Properties

Label 127.2.c.a.107.1
Level $127$
Weight $2$
Character 127.107
Analytic conductor $1.014$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [127,2,Mod(19,127)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("127.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(127, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 127.c (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.01410010567\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 12 x^{16} - 7 x^{15} + 92 x^{14} - 46 x^{13} + 388 x^{12} - 105 x^{11} + 1128 x^{10} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 107.1
Root \(1.23988 - 2.14754i\) of defining polynomial
Character \(\chi\) \(=\) 127.107
Dual form 127.2.c.a.19.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.47976 q^{2} +(0.930662 + 1.61195i) q^{3} +4.14922 q^{4} +0.715813 q^{5} +(-2.30782 - 3.99726i) q^{6} +(0.241228 + 0.417820i) q^{7} -5.32956 q^{8} +(-0.232264 + 0.402292i) q^{9} -1.77505 q^{10} +(-0.520908 + 0.902239i) q^{11} +(3.86152 + 6.68836i) q^{12} +(2.53071 + 4.38331i) q^{13} +(-0.598189 - 1.03609i) q^{14} +(0.666180 + 1.15386i) q^{15} +4.91761 q^{16} +(-2.72880 + 4.72641i) q^{17} +(0.575959 - 0.997589i) q^{18} +6.02930 q^{19} +2.97007 q^{20} +(-0.449004 + 0.777698i) q^{21} +(1.29173 - 2.23734i) q^{22} +(-3.19458 - 5.53317i) q^{23} +(-4.96002 - 8.59101i) q^{24} -4.48761 q^{25} +(-6.27555 - 10.8696i) q^{26} +4.71934 q^{27} +(1.00091 + 1.73363i) q^{28} +(-1.80084 + 3.11915i) q^{29} +(-1.65197 - 2.86129i) q^{30} +(-3.70654 - 6.41992i) q^{31} -1.53537 q^{32} -1.93916 q^{33} +(6.76677 - 11.7204i) q^{34} +(0.172674 + 0.299081i) q^{35} +(-0.963713 + 1.66920i) q^{36} +(-0.299309 + 0.518418i) q^{37} -14.9512 q^{38} +(-4.71047 + 8.15877i) q^{39} -3.81497 q^{40} +(4.52412 - 7.83601i) q^{41} +(1.11342 - 1.92851i) q^{42} +(1.08385 - 1.87728i) q^{43} +(-2.16136 + 3.74359i) q^{44} +(-0.166257 + 0.287966i) q^{45} +(7.92180 + 13.7210i) q^{46} +10.1887 q^{47} +(4.57663 + 7.92695i) q^{48} +(3.38362 - 5.86060i) q^{49} +11.1282 q^{50} -10.1584 q^{51} +(10.5005 + 18.1873i) q^{52} +(-0.400099 + 0.692993i) q^{53} -11.7028 q^{54} +(-0.372873 + 0.645835i) q^{55} +(-1.28564 - 2.22680i) q^{56} +(5.61124 + 9.71896i) q^{57} +(4.46566 - 7.73474i) q^{58} +(2.68670 - 4.65351i) q^{59} +(2.76413 + 4.78761i) q^{60} -10.0527 q^{61} +(9.19134 + 15.9199i) q^{62} -0.224114 q^{63} -6.02786 q^{64} +(1.81151 + 3.13763i) q^{65} +4.80865 q^{66} +(-3.27584 - 5.67393i) q^{67} +(-11.3224 + 19.6109i) q^{68} +(5.94615 - 10.2990i) q^{69} +(-0.428192 - 0.741650i) q^{70} +(-1.04894 - 1.81682i) q^{71} +(1.23786 - 2.14404i) q^{72} -11.3725 q^{73} +(0.742215 - 1.28555i) q^{74} +(-4.17645 - 7.23382i) q^{75} +25.0169 q^{76} -0.502631 q^{77} +(11.6808 - 20.2318i) q^{78} +(-1.80468 - 3.12579i) q^{79} +3.52009 q^{80} +(5.08890 + 8.81423i) q^{81} +(-11.2188 + 19.4315i) q^{82} +(3.82785 - 6.63003i) q^{83} +(-1.86302 + 3.22684i) q^{84} +(-1.95331 + 3.38323i) q^{85} +(-2.68768 + 4.65521i) q^{86} -6.70390 q^{87} +(2.77621 - 4.80854i) q^{88} -0.516961 q^{89} +(0.412279 - 0.714088i) q^{90} +(-1.22096 + 2.11476i) q^{91} +(-13.2550 - 22.9584i) q^{92} +(6.89908 - 11.9495i) q^{93} -25.2657 q^{94} +4.31585 q^{95} +(-1.42891 - 2.47495i) q^{96} +(8.36629 + 14.4908i) q^{97} +(-8.39057 + 14.5329i) q^{98} +(-0.241976 - 0.419115i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + q^{3} + 10 q^{4} - 8 q^{5} + 5 q^{7} - 6 q^{8} - 2 q^{9} - 4 q^{10} + 5 q^{12} - 8 q^{14} + 3 q^{15} - 6 q^{16} - 6 q^{17} + 16 q^{19} - 32 q^{20} + 3 q^{21} + 6 q^{22} + 13 q^{23} - 6 q^{24}+ \cdots + 17 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/127\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.47976 −1.75346 −0.876729 0.480986i \(-0.840279\pi\)
−0.876729 + 0.480986i \(0.840279\pi\)
\(3\) 0.930662 + 1.61195i 0.537318 + 0.930662i 0.999047 + 0.0436411i \(0.0138958\pi\)
−0.461729 + 0.887021i \(0.652771\pi\)
\(4\) 4.14922 2.07461
\(5\) 0.715813 0.320121 0.160061 0.987107i \(-0.448831\pi\)
0.160061 + 0.987107i \(0.448831\pi\)
\(6\) −2.30782 3.99726i −0.942164 1.63188i
\(7\) 0.241228 + 0.417820i 0.0911757 + 0.157921i 0.908006 0.418957i \(-0.137604\pi\)
−0.816830 + 0.576878i \(0.804271\pi\)
\(8\) −5.32956 −1.88429
\(9\) −0.232264 + 0.402292i −0.0774212 + 0.134097i
\(10\) −1.77505 −0.561319
\(11\) −0.520908 + 0.902239i −0.157060 + 0.272035i −0.933807 0.357777i \(-0.883535\pi\)
0.776747 + 0.629812i \(0.216868\pi\)
\(12\) 3.86152 + 6.68836i 1.11473 + 1.93076i
\(13\) 2.53071 + 4.38331i 0.701892 + 1.21571i 0.967802 + 0.251714i \(0.0809944\pi\)
−0.265910 + 0.963998i \(0.585672\pi\)
\(14\) −0.598189 1.03609i −0.159873 0.276908i
\(15\) 0.666180 + 1.15386i 0.172007 + 0.297925i
\(16\) 4.91761 1.22940
\(17\) −2.72880 + 4.72641i −0.661830 + 1.14632i 0.318304 + 0.947989i \(0.396887\pi\)
−0.980134 + 0.198335i \(0.936447\pi\)
\(18\) 0.575959 0.997589i 0.135755 0.235134i
\(19\) 6.02930 1.38322 0.691608 0.722273i \(-0.256902\pi\)
0.691608 + 0.722273i \(0.256902\pi\)
\(20\) 2.97007 0.664127
\(21\) −0.449004 + 0.777698i −0.0979807 + 0.169708i
\(22\) 1.29173 2.23734i 0.275397 0.477002i
\(23\) −3.19458 5.53317i −0.666116 1.15375i −0.978982 0.203949i \(-0.934622\pi\)
0.312866 0.949797i \(-0.398711\pi\)
\(24\) −4.96002 8.59101i −1.01246 1.75363i
\(25\) −4.48761 −0.897522
\(26\) −6.27555 10.8696i −1.23074 2.13170i
\(27\) 4.71934 0.908237
\(28\) 1.00091 + 1.73363i 0.189154 + 0.327625i
\(29\) −1.80084 + 3.11915i −0.334408 + 0.579211i −0.983371 0.181609i \(-0.941870\pi\)
0.648963 + 0.760820i \(0.275203\pi\)
\(30\) −1.65197 2.86129i −0.301607 0.522398i
\(31\) −3.70654 6.41992i −0.665715 1.15305i −0.979091 0.203422i \(-0.934794\pi\)
0.313377 0.949629i \(-0.398540\pi\)
\(32\) −1.53537 −0.271418
\(33\) −1.93916 −0.337564
\(34\) 6.76677 11.7204i 1.16049 2.01003i
\(35\) 0.172674 + 0.299081i 0.0291873 + 0.0505539i
\(36\) −0.963713 + 1.66920i −0.160619 + 0.278200i
\(37\) −0.299309 + 0.518418i −0.0492061 + 0.0852274i −0.889579 0.456781i \(-0.849002\pi\)
0.840373 + 0.542008i \(0.182336\pi\)
\(38\) −14.9512 −2.42541
\(39\) −4.71047 + 8.15877i −0.754278 + 1.30645i
\(40\) −3.81497 −0.603200
\(41\) 4.52412 7.83601i 0.706550 1.22378i −0.259580 0.965722i \(-0.583584\pi\)
0.966129 0.258058i \(-0.0830826\pi\)
\(42\) 1.11342 1.92851i 0.171805 0.297575i
\(43\) 1.08385 1.87728i 0.165285 0.286282i −0.771471 0.636264i \(-0.780479\pi\)
0.936757 + 0.349982i \(0.113812\pi\)
\(44\) −2.16136 + 3.74359i −0.325838 + 0.564368i
\(45\) −0.166257 + 0.287966i −0.0247842 + 0.0429275i
\(46\) 7.92180 + 13.7210i 1.16801 + 2.02304i
\(47\) 10.1887 1.48618 0.743091 0.669191i \(-0.233359\pi\)
0.743091 + 0.669191i \(0.233359\pi\)
\(48\) 4.57663 + 7.92695i 0.660580 + 1.14416i
\(49\) 3.38362 5.86060i 0.483374 0.837228i
\(50\) 11.1282 1.57377
\(51\) −10.1584 −1.42245
\(52\) 10.5005 + 18.1873i 1.45615 + 2.52213i
\(53\) −0.400099 + 0.692993i −0.0549579 + 0.0951898i −0.892195 0.451649i \(-0.850836\pi\)
0.837238 + 0.546839i \(0.184169\pi\)
\(54\) −11.7028 −1.59255
\(55\) −0.372873 + 0.645835i −0.0502782 + 0.0870843i
\(56\) −1.28564 2.22680i −0.171801 0.297568i
\(57\) 5.61124 + 9.71896i 0.743227 + 1.28731i
