0.302665 0.524232i
\(7\) −0.163967 0.283999i −0.0619736 0.107341i 0.833374 0.552710i \(-0.186406\pi\)
−0.895348 + 0.445368i \(0.853073\pi\)
\(8\) −1.98604 −0.702172
\(9\) −2.34438 + 4.06058i −0.781460 + 1.35353i
\(10\) −0.528673 −0.167181
\(11\) 2.49207 4.31640i 0.751388 1.30144i −0.195762 0.980651i \(-0.562718\pi\)
0.947150 0.320791i \(-0.103949\pi\)
\(12\) 2.37642 + 4.11608i 0.686013 + 1.18821i
\(13\) −1.76368 3.05478i −0.489157 0.847244i 0.510766 0.859720i \(-0.329362\pi\)
−0.999922 + 0.0124760i \(0.996029\pi\)
\(14\) −0.0876791 0.151865i −0.0234332 0.0405875i
\(15\) 1.37071 + 2.37414i 0.353915 + 0.612999i
\(16\) 2.36610 0.591525
\(17\) 0.276879 0.479568i 0.0671529 0.116312i −0.830494 0.557027i \(-0.811942\pi\)
0.897647 + 0.440715i \(0.145275\pi\)
\(18\) −1.25363 + 2.17134i −0.295483 + 0.511791i
\(19\) 5.21195 1.19570 0.597852 0.801607i \(-0.296021\pi\)
0.597852 + 0.801607i \(0.296021\pi\)
\(20\) 1.69462 0.378928
\(21\) −0.454657 + 0.787489i −0.0992143 + 0.171844i
\(22\) 1.33260 2.30814i 0.284112 0.492096i
\(23\) 2.05171 + 3.55366i 0.427810 + 0.740989i 0.996678 0.0814398i \(-0.0259518\pi\)
−0.568868 + 0.822429i \(0.692619\pi\)
\(24\) 2.75351 + 4.76922i 0.562058 + 0.973513i
\(25\) −4.02255 −0.804510
\(26\) −0.943104 1.63350i −0.184958 0.320357i
\(27\) 4.68270 0.901185
\(28\) 0.281048 + 0.486790i 0.0531131 + 0.0919947i
\(29\) 2.93487 5.08335i 0.544992 0.943954i −0.453615 0.891198i \(-0.649866\pi\)
0.998607 0.0527566i \(-0.0168007\pi\)
\(30\) 0.732968 + 1.26954i 0.133821 + 0.231785i
\(31\) −2.61179 4.52376i −0.469092 0.812491i 0.530284 0.847820i \(-0.322085\pi\)
−0.999376 + 0.0353293i \(0.988752\pi\)
\(32\) 5.23733 0.925838
\(33\) −13.8203 −2.40581
\(34\) 0.148057 0.256443i 0.0253916 0.0439796i
\(35\) 0.162107 + 0.280778i 0.0274011 + 0.0474602i
\(36\) 4.01840 6.96007i 0.669733 1.16001i
\(37\) −4.37338 + 7.57492i −0.718980 + 1.24531i 0.242424 + 0.970170i \(0.422057\pi\)
−0.961404 + 0.275140i \(0.911276\pi\)
\(38\) 2.78702 0.452115
\(39\) −4.89044 + 8.47049i −0.783097 + 1.35636i
\(40\) 1.96352 0.310460
\(41\) −0.970700 + 1.68130i −0.151598 + 0.262575i −0.931815 0.362934i \(-0.881775\pi\)
0.780217 + 0.625509i \(0.215109\pi\)
\(42\) −0.243122 + 0.421100i −0.0375145 + 0.0649771i
\(43\) −2.43046 + 4.20967i −0.370641 + 0.641969i −0.989664 0.143404i \(-0.954195\pi\)
0.619023 + 0.785373i \(0.287529\pi\)
\(44\) −4.27155 + 7.39855i −0.643961 + 1.11537i
\(45\) 2.31779 4.01454i 0.345516 0.598452i
\(46\) 1.09712 + 1.90027i 0.161762 + 0.280180i
\(47\) 2.39356 0.349136 0.174568 0.984645i \(-0.444147\pi\)
0.174568 + 0.984645i \(0.444147\pi\)
\(48\) −3.28044 5.68188i −0.473490 0.820109i
\(49\) 3.44623 5.96905i 0.492319 0.852721i
\(50\) −2.15101 −0.304198
\(51\) −1.53549 −0.215012
\(52\) 3.02305 + 5.23607i 0.419221 + 0.726112i
\(53\) 1.39912 2.42335i 0.192184 0.332873i −0.753790 0.657116i \(-0.771776\pi\)
0.945974 + 0.324243i \(0.105110\pi\)
\(54\) 2.50401 0.340753
\(55\) −2.46381 + 4.26745i −0.332220 + 0.575422i
\(56\) 0.325645 + 0.564034i 0.0435162 + 0.0753722i
\(57\) −7.22601 12.5158i −0.957108 1.65776i
\(58\) 1.56939 2.71825i 0.206070 0.356924i
\(59\) 6.81913 11.8111i 0.887775 1.53767i 0.0452750 0.998975i \(-0.485584\pi\)
0.842500 0.538697i \(-0.181083\pi\)
\(60\) −2.34947 4.06940i −0.303315 0.525358i
\(61\) 2.72107 0.348397 0.174199 0.984711i \(-0.444267\pi\)
0.174199 + 0.984711i \(0.444267\pi\)
\(62\) −1.39662 2.41902i −0.177371 0.307216i
\(63\) 1.53760 0.193720
\(64\) −1.93161 −0.241451
\(65\) 1.74368 + 3.02014i 0.216277 + 0.374602i
\(66\) −7.39025 −0.909677
\(67\) 4.67954 + 8.10521i 0.571697 + 0.990209i 0.996392 + 0.0848721i \(0.0270482\pi\)
−0.424695 + 0.905337i \(0.639619\pi\)
\(68\) −0.474586 + 0.822006i −0.0575520 + 0.0996829i
\(69\) 5.68909 9.85380i 0.684887 1.18626i
\(70\) 0.0866848 + 0.150142i 0.0103608 + 0.0179455i
\(71\) 5.95907 + 10.3214i 0.707211 + 1.22493i 0.965888 + 0.258961i \(0.0833802\pi\)
−0.258677 + 0.965964i \(0.583286\pi\)
\(72\) 4.65604 8.06450i 0.548720 0.950410i
\(73\) −14.1420 −1.65520 −0.827599 0.561320i \(-0.810294\pi\)
−0.827599 + 0.561320i \(0.810294\pi\)
\(74\) −2.33861 + 4.05059i −0.271858 + 0.470872i
\(75\) 5.57699 + 9.65963i 0.643975 + 1.11540i
\(76\) −8.93358 −1.02475
\(77\) −1.63447 −0.186265
\(78\) −2.61510 + 4.52948i −0.296101 + 0.512863i
\(79\) −7.78350 13.4814i −0.875712 1.51678i −0.856002 0.516973i \(-0.827059\pi\)
−0.0197103 0.999806i \(-0.506274\pi\)
\(80\) −2.33927 −0.261538
\(81\) 0.540907 + 0.936878i 0.0601008 + 0.104098i
\(82\) −0.519069 + 0.899054i −0.0573216 + 0.0992839i
\(83\) 8.60664 14.9071i 0.944702 1.63627i 0.188355 0.982101i \(-0.439685\pi\)
0.756347 0.654170i \(-0.226982\pi\)
\(84\) 0.779308 1.34980i 0.0850295 0.147275i
\(85\) −0.273739 + 0.474129i −0.0296911 + 0.0514266i
\(86\) −1.29965 + 2.25107i −0.140145 + 0.242739i
\(87\) −16.2760 −1.74497
\(88\) −4.94936 + 8.57255i −0.527604 + 0.913837i
\(89\) 16.4473 1.74341 0.871703 0.490035i \(-0.163016\pi\)
0.871703 + 0.490035i \(0.163016\pi\)
\(90\) 1.23941 2.14672i 0.130645 0.226284i
\(91\) −0.578370 + 1.00177i −0.0606296 + 0.105014i
\(92\) −3.51674 6.09117i −0.366645 0.635048i
\(93\) −7.24214 + 12.5438i −0.750975 + 1.30073i
\(94\) 1.27992 0.132014
\(95\) −5.15285 −0.528671
\(96\) −7.26119 12.5768i −0.741092 1.28361i
\(97\) 0.114046 + 0.197534i 0.0115796 + 0.0200565i 0.871757 0.489938i \(-0.162981\pi\)
−0.860178 + 0.509995i \(0.829647\pi\)
\(98\) 1.84283 3.19187i 0.186154 0.322427i
\(99\) 11.6847 + 20.2385i 1.17436 + 2.03405i
\(100\) 6.89488 0.689488
\(101\) 2.75203 + 4.76665i 0.273837 + 0.474300i 0.969841 0.243738i \(-0.0783738\pi\)
−0.696004 + 0.718038i \(0.745040\pi\)
\(102\) −0.821084 −0.0812995
\(103\) −0.0417406 0.0722969i −0.00411283 0.00712363i 0.863962 0.503558i \(-0.167976\pi\)
−0.868074 + 0.496434i \(0.834642\pi\)
\(104\) 3.50274 + 6.06693i 0.343472 + 0.594911i
\(105\) 0.449501 0.778559i 0.0438668 0.0759796i
\(106\) 0.748162 1.29585i 0.0726679 0.125864i
\(107\) 0.868944 0.0840040 0.0420020 0.999118i \(-0.486626\pi\)
0.0420020 + 0.999118i \(0.486626\pi\)
\(108\) −8.02640 −0.772341
\(109\) −6.82826 + 11.8269i −0.654029 + 1.13281i 0.328107 + 0.944640i \(0.393589\pi\)
−0.982136 + 0.188171i \(0.939744\pi\)
\(110\) −1.31749 + 2.28196i −0.125618 + 0.217577i
\(111\) 24.2536 2.30205
\(112\) −0.387962 0.671970i −0.0366590 0.0634952i
\(113\) −1.28149 2.21960i −0.120552 0.208802i 0.799433 0.600755i \(-0.205133\pi\)
−0.919986 + 0.391952i \(0.871800\pi\)
\(114\) −3.86401 6.69267i −0.361898 0.626826i
\(115\) −2.02844 3.51336i −0.189153 0.327622i
\(116\) −5.03054 + 8.71315i −0.467074 + 0.808995i
\(117\) 16.5389 1.52902
\(118\) 3.64644 6.31582i 0.335682 0.581418i
