Properties

Label 1260.2.cj.c.209.3
Level $1260$
Weight $2$
Character 1260.209
Analytic conductor $10.061$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1260,2,Mod(209,1260)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1260.209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1260, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1, 3, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.cj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80,0,0,0,0,0,0,0,4,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0611506547\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 209.3
Character \(\chi\) \(=\) 1260.209
Dual form 1260.2.cj.c.1049.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.69802 - 0.341647i) q^{3} +(-2.12845 - 0.685343i) q^{5} +(-2.64558 - 0.0305430i) q^{7} +(2.76656 + 1.16025i) q^{9} +(3.70953 + 2.14170i) q^{11} +(1.37914 + 2.38874i) q^{13} +(3.38001 + 1.89091i) q^{15} -2.13278i q^{17} +0.346129i q^{19} +(4.48181 + 0.955714i) q^{21} +(1.20329 + 2.08415i) q^{23} +(4.06061 + 2.91744i) q^{25} +(-4.30128 - 2.91531i) q^{27} +(-3.56111 - 2.05601i) q^{29} +(-2.72485 + 1.57319i) q^{31} +(-5.56716 - 4.90400i) q^{33} +(5.61005 + 1.87814i) q^{35} -8.64188i q^{37} +(-1.52571 - 4.52731i) q^{39} +(-4.48722 - 7.77210i) q^{41} +(-8.92726 - 5.15416i) q^{43} +(-5.09331 - 4.36557i) q^{45} +(1.39333 + 0.804437i) q^{47} +(6.99813 + 0.161608i) q^{49} +(-0.728657 + 3.62151i) q^{51} +8.53014 q^{53} +(-6.42776 - 7.10081i) q^{55} +(0.118254 - 0.587735i) q^{57} +(0.598881 + 1.03729i) q^{59} +(-7.25327 - 4.18768i) q^{61} +(-7.28369 - 3.15402i) q^{63} +(-1.29833 - 6.02951i) q^{65} +(-6.26283 + 3.61585i) q^{67} +(-1.33116 - 3.95004i) q^{69} -15.5677i q^{71} -7.73314 q^{73} +(-5.89827 - 6.34117i) q^{75} +(-9.74843 - 5.77933i) q^{77} +(-5.00745 + 8.67315i) q^{79} +(6.30765 + 6.41977i) q^{81} +(4.29606 + 2.48033i) q^{83} +(-1.46169 + 4.53952i) q^{85} +(5.34441 + 4.70779i) q^{87} +17.3907 q^{89} +(-3.57566 - 6.36172i) q^{91} +(5.16433 - 1.74038i) q^{93} +(0.237217 - 0.736719i) q^{95} +(7.76586 - 13.4509i) q^{97} +(7.77773 + 10.2291i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 4 q^{9} + 24 q^{11} + 12 q^{15} + 2 q^{21} - 40 q^{25} + 12 q^{29} + 32 q^{39} + 62 q^{49} - 32 q^{51} - 36 q^{65} + 16 q^{79} - 28 q^{81} + 10 q^{85} + 28 q^{91} + 60 q^{95} + 124 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(757\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.69802 0.341647i −0.980353 0.197250i
\(4\) 0 0
\(5\) −2.12845 0.685343i −0.951872 0.306495i
\(6\) 0 0
\(7\) −2.64558 0.0305430i −0.999933 0.0115442i
\(8\) 0 0
\(9\) 2.76656 + 1.16025i 0.922185 + 0.386749i
\(10\) 0 0
\(11\) 3.70953 + 2.14170i 1.11847 + 0.645747i 0.941009 0.338382i \(-0.109879\pi\)
0.177457 + 0.984128i \(0.443213\pi\)
\(12\) 0 0
\(13\) 1.37914 + 2.38874i 0.382505 + 0.662518i 0.991420 0.130718i \(-0.0417282\pi\)
−0.608915 + 0.793236i \(0.708395\pi\)
\(14\) 0 0