\(58\) 4.46566 7.73474i 0.586369 1.01562i
\(59\) 2.68670 4.65351i 0.349779 0.605835i −0.636431 0.771334i \(-0.719590\pi\)
0.986210 + 0.165498i \(0.0529233\pi\)
\(60\) 2.76413 + 4.78761i 0.356848 + 0.618078i
\(61\) −10.0527 −1.28711 −0.643556 0.765399i \(-0.722542\pi\)
−0.643556 + 0.765399i \(0.722542\pi\)
\(62\) 9.19134 + 15.9199i 1.16730 + 2.02183i
\(63\) −0.224114 −0.0282357
\(64\) −6.02786 −0.753482
\(65\) 1.81151 + 3.13763i 0.224691 + 0.389176i
\(66\) 4.80865 0.591904
\(67\) −3.27584 5.67393i −0.400208 0.693181i 0.593543 0.804803i \(-0.297729\pi\)
−0.993751 + 0.111622i \(0.964396\pi\)
\(68\) −11.3224 + 19.6109i −1.37304 + 2.37818i
\(69\) 5.94615 10.2990i 0.715832 1.23986i
\(70\) −0.428192 0.741650i −0.0511787 0.0886441i
\(71\) −1.04894 1.81682i −0.124487 0.215617i 0.797046 0.603919i \(-0.206395\pi\)
−0.921532 + 0.388302i \(0.873062\pi\)
\(72\) 1.23786 2.14404i 0.145884 0.252678i
\(73\) −11.3725 −1.33105 −0.665523 0.746378i \(-0.731791\pi\)
−0.665523 + 0.746378i \(0.731791\pi\)
\(74\) 0.742215 1.28555i 0.0862807 0.149443i
\(75\) −4.17645 7.23382i −0.482255 0.835290i
\(76\) 25.0169 2.86964
\(77\) −0.502631 −0.0572802
\(78\) 11.6808 20.2318i 1.32259 2.29080i
\(79\) −1.80468 3.12579i −0.203042 0.351679i 0.746465 0.665424i \(-0.231749\pi\)
−0.949507 + 0.313746i \(0.898416\pi\)
\(80\) 3.52009 0.393558
\(81\) 5.08890 + 8.81423i 0.565433 + 0.979359i
\(82\) −11.2188 + 19.4315i −1.23890 + 2.14585i
\(83\) 3.82785 6.63003i 0.420161 0.727740i −0.575794 0.817595i \(-0.695307\pi\)
0.995955 + 0.0898548i \(0.0286403\pi\)
\(84\) −1.86302 + 3.22684i −0.203272 + 0.352077i
\(85\) −1.95331 + 3.38323i −0.211866 + 0.366963i
\(86\) −2.68768 + 4.65521i −0.289820 + 0.501984i
\(87\) −6.70390 −0.718733
\(88\) 2.77621 4.80854i 0.295945 0.512592i
\(89\) −0.516961 −0.0547977 −0.0273989 0.999625i \(-0.508722\pi\)
−0.0273989 + 0.999625i \(0.508722\pi\)
\(90\) 0.412279 0.714088i 0.0434580 0.0752714i
\(91\) −1.22096 + 2.11476i −0.127991 + 0.221687i
\(92\) −13.2550 22.9584i −1.38193 2.39358i
\(93\) 6.89908 11.9495i 0.715401 1.23911i
\(94\) −25.2657 −2.60596
\(95\) 4.31585 0.442797
\(96\) −1.42891 2.47495i −0.145838 0.252598i
\(97\) 8.36629 + 14.4908i 0.849468 + 1.47132i 0.881684 + 0.471841i \(0.156410\pi\)
−0.0322156 + 0.999481i \(0.510256\pi\)
\(98\) −8.39057 + 14.5329i −0.847575 + 1.46804i
\(99\) −0.241976 0.419115i −0.0243195 0.0421226i
\(100\) −18.6201 −1.86201
\(101\) 4.35664 + 7.54592i 0.433501 + 0.750847i 0.997172 0.0751531i \(-0.0239446\pi\)
−0.563671 + 0.826000i \(0.690611\pi\)
\(102\) 25.1903 2.49421
\(103\) −3.39052 5.87256i −0.334078 0.578641i 0.649229 0.760593i \(-0.275092\pi\)
−0.983307 + 0.181952i \(0.941758\pi\)
\(104\) −13.4876 23.3611i −1.32256 2.29075i
\(105\) −0.321403 + 0.556686i −0.0313657 + 0.0543270i
\(106\) 0.992152 1.71846i 0.0963663 0.166911i
\(107\) −11.5284 −1.11450 −0.557248 0.830346i \(-0.688143\pi\)
−0.557248 + 0.830346i \(0.688143\pi\)
\(108\) 19.5816 1.88424
\(109\) 7.66816 13.2816i 0.734476 1.27215i −0.220477 0.975392i \(-0.570761\pi\)
0.954953 0.296758i \(-0.0959054\pi\)
\(110\) 0.924636 1.60152i 0.0881606 0.152699i
\(111\) −1.11422 −0.105757
\(112\) 1.18627 + 2.05467i 0.112092 + 0.194148i
\(113\) −0.950103 1.64563i −0.0893782 0.154808i 0.817870 0.575403i \(-0.195155\pi\)
−0.907248 + 0.420595i \(0.861821\pi\)
\(114\) −13.9145 24.1007i −1.30322 2.25724i
\(115\) −2.28672 3.96072i −0.213238 0.369339i
\(116\) −7.47209 + 12.9420i −0.693766 + 1.20164i
\(117\) −2.35116 −0.217365
\(118\) −6.66239 + 11.5396i −0.613323 + 1.06231i
\(119\) −2.63305 −0.241372
\(120\) −3.55045 6.14956i −0.324110 0.561375i
\(121\) 4.95731 + 8.58631i 0.450664 + 0.780574i
\(122\) 24.9282 2.25689
\(123\) 16.8417 1.51857
\(124\) −15.3793 26.6377i −1.38110 2.39213i
\(125\) −6.79136 −0.607437
\(126\) 0.555750 0.0495102
\(127\) −10.8501 + 3.04542i −0.962794 + 0.270237i
\(128\) 18.0184 1.59262
\(129\) 4.03478 0.355243
\(130\) −4.49212 7.78059i −0.393985 0.682403i
\(131\) 4.51877 0.394807 0.197403 0.980322i \(-0.436749\pi\)
0.197403 + 0.980322i \(0.436749\pi\)
\(132\) −8.04600 −0.700314
\(133\) 1.45444 + 2.51916i 0.126116 + 0.218439i
\(134\) 8.12332 + 14.0700i 0.701748 + 1.21546i
\(135\) 3.37816 0.290746
\(136\) 14.5433 25.1897i 1.24708 2.16000i
\(137\) 3.37176 0.288069 0.144035 0.989573i \(-0.453992\pi\)
0.144035 + 0.989573i \(0.453992\pi\)
\(138\) −14.7450 + 25.5391i −1.25518 + 2.17404i
\(139\) 9.24640 + 16.0152i 0.784269 + 1.35839i 0.929435 + 0.368987i \(0.120295\pi\)
−0.145166 + 0.989407i \(0.546372\pi\)
\(140\) 0.716465 + 1.24095i 0.0605523 + 0.104880i
\(141\) 9.48228 + 16.4238i 0.798552 + 1.38313i
\(142\) 2.60113 + 4.50528i 0.218282 + 0.378075i
\(143\) −5.27306 −0.440956
\(144\) −1.14218 + 1.97832i −0.0951817 + 0.164860i
\(145\) −1.28907 + 2.23273i −0.107051 + 0.185418i
\(146\) 28.2010 2.33393
\(147\) 12.5960 1.03890
\(148\) −1.24190 + 2.15103i −0.102083 + 0.176814i
\(149\) −7.13696 + 12.3616i −0.584682 + 1.01270i 0.410233 + 0.911981i \(0.365447\pi\)
−0.994915 + 0.100719i \(0.967886\pi\)
\(150\) 10.3566 + 17.9382i 0.845613 + 1.46465i
\(151\) −8.54637 14.8028i −0.695494 1.20463i −0.970014 0.243050i \(-0.921852\pi\)
0.274520 0.961581i \(-0.411481\pi\)
\(152\) −32.1335 −2.60637
\(153\) −1.26760 2.19555i −0.102479 0.177500i
\(154\) 1.24641 0.100438
\(155\) −2.65319 4.59546i −0.213109 0.369116i
\(156\) −19.5448 + 33.8525i −1.56483 + 2.71037i
\(157\) −9.83030 17.0266i −0.784544 1.35887i −0.929271 0.369398i \(-0.879564\pi\)
0.144728 0.989472i \(-0.453769\pi\)
\(158\) 4.47517 + 7.75122i 0.356025 + 0.616654i
\(159\) −1.48943 −0.118119
\(160\) −1.09904 −0.0868866
\(161\) 1.54125 2.66952i 0.121467 0.210387i
\(162\) −12.6193 21.8572i −0.991463 1.71726i
\(163\) −5.58096 + 9.66651i −0.437135 + 0.757139i −0.997467 0.0711283i \(-0.977340\pi\)
0.560332 + 0.828268i \(0.310673\pi\)
\(164\) 18.7716 32.5134i 1.46582 2.53887i
\(165\) −1.38807 −0.108061
\(166\) −9.49215 + 16.4409i −0.736734 + 1.27606i
\(167\) −17.9740 −1.39087 −0.695436 0.718588i \(-0.744789\pi\)
−0.695436 + 0.718588i \(0.744789\pi\)
\(168\) 2.39300 4.14479i 0.184624 0.319778i
\(169\) −6.30896 + 10.9274i −0.485304 + 0.840572i
\(170\) 4.84374 8.38961i 0.371498 0.643453i
\(171\) −1.40039 + 2.42554i −0.107090 + 0.185486i
\(172\) 4.49712 7.78925i 0.342903 0.593925i
\(173\) −7.49195 12.9764i −0.569602 0.986580i −0.996605 0.0823297i \(-0.973764\pi\)
0.427003 0.904250i \(-0.359569\pi\)
\(174\) 16.6241 1.26027
\(175\) −1.08254 1.87501i −0.0818323 0.141738i
\(176\) −2.56162 + 4.43686i −0.193089 + 0.334441i
\(177\) 10.0017 0.751770
\(178\) 1.28194 0.0960855
\(179\) 4.92050 + 8.52255i 0.367775 + 0.637005i 0.989217 0.146455i \(-0.0467863\pi\)
−0.621442 + 0.783460i \(0.713453\pi\)
\(180\) −0.689839 + 1.19484i −0.0514175 + 0.0890578i
\(181\) 3.74745 0.278546 0.139273 0.990254i \(-0.455524\pi\)
0.139273 + 0.990254i \(0.455524\pi\)
\(182\) 3.02768 5.24410i 0.224427 0.388719i
\(183\) −9.35563 16.2044i −0.691588 1.19787i
\(184\) 17.0257 + 29.4894i 1.25515 + 2.17399i
\(185\) −0.214249 + 0.371090i −0.0157519 + 0.0272831i
\(186\) −17.1081 + 29.6320i −1.25442 + 2.17273i