\(119\) −0.181596 −0.0166468
\(120\) −2.72229 4.71514i −0.248510 0.430431i
\(121\) −6.92085 11.9873i −0.629168 1.08975i
\(122\) 1.45506 0.131735
\(123\) 5.38323 0.485390
\(124\) 4.47676 + 7.75397i 0.402025 + 0.696327i
\(125\) 8.92023 0.797850
\(126\) 0.822213 0.0732485
\(127\) 11.1078 + 1.90171i 0.985659 + 0.168750i
\(128\) −11.5076 −1.01713
\(129\) 13.4786 1.18673
\(130\) 0.932409 + 1.61498i 0.0817777 + 0.141643i
\(131\) −2.17852 −0.190339 −0.0951693 0.995461i \(-0.530339\pi\)
−0.0951693 + 0.995461i \(0.530339\pi\)
\(132\) 23.6888 2.06185
\(133\) −0.854587 1.48019i −0.0741021 0.128349i
\(134\) 2.50233 + 4.33415i 0.216168 + 0.374414i
\(135\) −4.62959 −0.398452
\(136\) −0.549893 + 0.952443i −0.0471529 + 0.0816713i
\(137\) 5.25091 0.448615 0.224308 0.974518i \(-0.427988\pi\)
0.224308 + 0.974518i \(0.427988\pi\)
\(138\) 3.04217 5.26919i 0.258967 0.448543i
\(139\) 4.89732 + 8.48241i 0.415386 + 0.719469i 0.995469 0.0950882i \(-0.0303133\pi\)
−0.580083 + 0.814557i \(0.696980\pi\)
\(140\) −0.277861 0.481270i −0.0234836 0.0406747i
\(141\) −3.31850 5.74781i −0.279468 0.484053i
\(142\) 3.18653 + 5.51924i 0.267408 + 0.463164i
\(143\) −17.5809 −1.47019
\(144\) −5.54704 + 9.60776i −0.462253 + 0.800646i
\(145\) −2.90159 + 5.02570i −0.240964 + 0.417362i
\(146\) −7.56226 −0.625857
\(147\) −19.1118 −1.57632
\(148\) 7.49623 12.9838i 0.616186 1.06727i
\(149\) −7.82862 + 13.5596i −0.641346 + 1.11084i 0.343787 + 0.939048i \(0.388290\pi\)
−0.985133 + 0.171795i \(0.945043\pi\)
\(150\) 2.98222 + 5.16536i 0.243497 + 0.421750i
\(151\) 7.92915 + 13.7337i 0.645265 + 1.11763i 0.984240 + 0.176836i \(0.0565863\pi\)
−0.338975 + 0.940795i \(0.610080\pi\)
\(152\) −10.3512 −0.839590
\(153\) 1.29822 + 2.24858i 0.104955 + 0.181787i
\(154\) −0.874011 −0.0704298
\(155\) 2.58217 + 4.47246i 0.207405 + 0.359236i
\(156\) 8.38248 14.5189i 0.671136 1.16244i
\(157\) −4.35686 7.54630i −0.347715 0.602260i 0.638128 0.769930i \(-0.279709\pi\)
−0.985843 + 0.167670i \(0.946376\pi\)
\(158\) −4.16213 7.20901i −0.331121 0.573518i
\(159\) −7.75914 −0.615340
\(160\) −5.17794 −0.409352
\(161\) 0.672823 1.16536i 0.0530259 0.0918436i
\(162\) 0.289243 + 0.500984i 0.0227251 + 0.0393610i
\(163\) 4.11435 7.12626i 0.322260 0.558171i −0.658694 0.752411i \(-0.728891\pi\)
0.980954 + 0.194240i \(0.0622240\pi\)
\(164\) 1.66383 2.88185i 0.129924 0.225034i
\(165\) 13.6636 1.06371
\(166\) 4.60229 7.97140i 0.357207 0.618701i
\(167\) 3.71905 0.287789 0.143894 0.989593i \(-0.454037\pi\)
0.143894 + 0.989593i \(0.454037\pi\)
\(168\) 0.902969 1.56399i 0.0696656 0.120664i
\(169\) 0.278873 0.483023i 0.0214518 0.0371556i
\(170\) −0.146378 + 0.253535i −0.0112267 + 0.0194452i
\(171\) −12.2188 + 21.1636i −0.934394 + 1.61842i
\(172\) 4.16594 7.21562i 0.317650 0.550186i
\(173\) −0.0741552 0.128441i −0.00563791 0.00976515i 0.863193 0.504875i \(-0.168461\pi\)
−0.868831 + 0.495109i \(0.835128\pi\)
\(174\) −8.70337 −0.659801
\(175\) 0.659565 + 1.14240i 0.0498584 + 0.0863573i
\(176\) 5.89650 10.2130i 0.444465 0.769836i
\(177\) −37.8170 −2.84250
\(178\) 8.79495 0.659210
\(179\) −7.13397 12.3564i −0.533218 0.923561i −0.999247 0.0387914i \(-0.987649\pi\)
0.466029 0.884769i \(-0.345684\pi\)
\(180\) −3.97283 + 6.88114i −0.296117 + 0.512890i
\(181\) −11.7328 −0.872091 −0.436045 0.899925i \(-0.643621\pi\)
−0.436045 + 0.899925i \(0.643621\pi\)
\(182\) −0.309276 + 0.535681i −0.0229250 + 0.0397073i
\(183\) −3.77257 6.53429i −0.278877 0.483029i
\(184\) −4.07478 7.05772i −0.300396 0.520302i
\(185\) 4.32379 7.48902i 0.317891 0.550604i
\(186\) −3.87264 + 6.70761i −0.283956 + 0.491826i
\(187\) −1.38000 2.39024i −0.100916 0.174791i
\(188\) −4.10269 −0.299220
\(189\) −0.767807 1.32988i −0.0558497 0.0967345i
\(190\) −2.75542 −0.199899
\(191\) −25.5857 −1.85132 −0.925658 0.378360i \(-0.876488\pi\)
−0.925658 + 0.378360i \(0.876488\pi\)
\(192\) 2.67804 + 4.63851i 0.193271 + 0.334755i
\(193\) 7.38295 0.531436 0.265718 0.964051i \(-0.414391\pi\)
0.265718 + 0.964051i \(0.414391\pi\)
\(194\) 0.0609847 + 0.105629i 0.00437845 + 0.00758369i
\(195\) 4.83498 8.37443i 0.346240 0.599705i
\(196\) −5.90703 + 10.2313i −0.421931 + 0.730806i
\(197\) 4.17840 + 7.23721i 0.297699 + 0.515630i 0.975609 0.219515i \(-0.0704475\pi\)
−0.677910 + 0.735145i \(0.737114\pi\)
\(198\) 6.24826 + 10.8223i 0.444044 + 0.769107i
\(199\) −2.30835 + 3.99818i −0.163635 + 0.283423i −0.936170 0.351549i \(-0.885655\pi\)
0.772535 + 0.634972i \(0.218988\pi\)
\(200\) 7.98896 0.564905
\(201\) 12.9757 22.4746i 0.915237 1.58524i
\(202\) 1.47161 + 2.54890i 0.103542 + 0.179340i
\(203\) −1.92489 −0.135101
\(204\) 2.63192 0.184271
\(205\) 0.959692 1.66224i 0.0670278 0.116096i
\(206\) −0.0223203 0.0386598i −0.00155513 0.00269356i
\(207\) −19.2399 −1.33727
\(208\) −4.17304 7.22792i −0.289349 0.501166i
\(209\) 12.9886 22.4968i 0.898438 1.55614i
\(210\) 0.240365 0.416324i 0.0165868 0.0287291i
\(211\) 12.0389 20.8521i 0.828795 1.43552i −0.0701882 0.997534i \(-0.522360\pi\)
0.898984 0.437982i \(-0.144307\pi\)
\(212\) −2.39817 + 4.15376i −0.164707 + 0.285281i
\(213\) 16.5237 28.6198i 1.13218 1.96100i
\(214\) 0.464656 0.0317633
\(215\) 2.40289 4.16193i 0.163876 0.283842i
\(216\) −9.30004 −0.632787
\(217\) −0.856495 + 1.48349i −0.0581426 + 0.100706i
\(218\) −3.65132 + 6.32428i −0.247299 + 0.428334i
\(219\) 19.6069 + 33.9602i 1.32491 + 2.29482i
\(220\) 4.22311 7.31464i 0.284722 0.493153i
\(221\) −1.95330 −0.131393
\(222\) 12.9693 0.870441
\(223\) 1.07620 + 1.86403i 0.0720675 + 0.124825i 0.899807 0.436288i \(-0.143707\pi\)
−0.827740 + 0.561112i \(0.810374\pi\)
\(224\) −0.858748 1.48740i −0.0573775 0.0993808i
\(225\) 9.43039 16.3339i 0.628693 1.08893i
\(226\) −0.685258 1.18690i −0.0455827 0.0789515i
\(227\) −13.5371 −0.898490 −0.449245 0.893408i \(-0.648307\pi\)
−0.449245 + 0.893408i \(0.648307\pi\)
\(228\) 12.3858 + 21.4528i 0.820269 + 1.42075i
\(229\) 6.63882 0.438706 0.219353 0.975646i \(-0.429605\pi\)
0.219353 + 0.975646i \(0.429605\pi\)
\(230\) −1.08468 1.87872i −0.0715218 0.123879i
\(231\) 2.26608 + 3.92496i 0.149097 + 0.258244i
\(232\) −5.82878 + 10.0958i −0.382678 + 0.662819i
\(233\) 3.78356 6.55333i 0.247870 0.429323i −0.715065 0.699058i \(-0.753603\pi\)
0.962934 + 0.269735i \(0.0869362\pi\)
\(234\) 8.84398 0.578149
\(235\) −2.36641 −0.154368
\(236\) −11.6884 + 20.2449i −0.760848 + 1.31783i
\(237\) −21.5826 + 37.3821i −1.40194 + 2.42823i
\(238\) −0.0971059 −0.00629444
\(239\) 2.10745 + 3.65021i 0.136320 + 0.236112i 0.926101 0.377276i \(-0.123139\pi\)
−0.789781 + 0.613389i \(0.789806\pi\)
\(240\) 3.24323 + 5.61745i 0.209350 + 0.362605i
\(241\) −0.860812 1.49097i −0.0554498 0.0960418i 0.836968 0.547252i \(-0.184326\pi\)