\(15\) 3.38001 + 1.89091i 0.872715 + 0.488230i
\(16\) 0 0
\(17\) 2.13278i 0.517275i −0.965974 0.258637i \(-0.916726\pi\)
0.965974 0.258637i \(-0.0832735\pi\)
\(18\) 0 0
\(19\) 0.346129i 0.0794075i 0.999211 + 0.0397038i \(0.0126414\pi\)
−0.999211 + 0.0397038i \(0.987359\pi\)
\(20\) 0 0
\(21\) 4.48181 + 0.955714i 0.978011 + 0.208554i
\(22\) 0 0
\(23\) 1.20329 + 2.08415i 0.250903 + 0.434576i 0.963775 0.266718i \(-0.0859393\pi\)
−0.712872 + 0.701294i \(0.752606\pi\)
\(24\) 0 0
\(25\) 4.06061 + 2.91744i 0.812122 + 0.583488i
\(26\) 0 0
\(27\) −4.30128 2.91531i −0.827781 0.561051i
\(28\) 0 0
\(29\) −3.56111 2.05601i −0.661281 0.381791i 0.131484 0.991318i \(-0.458026\pi\)
−0.792765 + 0.609527i \(0.791359\pi\)
\(30\) 0 0
\(31\) −2.72485 + 1.57319i −0.489397 + 0.282554i −0.724324 0.689459i \(-0.757848\pi\)
0.234927 + 0.972013i \(0.424515\pi\)
\(32\) 0 0
\(33\) −5.56716 4.90400i −0.969119 0.853677i
\(34\) 0 0
\(35\) 5.61005 + 1.87814i 0.948271 + 0.317463i
\(36\) 0 0
\(37\) 8.64188i 1.42072i −0.703840 0.710358i \(-0.748533\pi\)
0.703840 0.710358i \(-0.251467\pi\)
\(38\) 0 0
\(39\) −1.52571 4.52731i −0.244308 0.724950i
\(40\) 0 0
\(41\) −4.48722 7.77210i −0.700786 1.21380i −0.968191 0.250213i \(-0.919499\pi\)
0.267404 0.963584i \(-0.413834\pi\)
\(42\) 0 0
\(43\) −8.92726 5.15416i −1.36139 0.786001i −0.371585 0.928399i \(-0.621186\pi\)
−0.989810 + 0.142398i \(0.954519\pi\)
\(44\) 0 0
\(45\) −5.09331 4.36557i −0.759266 0.650780i
\(46\) 0 0
\(47\) 1.39333 + 0.804437i 0.203237 + 0.117339i 0.598165 0.801373i \(-0.295897\pi\)
−0.394927 + 0.918712i \(0.629230\pi\)
\(48\) 0 0
\(49\) 6.99813 + 0.161608i 0.999733 + 0.0230868i
\(50\) 0 0
\(51\) −0.728657 + 3.62151i −0.102032 + 0.507112i
\(52\) 0 0
\(53\) 8.53014 1.17170 0.585852 0.810418i \(-0.300760\pi\)
0.585852 + 0.810418i \(0.300760\pi\)
\(54\) 0 0
\(55\) −6.42776 7.10081i −0.866719 0.957473i
\(56\) 0 0
\(57\) 0.118254 0.587735i 0.0156631 0.0778474i
\(58\) 0 0
\(59\) 0.598881 + 1.03729i 0.0779676 + 0.135044i 0.902373 0.430956i \(-0.141824\pi\)
−0.824405 + 0.566000i \(0.808490\pi\)
\(60\) 0 0
\(61\) −7.25327 4.18768i −0.928686 0.536177i −0.0422904 0.999105i \(-0.513465\pi\)
−0.886396 + 0.462928i \(0.846799\pi\)
\(62\) 0 0
\(63\) −7.28369 3.15402i −0.917659 0.397369i
\(64\) 0 0
\(65\) −1.29833 6.02951i −0.161038 0.747868i
\(66\) 0 0
\(67\) −6.26283 + 3.61585i −0.765126 + 0.441746i −0.831133 0.556073i \(-0.812307\pi\)
0.0660070 + 0.997819i \(0.478974\pi\)
\(68\) 0 0
\(69\) −1.33116 3.95004i −0.160253 0.475528i
\(70\) 0 0
\(71\) 15.5677i 1.84755i −0.382935 0.923775i \(-0.625087\pi\)
0.382935 0.923775i \(-0.374913\pi\)
\(72\) 0 0
\(73\) −7.73314 −0.905096 −0.452548 0.891740i \(-0.649485\pi\)
−0.452548 + 0.891740i \(0.649485\pi\)
\(74\) 0 0
\(75\) −5.89827 6.34117i −0.681074 0.732215i
\(76\) 0 0
\(77\) −9.74843 5.77933i −1.11094 0.658616i
\(78\) 0 0
\(79\) −5.00745 + 8.67315i −0.563382 + 0.975806i 0.433816 + 0.901001i \(0.357167\pi\)
−0.997198 + 0.0748046i \(0.976167\pi\)