\(187\) −2.84291 4.92406i −0.207894 0.360083i
\(188\) 42.2754 3.08325
\(189\) 1.13844 + 1.97183i 0.0828092 + 0.143430i
\(190\) −10.7023 −0.776426
\(191\) 1.33315 0.0964635 0.0482317 0.998836i \(-0.484641\pi\)
0.0482317 + 0.998836i \(0.484641\pi\)
\(192\) −5.60990 9.71663i −0.404860 0.701237i
\(193\) 13.9297 1.00268 0.501342 0.865249i \(-0.332840\pi\)
0.501342 + 0.865249i \(0.332840\pi\)
\(194\) −20.7464 35.9338i −1.48951 2.57990i
\(195\) −3.37181 + 5.84015i −0.241461 + 0.418222i
\(196\) 14.0394 24.3169i 1.00281 1.73692i
\(197\) 0.715839 + 1.23987i 0.0510014 + 0.0883370i 0.890399 0.455181i \(-0.150425\pi\)
−0.839398 + 0.543518i \(0.817092\pi\)
\(198\) 0.600043 + 1.03931i 0.0426432 + 0.0738602i
\(199\) −5.32664 + 9.22601i −0.377595 + 0.654014i −0.990712 0.135978i \(-0.956582\pi\)
0.613116 + 0.789993i \(0.289916\pi\)
\(200\) 23.9170 1.69119
\(201\) 6.09741 10.5610i 0.430078 0.744917i
\(202\) −10.8034 18.7121i −0.760126 1.31658i
\(203\) −1.73766 −0.121959
\(204\) −42.1493 −2.95104
\(205\) 3.23843 5.60912i 0.226182 0.391758i
\(206\) 8.40770 + 14.5626i 0.585792 + 1.01462i
\(207\) 2.96794 0.206286
\(208\) 12.4450 + 21.5554i 0.862907 + 1.49460i
\(209\) −3.14071 + 5.43987i −0.217248 + 0.376284i
\(210\) 0.797003 1.38045i 0.0549985 0.0952601i
\(211\) 4.00956 6.94477i 0.276030 0.478098i −0.694365 0.719623i \(-0.744314\pi\)
0.970394 + 0.241526i \(0.0776478\pi\)
\(212\) −1.66010 + 2.87538i −0.114016 + 0.197482i
\(213\) 1.95242 3.38169i 0.133778 0.231710i
\(214\) 28.5878 1.95422
\(215\) 0.775832 1.34378i 0.0529113 0.0916451i
\(216\) −25.1520 −1.71138
\(217\) 1.78825 3.09733i 0.121394 0.210261i
\(218\) −19.0152 + 32.9353i −1.28787 + 2.23066i
\(219\) −10.5839 18.3319i −0.715195 1.23875i
\(220\) −1.54713 + 2.67971i −0.104308 + 0.180666i
\(221\) −27.6231 −1.85813
\(222\) 2.76300 0.185441
\(223\) −4.37048 7.56989i −0.292669 0.506918i 0.681771 0.731566i \(-0.261210\pi\)
−0.974440 + 0.224648i \(0.927877\pi\)
\(224\) −0.370375 0.641508i −0.0247467 0.0428626i
\(225\) 1.04231 1.80533i 0.0694872 0.120355i
\(226\) 2.35603 + 4.08076i 0.156721 + 0.271448i
\(227\) 13.0104 0.863533 0.431767 0.901985i \(-0.357890\pi\)
0.431767 + 0.901985i \(0.357890\pi\)
\(228\) 23.2823 + 40.3261i 1.54191 + 2.67066i
\(229\) 0.789816 0.0521925 0.0260962 0.999659i \(-0.491692\pi\)
0.0260962 + 0.999659i \(0.491692\pi\)
\(230\) 5.67053 + 9.82164i 0.373903 + 0.647620i
\(231\) −0.467780 0.810218i −0.0307777 0.0533085i
\(232\) 9.59769 16.6237i 0.630119 1.09140i
\(233\) −5.41448 + 9.37815i −0.354714 + 0.614383i −0.987069 0.160296i \(-0.948755\pi\)
0.632355 + 0.774679i \(0.282089\pi\)
\(234\) 5.83033 0.381141
\(235\) 7.29324 0.475758
\(236\) 11.1477 19.3084i 0.725656 1.25687i
\(237\) 3.35909 5.81811i 0.218196 0.377927i
\(238\) 6.52935 0.423235
\(239\) 10.9620 + 18.9867i 0.709071 + 1.22815i 0.965202 + 0.261504i \(0.0842186\pi\)
−0.256132 + 0.966642i \(0.582448\pi\)
\(240\) 3.27601 + 5.67422i 0.211466 + 0.366269i
\(241\) 11.0967 + 19.2200i 0.714800 + 1.23807i 0.963036 + 0.269371i \(0.0868158\pi\)
−0.248236 + 0.968700i \(0.579851\pi\)
\(242\) −12.2930 21.2920i −0.790221 1.36870i
\(243\) −2.39308 + 4.14494i −0.153516 + 0.265898i
\(244\) −41.7107 −2.67026
\(245\) 2.42204 4.19509i 0.154738 0.268015i
\(246\) −41.7635 −2.66274
\(247\) 15.2584 + 26.4283i 0.970869 + 1.68159i
\(248\) 19.7542 + 34.2154i 1.25440 + 2.17268i
\(249\) 14.2497 0.903040
\(250\) 16.8410 1.06512
\(251\) −2.71069 4.69505i −0.171097 0.296349i 0.767706 0.640802i \(-0.221398\pi\)
−0.938804 + 0.344452i \(0.888065\pi\)
\(252\) −0.929900 −0.0585782
\(253\) 6.65633 0.418480
\(254\) 26.9058 7.55192i 1.68822 0.473849i
\(255\) −7.27148 −0.455358
\(256\) −32.6256 −2.03910
\(257\) 8.62531 + 14.9395i 0.538032 + 0.931899i 0.999010 + 0.0444875i \(0.0141655\pi\)
−0.460978 + 0.887412i \(0.652501\pi\)
\(258\) −10.0053 −0.622903
\(259\) −0.288807 −0.0179456
\(260\) 7.51637 + 13.0187i 0.466146 + 0.807388i
\(261\) −0.836539 1.44893i −0.0517805 0.0896864i
\(262\) −11.2055 −0.692276
\(263\) 13.1477 22.7726i 0.810725 1.40422i −0.101633 0.994822i \(-0.532407\pi\)
0.912357 0.409394i \(-0.134260\pi\)
\(264\) 10.3349 0.636067
\(265\) −0.286396 + 0.496053i −0.0175932 + 0.0304723i
\(266\) −3.60666 6.24692i −0.221139 0.383023i
\(267\) −0.481116 0.833317i −0.0294438 0.0509982i
\(268\) −13.5922 23.5424i −0.830276 1.43808i
\(269\) 3.51249 + 6.08380i 0.214160 + 0.370936i 0.953012 0.302931i \(-0.0979653\pi\)
−0.738852 + 0.673867i \(0.764632\pi\)
\(270\) −8.37704 −0.509811
\(271\) 5.31877 9.21238i 0.323092 0.559613i −0.658032 0.752990i \(-0.728611\pi\)
0.981124 + 0.193377i \(0.0619442\pi\)
\(272\) −13.4191 + 23.2426i −0.813655 + 1.40929i
\(273\) −4.54519 −0.275088
\(274\) −8.36117 −0.505117
\(275\) 2.33763 4.04890i 0.140965 0.244158i
\(276\) 24.6719 42.7330i 1.48507 2.57222i
\(277\) −1.38816 2.40436i −0.0834062 0.144464i 0.821305 0.570490i \(-0.193247\pi\)
−0.904711 + 0.426026i \(0.859913\pi\)
\(278\) −22.9289 39.7140i −1.37518 2.38189i
\(279\) 3.44358 0.206162
\(280\) −0.920279 1.59397i −0.0549972 0.0952580i
\(281\) −23.1793 −1.38276 −0.691382 0.722490i \(-0.742998\pi\)
−0.691382 + 0.722490i \(0.742998\pi\)
\(282\) −23.5138 40.7271i −1.40023 2.42526i
\(283\) −1.59964 + 2.77067i −0.0950890 + 0.164699i −0.909646 0.415385i \(-0.863647\pi\)
0.814557 + 0.580084i \(0.196980\pi\)
\(284\) −4.35229 7.53840i −0.258261 0.447321i
\(285\) 4.01660 + 6.95696i 0.237923 + 0.412095i
\(286\) 13.0759 0.773197
\(287\) 4.36539 0.257681
\(288\) 0.356611 0.617668i 0.0210135 0.0363964i
\(289\) −6.39266 11.0724i −0.376039 0.651319i
\(290\) 3.19658 5.53663i 0.187709 0.325122i
\(291\) −15.5724 + 26.9721i −0.912869 + 1.58114i
\(292\) −47.1869 −2.76140
\(293\) 14.4499 25.0279i 0.844172 1.46215i −0.0421672 0.999111i \(-0.513426\pi\)
0.886339 0.463037i \(-0.153240\pi\)
\(294\) −31.2351 −1.82167
\(295\) 1.92318 3.33104i 0.111972 0.193941i
\(296\) 1.59518 2.76294i 0.0927182 0.160593i
\(297\) −2.45834 + 4.25797i −0.142647 + 0.247073i
\(298\) 17.6980 30.6538i 1.02522 1.77572i
\(299\) 16.1691 28.0057i 0.935082 1.61961i
\(300\) −17.3290 30.0147i −1.00049 1.73290i
\(301\) 1.04582 0.0602800
\(302\) 21.1930 + 36.7073i 1.21952 + 2.11227i
\(303\) −8.10911 + 14.0454i −0.465856 + 0.806887i
\(304\) 29.6497 1.70053
\(305\) −7.19583 −0.412032
\(306\) 3.14335 + 5.44444i 0.179693 + 0.311238i
\(307\) −5.87033 + 10.1677i −0.335038 + 0.580302i −0.983492 0.180951i \(-0.942082\pi\)
0.648454 + 0.761253i \(0.275416\pi\)
\(308\) −2.08553 −0.118834
\(309\) 6.31086 10.9307i 0.359013 0.621828i
\(310\) 6.57928 + 11.3957i 0.373678 + 0.647230i
\(311\) 6.94433 + 12.0279i 0.393777 + 0.682041i 0.992944 0.118582i \(-0.0378350\pi\)
−0.599168 + 0.800624i \(0.704502\pi\)
\(312\) 25.1047 43.4827i 1.42128 2.46172i
\(313\) −16.2590 + 28.1615i −0.919015 + 1.59178i −0.118100 + 0.993002i \(0.537680\pi\)
−0.800914 + 0.598779i \(0.795653\pi\)
\(314\) 24.3768 + 42.2219i 1.37566 + 2.38272i
\(315\) −0.160424 −0.00903886
\(316\) −7.48800 12.9696i −0.421233 0.729597i
\(317\) −27.8671 −1.56517 −0.782587 0.622542i \(-0.786100\pi\)
−0.782587 + 0.622542i \(0.786100\pi\)
\(318\) 3.69343 0.207117
\(319\) −1.87614 3.24958i −0.105044 0.181941i