−0.892418 + 0.451210i \(0.850993\pi\)
\(242\) −3.70084 6.41004i −0.237899 0.412053i
\(243\) 8.52390 14.7638i 0.546809 0.947100i
\(244\) −4.66407 −0.298586
\(245\) −3.40715 + 5.90135i −0.217675 + 0.377024i
\(246\) 2.87861 0.183534
\(247\) −9.19221 15.9214i −0.584886 1.01305i
\(248\) 5.18713 + 8.98438i 0.329383 + 0.570509i
\(249\) −47.7301 −3.02477
\(250\) 4.76998 0.301680
\(251\) 9.86081 + 17.0794i 0.622409 + 1.07804i 0.989036 + 0.147676i \(0.0471793\pi\)
−0.366627 + 0.930368i \(0.619487\pi\)
\(252\) −2.63554 −0.166023
\(253\) 20.4520 1.28581
\(254\) 5.93976 + 1.01692i 0.372694 + 0.0638070i
\(255\) 1.51808 0.0950658
\(256\) −2.29030 −0.143144
\(257\) −0.578769 1.00246i −0.0361026 0.0625316i 0.847410 0.530940i \(-0.178161\pi\)
−0.883512 + 0.468408i \(0.844828\pi\)
\(258\) 7.20752 0.448721
\(259\) 2.86836 0.178231
\(260\) −2.98876 5.17669i −0.185355 0.321045i
\(261\) 13.7609 + 23.8346i 0.851779 + 1.47532i
\(262\) −1.16494 −0.0719701
\(263\) −4.26919 + 7.39445i −0.263249 + 0.455961i −0.967103 0.254383i \(-0.918128\pi\)
0.703854 + 0.710345i \(0.251461\pi\)
\(264\) 27.4478 1.68930
\(265\) −1.38325 + 2.39587i −0.0849727 + 0.147177i
\(266\) −0.456979 0.791511i −0.0280192 0.0485307i
\(267\) −22.8030 39.4959i −1.39552 2.41711i
\(268\) −8.02100 13.8928i −0.489961 0.848637i
\(269\) 9.20301 + 15.9401i 0.561118 + 0.971884i 0.997399 + 0.0720741i \(0.0229618\pi\)
−0.436282 + 0.899810i \(0.643705\pi\)
\(270\) −2.47561 −0.150661
\(271\) 1.85465 3.21235i 0.112662 0.195137i −0.804181 0.594385i \(-0.797396\pi\)
0.916843 + 0.399248i \(0.130729\pi\)
\(272\) 0.655123 1.13471i 0.0397227 0.0688017i
\(273\) 3.20748 0.194125
\(274\) 2.80786 0.169629
\(275\) −10.0245 + 17.3629i −0.604500 + 1.04702i
\(276\) −9.75143 + 16.8900i −0.586967 + 1.01666i
\(277\) 10.9593 + 18.9821i 0.658481 + 1.14052i 0.981009 + 0.193963i \(0.0621341\pi\)
−0.322528 + 0.946560i \(0.604533\pi\)
\(278\) 2.61878 + 4.53586i 0.157064 + 0.272043i
\(279\) 24.4921 1.46631
\(280\) −0.321952 0.557638i −0.0192403 0.0333252i
\(281\) −30.2868 −1.80676 −0.903378 0.428845i \(-0.858921\pi\)
−0.903378 + 0.428845i \(0.858921\pi\)
\(282\) −1.77453 3.07357i −0.105671 0.183028i
\(283\) 9.66360 16.7379i 0.574442 0.994962i −0.421660 0.906754i \(-0.638553\pi\)
0.996102 0.0882082i \(-0.0281141\pi\)
\(284\) −10.2142 17.6915i −0.606100 1.04980i
\(285\) 7.14406 + 12.3739i 0.423178 + 0.732965i
\(286\) −9.40114 −0.555901
\(287\) 0.636650 0.0375803
\(288\) −12.2783 + 21.2666i −0.723505 + 1.25315i
\(289\) 8.34668 + 14.4569i 0.490981 + 0.850404i
\(290\) −1.55159 + 2.68743i −0.0911124 + 0.157811i
\(291\) 0.316234 0.547734i 0.0185380 0.0321087i
\(292\) 24.2402 1.41855
\(293\) 8.28926 14.3574i 0.484264 0.838770i −0.515573 0.856846i \(-0.672421\pi\)
0.999837 + 0.0180761i \(0.00575410\pi\)
\(294\) −10.2198 −0.596031
\(295\) −6.74180 + 11.6771i −0.392523 + 0.679869i
\(296\) 8.68573 15.0441i 0.504848 0.874422i
\(297\) 11.6696 20.2124i 0.677140 1.17284i
\(298\) −4.18625 + 7.25080i −0.242503 + 0.420028i
\(299\) 7.23710 12.5350i 0.418532 0.724919i
\(300\) −9.55927 16.5571i −0.551905 0.955927i
\(301\) 1.59406 0.0918799
\(302\) 4.24001 + 7.34391i 0.243985 + 0.422595i
\(303\) 7.63099 13.2173i 0.438389 0.759312i
\(304\) 12.3320 0.707289
\(305\) −2.69021 −0.154041
\(306\) 0.694205 + 1.20240i 0.0396850 + 0.0687365i
\(307\) 6.77125 11.7281i 0.386456 0.669361i −0.605514 0.795834i \(-0.707033\pi\)
0.991970 + 0.126474i \(0.0403659\pi\)
\(308\) 2.80157 0.159634
\(309\) −0.115741 + 0.200469i −0.00658428 + 0.0114043i
\(310\) 1.38078 + 2.39159i 0.0784233 + 0.135833i
\(311\) 3.90640 + 6.76608i 0.221511 + 0.383669i 0.955267 0.295744i \(-0.0955677\pi\)
−0.733756 + 0.679413i \(0.762234\pi\)
\(312\) 9.71262 16.8227i 0.549869 0.952401i
\(313\) −16.8469 + 29.1796i −0.952242 + 1.64933i −0.211684 + 0.977338i \(0.567895\pi\)
−0.740557 + 0.671993i \(0.765438\pi\)
\(314\) −2.32977 4.03529i −0.131477 0.227724i
\(315\) −1.52016 −0.0856516
\(316\) 13.3414 + 23.1079i 0.750510 + 1.29992i
\(317\) −2.08467 −0.117087 −0.0585433 0.998285i \(-0.518646\pi\)
−0.0585433 + 0.998285i \(0.518646\pi\)
\(318\) −4.14910 −0.232670
\(319\) −14.6278 25.3362i −0.819001 1.41855i
\(320\) 1.90971 0.106756
\(321\) −1.20473 2.08665i −0.0672415 0.116466i
\(322\) 0.359783 0.623163i 0.0200499 0.0347275i
\(323\) 1.44308 2.49948i 0.0802950 0.139075i
\(324\) −0.927145 1.60586i −0.0515081 0.0892146i
\(325\) 7.09449 + 12.2880i 0.393532 + 0.681617i
\(326\) 2.20009 3.81067i 0.121852 0.211054i
\(327\) 37.8676 2.09409
\(328\) 1.92785 3.33914i 0.106448 0.184373i
\(329\) −0.392464 0.679768i −0.0216372 0.0374768i
\(330\) 7.30644 0.402206
\(331\) 19.9624 1.09723 0.548617 0.836074i \(-0.315155\pi\)
0.548617 + 0.836074i \(0.315155\pi\)
\(332\) −14.7523 + 25.5517i −0.809636 + 1.40233i
\(333\) −20.5057 35.5170i −1.12371 1.94632i
\(334\) 1.98871 0.108818
\(335\) −4.62648 8.01329i −0.252771 0.437813i
\(336\) −1.07577 + 1.86328i −0.0586878 + 0.101650i
\(337\) −11.6157 + 20.1190i −0.632747 + 1.09595i 0.354241 + 0.935154i \(0.384739\pi\)
−0.986988 + 0.160796i \(0.948594\pi\)
\(338\) 0.149124 0.258290i 0.00811127 0.0140491i
\(339\) −3.55338 + 6.15464i −0.192993 + 0.334274i
\(340\) 0.469204 0.812685i 0.0254461 0.0440740i
\(341\) −26.0351 −1.40988
\(342\) −6.53384 + 11.3169i −0.353310 + 0.611950i
\(343\) −4.55580 −0.245990
\(344\) 4.82699 8.36059i 0.260254 0.450773i
\(345\) −5.62458 + 9.74206i −0.302817 + 0.524495i
\(346\) −0.0396535 0.0686819i −0.00213179 0.00369236i
\(347\) 9.62419 16.6696i 0.516653 0.894870i −0.483160 0.875532i \(-0.660511\pi\)
0.999813 0.0193378i \(-0.00615578\pi\)
\(348\) 27.8980 1.49549
\(349\) −25.8327 −1.38280 −0.691398 0.722475i \(-0.743005\pi\)
−0.691398 + 0.722475i \(0.743005\pi\)
\(350\) 0.352694 + 0.610884i 0.0188523 + 0.0326531i
\(351\) −8.25877 14.3046i −0.440821 0.763524i
\(352\) 13.0518 22.6064i 0.695663 1.20492i
\(353\) 10.8671 + 18.8224i 0.578399 + 1.00182i 0.995663 + 0.0930309i \(0.0296555\pi\)
−0.417264 + 0.908785i \(0.637011\pi\)
\(354\) −20.2221 −1.07479
\(355\) −5.89149 10.2044i −0.312688 0.541591i
\(356\) −28.1915 −1.49415
\(357\) 0.251770 + 0.436078i 0.0133251 + 0.0230797i
\(358\) −3.81480 6.60742i −0.201618 0.349213i
\(359\) −5.77003 + 9.99399i −0.304531 + 0.527463i −0.977157 0.212520i \(-0.931833\pi\)
0.672626 + 0.739983i \(0.265166\pi\)
\(360\) −4.60324 + 7.97304i −0.242612 + 0.420216i
\(361\) 8.16443 0.429707
\(362\) −6.27395 −0.329752
\(363\) −19.1906 + 33.2390i −1.00724 + 1.74460i
\(364\) 0.991358 1.71708i 0.0519613 0.0899996i
\(365\) 13.9816 0.731833
\(366\) −2.01733 3.49413i −0.105448 0.182641i
\(367\) 1.35333 + 2.34403i 0.0706431 + 0.122357i 0.899183 0.437572i \(-0.144162\pi\)