\(320\) −4.31482 −0.241206
\(321\) −10.7291 18.5833i −0.598839 1.03722i
\(322\) −3.82192 + 6.61977i −0.212988 + 0.368905i
\(323\) −16.4527 + 28.4970i −0.915455 + 1.58561i
\(324\) 21.1150 + 36.5722i 1.17305 + 2.03179i
\(325\) −11.3568 19.6706i −0.629964 1.09113i
\(326\) 13.8395 23.9707i 0.766497 1.32761i
\(327\) 28.5458 1.57859
\(328\) −24.1116 + 41.7625i −1.33134 + 2.30595i
\(329\) 2.45781 + 4.25706i 0.135504 + 0.234699i
\(330\) 3.44210 0.189481
\(331\) 23.5958 1.29694 0.648472 0.761238i \(-0.275408\pi\)
0.648472 + 0.761238i \(0.275408\pi\)
\(332\) 15.8826 27.5095i 0.871671 1.50978i
\(333\) −0.139037 0.240819i −0.00761918 0.0131968i
\(334\) 44.5713 2.43883
\(335\) −2.34489 4.06147i −0.128115 0.221902i
\(336\) −2.20803 + 3.82441i −0.120458 + 0.208639i
\(337\) 5.44699 9.43447i 0.296717 0.513928i −0.678666 0.734447i \(-0.737442\pi\)
0.975383 + 0.220519i \(0.0707750\pi\)
\(338\) 15.6447 27.0974i 0.850961 1.47391i
\(339\) 1.76845 3.06304i 0.0960490 0.166362i
\(340\) −8.10471 + 14.0378i −0.439540 + 0.761305i
\(341\) 7.72307 0.418228
\(342\) 3.47263 6.01477i 0.187778 0.325241i
\(343\) 6.64210 0.358639
\(344\) −5.77643 + 10.0051i −0.311444 + 0.539438i
\(345\) 4.25633 7.37218i 0.229153 0.396905i
\(346\) 18.5783 + 32.1785i 0.998773 + 1.72993i
\(347\) −11.6693 + 20.2118i −0.626441 + 1.08503i 0.361819 + 0.932248i \(0.382156\pi\)
−0.988260 + 0.152780i \(0.951178\pi\)
\(348\) −27.8160 −1.49109
\(349\) −11.0632 −0.592198 −0.296099 0.955157i \(-0.595686\pi\)
−0.296099 + 0.955157i \(0.595686\pi\)
\(350\) 2.68444 + 4.64959i 0.143489 + 0.248531i
\(351\) 11.9433 + 20.6863i 0.637484 + 1.10415i
\(352\) 0.799787 1.38527i 0.0426288 0.0738352i
\(353\) −4.64909 8.05246i −0.247446 0.428589i 0.715370 0.698745i \(-0.246258\pi\)
−0.962817 + 0.270156i \(0.912925\pi\)
\(354\) −24.8017 −1.31820
\(355\) −0.750846 1.30050i −0.0398508 0.0690236i
\(356\) −2.14499 −0.113684
\(357\) −2.45048 4.24436i −0.129693 0.224635i
\(358\) −12.2017 21.1339i −0.644878 1.11696i
\(359\) −15.8051 + 27.3753i −0.834163 + 1.44481i 0.0605470 + 0.998165i \(0.480716\pi\)
−0.894710 + 0.446647i \(0.852618\pi\)
\(360\) 0.886079 1.53473i 0.0467005 0.0808876i
\(361\) 17.3525 0.913288
\(362\) −9.29278 −0.488418
\(363\) −9.22716 + 15.9819i −0.484300 + 0.838833i
\(364\) −5.06602 + 8.77461i −0.265532 + 0.459914i
\(365\) −8.14055 −0.426096
\(366\) 23.1997 + 40.1831i 1.21267 + 2.10041i
\(367\) 5.92536 + 10.2630i 0.309301 + 0.535726i 0.978210 0.207619i \(-0.0665715\pi\)
−0.668908 + 0.743345i \(0.733238\pi\)
\(368\) −15.7097 27.2100i −0.818924 1.41842i
\(369\) 2.10158 + 3.64004i 0.109404 + 0.189493i
\(370\) 0.531287 0.920216i 0.0276203 0.0478398i
\(371\) −0.386061 −0.0200433
\(372\) 28.6258 49.5813i 1.48418 2.57067i
\(373\) −25.0064 −1.29478 −0.647390 0.762159i \(-0.724140\pi\)
−0.647390 + 0.762159i \(0.724140\pi\)
\(374\) 7.04973 + 12.2105i 0.364533 + 0.631389i
\(375\) −6.32046 10.9474i −0.326387 0.565319i
\(376\) −54.3016 −2.80039
\(377\) −18.2296 −0.938872
\(378\) −2.82306 4.88968i −0.145202 0.251498i
\(379\) 13.2820 0.682248 0.341124 0.940018i \(-0.389192\pi\)
0.341124 + 0.940018i \(0.389192\pi\)
\(380\) 17.9074 0.918632
\(381\) −15.0069 14.6557i −0.768826 0.750832i
\(382\) −3.30590 −0.169145
\(383\) −0.870286 −0.0444695 −0.0222348 0.999753i \(-0.507078\pi\)
−0.0222348 + 0.999753i \(0.507078\pi\)
\(384\) 16.7690 + 29.0448i 0.855742 + 1.48219i
\(385\) −0.359790 −0.0183366
\(386\) −34.5424 −1.75816
\(387\) 0.503477 + 0.872047i 0.0255932 + 0.0443286i
\(388\) 34.7136 + 60.1257i 1.76232 + 3.05242i
\(389\) 12.0691 0.611926 0.305963 0.952043i \(-0.401022\pi\)
0.305963 + 0.952043i \(0.401022\pi\)
\(390\) 8.36130 14.4822i 0.423391 0.733334i
\(391\) 34.8694 1.76342
\(392\) −18.0332 + 31.2344i −0.910814 + 1.57758i
\(393\) 4.20545 + 7.28404i 0.212137 + 0.367431i
\(394\) −1.77511 3.07458i −0.0894287 0.154895i
\(395\) −1.29181 2.23748i −0.0649981 0.112580i
\(396\) −1.00401 1.73900i −0.0504535 0.0873881i
\(397\) 3.34691 0.167977 0.0839884 0.996467i \(-0.473234\pi\)
0.0839884 + 0.996467i \(0.473234\pi\)
\(398\) 13.2088 22.8783i 0.662097 1.14679i
\(399\) −2.70718 + 4.68898i −0.135529 + 0.234742i
\(400\) −22.0683 −1.10342
\(401\) −18.6964 −0.933656 −0.466828 0.884348i \(-0.654603\pi\)
−0.466828 + 0.884348i \(0.654603\pi\)
\(402\) −15.1201 + 26.1888i −0.754123 + 1.30618i
\(403\) 18.7603 32.4939i 0.934519 1.61863i
\(404\) 18.0767 + 31.3097i 0.899347 + 1.55772i
\(405\) 3.64270 + 6.30934i 0.181007 + 0.313514i
\(406\) 4.30897 0.213851
\(407\) −0.311825 0.540096i −0.0154566 0.0267716i
\(408\) 54.1396 2.68031
\(409\) 7.24790 + 12.5537i 0.358386 + 0.620742i 0.987691 0.156416i \(-0.0499940\pi\)
−0.629306 + 0.777158i \(0.716661\pi\)
\(410\) −8.03053 + 13.9093i −0.396600 + 0.686931i
\(411\) 3.13797 + 5.43512i 0.154785 + 0.268095i
\(412\) −14.0680 24.3666i −0.693083 1.20045i
\(413\) 2.59244 0.127566
\(414\) −7.35978 −0.361713
\(415\) 2.74002 4.74586i 0.134502 0.232965i
\(416\) −3.88557 6.73001i −0.190506 0.329966i
\(417\) −17.2105 + 29.8095i −0.842804 + 1.45978i
\(418\) 7.78822 13.4896i 0.380934 0.659798i
\(419\) 29.3577 1.43422 0.717110 0.696960i \(-0.245465\pi\)
0.717110 + 0.696960i \(0.245465\pi\)
\(420\) −1.33357 + 2.30982i −0.0650717 + 0.112707i
\(421\) 26.0740 1.27077 0.635384 0.772196i \(-0.280842\pi\)
0.635384 + 0.772196i \(0.280842\pi\)
\(422\) −9.94277 + 17.2214i −0.484006 + 0.838324i
\(423\) −2.36647 + 4.09885i −0.115062 + 0.199293i
\(424\) 2.13236 3.69335i 0.103556 0.179365i
\(425\) 12.2458 21.2103i 0.594008 1.02885i
\(426\) −4.84154 + 8.38579i −0.234573 + 0.406293i
\(427\) −2.42499 4.20020i −0.117353 0.203262i
\(428\) −47.8341 −2.31215
\(429\) −4.90744 8.49994i −0.236933 0.410381i
\(430\) −1.92388 + 3.33226i −0.0927777 + 0.160696i
\(431\) 9.62012 0.463385 0.231692 0.972789i \(-0.425574\pi\)
0.231692 + 0.972789i \(0.425574\pi\)
\(432\) 23.2078 1.11659
\(433\) 10.2357 + 17.7288i 0.491896 + 0.851990i 0.999956 0.00933207i \(-0.00297053\pi\)
−0.508060 + 0.861322i \(0.669637\pi\)
\(434\) −4.43443 + 7.68065i −0.212859 + 0.368683i
\(435\) −4.79874 −0.230082
\(436\) 31.8169 55.1085i 1.52375 2.63922i
\(437\) −19.2611 33.3612i −0.921382 1.59588i
\(438\) 26.2456 + 45.4587i 1.25406 + 2.17210i
\(439\) −12.5428 + 21.7247i −0.598634 + 1.03686i 0.394389 + 0.918944i \(0.370956\pi\)
−0.993023 + 0.117921i \(0.962377\pi\)
\(440\) 1.98725 3.44202i 0.0947384 0.164092i
\(441\) 1.57178 + 2.72241i 0.0748468 + 0.129638i
\(442\) 68.4988 3.25816
\(443\) −13.3771 23.1699i −0.635568 1.10084i −0.986395 0.164395i \(-0.947433\pi\)
0.350827 0.936440i \(-0.385901\pi\)
\(444\) −4.62315 −0.219405
\(445\) −0.370047 −0.0175419
\(446\) 10.8378 + 18.7715i 0.513183 + 0.888858i
\(447\) −26.5684 −1.25664
\(448\) −1.45409 2.51856i −0.0686993 0.118991i
\(449\) 7.25394 12.5642i 0.342334 0.592941i −0.642531 0.766259i \(-0.722116\pi\)
0.984866 + 0.173319i \(0.0554491\pi\)
\(450\) −2.58468 + 4.47679i −0.121843 + 0.211038i
\(451\) 4.71331 + 8.16369i 0.221941 + 0.384413i
\(452\) −3.94219 6.82807i −0.185425 0.321165i
\(453\) 15.9076 27.5527i 0.747403 1.29454i
\(454\) −32.2628 −1.51417
\(455\) −0.873977 + 1.51377i −0.0409727 + 0.0709667i
\(456\) −29.9055 51.7978i −1.40045 2.42565i
\(457\) 11.0519 0.516984 0.258492 0.966013i \(-0.416774\pi\)
0.258492 + 0.966013i \(0.416774\pi\)
\(458\) −1.95856 −0.0915173
\(459\) −12.8781 + 22.3055i −0.601099 + 1.04113i
\(460\) −9.48812 16.4339i −0.442386 0.766235i
\(461\) −12.2842 −0.572132 −0.286066 0.958210i \(-0.592348\pi\)
−0.286066 + 0.958210i \(0.592348\pi\)
\(462\) 1.15998 + 2.00915i 0.0539673 + 0.0934741i
\(463\) −3.18250 + 5.51225i −0.147903 + 0.256176i −0.930452 0.366413i \(-0.880586\pi\)
0.782549 + 0.622589i \(0.213919\pi\)
\(464\) −8.85582 + 15.3387i −0.411121 + 0.712083i
\(465\) 4.93845 8.55364i 0.229015 0.396666i
\(466\) 13.4266 23.2556i 0.621976 1.07729i
\(467\) −8.71986 + 15.1032i −0.403507 + 0.698894i −0.994146 0.108041i \(-0.965542\pi\)
0.590640 + 0.806936i \(0.298876\pi\)
\(468\) −9.75551 −0.450948
\(469\) 1.58045 2.73743i 0.0729786 0.126403i
\(470\) −18.0855 −0.834222
\(471\) 18.2974 31.6920i 0.843099 1.46029i
\(472\) −14.3190 + 24.8012i −0.659084 + 1.14157i
\(473\) 1.12917 + 1.95578i 0.0519193 + 0.0899268i
\(474\) −8.32974 + 14.4275i −0.382598 + 0.662678i
\(475\) −27.0572 −1.24147
\(476\) −10.9251 −0.500752
\(477\) −0.185857 0.321914i −0.00850981 0.0147394i
\(478\) −27.1831 47.0825i −1.24332 2.15350i
\(479\) −15.9384 + 27.6061i −0.728244 + 1.26136i 0.229380 + 0.973337i \(0.426330\pi\)
−0.957625 + 0.288019i \(0.907003\pi\)
\(480\) −1.02283 1.77160i −0.0466857 0.0808620i
\(481\) −3.02985 −0.138149
\(482\) −27.5171 47.6611i −1.25337 2.17090i
\(483\) 5.73752 0.261066
\(484\) 20.5690 + 35.6265i 0.934954 + 1.61939i
\(485\) 5.98870 + 10.3727i 0.271933 + 0.471002i
\(486\) 5.93428 10.2785i 0.269184 0.466241i
\(487\) 9.31639 16.1365i 0.422166 0.731213i −0.573985 0.818866i \(-0.694603\pi\)
0.996151 + 0.0876527i \(0.0279366\pi\)
\(488\) 53.5763 2.42528
\(489\) −20.7760 −0.939521
\(490\) −6.00608 + 10.4028i −0.271327 + 0.469952i
\(491\) 20.6220 35.7184i 0.930658 1.61195i 0.148458 0.988919i \(-0.452569\pi\)
0.782199 0.623028i \(-0.214098\pi\)
\(492\) 69.8801 3.15044
\(493\) −9.82826 17.0230i −0.442642 0.766679i
\(494\) −37.8372 65.5360i −1.70238 2.94860i
\(495\) −0.173210 0.300008i −0.00778519 0.0134843i
\(496\) −18.2273 31.5706i −0.818431 1.41756i
\(497\) 0.506069 0.876537i 0.0227003 0.0393181i
\(498\) −35.3359 −1.58344
\(499\) 1.80796 3.13148i 0.0809355 0.140184i −0.822716 0.568452i \(-0.807543\pi\)
0.903652 + 0.428267i \(0.140876\pi\)
\(500\) −28.1789 −1.26020
\(501\) −16.7277 28.9733i −0.747340 1.29443i
\(502\) 6.72187 + 11.6426i 0.300012 + 0.519636i
\(503\) −16.0197 −0.714284 −0.357142 0.934050i \(-0.616249\pi\)
−0.357142 + 0.934050i \(0.616249\pi\)
\(504\) 1.19443 0.0532042
\(505\) 3.11854 + 5.40146i 0.138773 + 0.240362i
\(506\) −16.5061 −0.733786
\(507\) −23.4860 −1.04305
\(508\) −45.0196 + 12.6361i −1.99742 + 0.560637i
\(509\) −16.1553 −0.716073 −0.358036 0.933708i \(-0.616554\pi\)
−0.358036 + 0.933708i \(0.616554\pi\)
\(510\) 18.0315 0.798450
\(511\) −2.74336 4.75164i −0.121359 0.210200i
\(512\) 44.8670 1.98286
\(513\) 28.4543 1.25629
\(514\) −21.3887 37.0464i −0.943417 1.63405i
\(515\) −2.42698 4.20366i −0.106946 0.185235i
\(516\) 16.7412 0.736991
\(517\) −5.30740 + 9.19269i −0.233419 + 0.404294i
\(518\) 0.716173 0.0314668
\(519\) 13.9449 24.1533i 0.612115 1.06021i
\(520\) −9.65458 16.7222i −0.423381 0.733318i
\(521\) −15.4224 26.7125i −0.675670 1.17029i −0.976273 0.216545i \(-0.930521\pi\)
0.300603 0.953749i \(-0.402812\pi\)
\(522\) 2.07442 + 3.59300i 0.0907949 + 0.157261i
\(523\) −7.79940 13.5090i −0.341044 0.590705i 0.643583 0.765376i \(-0.277447\pi\)
−0.984627 + 0.174671i \(0.944114\pi\)
\(524\) 18.7494 0.819070
\(525\) 2.01496 3.49001i 0.0879399 0.152316i
\(526\) −32.6033 + 56.4706i −1.42157 + 2.46223i
\(527\) 40.4576 1.76236
\(528\) −9.53601 −0.415002
\(529\) −8.91067 + 15.4337i −0.387420 + 0.671032i
\(530\) 0.710195 1.23009i 0.0308489 0.0534319i
\(531\) 1.24805 + 2.16168i 0.0541606 + 0.0938090i
\(532\) 6.03479 + 10.4526i 0.261641 + 0.453176i
\(533\) 45.7969 1.98369
\(534\) 1.19305 + 2.06643i 0.0516284 + 0.0894231i
\(535\) −8.25221 −0.356774
\(536\) 17.4588 + 30.2396i 0.754106 + 1.30615i
\(537\) −9.15864 + 15.8632i −0.395224 + 0.684549i
\(538\) −8.71013 15.0864i −0.375520 0.650420i
\(539\) 3.52511 + 6.10567i 0.151837 + 0.262990i
\(540\) 14.0168 0.603185
\(541\) −4.41492 −0.189812 −0.0949062 0.995486i \(-0.530255\pi\)
−0.0949062 + 0.995486i \(0.530255\pi\)
\(542\) −13.1893 + 22.8445i −0.566529 + 0.981256i
\(543\) 3.48761 + 6.04071i 0.149668 + 0.259232i
\(544\) 4.18971 7.25680i 0.179632 0.311133i
\(545\) 5.48897 9.50717i 0.235122 0.407242i
\(546\) 11.2710 0.482354
\(547\) −1.49176 + 2.58380i −0.0637828 + 0.110475i −0.896153 0.443744i \(-0.853650\pi\)
0.832371 + 0.554219i \(0.186983\pi\)
\(548\) 13.9902 0.597631
\(549\) 2.33487 4.04411i 0.0996497 0.172598i
\(550\) −5.79678 + 10.0403i −0.247175 + 0.428120i
\(551\) −10.8578 + 18.8063i −0.462558 + 0.801174i
\(552\) −31.6904 + 54.8893i −1.34883 + 2.33624i
\(553\) 0.870678 1.50806i 0.0370250 0.0641292i
\(554\) 3.44230 + 5.96223i 0.146249 + 0.253311i
\(555\) −0.797574 −0.0338551
\(556\) 38.3654 + 66.4508i 1.62705 + 2.81814i
\(557\) −10.0846 + 17.4671i −0.427299 + 0.740103i −0.996632 0.0820038i \(-0.973868\pi\)
0.569333 + 0.822107i \(0.307201\pi\)
\(558\) −8.53926 −0.361496
\(559\) 10.9716 0.464049
\(560\) 0.849145 + 1.47076i 0.0358829 + 0.0621510i
\(561\) 5.29157 9.16526i 0.223410 0.386958i
\(562\) 57.4792 2.42462
\(563\) 7.68399 13.3091i 0.323842 0.560910i −0.657436 0.753511i \(-0.728359\pi\)
0.981277 + 0.192600i \(0.0616921\pi\)
\(564\) 39.3441 + 68.1460i 1.65669 + 2.86946i
\(565\) −0.680096 1.17796i −0.0286119 0.0495572i
\(566\) 3.96674 6.87060i 0.166735 0.288793i
\(567\) −2.45517 + 4.25248i −0.103108 + 0.178588i
\(568\) 5.59040 + 9.68286i 0.234568 + 0.406284i
\(569\) −19.2160 −0.805575 −0.402788 0.915293i \(-0.631959\pi\)
−0.402788 + 0.915293i \(0.631959\pi\)
\(570\) −9.96022 17.2516i −0.417188 0.722590i
\(571\) −43.3111 −1.81251 −0.906256 0.422729i \(-0.861072\pi\)
−0.906256 + 0.422729i \(0.861072\pi\)
\(572\) −21.8791 −0.914812
\(573\) 1.24071 + 2.14898i 0.0518316 + 0.0897749i
\(574\) −10.8251 −0.451832
\(575\) 14.3360 + 24.8307i 0.597854 + 1.03551i
\(576\) 1.40005 2.42496i 0.0583355 0.101040i
\(577\) 16.1798 28.0243i 0.673576 1.16667i −0.303307 0.952893i \(-0.598091\pi\)
0.976883 0.213774i \(-0.0685758\pi\)
\(578\) 15.8523 + 27.4570i 0.659368 + 1.14206i
\(579\) 12.9639 + 22.4541i 0.538760 + 0.933160i
\(580\) −5.34862 + 9.26408i −0.222089 + 0.384670i
\(581\) 3.69354 0.153234
\(582\) 38.6158 66.8845i 1.60068 2.77245i
\(583\) −0.416830 0.721971i −0.0172633 0.0299010i
\(584\) 60.6102 2.50807
\(585\) −1.68299 −0.0695833
\(586\) −35.8323 + 62.0634i −1.48022 + 2.56381i
\(587\) −3.73793 6.47429i −0.154281 0.267223i 0.778516 0.627625i \(-0.215973\pi\)
−0.932797 + 0.360402i \(0.882639\pi\)
\(588\) 52.2637 2.15532
\(589\) −22.3479 38.7076i −0.920827 1.59492i
\(590\) −4.76903 + 8.26020i −0.196338 + 0.340067i
\(591\) −1.33241 + 2.30780i −0.0548079 + 0.0949301i
\(592\) −1.47188 + 2.54938i −0.0604940 + 0.104779i