−0.828540 + 0.559930i \(0.810828\pi\)
\(368\) 4.85454 + 8.40832i 0.253061 + 0.438314i
\(369\) −4.55138 7.88322i −0.236935 0.410384i
\(370\) 2.31209 4.00466i 0.120200 0.208192i
\(371\) −0.917638 −0.0476414
\(372\) 12.4134 21.5007i 0.643606 1.11476i
\(373\) 9.01091 0.466567 0.233284 0.972409i \(-0.425053\pi\)
0.233284 + 0.972409i \(0.425053\pi\)
\(374\) −0.737939 1.27815i −0.0381579 0.0660914i
\(375\) −12.3673 21.4208i −0.638644 1.10616i
\(376\) −4.75371 −0.245154
\(377\) −20.7047 −1.06635
\(378\) −0.410575 0.711136i −0.0211177 0.0365769i
\(379\) −17.0083 −0.873655 −0.436828 0.899545i \(-0.643898\pi\)
−0.436828 + 0.899545i \(0.643898\pi\)
\(380\) 8.83227 0.453086
\(381\) −10.8335 29.3105i −0.555017 1.50162i
\(382\) −13.6816 −0.700013
\(383\) −7.66327 −0.391575 −0.195787 0.980646i \(-0.562726\pi\)
−0.195787 + 0.980646i \(0.562726\pi\)
\(384\) 15.9544 + 27.6339i 0.814171 + 1.41019i
\(385\) 1.61593 0.0823556
\(386\) 3.94794 0.200945
\(387\) −11.3958 19.7381i −0.579282 1.00335i
\(388\) −0.195482 0.338584i −0.00992407 0.0171890i
\(389\) 26.6252 1.34995 0.674977 0.737839i \(-0.264154\pi\)
0.674977 + 0.737839i \(0.264154\pi\)
\(390\) 2.58544 4.47812i 0.130919 0.226758i
\(391\) 2.27229 0.114915
\(392\) −6.84436 + 11.8548i −0.345692 + 0.598757i
\(393\) 3.02037 + 5.23144i 0.152358 + 0.263891i
\(394\) 2.23435 + 3.87000i 0.112565 + 0.194968i
\(395\) 7.69523 + 13.3285i 0.387189 + 0.670631i
\(396\) −20.0283 34.6900i −1.00646 1.74324i
\(397\) −34.4410 −1.72854 −0.864271 0.503026i \(-0.832220\pi\)
−0.864271 + 0.503026i \(0.832220\pi\)
\(398\) −1.23436 + 2.13797i −0.0618728 + 0.107167i
\(399\) −2.36965 + 4.10436i −0.118631 + 0.205475i
\(400\) −9.51777 −0.475888
\(401\) −22.0330 −1.10028 −0.550138 0.835074i \(-0.685425\pi\)
−0.550138 + 0.835074i \(0.685425\pi\)
\(402\) 6.93860 12.0180i 0.346066 0.599404i
\(403\) −9.21273 + 15.9569i −0.458919 + 0.794870i
\(404\) −4.71713 8.17031i −0.234686 0.406488i
\(405\) −0.534773 0.926254i −0.0265731 0.0460259i
\(406\) −1.02931 −0.0510837
\(407\) 21.7976 + 37.7545i 1.08047 + 1.87142i
\(408\) 3.04955 0.150975
\(409\) 2.87684 + 4.98283i 0.142251 + 0.246385i 0.928344 0.371723i \(-0.121233\pi\)
−0.786093 + 0.618108i \(0.787899\pi\)
\(410\) 0.513183 0.888859i 0.0253443 0.0438976i
\(411\) −7.28002 12.6094i −0.359097 0.621974i
\(412\) 0.0715458 + 0.123921i 0.00352481 + 0.00610515i
\(413\) −4.47244 −0.220075
\(414\) −10.2883 −0.505642
\(415\) −8.50904 + 14.7381i −0.417692 + 0.723464i
\(416\) −9.23697 15.9989i −0.452880 0.784410i
\(417\) 13.5796 23.5206i 0.664996 1.15181i
\(418\) 6.94546 12.0299i 0.339714 0.588401i
\(419\) −8.80865 −0.430331 −0.215165 0.976578i \(-0.569029\pi\)
−0.215165 + 0.976578i \(0.569029\pi\)
\(420\) −0.770470 + 1.33449i −0.0375951 + 0.0651166i
\(421\) 35.0969 1.71052 0.855259 0.518202i \(-0.173398\pi\)
0.855259 + 0.518202i \(0.173398\pi\)
\(422\) 6.43767 11.1504i 0.313381 0.542792i
\(423\) −5.61141 + 9.71924i −0.272836 + 0.472566i
\(424\) −2.77872 + 4.81288i −0.134946 + 0.233734i
\(425\) −1.11376 + 1.92909i −0.0540252 + 0.0935745i
\(426\) 8.83581 15.3041i 0.428097 0.741485i
\(427\) −0.446165 0.772781i −0.0215914 0.0373975i
\(428\) −1.48942 −0.0719938
\(429\) 24.3746 + 42.2181i 1.17682 + 2.03831i
\(430\) 1.28492 2.22554i 0.0619642 0.107325i
\(431\) 24.2442 1.16780 0.583902 0.811824i \(-0.301525\pi\)
0.583902 + 0.811824i \(0.301525\pi\)
\(432\) 11.0797 0.533074
\(433\) 4.91126 + 8.50655i 0.236020 + 0.408799i 0.959569 0.281475i \(-0.0908236\pi\)
−0.723549 + 0.690273i \(0.757490\pi\)
\(434\) −0.457999 + 0.793278i −0.0219847 + 0.0380786i
\(435\) 16.0914 0.771524
\(436\) 11.7040 20.2720i 0.560521 0.970851i
\(437\) 10.6934 + 18.5215i 0.511534 + 0.886003i
\(438\) 10.4845 + 18.1598i 0.500971 + 0.867707i
\(439\) 12.9761 22.4752i 0.619315 1.07268i −0.370296 0.928914i \(-0.620744\pi\)
0.989611 0.143771i \(-0.0459228\pi\)
\(440\) 4.89324 8.47533i 0.233276 0.404046i
\(441\) 16.1585 + 27.9874i 0.769454 + 1.33273i
\(442\) −1.04450 −0.0496819
\(443\) −16.2113 28.0789i −0.770224 1.33407i −0.937440 0.348147i \(-0.886811\pi\)
0.167216 0.985920i \(-0.446522\pi\)
\(444\) −41.5720 −1.97292
\(445\) −16.2607 −0.770833
\(446\) 0.575483 + 0.996765i 0.0272499 + 0.0471982i
\(447\) 43.4154 2.05348
\(448\) 0.316720 + 0.548575i 0.0149636 + 0.0259177i
\(449\) 6.33779 10.9774i 0.299099 0.518054i −0.676831 0.736138i \(-0.736647\pi\)
0.975930 + 0.218084i \(0.0699806\pi\)
\(450\) 5.04278 8.73435i 0.237719 0.411741i
\(451\) 4.83811 + 8.37985i 0.227818 + 0.394592i
\(452\) 2.19654 + 3.80452i 0.103317 + 0.178949i
\(453\) 21.9864 38.0816i 1.03301 1.78923i
\(454\) −7.23880 −0.339734
\(455\) 0.571811 0.990405i 0.0268069 0.0464309i
\(456\) 14.3512 + 24.8569i 0.672055 + 1.16403i
\(457\) −20.3814 −0.953403 −0.476701 0.879065i \(-0.658168\pi\)
−0.476701 + 0.879065i \(0.658168\pi\)
\(458\) 3.55002 0.165882
\(459\) 1.29654 2.24567i 0.0605172 0.104819i
\(460\) 3.47686 + 6.02209i 0.162109 + 0.280782i
\(461\) 11.5167 0.536384 0.268192 0.963365i \(-0.413574\pi\)
0.268192 + 0.963365i \(0.413574\pi\)
\(462\) 1.21176 + 2.09882i 0.0563760 + 0.0976460i
\(463\) −11.0325 + 19.1088i −0.512723 + 0.888062i 0.487169 + 0.873308i \(0.338030\pi\)
−0.999891 + 0.0147536i \(0.995304\pi\)
\(464\) 6.94421 12.0277i 0.322377 0.558373i
\(465\) 7.16001 12.4015i 0.332037 0.575106i
\(466\) 2.02321 3.50431i 0.0937235 0.162334i
\(467\) −5.23007 + 9.05875i −0.242019 + 0.419189i −0.961289 0.275541i \(-0.911143\pi\)
0.719270 + 0.694730i \(0.244476\pi\)
\(468\) −28.3487 −1.31042
\(469\) 1.53458 2.65797i 0.0708603 0.122734i
\(470\) −1.26541 −0.0583690
\(471\) −12.0810 + 20.9248i −0.556661 + 0.964166i
\(472\) −13.5431 + 23.4573i −0.623371 + 1.07971i
\(473\) 12.1137 + 20.9816i 0.556991 + 0.964736i
\(474\) −11.5410 + 19.9896i −0.530096 + 0.918153i
\(475\) −20.9653 −0.961956
\(476\) 0.311265 0.0142668
\(477\) 6.56014 + 11.3625i 0.300368 + 0.520253i
\(478\) 1.12693 + 1.95190i 0.0515446 + 0.0892779i
\(479\) 5.93788 10.2847i 0.271308 0.469920i −0.697889 0.716206i \(-0.745877\pi\)
0.969197 + 0.246286i \(0.0792103\pi\)
\(480\) 7.17885 + 12.4341i 0.327668 + 0.567538i
\(481\) 30.8530 1.40677
\(482\) −0.460308 0.797277i −0.0209664 0.0363149i
\(483\) −3.73129 −0.169780
\(484\) 11.8627 + 20.5469i 0.539215 + 0.933948i
\(485\) −0.112753 0.195294i −0.00511984 0.00886783i
\(486\) 4.55805 7.89477i 0.206757 0.358114i
\(487\) 19.3917 33.5874i 0.878722 1.52199i 0.0259775 0.999663i \(-0.491730\pi\)
0.852744 0.522328i \(-0.174937\pi\)
\(488\) −5.40416 −0.244635
\(489\) −22.8170 −1.03182
\(490\) −1.82193 + 3.15567i −0.0823063 + 0.142559i
\(491\) −10.0353 + 17.3816i −0.452886 + 0.784421i −0.998564 0.0535736i \(-0.982939\pi\)