\(593\) −18.7610 + 32.4950i −0.770421 + 1.33441i 0.166911 + 0.985972i \(0.446621\pi\)
−0.937332 + 0.348436i \(0.886713\pi\)
\(594\) 6.09610 10.5588i 0.250126 0.433231i
\(595\) −1.88477 −0.0772682
\(596\) −29.6128 + 51.2909i −1.21299 + 2.10096i
\(597\) −19.8292 −0.811555
\(598\) −40.0955 + 69.4474i −1.63963 + 2.83992i
\(599\) 14.4943 25.1048i 0.592220 1.02576i −0.401712 0.915766i \(-0.631585\pi\)
0.993933 0.109990i \(-0.0350818\pi\)
\(600\) 22.2587 + 38.5531i 0.908706 + 1.57392i
\(601\) 10.5150 18.2125i 0.428915 0.742902i −0.567862 0.823124i \(-0.692229\pi\)
0.996777 + 0.0802212i \(0.0255627\pi\)
\(602\) −2.59338 −0.105698
\(603\) 3.04344 0.123938
\(604\) −35.4608 61.4199i −1.44288 2.49914i
\(605\) 3.54851 + 6.14619i 0.144267 + 0.249878i
\(606\) 20.1087 34.8292i 0.816859 1.41484i
\(607\) −7.03063 12.1774i −0.285364 0.494266i 0.687333 0.726342i \(-0.258781\pi\)
−0.972697 + 0.232077i \(0.925448\pi\)
\(608\) −9.25721 −0.375429
\(609\) −1.61717 2.80102i −0.0655310 0.113503i
\(610\) 17.8439 0.722480
\(611\) 25.7847 + 44.6605i 1.04314 + 1.80677i
\(612\) −5.25956 9.10982i −0.212605 0.368243i
\(613\) −10.1710 + 17.6166i −0.410802 + 0.711529i −0.994978 0.100098i \(-0.968084\pi\)
0.584176 + 0.811627i \(0.301418\pi\)
\(614\) 14.5570 25.2135i 0.587474 1.01754i
\(615\) 12.0555 0.486126
\(616\) 2.67881 0.107932
\(617\) 15.0707 26.1032i 0.606724 1.05088i −0.385053 0.922894i \(-0.625817\pi\)
0.991777 0.127982i \(-0.0408499\pi\)
\(618\) −15.6494 + 27.1056i −0.629513 + 1.09035i
\(619\) −37.9414 −1.52499 −0.762496 0.646993i \(-0.776026\pi\)
−0.762496 + 0.646993i \(0.776026\pi\)
\(620\) −11.0087 19.0676i −0.442119 0.765773i
\(621\) −15.0763 26.1129i −0.604991 1.04787i
\(622\) −17.2203 29.8264i −0.690470 1.19593i
\(623\) −0.124706 0.215996i −0.00499622 0.00865371i
\(624\) −23.1642 + 40.1216i −0.927311 + 1.60615i
\(625\) 17.5767 0.703069
\(626\) 40.3185 69.8338i 1.61145 2.79112i
\(627\) −11.6918 −0.466924
\(628\) −40.7881 70.6471i −1.62762 2.81913i
\(629\) −1.63351 2.82931i −0.0651321 0.112812i
\(630\) 0.397813 0.0158493
\(631\) −10.5943 −0.421753 −0.210876 0.977513i \(-0.567632\pi\)
−0.210876 + 0.977513i \(0.567632\pi\)
\(632\) 9.61814 + 16.6591i 0.382589 + 0.662663i
\(633\) 14.9262 0.593263
\(634\) 69.1038 2.74446
\(635\) −7.76667 + 2.17995i −0.308211 + 0.0865087i
\(636\) −6.17997 −0.245052
\(637\) 34.2518 1.35711
\(638\) 4.65239 + 8.05818i 0.184190 + 0.319027i
\(639\) 0.974524 0.0385516
\(640\) 12.8978 0.509831
\(641\) 9.87475 + 17.1036i 0.390029 + 0.675550i 0.992453 0.122626i \(-0.0391316\pi\)
−0.602424 + 0.798176i \(0.705798\pi\)
\(642\) 26.6056 + 46.0822i 1.05004 + 1.81872i
\(643\) −21.1476 −0.833978 −0.416989 0.908911i \(-0.636915\pi\)
−0.416989 + 0.908911i \(0.636915\pi\)
\(644\) 6.39497 11.0764i 0.251997 0.436472i
\(645\) 2.88815 0.113721
\(646\) 40.7989 70.6658i 1.60521 2.78031i
\(647\) −14.9743 25.9362i −0.588700 1.01966i −0.994403 0.105654i \(-0.966306\pi\)
0.405702 0.914005i \(-0.367027\pi\)
\(648\) −27.1216 46.9760i −1.06544 1.84539i
\(649\) 2.79905 + 4.84810i 0.109872 + 0.190305i
\(650\) 28.1622 + 48.7784i 1.10461 + 1.91325i
\(651\) 6.65701 0.260909
\(652\) −23.1567 + 40.1085i −0.906885 + 1.57077i
\(653\) −6.05762 + 10.4921i −0.237053 + 0.410588i −0.959867 0.280454i \(-0.909515\pi\)
0.722814 + 0.691042i \(0.242848\pi\)
\(654\) −70.7869 −2.76799
\(655\) 3.23459 0.126386
\(656\) 22.2479 38.5344i 0.868633 1.50452i
\(657\) 2.64141 4.57505i 0.103051 0.178490i
\(658\) −6.09480 10.5565i −0.237600 0.411535i
\(659\) 7.45175 + 12.9068i 0.290279 + 0.502778i 0.973876 0.227082i \(-0.0729185\pi\)
−0.683597 + 0.729860i \(0.739585\pi\)
\(660\) −5.75943 −0.224186
\(661\) 1.30071 + 2.25290i 0.0505918 + 0.0876275i 0.890212 0.455546i \(-0.150556\pi\)
−0.839621 + 0.543173i \(0.817223\pi\)
\(662\) −58.5121 −2.27414
\(663\) −25.7078 44.5272i −0.998409 1.72929i
\(664\) −20.4008 + 35.3351i −0.791703 + 1.37127i
\(665\) 1.04111 + 1.80325i 0.0403724 + 0.0699270i
\(666\) 0.344779 + 0.597175i 0.0133599 + 0.0231400i
\(667\) 23.0117 0.891017
\(668\) −74.5782 −2.88552
\(669\) 8.13488 14.0900i 0.314513 0.544752i
\(670\) 5.81478 + 10.0715i 0.224644 + 0.389096i
\(671\) 5.23651 9.06991i 0.202153 0.350140i
\(672\) 0.689388 1.19405i 0.0265937 0.0460616i
\(673\) 50.6581 1.95272 0.976362 0.216141i \(-0.0693471\pi\)
0.976362 + 0.216141i \(0.0693471\pi\)
\(674\) −13.5073 + 23.3952i −0.520280 + 0.901151i
\(675\) −21.1785 −0.815163
\(676\) −26.1773 + 45.3404i −1.00682 + 1.74386i
\(677\) −12.5258 + 21.6953i −0.481405 + 0.833818i −0.999772 0.0213403i \(-0.993207\pi\)
0.518367 + 0.855158i \(0.326540\pi\)
\(678\) −4.38533 + 7.59562i −0.168418 + 0.291708i
\(679\) −4.03637 + 6.99120i −0.154902 + 0.268298i
\(680\) 10.4103 18.0311i 0.399216 0.691463i
\(681\) 12.1083 + 20.9722i 0.463992 + 0.803657i
\(682\) −19.1514 −0.733344
\(683\) −16.1185 27.9181i −0.616759 1.06826i −0.990073 0.140552i \(-0.955112\pi\)
0.373315 0.927705i \(-0.378221\pi\)
\(684\) −5.81052 + 10.0641i −0.222171 + 0.384811i
\(685\) 2.41355 0.0922171
\(686\) −16.4708 −0.628859
\(687\) 0.735052 + 1.27315i 0.0280440 + 0.0485736i
\(688\) 5.32993 9.23172i 0.203202 0.351956i
\(689\) −4.05014 −0.154298
\(690\) −10.5547 + 18.2813i −0.401810 + 0.695955i
\(691\) 0.0634701 + 0.109933i 0.00241452 + 0.00418207i 0.867230 0.497908i \(-0.165898\pi\)
−0.864816 + 0.502090i \(0.832565\pi\)
\(692\) −31.0858 53.8421i −1.18170 2.04677i
\(693\) 0.116743 0.202205i 0.00443470 0.00768112i
\(694\) 28.9371 50.1205i 1.09844 1.90255i
\(695\) 6.61869 + 11.4639i 0.251061 + 0.434851i
\(696\) 35.7288 1.35430
\(697\) 24.6908 + 42.7658i 0.935232 + 1.61987i
\(698\) 27.4340 1.03839
\(699\) −20.1562 −0.762377
\(700\) −4.49170 7.77985i −0.169770 0.294051i
\(701\) −12.4479 −0.470152 −0.235076 0.971977i \(-0.575534\pi\)
−0.235076 + 0.971977i \(0.575534\pi\)
\(702\) −29.6164 51.2972i −1.11780 1.93609i
\(703\) −1.80462 + 3.12570i −0.0680626 + 0.117888i
\(704\) 3.13996 5.43857i 0.118342 0.204974i
\(705\) 6.78754 + 11.7564i 0.255634 + 0.442770i
\(706\) 11.5286 + 19.9682i 0.433886 + 0.751513i
\(707\) −2.10189 + 3.64058i −0.0790496 + 0.136918i
\(708\) 41.4991 1.55963
\(709\) −19.9948 + 34.6319i −0.750919 + 1.30063i 0.196459 + 0.980512i \(0.437056\pi\)
−0.947378 + 0.320117i \(0.896278\pi\)
\(710\) 1.86192 + 3.22494i 0.0698767 + 0.121030i
\(711\) 1.67664 0.0628790
\(712\) 2.75518 0.103255
\(713\) −23.6817 + 41.0179i −0.886886 + 1.53613i
\(714\) 6.07661 + 10.5250i 0.227412 + 0.393888i
\(715\) −3.77453 −0.141159
\(716\) 20.4162 + 35.3620i 0.762991 + 1.32154i
\(717\) −20.4038 + 35.3404i −0.761993 + 1.31981i
\(718\) 39.1930 67.8842i 1.46267 2.53342i
\(719\) 15.8752 27.4967i 0.592046 1.02545i −0.401911 0.915679i \(-0.631654\pi\)
0.993957 0.109774i \(-0.0350128\pi\)
\(720\) −0.817588 + 1.41610i −0.0304697 + 0.0527751i
\(721\) 1.63578 2.83326i 0.0609197 0.105516i
\(722\) −43.0300 −1.60141
\(723\) −20.6545 + 35.7747i −0.768150 + 1.33048i
\(724\) 15.5490 0.577874
\(725\) 8.08147 13.9975i 0.300138 0.519855i
\(726\) 22.8812 39.6313i 0.849200 1.47086i
\(727\) 19.8083 + 34.3089i 0.734648 + 1.27245i 0.954878 + 0.297000i \(0.0959860\pi\)