0.545678 + 0.837995i \(0.316272\pi\)
\(492\) −9.22717 −0.415993
\(493\) −1.62521 2.81494i −0.0731957 0.126779i
\(494\) −4.91541 8.51375i −0.221155 0.383052i
\(495\) −11.5522 20.0090i −0.519234 0.899339i
\(496\) −6.17977 10.7037i −0.277480 0.480609i
\(497\) 1.95418 3.38474i 0.0876569 0.151826i
\(498\) −25.5230 −1.14371
\(499\) 3.86675 6.69740i 0.173099 0.299817i −0.766402 0.642361i \(-0.777955\pi\)
0.939502 + 0.342544i \(0.111288\pi\)
\(500\) −15.2898 −0.683780
\(501\) −5.15620 8.93080i −0.230362 0.398999i
\(502\) 5.27294 + 9.13300i 0.235343 + 0.407626i
\(503\) −17.7725 −0.792435 −0.396217 0.918157i \(-0.629677\pi\)
−0.396217 + 0.918157i \(0.629677\pi\)
\(504\) −3.05374 −0.136025
\(505\) −2.72082 4.71260i −0.121075 0.209708i
\(506\) 10.9364 0.486184
\(507\) −1.54655 −0.0686849
\(508\) −19.0394 3.25964i −0.844737 0.144623i
\(509\) 29.0603 1.28808 0.644038 0.764993i \(-0.277258\pi\)
0.644038 + 0.764993i \(0.277258\pi\)
\(510\) 0.811773 0.0359459
\(511\) 2.31882 + 4.01632i 0.102579 + 0.177671i
\(512\) 21.7904 0.963009
\(513\) 24.4060 1.07755
\(514\) −0.309489 0.536051i −0.0136510 0.0236442i
\(515\) 0.0412673 + 0.0714771i 0.00181845 + 0.00314966i
\(516\) −23.1031 −1.01706
\(517\) 5.96492 10.3315i 0.262337 0.454381i
\(518\) 1.53382 0.0673921
\(519\) −0.205622 + 0.356148i −0.00902580 + 0.0156332i
\(520\) −3.46302 5.99813i −0.151863 0.263035i
\(521\) 2.80308 + 4.85507i 0.122805 + 0.212704i 0.920873 0.389863i \(-0.127478\pi\)
−0.798068 + 0.602568i \(0.794144\pi\)
\(522\) 7.35847 + 12.7452i 0.322071 + 0.557844i
\(523\) 6.88476 + 11.9248i 0.301049 + 0.521433i 0.976374 0.216088i \(-0.0693297\pi\)
−0.675324 + 0.737521i \(0.735996\pi\)
\(524\) 3.73411 0.163125
\(525\) 1.82888 3.16772i 0.0798190 0.138251i
\(526\) −2.28289 + 3.95409i −0.0995388 + 0.172406i
\(527\) −2.89260 −0.126004
\(528\) −32.7003 −1.42310
\(529\) 3.08101 5.33646i 0.133957 0.232020i
\(530\) −0.739677 + 1.28116i −0.0321295 + 0.0556500i
\(531\) 31.9732 + 55.3793i 1.38752 + 2.40326i
\(532\) 1.46481 + 2.53713i 0.0635076 + 0.109998i
\(533\) 6.84801 0.296620
\(534\) −12.1936 21.1199i −0.527668 0.913949i
\(535\) −0.859090 −0.0371417
\(536\) −9.29378 16.0973i −0.401430 0.695297i
\(537\) −19.7815 + 34.2626i −0.853635 + 1.47854i
\(538\) 4.92119 + 8.52375i 0.212168 + 0.367485i
\(539\) −17.1765 29.7506i −0.739845 1.28145i
\(540\) 7.93538 0.341484
\(541\) 5.36414 0.230622 0.115311 0.993329i \(-0.463214\pi\)
0.115311 + 0.993329i \(0.463214\pi\)
\(542\) 0.991752 1.71776i 0.0425994 0.0737843i
\(543\) 16.2667 + 28.1747i 0.698070 + 1.20909i
\(544\) 1.45010 2.51165i 0.0621727 0.107686i
\(545\) 6.75083 11.6928i 0.289174 0.500864i
\(546\) 1.71516 0.0734019
\(547\) −15.1727 + 26.2799i −0.648737 + 1.12365i 0.334687 + 0.942329i \(0.391369\pi\)
−0.983425 + 0.181317i \(0.941964\pi\)
\(548\) −9.00036 −0.384476
\(549\) −6.37922 + 11.0491i −0.272258 + 0.471566i
\(550\) −5.36047 + 9.28460i −0.228571 + 0.395897i
\(551\) 15.2964 26.4942i 0.651649 1.12869i
\(552\) −11.2988 + 19.5701i −0.480908 + 0.832958i
\(553\) −2.55247 + 4.42101i −0.108542 + 0.188001i
\(554\) 5.86035 + 10.1504i 0.248982 + 0.431250i
\(555\) −23.9785 −1.01783
\(556\) −8.39429 14.5393i −0.355997 0.616605i
\(557\) 2.36419 4.09489i 0.100174 0.173506i −0.811582 0.584238i \(-0.801393\pi\)
0.911756 + 0.410732i \(0.134727\pi\)
\(558\) 13.0968 0.554434
\(559\) 17.1462 0.725206
\(560\) 0.383563 + 0.664350i 0.0162085 + 0.0280739i
\(561\) −3.82656 + 6.62779i −0.161557 + 0.279826i
\(562\) −16.1954 −0.683164
\(563\) 2.71698 4.70595i 0.114507 0.198332i −0.803076 0.595877i \(-0.796804\pi\)
0.917583 + 0.397545i \(0.130138\pi\)
\(564\) 5.68810 + 9.85208i 0.239512 + 0.414847i
\(565\) 1.26695 + 2.19443i 0.0533011 + 0.0923203i
\(566\) 5.16749 8.95035i 0.217206 0.376211i
\(567\) 0.177382 0.307234i 0.00744933 0.0129026i
\(568\) −11.8350 20.4988i −0.496584 0.860109i
\(569\) 25.7241 1.07841 0.539206 0.842174i \(-0.318724\pi\)
0.539206 + 0.842174i \(0.318724\pi\)
\(570\) 3.82019 + 6.61677i 0.160010 + 0.277146i
\(571\) 33.4578 1.40017 0.700083 0.714062i \(-0.253146\pi\)
0.700083 + 0.714062i \(0.253146\pi\)
\(572\) 30.1346 1.25999
\(573\) 35.4728 + 61.4407i 1.48190 + 2.56672i
\(574\) 0.340440 0.0142097
\(575\) −8.25309 14.2948i −0.344178 0.596133i
\(576\) 4.52843 7.84347i 0.188685 0.326811i
\(577\) 4.54329 7.86921i 0.189140 0.327600i −0.755824 0.654775i \(-0.772763\pi\)
0.944964 + 0.327175i \(0.106097\pi\)
\(578\) 4.46328 + 7.73062i 0.185648 + 0.321551i
\(579\) −10.2360 17.7292i −0.425392 0.736800i
\(580\) 4.97349 8.61434i 0.206513 0.357691i
\(581\) −5.64481 −0.234186
\(582\) 0.169102 0.292893i 0.00700951 0.0121408i
\(583\) −6.97342 12.0783i −0.288810 0.500233i
\(584\) 28.0867 1.16223
\(585\) −16.3514 −0.676046
\(586\) 4.43258 7.67745i 0.183108 0.317152i
\(587\) −9.47994 16.4197i −0.391279 0.677715i 0.601340 0.798994i \(-0.294634\pi\)
−0.992619 + 0.121279i \(0.961301\pi\)
\(588\) 32.7588 1.35095
\(589\) −13.6125 23.5776i −0.560895 0.971498i
\(590\) −3.60509 + 6.24420i −0.148419 + 0.257069i
\(591\) 11.5861 20.0678i 0.476590 0.825478i
\(592\) −10.3479 + 17.9230i −0.425295 + 0.736632i
\(593\) 8.33509 14.4368i 0.342281 0.592849i −0.642575 0.766223i \(-0.722134\pi\)
0.984856 + 0.173375i \(0.0554671\pi\)
\(594\) 6.24018 10.8083i 0.256038 0.443470i
\(595\) 0.179536 0.00736027
\(596\) 13.4187 23.2419i 0.549651 0.952024i
\(597\) 12.8015 0.523929
\(598\) 3.86994 6.70294i 0.158254 0.274104i
\(599\) 9.45101 16.3696i 0.386158 0.668845i −0.605771 0.795639i \(-0.707135\pi\)
0.991929 + 0.126794i \(0.0404686\pi\)
\(600\) −11.0761 19.1844i −0.452182 0.783202i
\(601\) −14.7291 + 25.5116i −0.600814 + 1.04064i 0.391884 + 0.920015i \(0.371824\pi\)
−0.992698 + 0.120626i \(0.961510\pi\)
\(602\) 0.852401 0.0347413
\(603\) −43.8825 −1.78703
\(604\) −13.5910 23.5403i −0.553010 0.957842i
\(605\) 6.84237 + 11.8513i 0.278182 + 0.481825i
\(606\) 4.08057 7.06776i 0.165762 0.287108i
\(607\) −12.5229 21.6902i −0.508287 0.880379i −0.999954 0.00959597i \(-0.996945\pi\)
0.491667 0.870784i \(-0.336388\pi\)
\(608\) 27.2967 1.10703
\(609\) 2.66872 + 4.62236i 0.108142 + 0.187308i
\(610\) −1.43856 −0.0582454
\(611\) −4.22147 7.31180i −0.170782 0.295804i
\(612\) −2.22522 3.85419i −0.0899491 0.155796i
\(613\) −3.04000 + 5.26544i −0.122785 + 0.212669i −0.920865 0.389882i \(-0.872516\pi\)
0.798080 + 0.602551i \(0.205849\pi\)
\(614\) 3.62084 6.27147i 0.146125 0.253096i
\(615\) −5.32219 −0.214611
\(616\) 3.24613 0.130790
\(617\) 14.2495 24.6809i 0.573664 0.993615i −0.422522 0.906353i \(-0.638855\pi\)
0.996185 0.0872619i \(-0.0278117\pi\)
\(618\) −0.0618910 + 0.107198i −0.00248962 + 0.00431215i
\(619\) −15.2453 −0.612762 −0.306381 0.951909i \(-0.599118\pi\)
−0.306381 + 0.951909i \(0.599118\pi\)
\(620\) −4.42599 7.66604i −0.177752 0.307876i
\(621\) 9.60751 + 16.6407i 0.385536 + 0.667768i
\(622\) 2.08889 + 3.61807i 0.0837570 + 0.145071i
\(623\) −2.69680 4.67100i −0.108045 0.187140i
\(624\) −11.5713 + 20.0420i −0.463222 + 0.802323i
\(625\) 11.2937 0.451747
\(626\) −9.00865 + 15.6034i −0.360058 + 0.623639i
\(627\) −72.0310 −2.87664
\(628\) 7.46790 + 12.9348i 0.298002 + 0.516154i
\(629\) 2.42179 + 4.19467i 0.0965632 + 0.167252i
\(630\) −0.812888 −0.0323862
\(631\) −16.5440 −0.658606 −0.329303 0.944224i \(-0.606814\pi\)
−0.329303 + 0.944224i \(0.606814\pi\)
\(632\) 15.4584 + 26.7747i 0.614901 + 1.06504i
\(633\) −66.7647 −2.65366
\(634\) −1.11475 −0.0442724
\(635\) −10.9818 1.88015i −0.435801 0.0746114i
\(636\) 13.2996 0.527363
\(637\) −24.3122 −0.963283
\(638\) −7.82204 13.5482i −0.309678 0.536377i
\(639\) −55.8812 −2.21063
\(640\) 11.3771 0.449718
\(641\) 0.272398 + 0.471807i 0.0107591 + 0.0186353i 0.871355 0.490653i \(-0.163242\pi\)
−0.860596 + 0.509289i \(0.829909\pi\)
\(642\) −0.644214 1.11581i −0.0254251 0.0440375i
\(643\) −28.4567 −1.12222 −0.561112 0.827740i \(-0.689626\pi\)
−0.561112 + 0.827740i \(0.689626\pi\)
\(644\) −1.15326 + 1.99750i −0.0454447 + 0.0787125i
\(645\) −13.3258 −0.524702
\(646\) 0.771667 1.33657i 0.0303608 0.0525865i
\(647\) 16.6012 + 28.7542i 0.652662 + 1.13044i 0.982474 + 0.186397i \(0.0596811\pi\)
−0.329813 + 0.944046i \(0.606986\pi\)
\(648\) −1.07426 1.86068i −0.0422011 0.0730945i
\(649\) −33.9875 58.8681i −1.33413 2.31078i
\(650\) 3.79369 + 6.57086i 0.148801 + 0.257730i
\(651\) 4.74988 0.186163
\(652\) −7.05222 + 12.2148i −0.276186 + 0.478369i
\(653\) −15.9537 + 27.6326i −0.624316 + 1.08135i 0.364356 + 0.931260i \(0.381289\pi\)
−0.988673 + 0.150088i \(0.952044\pi\)
\(654\) 20.2492 0.791808
\(655\) 2.15382 0.0841567
\(656\) −2.29678 + 3.97813i −0.0896740 + 0.155320i
\(657\) 33.1543 57.4249i 1.29347 2.24036i
\(658\) −0.209865 0.363497i −0.00818139 0.0141706i
\(659\) 2.73228 + 4.73245i 0.106435 + 0.184350i 0.914323 0.404985i \(-0.132723\pi\)
−0.807889 + 0.589335i \(0.799390\pi\)
\(660\) −23.4202 −0.911630
\(661\) −3.53659 6.12556i −0.137557 0.238257i 0.789014 0.614375i \(-0.210592\pi\)
−0.926572 + 0.376119i \(0.877259\pi\)
\(662\) 10.6746 0.414882
\(663\) 2.70812 + 4.69059i 0.105174 + 0.182168i
\(664\) −17.0932 + 29.6062i −0.663343 + 1.14894i
\(665\) 0.844896 + 1.46340i 0.0327636 + 0.0567483i
\(666\) −10.9652 18.9923i −0.424892 0.735935i
\(667\) 24.0860 0.932613
\(668\) −6.37466 −0.246643
\(669\) 2.98415 5.16870i 0.115374 0.199833i
\(670\) −2.47395 4.28500i −0.0955770 0.165544i
\(671\) 6.78110 11.7452i 0.261782 0.453419i
\(672\) −2.38119 + 4.12434i −0.0918564 + 0.159100i
\(673\) 22.0975 0.851796 0.425898 0.904771i \(-0.359958\pi\)
0.425898 + 0.904771i \(0.359958\pi\)
\(674\) −6.21134 + 10.7584i −0.239252 + 0.414396i
\(675\) −18.8364 −0.725013
\(676\) −0.478005 + 0.827929i −0.0183848 + 0.0318434i
\(677\) 23.6396 40.9450i 0.908543 1.57364i 0.0924542 0.995717i \(-0.470529\pi\)
0.816089 0.577926i \(-0.196138\pi\)
\(678\) −1.90013 + 3.29111i −0.0729739 + 0.126394i
\(679\) 0.0373996 0.0647780i 0.00143526 0.00248595i
\(680\) 0.543657 0.941642i 0.0208483 0.0361103i
\(681\) 18.7683 + 32.5076i 0.719202 + 1.24569i
\(682\) −13.9219 −0.533098
\(683\) 5.10452 + 8.84128i 0.195319 + 0.338302i 0.947005 0.321219i \(-0.104092\pi\)
−0.751686 + 0.659521i \(0.770759\pi\)
\(684\) 20.9437 36.2755i 0.800802 1.38703i
\(685\) −5.19136 −0.198352
\(686\) −2.43616 −0.0930129
\(687\) −9.20426 15.9422i −0.351165 0.608235i
\(688\) −5.75071 + 9.96052i −0.219244 + 0.379741i
\(689\) −9.87040 −0.376032
\(690\) −3.00767 + 5.20944i −0.114500 + 0.198320i
\(691\) −4.19613 7.26791i −0.159628 0.276484i 0.775106 0.631831i \(-0.217696\pi\)
−0.934735 + 0.355346i \(0.884363\pi\)
\(692\) 0.127106 + 0.220154i 0.00483185 + 0.00836901i
\(693\) 3.83182 6.63690i 0.145559 0.252115i
\(694\) 5.14641 8.91384i 0.195355 0.338365i
\(695\) −4.84179 8.38622i −0.183659 0.318108i
\(696\) 32.3248 1.22527
\(697\) 0.537532 + 0.931033i 0.0203605 + 0.0352654i
\(698\) −13.8137 −0.522857
\(699\) −20.9826 −0.793635
\(700\) −1.13053 1.95814i −0.0427301 0.0740107i
\(701\) −26.5517 −1.00285 −0.501423 0.865202i \(-0.667190\pi\)
−0.501423 + 0.865202i \(0.667190\pi\)
\(702\) −4.41627 7.64920i −0.166681 0.288701i
\(703\) −22.7939 + 39.4801i −0.859687 + 1.48902i
\(704\) −4.81371 + 8.33760i −0.181424 + 0.314235i
\(705\) 3.28087 + 5.68263i 0.123565 + 0.214020i
\(706\) 5.81105 + 10.0650i 0.218702 + 0.378803i
\(707\) 0.902482 1.56315i 0.0339413 0.0587881i
\(708\) 64.8205 2.43610
\(709\) −4.71778 + 8.17144i −0.177180 + 0.306885i −0.940914 0.338647i \(-0.890031\pi\)
0.763734 + 0.645532i \(0.223364\pi\)
\(710\) −3.15040 5.45665i −0.118232 0.204784i
\(711\) 72.9899 2.73734
\(712\) −32.6650 −1.22417
\(713\) 10.7173 18.5628i 0.401364 0.695184i
\(714\) 0.134631 + 0.233187i 0.00503842 + 0.00872681i
\(715\) 17.3815 0.650031
\(716\) 12.2280 + 21.1796i 0.456983 + 0.791517i
\(717\) 5.84366 10.1215i 0.218236 0.377995i
\(718\) −3.08545 + 5.34416i −0.115148 + 0.199442i
\(719\) −9.10441 + 15.7693i −0.339537 + 0.588095i −0.984346 0.176249i \(-0.943604\pi\)
0.644809 + 0.764344i \(0.276937\pi\)
\(720\) 5.48414 9.49880i 0.204382 0.353999i
\(721\) −0.0136882 + 0.0237086i −0.000509774 + 0.000882954i
\(722\) 4.36582 0.162479
\(723\) −2.38691 + 4.13425i −0.0887702 + 0.153754i
\(724\) 20.1107 0.747406
\(725\) −11.8057 + 20.4480i −0.438452 + 0.759421i
\(726\) −10.2619 + 17.7741i −0.380855 + 0.659660i
\(727\) 23.6286 + 40.9260i 0.876337 + 1.51786i 0.855332 + 0.518081i \(0.173353\pi\)
0.0210056 + 0.999779i \(0.493313\pi\)
\(728\) 1.14867 1.98955i 0.0425724 0.0737376i
\(729\) −44.0258 −1.63058
\(730\) 7.47650 0.276718
\(731\) 1.34588 + 2.33114i 0.0497793 + 0.0862202i
\(732\) 6.46640 + 11.2001i 0.239005 + 0.413969i
\(733\) −14.1480 + 24.5050i −0.522568 + 0.905115i 0.477087 + 0.878856i \(0.341693\pi\)
−0.999655 + 0.0262586i \(0.991641\pi\)
\(734\) 0.723674 + 1.25344i 0.0267113 + 0.0462653i
\(735\) 18.8951 0.696956
\(736\) 10.7455 + 18.6117i 0.396083 + 0.686036i
\(737\) 46.6471 1.71827
\(738\) −2.43379 4.21545i −0.0895891 0.155173i
\(739\) −17.7129 30.6796i −0.651578 1.12857i −0.982740 0.184992i \(-0.940774\pi\)
0.331162 0.943574i \(-0.392559\pi\)
\(740\) −7.41122 + 12.8366i −0.272442 + 0.471883i
\(741\) −25.4887 + 44.1478i −0.936351 + 1.62181i
\(742\) −0.490695 −0.0180140
\(743\) 36.6546 1.34473 0.672363 0.740222i \(-0.265279\pi\)
0.672363 + 0.740222i \(0.265279\pi\)
\(744\) 14.3832 24.9124i 0.527314 0.913334i
\(745\) 7.73984 13.4058i 0.283566 0.491150i
\(746\) 4.81847 0.176417