−0.220230 + 0.975448i \(0.570681\pi\)
\(728\) 6.50717 11.2707i 0.241172 0.417721i
\(729\) 21.6248 0.800918
\(730\) 20.1866 0.747141
\(731\) 5.91520 + 10.2454i 0.218782 + 0.378941i
\(732\) −38.8186 67.2358i −1.43478 2.48511i
\(733\) 12.7533 22.0894i 0.471054 0.815890i −0.528398 0.848997i \(-0.677207\pi\)
0.999452 + 0.0331072i \(0.0105403\pi\)
\(734\) −14.6935 25.4499i −0.542347 0.939372i
\(735\) 9.01639 0.332575
\(736\) 4.90486 + 8.49547i 0.180796 + 0.313147i
\(737\) 6.82566 0.251426
\(738\) −5.21142 9.02644i −0.191835 0.332268i
\(739\) 9.39416 + 16.2712i 0.345570 + 0.598544i 0.985457 0.169924i \(-0.0543524\pi\)
−0.639887 + 0.768469i \(0.721019\pi\)
\(740\) −0.888967 + 1.53974i −0.0326791 + 0.0566018i
\(741\) −28.4008 + 49.1917i −1.04333 + 1.80710i
\(742\) 0.957340 0.0351451
\(743\) −6.97471 −0.255877 −0.127939 0.991782i \(-0.540836\pi\)
−0.127939 + 0.991782i \(0.540836\pi\)
\(744\) −36.7691 + 63.6859i −1.34802 + 2.33484i
\(745\) −5.10873 + 8.84858i −0.187169 + 0.324187i
\(746\) 62.0098 2.27034
\(747\) 1.77814 + 3.07983i 0.0650587 + 0.112685i
\(748\) −11.7958 20.4310i −0.431299 0.747032i
\(749\) −2.78099 4.81681i −0.101615 0.176002i
\(750\) 15.6732 + 27.1468i 0.572306 + 0.991262i
\(751\) −5.59543 + 9.69157i −0.204180 + 0.353650i −0.949871 0.312642i \(-0.898786\pi\)
0.745691 + 0.666292i \(0.232119\pi\)
\(752\) 50.1042 1.82711
\(753\) 5.04547 8.73902i 0.183867 0.318468i
\(754\) 45.2051 1.64627
\(755\) −6.11761 10.5960i −0.222642 0.385628i
\(756\) 4.72363 + 8.18157i 0.171797 + 0.297561i
\(757\) 44.6070 1.62127 0.810634 0.585553i \(-0.199122\pi\)
0.810634 + 0.585553i \(0.199122\pi\)
\(758\) −32.9361 −1.19629
\(759\) 6.19479 + 10.7297i 0.224857 + 0.389463i
\(760\) −23.0016 −0.834356
\(761\) −36.4966 −1.32300 −0.661500 0.749945i \(-0.730080\pi\)
−0.661500 + 0.749945i \(0.730080\pi\)
\(762\) 37.2135 + 36.3426i 1.34810 + 1.31655i
\(763\) 7.39911 0.267866
\(764\) 5.53154 0.200124
\(765\) −0.907365 1.57160i −0.0328058 0.0568214i
\(766\) 2.15810 0.0779754
\(767\) 27.1971 0.982029
\(768\) −30.3634 52.5910i −1.09565 1.89772i
\(769\) −14.6734 25.4150i −0.529135 0.916488i −0.999423 0.0339750i \(-0.989183\pi\)
0.470288 0.882513i \(-0.344150\pi\)
\(770\) 0.892194 0.0321524
\(771\) −16.0545 + 27.8072i −0.578189 + 1.00145i
\(772\) 57.7976 2.08018
\(773\) 7.06151 12.2309i 0.253985 0.439915i −0.710634 0.703562i \(-0.751592\pi\)
0.964619 + 0.263647i \(0.0849253\pi\)
\(774\) −1.24850 2.16247i −0.0448765 0.0777284i
\(775\) 16.6335 + 28.8101i 0.597494 + 1.03489i
\(776\) −44.5887 77.2298i −1.60064 2.77239i
\(777\) −0.268782 0.465544i −0.00964249 0.0167013i
\(778\) −29.9284 −1.07299
\(779\) 27.2773 47.2457i 0.977311 1.69275i
\(780\) −13.9904 + 24.2321i −0.500937 + 0.867648i
\(781\) 2.18561 0.0782073
\(782\) −86.4679 −3.09209
\(783\) −8.49877 + 14.7203i −0.303721 + 0.526061i
\(784\) 16.6393 28.8201i 0.594261 1.02929i
\(785\) −7.03666 12.1879i −0.251149 0.435003i
\(786\) −10.4285 18.0627i −0.371972 0.644275i
\(787\) 0.194156 0.00692091 0.00346046 0.999994i \(-0.498899\pi\)
0.00346046 + 0.999994i \(0.498899\pi\)
\(788\) 2.97017 + 5.14449i 0.105808 + 0.183265i
\(789\) 48.9444 1.74247
\(790\) 3.20338 + 5.54842i 0.113971 + 0.197404i
\(791\) 0.458384 0.793944i 0.0162982 0.0282294i
\(792\) 1.28963 + 2.23370i 0.0458249 + 0.0793710i
\(793\) −25.4403 44.0640i −0.903413 1.56476i
\(794\) −8.29955 −0.294540
\(795\) −1.06615 −0.0378126
\(796\) −22.1014 + 38.2808i −0.783364 + 1.35683i
\(797\) 13.6855 + 23.7040i 0.484766 + 0.839639i 0.999847 0.0175022i \(-0.00557141\pi\)
−0.515081 + 0.857142i \(0.672238\pi\)
\(798\) 6.71317 11.6275i 0.237644 0.411611i
\(799\) −27.8030 + 48.1562i −0.983600 + 1.70365i
\(800\) 6.89014 0.243603
\(801\) 0.120071 0.207969i 0.00424251 0.00734824i
\(802\) 46.3627 1.63713
\(803\) 5.92400 10.2607i 0.209054 0.362091i
\(804\) 25.2995 43.8200i 0.892245 1.54541i
\(805\) 1.10324 1.91087i 0.0388842 0.0673495i
\(806\) −46.5212 + 80.5771i −1.63864 + 2.83821i
\(807\) −6.53787 + 11.3239i −0.230144 + 0.398621i
\(808\) −23.2190 40.2164i −0.816840 1.41481i
\(809\) −3.35744 −0.118041 −0.0590207 0.998257i \(-0.518798\pi\)
−0.0590207 + 0.998257i \(0.518798\pi\)
\(810\) −9.03303 15.6457i −0.317388 0.549733i
\(811\) 17.4343 30.1971i 0.612202 1.06036i −0.378667 0.925533i \(-0.623617\pi\)
0.990869 0.134831i \(-0.0430493\pi\)
\(812\) −7.20992 −0.253019
\(813\) 19.7999 0.694413
\(814\) 0.773251 + 1.33931i 0.0271024 + 0.0469428i
\(815\) −3.99493 + 6.91941i −0.139936 + 0.242377i
\(816\) −49.9548 −1.74877
\(817\) 6.53484 11.3187i 0.228625 0.395991i
\(818\) −17.9731 31.1303i −0.628414 1.08844i
\(819\) −0.567168 0.982363i −0.0198184 0.0343265i
\(820\) 13.4370 23.2735i 0.469239 0.812746i
\(821\) −1.42390 + 2.46626i −0.0496943 + 0.0860731i −0.889803 0.456346i \(-0.849158\pi\)
0.840108 + 0.542419i \(0.182491\pi\)
\(822\) −7.78142 13.4778i −0.271408 0.470093i
\(823\) −17.2736 −0.602119 −0.301059 0.953605i \(-0.597340\pi\)
−0.301059 + 0.953605i \(0.597340\pi\)
\(824\) 18.0700 + 31.2982i 0.629499 + 1.09032i
\(825\) 8.70219 0.302971
\(826\) −6.42863 −0.223681
\(827\) 14.1408 + 24.4925i 0.491723 + 0.851689i 0.999955 0.00953123i \(-0.00303393\pi\)
−0.508232 + 0.861220i \(0.669701\pi\)
\(828\) 12.3146 0.427963
\(829\) 5.71223 + 9.89387i 0.198394 + 0.343628i 0.948008 0.318247i \(-0.103094\pi\)
−0.749614 + 0.661875i \(0.769761\pi\)
\(830\) −6.79461 + 11.7686i −0.235844 + 0.408494i
\(831\) 2.58381 4.47529i 0.0896313 0.155246i
\(832\) −15.2547 26.4220i −0.528863 0.916018i
\(833\) 18.4664 + 31.9848i 0.639823 + 1.10821i
\(834\) 42.6781 73.9206i 1.47782 2.55966i
\(835\) −12.8660 −0.445248
\(836\) −13.0315 + 22.5713i −0.450704 + 0.780643i
\(837\) −17.4924 30.2978i −0.604626 1.04724i
\(838\) −72.8002 −2.51484
\(839\) 12.8448 0.443450 0.221725 0.975109i \(-0.428831\pi\)
0.221725 + 0.975109i \(0.428831\pi\)
\(840\) 1.71294 2.96690i 0.0591020 0.102368i
\(841\) 8.01395 + 13.8806i 0.276343 + 0.478640i
\(842\) −64.6573 −2.22824
\(843\) −21.5721 37.3640i −0.742983 1.28689i
\(844\) 16.6366 28.8154i 0.572655 0.991867i
\(845\) −4.51603 + 7.82200i −0.155356 + 0.269085i
\(846\) 5.86830 10.1642i 0.201756 0.349452i
\(847\) −2.39169 + 4.14252i −0.0821793 + 0.142339i
\(848\) −1.96753 + 3.40786i −0.0675653 + 0.117027i
\(849\) −5.95492 −0.204372
\(850\) −30.3666 + 52.5965i −1.04157 + 1.80405i
\(851\) 3.82466 0.131108
\(852\) 8.10103 14.0314i 0.277537 0.480708i
\(853\) −24.3113 + 42.1085i −0.832404 + 1.44177i 0.0637220 + 0.997968i \(0.479703\pi\)
−0.896126 + 0.443799i \(0.853630\pi\)
\(854\) 6.01339 + 10.4155i 0.205774 + 0.356411i
\(855\) −1.00242 + 1.73623i −0.0342819 + 0.0593780i
\(856\) 61.4415 2.10003
\(857\) −36.6332 −1.25137 −0.625683 0.780078i \(-0.715180\pi\)
−0.625683 + 0.780078i \(0.715180\pi\)
\(858\) 12.1693 + 21.0778i 0.415453 + 0.719585i
\(859\) 4.15804 + 7.20193i 0.141870 + 0.245727i 0.928201 0.372079i \(-0.121355\pi\)
−0.786331 + 0.617806i \(0.788022\pi\)
\(860\) 3.21910 5.57565i 0.109770 0.190128i
\(861\) 4.06270 + 7.03681i 0.138456 + 0.239814i
\(862\) −23.8556 −0.812526
\(863\) −2.94345 5.09820i −0.100196 0.173545i 0.811569 0.584256i \(-0.198614\pi\)
−0.911765 + 0.410711i \(0.865280\pi\)