\(747\) 40.3545 + 69.8960i 1.47649 + 2.55736i
\(748\) 2.36540 + 4.09700i 0.0864877 + 0.149801i
\(749\) −0.142478 0.246779i −0.00520603 0.00901711i
\(750\) −6.61324 11.4545i −0.241482 0.418258i
\(751\) −9.44803 + 16.3645i −0.344763 + 0.597148i −0.985311 0.170771i \(-0.945374\pi\)
0.640547 + 0.767919i \(0.278708\pi\)
\(752\) 5.66340 0.206523
\(753\) 27.3427 47.3589i 0.996422 1.72585i
\(754\) −11.0716 −0.403203
\(755\) −7.83923 13.5779i −0.285299 0.494152i
\(756\) 1.31606 + 2.27949i 0.0478648 + 0.0829042i
\(757\) 26.1262 0.949574 0.474787 0.880101i \(-0.342525\pi\)
0.474787 + 0.880101i \(0.342525\pi\)
\(758\) −9.09494 −0.330343
\(759\) −28.3553 49.1128i −1.02923 1.78268i
\(760\) 10.2338 0.371218
\(761\) 12.5601 0.455305 0.227652 0.973742i \(-0.426895\pi\)
0.227652 + 0.973742i \(0.426895\pi\)
\(762\) −5.79307 15.6734i −0.209861 0.567788i
\(763\) 4.47843 0.162130
\(764\) 43.8553 1.58663
\(765\) −1.28350 2.22308i −0.0464049 0.0803756i
\(766\) −4.09783 −0.148061
\(767\) −48.1070 −1.73704
\(768\) 3.17534 + 5.49985i 0.114580 + 0.198459i
\(769\) −3.80231 6.58579i −0.137115 0.237490i 0.789289 0.614022i \(-0.210450\pi\)
−0.926403 + 0.376533i \(0.877116\pi\)
\(770\) 0.864099 0.0311400
\(771\) −1.60485 + 2.77968i −0.0577972 + 0.100108i
\(772\) −12.6548 −0.455456
\(773\) 18.0992 31.3487i 0.650983 1.12754i −0.331902 0.943314i \(-0.607690\pi\)
0.982885 0.184221i \(-0.0589763\pi\)
\(774\) −6.09377 10.5547i −0.219036 0.379381i
\(775\) 10.5061 + 18.1970i 0.377389 + 0.653657i
\(776\) −0.226501 0.392311i −0.00813090 0.0140831i
\(777\) −3.97678 6.88799i −0.142666 0.247105i
\(778\) 14.2375 0.510439
\(779\) −5.05924 + 8.76286i −0.181266 + 0.313962i
\(780\) −8.28742 + 14.3542i −0.296737 + 0.513964i
\(781\) 59.4017 2.12556
\(782\) 1.21508 0.0434512
\(783\) 13.7431 23.8038i 0.491139 0.850678i
\(784\) 8.15413 14.1234i 0.291219 0.504406i
\(785\) 4.30745 + 7.46072i 0.153739 + 0.266285i
\(786\) 1.61510 + 2.79744i 0.0576089 + 0.0997815i
\(787\) 22.5995 0.805585 0.402792 0.915291i \(-0.368040\pi\)
0.402792 + 0.915291i \(0.368040\pi\)
\(788\) −7.16202 12.4050i −0.255136 0.441909i
\(789\) 23.6757 0.842878
\(790\) 4.11493 + 7.12726i 0.146403 + 0.253577i
\(791\) −0.420242 + 0.727881i −0.0149421 + 0.0258805i
\(792\) −23.2064 40.1946i −0.824603 1.42825i
\(793\) −4.79909 8.31227i −0.170421 0.295177i
\(794\) −18.4169 −0.653590
\(795\) 7.67115 0.272068
\(796\) 3.95664 6.85310i 0.140239 0.242902i
\(797\) −14.4240 24.9831i −0.510923 0.884945i −0.999920 0.0126594i \(-0.995970\pi\)
0.488997 0.872286i \(-0.337363\pi\)
\(798\) −1.26714 + 2.19475i −0.0448563 + 0.0776933i
\(799\) 0.662725 1.14787i 0.0234455 0.0406088i
\(800\) −21.0674 −0.744846
\(801\) −38.5586 + 66.7855i −1.36240 + 2.35975i
\(802\) −11.7819 −0.416032
\(803\) −35.2429 + 61.0425i −1.24370 + 2.15414i
\(804\) −22.2411 + 38.5228i −0.784384 + 1.35859i
\(805\) −0.665193 + 1.15215i −0.0234450 + 0.0406079i
\(806\) −4.92639 + 8.53275i −0.173525 + 0.300553i
\(807\) 25.5187 44.1997i 0.898300 1.55590i
\(808\) −5.46565 9.46678i −0.192281 0.333040i
\(809\) 8.86451 0.311660 0.155830 0.987784i \(-0.450195\pi\)
0.155830 + 0.987784i \(0.450195\pi\)
\(810\) −0.285963 0.495302i −0.0100477 0.0174031i
\(811\) −2.12530 + 3.68112i −0.0746292 + 0.129262i −0.900925 0.433975i \(-0.857111\pi\)
0.826296 + 0.563236i \(0.190444\pi\)
\(812\) 3.29936 0.115785
\(813\) −10.2854 −0.360725
\(814\) 11.6560 + 20.1887i 0.408542 + 0.707615i
\(815\) −4.06769 + 7.04544i −0.142485 + 0.246791i
\(816\) −3.63313 −0.127185
\(817\) −12.6674 + 21.9406i −0.443177 + 0.767605i
\(818\) 1.53835 + 2.66451i 0.0537873 + 0.0931623i
\(819\) −2.71184 4.69704i −0.0947592 0.164128i
\(820\) −1.64497 + 2.84917i −0.0574447 + 0.0994972i
\(821\) −6.65909 + 11.5339i −0.232404 + 0.402535i −0.958515 0.285042i \(-0.907992\pi\)
0.726111 + 0.687577i \(0.241326\pi\)
\(822\) −3.89290 6.74270i −0.135780 0.235179i
\(823\) 49.5810 1.72829 0.864143 0.503247i \(-0.167861\pi\)
0.864143 + 0.503247i \(0.167861\pi\)
\(824\) 0.0828987 + 0.143585i 0.00288791 + 0.00500201i
\(825\) 55.5931 1.93550
\(826\) −2.39158 −0.0832137
\(827\) 2.96851 + 5.14161i 0.103225 + 0.178791i 0.913012 0.407933i \(-0.133750\pi\)
−0.809786 + 0.586725i \(0.800417\pi\)
\(828\) 32.9783 1.14607
\(829\) 7.64749 + 13.2458i 0.265608 + 0.460047i 0.967723 0.252017i \(-0.0810939\pi\)
−0.702115 + 0.712064i \(0.747761\pi\)
\(830\) −4.55010 + 7.88100i −0.157936 + 0.273554i
\(831\) 30.3886 52.6347i 1.05417 1.82588i
\(832\) 3.40674 + 5.90065i 0.118107 + 0.204568i
\(833\) −1.90837 3.30540i −0.0661213 0.114525i
\(834\) 7.26151 12.5773i 0.251446 0.435517i
\(835\) −3.67687 −0.127243
\(836\) −22.2631 + 38.5609i −0.769986 + 1.33366i
\(837\) −12.2302 21.1834i −0.422739 0.732205i
\(838\) −4.71031 −0.162715
\(839\) −52.0160 −1.79579 −0.897896 0.440208i \(-0.854905\pi\)
−0.897896 + 0.440208i \(0.854905\pi\)
\(840\) −0.892729 + 1.54625i −0.0308021 + 0.0533508i
\(841\) −2.72696 4.72323i −0.0940331 0.162870i
\(842\) 18.7676 0.646774
\(843\) 41.9905 + 72.7296i 1.44623 + 2.50494i
\(844\) −20.6354 + 35.7416i −0.710301 + 1.23028i
\(845\) −0.275711 + 0.477545i −0.00948474 + 0.0164281i
\(846\) −3.00063 + 5.19724i −0.103164 + 0.178685i
\(847\) −2.26958 + 3.93103i −0.0779837 + 0.135072i
\(848\) 3.31046 5.73389i 0.113682 0.196903i
\(849\) −53.5917 −1.83926
\(850\) −0.595568 + 1.03155i −0.0204278 + 0.0353820i
\(851\) −35.8916 −1.23035
\(852\) −28.3225 + 49.0560i −0.970312 + 1.68063i
\(853\) 13.7980 23.8988i 0.472433 0.818278i −0.527069 0.849822i \(-0.676709\pi\)
0.999502 + 0.0315440i \(0.0100424\pi\)
\(854\) −0.238581 0.413234i −0.00816407 0.0141406i
\(855\) 12.0802 20.9236i 0.413135 0.715571i
\(856\) −1.72576 −0.0589853
\(857\) −5.68465 −0.194184 −0.0970919 0.995275i \(-0.530954\pi\)
−0.0970919 + 0.995275i \(0.530954\pi\)
\(858\) 13.0340 + 22.5756i 0.444974 + 0.770718i
\(859\) −17.9725 31.1293i −0.613214 1.06212i −0.990695 0.136101i \(-0.956543\pi\)
0.377481 0.926017i \(-0.376790\pi\)
\(860\) −4.11870 + 7.13379i −0.140446 + 0.243260i
\(861\) −0.882672 1.52883i −0.0300814 0.0521025i
\(862\) 12.9643 0.441565
\(863\) 12.2222 + 21.1694i 0.416048 + 0.720616i 0.995538 0.0943633i \(-0.0300815\pi\)
−0.579490 + 0.814979i \(0.696748\pi\)
\(864\) 24.5248 0.834351
\(865\) 0.0733142 + 0.126984i 0.00249276 + 0.00431758i
\(866\) 2.62623 + 4.54877i 0.0892430 + 0.154573i
\(867\) 23.1442 40.0869i 0.786017 1.36142i
\(868\) 1.46808 2.54279i 0.0498299 0.0863079i
\(869\) −77.5882 −2.63200
\(870\) 8.60468 0.291726
\(871\) 16.5064 28.5900i 0.559299 0.968734i
\(872\) 13.5612 23.4887i 0.459241 0.795429i
\(873\) −1.06947 −0.0361961
\(874\) 5.71815 + 9.90413i 0.193419 + 0.335012i
\(875\) −1.46262 2.53334i −0.0494457 0.0856424i
\(876\) −33.6074 58.2097i −1.13549 1.96672i
\(877\) −24.1259 41.7873i −0.814674 1.41106i −0.909562 0.415568i \(-0.863583\pi\)
0.0948884 0.995488i \(-0.469751\pi\)
\(878\) 6.93879 12.0183i 0.234173 0.405599i
\(879\) −45.9700 −1.55053
\(880\) −5.82963 + 10.0972i −0.196517 + 0.340377i
\(881\) −41.2789 −1.39072 −0.695361 0.718661i \(-0.744755\pi\)
−0.695361 + 0.718661i \(0.744755\pi\)
\(882\) 8.64057 + 14.9659i 0.290943 + 0.503928i
\(883\) 13.7023 + 23.7331i 0.461120 + 0.798683i 0.999017 0.0443276i \(-0.0141145\pi\)
−0.537897 + 0.843010i \(0.680781\pi\)
\(884\) 3.34807 0.112608
\(885\) 37.3881 1.25679
\(886\) −8.66881 15.0148i −0.291234 0.504433i
\(887\) 35.4807 1.19133 0.595663 0.803235i \(-0.296889\pi\)
0.595663 + 0.803235i \(0.296889\pi\)
\(888\) −48.1687 −1.61643
\(889\) −1.28123 3.46642i −0.0429710 0.116260i
\(890\) −8.69522 −0.291464
\(891\) 5.39192 0.180636
\(892\) −1.84466 3.19505i −0.0617639 0.106978i
\(893\) 12.4751 0.417463
\(894\) 23.2158 0.776452
\(895\) 7.05307 + 12.2163i 0.235758 + 0.408345i
\(896\) 1.88686 + 3.26813i 0.0630355 + 0.109181i
\(897\) −40.1349 −1.34007
\(898\) 3.38905 5.87001i 0.113094 0.195885i
\(899\) −30.6611 −1.02261
\(900\) −16.1642 + 27.9972i −0.538807 + 0.933242i
\(901\) −0.774774 1.34195i −0.0258114 0.0447067i
\(902\) 2.58712 + 4.48102i 0.0861416 + 0.149202i
\(903\) −2.21005 3.82792i −0.0735458 0.127385i
\(904\) 2.54509 + 4.40822i 0.0846483 + 0.146615i
\(905\) 11.5997 0.385588
\(906\) 11.7570 20.3636i 0.390599 0.676537i
\(907\) 5.56383 9.63684i 0.184744 0.319986i −0.758746 0.651386i \(-0.774188\pi\)
0.943490 + 0.331400i \(0.107521\pi\)
\(908\) 23.2034 0.770032
\(909\) −25.8072 −0.855970
\(910\) 0.305768 0.529606i 0.0101361 0.0175563i
\(911\) −17.2205 + 29.8268i −0.570541 + 0.988206i 0.425969 + 0.904738i \(0.359933\pi\)
−0.996510 + 0.0834684i \(0.973400\pi\)
\(912\) −17.0975 29.6137i −0.566154 0.980607i
\(913\) −42.8968 74.2994i −1.41968 2.45895i
\(914\) −10.8987 −0.360497
\(915\) 3.72979 + 6.46019i 0.123303 + 0.213567i
\(916\) −11.3793 −0.375983
\(917\) 0.357206 + 0.618698i 0.0117960 + 0.0204312i
\(918\) 0.693307 1.20084i 0.0228825 0.0396337i
\(919\) 23.4270 + 40.5767i 0.772785 + 1.33850i 0.936031 + 0.351917i \(0.114470\pi\)
−0.163247 + 0.986585i \(0.552197\pi\)
\(920\) 4.02857 + 6.97768i 0.132818 + 0.230047i
\(921\) −37.5515 −1.23736
\(922\) 6.15838 0.202815
\(923\) 21.0198 36.4073i 0.691874 1.19836i
\(924\) −3.88418 6.72761i −0.127780 0.221322i
\(925\) 17.5922 30.4705i 0.578427 1.00186i
\(926\) −5.89947 + 10.2182i −0.193869 + 0.335790i
\(927\) 0.391424 0.0128560
\(928\) 15.3709 26.6232i 0.504574 0.873948i
\(929\) −5.13856 −0.168591 −0.0842954 0.996441i \(-0.526864\pi\)
−0.0842954 + 0.996441i \(0.526864\pi\)
\(930\) 3.82872 6.63154i 0.125549 0.217457i
\(931\) 17.9616 31.1104i 0.588667 1.01960i
\(932\) −6.48524 + 11.2328i −0.212431 + 0.367942i
\(933\) 10.8319 18.7614i 0.354620 0.614220i
\(934\) −2.79671 + 4.84405i −0.0915113 + 0.158502i
\(935\) 1.36435 + 2.36313i 0.0446191 + 0.0772826i
\(936\) −32.8470 −1.07364
\(937\) −12.1955 21.1233i −0.398411 0.690067i 0.595119 0.803637i \(-0.297105\pi\)
−0.993530 + 0.113570i \(0.963771\pi\)
\(938\) 0.820597 1.42131i 0.0267934 0.0464076i
\(939\) 93.4281 3.04891
\(940\) 4.05617 0.132298
\(941\) 6.86197 + 11.8853i 0.223694 + 0.387449i 0.955927 0.293605i \(-0.0948551\pi\)
−0.732233 + 0.681054i \(0.761522\pi\)
\(942\) −6.46014 + 11.1893i −0.210483 + 0.364567i
\(943\) −7.96636 −0.259420
\(944\) 16.1348 27.9462i 0.525141 0.909572i
\(945\) 0.759099 + 1.31480i 0.0246935 + 0.0427704i
\(946\) 6.47767 + 11.2197i 0.210607 + 0.364782i
\(947\) −11.7015 + 20.2675i −0.380247 + 0.658607i −0.991097 0.133139i \(-0.957494\pi\)
0.610851 + 0.791746i \(0.290828\pi\)
\(948\) 36.9937 64.0750i 1.20150 2.08106i
\(949\) 24.9420 + 43.2008i 0.809651 + 1.40236i
\(950\) −11.2109 −0.363731
\(951\) 2.89025 + 5.00606i 0.0937227 + 0.162333i
\(952\) 0.360657 0.0116890
\(953\) 29.9918 0.971529 0.485765 0.874090i \(-0.338541\pi\)
0.485765 + 0.874090i \(0.338541\pi\)
\(954\) 3.50795 + 6.07595i 0.113574 + 0.196716i
\(955\) 25.2956 0.818545
\(956\) −3.61229 6.25666i −0.116830 0.202355i
\(957\) −40.5610 + 70.2536i −1.31115 + 2.27098i
\(958\) 3.17520 5.49961i 0.102586 0.177684i
\(959\) −0.860975 1.49125i −0.0278023 0.0481550i
\(960\) −2.64767 4.58591i −0.0854533 0.148009i
\(961\) 1.85708 3.21656i 0.0599059 0.103760i
\(962\) 16.4982 0.531924
\(963\) −2.03713 + 3.52842i −0.0656457 + 0.113702i
\(964\) 1.47548 + 2.55561i 0.0475220 + 0.0823105i
\(965\) −7.29923 −0.234970
\(966\) −1.99526 −0.0641964
\(967\) −19.7020 + 34.1249i −0.633574 + 1.09738i 0.353241 + 0.935532i \(0.385080\pi\)
−0.986815 + 0.161851i \(0.948254\pi\)
\(968\) 13.7451 + 23.8072i 0.441785 + 0.765193i
\(969\) −8.00291 −0.257091
\(970\) −0.0602931 0.104431i −0.00193590 0.00335307i
\(971\) −14.2586 + 24.6966i −0.457580 + 0.792552i −0.998832 0.0483085i \(-0.984617\pi\)
0.541253 + 0.840860i \(0.317950\pi\)
\(972\) −14.6104 + 25.3060i −0.468630 + 0.811692i
\(973\) 1.60600 2.78167i 0.0514859 0.0891762i
\(974\) 10.3695 17.9604i 0.332259 0.575489i
\(975\) 19.6720 34.0730i 0.630009 1.09121i
\(976\) 6.43833 0.206086
\(977\) −18.6142 + 32.2407i −0.595520 + 1.03147i 0.397953 + 0.917406i \(0.369721\pi\)
−0.993473 + 0.114065i \(0.963613\pi\)
\(978\) −12.2011 −0.390148
\(979\) 40.9878 70.9929i 1.30997 2.26894i
\(980\) 5.84004 10.1153i 0.186553 0.323120i
\(981\) −32.0161 55.4535i −1.02219 1.77049i
\(982\) −5.36623 + 9.29459i −0.171243 + 0.296602i
\(983\) −46.3999 −1.47993 −0.739963 0.672647i \(-0.765157\pi\)
−0.739963 + 0.672647i \(0.765157\pi\)
\(984\) −10.6913 −0.340827
\(985\) −4.13102 7.15513i −0.131625 0.227982i
\(986\) −0.869059 1.50525i −0.0276765 0.0479370i
\(987\) −1.08825 + 1.88490i −0.0346393 + 0.0599971i
\(988\) 15.7560 + 27.2901i 0.501264 + 0.868215i
\(989\) −19.9463 −0.634256
\(990\) −6.17740 10.6996i −0.196331 0.340055i
\(991\) −20.5966 −0.654272 −0.327136 0.944977i \(-0.606083\pi\)
−0.327136 + 0.944977i \(0.606083\pi\)
\(992\) −13.6788 23.6924i −0.434303 0.752235i
\(993\) −27.6765 47.9371i −0.878287 1.52124i
\(994\) 1.04497 1.80994i 0.0331445 0.0574079i
\(995\) 2.28217 3.95284i 0.0723497 0.125313i
\(996\) 81.8120 2.59231
\(997\) −1.57451 −0.0498654 −0.0249327 0.999689i \(-0.507937\pi\)
−0.0249327 + 0.999689i \(0.507937\pi\)
\(998\) 2.06769 3.58135i 0.0654517 0.113366i
\(999\) −20.4792 + 35.4711i −0.647934 + 1.12225i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 127.2.c.a.107.6 yes 18
127.19 even 3 inner 127.2.c.a.19.6 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
127.2.c.a.19.6 18 127.19 even 3 inner
127.2.c.a.107.6 yes 18 1.1 even 1 trivial