\(864\) −7.24593 −0.246511
\(865\) −5.36283 9.28870i −0.182342 0.315825i
\(866\) −25.3821 43.9631i −0.862519 1.49393i
\(867\) 11.8988 20.6094i 0.404105 0.699931i
\(868\) 7.41983 12.8515i 0.251845 0.436209i
\(869\) 3.76028 0.127559
\(870\) 11.8997 0.403439
\(871\) 16.5804 28.7181i 0.561806 0.973076i
\(872\) −40.8679 + 70.7853i −1.38396 + 2.39709i
\(873\) −7.77274 −0.263067
\(874\) 47.7629 + 82.7278i 1.61560 + 2.79831i
\(875\) −1.63827 2.83756i −0.0553836 0.0959271i
\(876\) −43.9150 76.0630i −1.48375 2.56993i
\(877\) 18.9479 + 32.8187i 0.639825 + 1.10821i 0.985471 + 0.169844i \(0.0543265\pi\)
−0.345646 + 0.938365i \(0.612340\pi\)
\(878\) 31.1031 53.8722i 1.04968 1.81810i
\(879\) 53.7919 1.81435
\(880\) −1.83364 + 3.17596i −0.0618121 + 0.107062i
\(881\) 1.63106 0.0549517 0.0274758 0.999622i \(-0.491253\pi\)
0.0274758 + 0.999622i \(0.491253\pi\)
\(882\) −3.89765 6.75092i −0.131241 0.227315i
\(883\) −0.00895935 0.0155181i −0.000301506 0.000522224i 0.865875 0.500261i \(-0.166763\pi\)
−0.866176 + 0.499739i \(0.833429\pi\)
\(884\) −114.615 −3.85491
\(885\) 7.15932 0.240658
\(886\) 33.1722 + 57.4559i 1.11444 + 1.93027i
\(887\) 41.7725 1.40258 0.701291 0.712875i \(-0.252607\pi\)
0.701291 + 0.712875i \(0.252607\pi\)
\(888\) 5.93831 0.199277
\(889\) −3.88980 3.79876i −0.130460 0.127406i
\(890\) 0.917629 0.0307590
\(891\) −10.6034 −0.355227
\(892\) −18.1341 31.4092i −0.607175 1.05166i
\(893\) 61.4310 2.05571
\(894\) 65.8833 2.20347
\(895\) 3.52216 + 6.10055i 0.117733 + 0.203919i
\(896\) 4.34655 + 7.52844i 0.145208 + 0.251508i
\(897\) 60.1918 2.00975
\(898\) −17.9880 + 31.1562i −0.600269 + 1.03970i
\(899\) 26.6996 0.890480
\(900\) 4.32477 7.49072i 0.144159 0.249691i
\(901\) −2.18358 3.78207i −0.0727456 0.125999i
\(902\) −11.6879 20.2440i −0.389164 0.674052i
\(903\) 0.973304 + 1.68581i 0.0323895 + 0.0561003i
\(904\) 5.06363 + 8.77047i 0.168414 + 0.291702i
\(905\) 2.68247 0.0891684
\(906\) −39.4470 + 68.3242i −1.31054 + 2.26992i
\(907\) −14.5109 + 25.1336i −0.481825 + 0.834546i −0.999782 0.0208607i \(-0.993359\pi\)
0.517957 + 0.855407i \(0.326693\pi\)
\(908\) 53.9832 1.79150
\(909\) −4.04755 −0.134249
\(910\) 2.16726 3.75380i 0.0718438 0.124437i
\(911\) −10.6568 + 18.4582i −0.353077 + 0.611547i −0.986787 0.162023i \(-0.948198\pi\)
0.633710 + 0.773571i \(0.281531\pi\)
\(912\) 27.5939 + 47.7940i 0.913725 + 1.58262i
\(913\) 3.98791 + 6.90727i 0.131981 + 0.228597i
\(914\) −27.4060 −0.906510
\(915\) −6.69688 11.5993i −0.221392 0.383462i
\(916\) 3.27712 0.108279
\(917\) 1.09005 + 1.88803i 0.0359968 + 0.0623483i
\(918\) 31.9347 55.3125i 1.05400 1.82558i
\(919\) −28.3814 49.1581i −0.936218 1.62158i −0.772448 0.635078i \(-0.780968\pi\)
−0.163770 0.986499i \(-0.552365\pi\)
\(920\) 12.1872 + 21.1089i 0.401801 + 0.695940i
\(921\) −21.8532 −0.720087
\(922\) 30.4619 1.00321
\(923\) 5.30913 9.19568i 0.174752 0.302680i
\(924\) −1.94092 3.36178i −0.0638517 0.110594i
\(925\) 1.34318 2.32646i 0.0441635 0.0764935i
\(926\) 7.89184 13.6691i 0.259342 0.449194i
\(927\) 3.14998 0.103459
\(928\) 2.76496 4.78905i 0.0907641 0.157208i
\(929\) −37.2075 −1.22074 −0.610369 0.792117i \(-0.708979\pi\)
−0.610369 + 0.792117i \(0.708979\pi\)
\(930\) −12.2462 + 21.2110i −0.401568 + 0.695536i
\(931\) 20.4009 35.3353i 0.668611 1.15807i
\(932\) −22.4659 + 38.9120i −0.735894 + 1.27461i
\(933\) −12.9256 + 22.3879i −0.423167 + 0.732946i
\(934\) 21.6232 37.4524i 0.707532 1.22548i
\(935\) −2.03499 3.52470i −0.0665512 0.115270i
\(936\) 12.5307 0.409578
\(937\) −10.9887 19.0330i −0.358986 0.621782i 0.628806 0.777562i \(-0.283544\pi\)
−0.987792 + 0.155781i \(0.950211\pi\)
\(938\) −3.91915 + 6.78817i −0.127965 + 0.221641i
\(939\) −60.5267 −1.97521
\(940\) 30.2613 0.987014
\(941\) −19.9288 34.5178i −0.649662 1.12525i −0.983204 0.182512i \(-0.941577\pi\)
0.333542 0.942735i \(-0.391756\pi\)
\(942\) −45.3732 + 78.5886i −1.47834 + 2.56056i
\(943\) −57.8107 −1.88258
\(944\) 13.2122 22.8841i 0.430019 0.744815i
\(945\) 0.814909 + 1.41146i 0.0265090 + 0.0459149i
\(946\) −2.80007 4.84987i −0.0910382 0.157683i
\(947\) 3.68775 6.38736i 0.119836 0.207561i −0.799867 0.600178i \(-0.795097\pi\)
0.919702 + 0.392616i \(0.128430\pi\)
\(948\) 13.9376 24.1406i 0.452672 0.784051i
\(949\) −28.7804 49.8490i −0.934250 1.61817i
\(950\) 67.0953 2.17686
\(951\) −25.9349 44.9205i −0.840996 1.45665i
\(952\) 14.0330 0.454813
\(953\) −25.3168 −0.820092 −0.410046 0.912065i \(-0.634487\pi\)
−0.410046 + 0.912065i \(0.634487\pi\)
\(954\) 0.460881 + 0.798270i 0.0149216 + 0.0258449i
\(955\) 0.954287 0.0308800
\(956\) 45.4836 + 78.7800i 1.47105 + 2.54793i
\(957\) 3.49211 6.04852i 0.112884 0.195521i
\(958\) 39.5235 68.4566i 1.27695 2.21173i
\(959\) 0.813365 + 1.40879i 0.0262649 + 0.0454922i
\(960\) −4.01564 6.95529i −0.129604 0.224481i
\(961\) −11.9769 + 20.7446i −0.386352 + 0.669181i
\(962\) 7.51331 0.242239
\(963\) 2.67764 4.63780i 0.0862856 0.149451i
\(964\) 46.0426 + 79.7482i 1.48293 + 2.56852i
\(965\) 9.97109 0.320981
\(966\) −14.2277 −0.457768
\(967\) 16.4177 28.4363i 0.527958 0.914450i −0.471511 0.881860i \(-0.656291\pi\)
0.999469 0.0325895i \(-0.0103754\pi\)
\(968\) −26.4203 45.7613i −0.849180 1.47082i
\(969\) −61.2478 −1.96756
\(970\) −14.8506 25.7219i −0.476823 0.825881i
\(971\) 16.2185 28.0912i 0.520476 0.901490i −0.479241 0.877683i \(-0.659088\pi\)
0.999717 0.0238070i \(-0.00757872\pi\)
\(972\) −9.92944 + 17.1983i −0.318487 + 0.551635i
\(973\) −4.46099 + 7.72665i −0.143013 + 0.247705i
\(974\) −23.1024 + 40.0146i −0.740250 + 1.28215i
\(975\) 21.1387 36.6134i 0.676982 1.17257i
\(976\) −49.4350 −1.58238
\(977\) 2.70230 4.68052i 0.0864542 0.149743i −0.819556 0.572999i \(-0.805780\pi\)
0.906010 + 0.423256i \(0.139113\pi\)
\(978\) 51.5194 1.64741
\(979\) 0.269289 0.466422i 0.00860652 0.0149069i
\(980\) 10.0496 17.4064i 0.321022 0.556026i
\(981\) 3.56207 + 6.16968i 0.113728 + 0.196983i
\(982\) −51.1377 + 88.5730i −1.63187 + 2.82648i
\(983\) −7.21576 −0.230147 −0.115074 0.993357i \(-0.536710\pi\)
−0.115074 + 0.993357i \(0.536710\pi\)
\(984\) −89.7590 −2.86141
\(985\) 0.512407 + 0.887514i 0.0163266 + 0.0282786i
\(986\) 24.3717 + 42.2131i 0.776154 + 1.34434i
\(987\) −4.57479 + 7.92377i −0.145617 + 0.252216i
\(988\) 63.3105 + 109.657i 2.01418 + 3.48865i
\(989\) −13.8497 −0.440396
\(990\) 0.429519 + 0.743948i 0.0136510 + 0.0236442i
\(991\) −12.0502 −0.382787 −0.191394 0.981513i \(-0.561301\pi\)
−0.191394 + 0.981513i \(0.561301\pi\)
\(992\) 5.69091 + 9.85695i 0.180687 + 0.312959i
\(993\) 21.9597 + 38.0354i 0.696872 + 1.20702i
\(994\) −1.25493 + 2.17360i −0.0398040 + 0.0689426i
\(995\) −3.81288 + 6.60410i −0.120876 + 0.209364i
\(996\) 59.1253 1.87346
\(997\) 4.83338 0.153075 0.0765374 0.997067i \(-0.475614\pi\)
0.0765374 + 0.997067i \(0.475614\pi\)
\(998\) −4.48332 + 7.76534i −0.141917 + 0.245807i
\(999\) −1.41254 + 2.44659i −0.0446907 + 0.0774066i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 127.2.c.a.107.1 yes 18
127.19 even 3 inner 127.2.c.a.19.1 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
127.2.c.a.19.1 18 127.19 even 3 inner
127.2.c.a.107.1 yes 18 1.1 even 1 trivial