\(80\) 0 0
\(81\) 6.30765 + 6.41977i 0.700851 + 0.713308i
\(82\) 0 0
\(83\) 4.29606 + 2.48033i 0.471554 + 0.272252i 0.716890 0.697186i \(-0.245565\pi\)
−0.245336 + 0.969438i \(0.578898\pi\)
\(84\) 0 0
\(85\) −1.46169 + 4.53952i −0.158542 + 0.492380i
\(86\) 0 0
\(87\) 5.34441 + 4.70779i 0.572981 + 0.504728i
\(88\) 0 0
\(89\) 17.3907 1.84341 0.921706 0.387888i \(-0.126795\pi\)
0.921706 + 0.387888i \(0.126795\pi\)
\(90\) 0 0
\(91\) −3.57566 6.36172i −0.374831 0.666889i
\(92\) 0 0
\(93\) 5.16433 1.74038i 0.535516 0.180469i
\(94\) 0 0
\(95\) 0.237217 0.736719i 0.0243380 0.0755858i
\(96\) 0 0
\(97\) 7.76586 13.4509i 0.788503 1.36573i −0.138380 0.990379i \(-0.544190\pi\)
0.926884 0.375349i \(-0.122477\pi\)
\(98\) 0 0
\(99\) 7.77773 + 10.2291i 0.781691 + 1.02806i
\(100\) 0 0
\(101\) 5.42303 9.39296i 0.539611 0.934634i −0.459313 0.888274i \(-0.651904\pi\)
0.998925 0.0463601i \(-0.0147622\pi\)
\(102\) 0 0
\(103\) 0.0964875 + 0.167121i 0.00950720 + 0.0164669i 0.870740 0.491744i \(-0.163640\pi\)
−0.861233 + 0.508211i \(0.830307\pi\)
\(104\) 0 0
\(105\) −8.88432 5.10577i −0.867021 0.498272i
\(106\) 0 0
\(107\) 1.49878 0.144892 0.0724461 0.997372i \(-0.476919\pi\)
0.0724461 + 0.997372i \(0.476919\pi\)
\(108\) 0 0
\(109\) −11.6461 −1.11550 −0.557748 0.830011i \(-0.688334\pi\)
−0.557748 + 0.830011i \(0.688334\pi\)
\(110\) 0 0
\(111\) −2.95247 + 14.6741i −0.280236 + 1.39280i
\(112\) 0 0
\(113\) 1.94798 + 3.37400i 0.183251 + 0.317399i 0.942986 0.332834i \(-0.108005\pi\)
−0.759735 + 0.650233i \(0.774671\pi\)
\(114\) 0 0
\(115\) −1.13278 5.26068i −0.105632 0.490561i
\(116\) 0 0
\(117\) 1.04394 + 8.20873i 0.0965122 + 0.758897i
\(118\) 0 0
\(119\) −0.0651415 + 5.64243i −0.00597151 + 0.517241i
\(120\) 0 0
\(121\) 3.67376 + 6.36314i 0.333978 + 0.578467i
\(122\) 0 0
\(123\) 4.96409 + 14.7302i 0.447597 + 1.32818i
\(124\) 0 0
\(125\) −6.64336 8.99254i −0.594201 0.804317i
\(126\) 0 0
\(127\) 15.7059i 1.39367i −0.717232 0.696835i \(-0.754591\pi\)
0.717232 0.696835i \(-0.245409\pi\)
\(128\) 0 0
\(129\) 13.3978 + 11.8018i 1.17961 + 1.03909i
\(130\) 0 0
\(131\) 1.10830 + 1.91963i 0.0968325 + 0.167719i 0.910372 0.413791i \(-0.135796\pi\)
−0.813539 + 0.581510i \(0.802462\pi\)
\(132\) 0 0
\(133\) 0.0105718 0.915711i 0.000916693 0.0794022i
\(134\) 0 0
\(135\) 7.15707 + 9.15294i 0.615983 + 0.787760i
\(136\) 0 0
\(137\) 9.89083 17.1314i 0.845030 1.46364i −0.0405642 0.999177i \(-0.512916\pi\)
0.885595 0.464459i \(-0.153751\pi\)
\(138\) 0 0
\(139\) −5.87212 + 3.39027i −0.498066 + 0.287559i −0.727915 0.685668i \(-0.759510\pi\)
0.229848 + 0.973226i \(0.426177\pi\)
\(140\) 0 0
\(141\) −2.09106 1.84198i −0.176099 0.155122i
\(142\) 0 0
\(143\) 11.8148i 0.988005i
\(144\) 0 0
\(145\) 6.17058 + 6.81669i 0.512439 + 0.566096i
\(146\) 0 0
\(147\) −11.8278 2.66530i −0.975538 0.219830i
\(148\) 0 0
\(149\) −7.13187 + 4.11759i −0.584265 + 0.337326i −0.762827 0.646603i \(-0.776189\pi\)
0.178561 + 0.983929i \(0.442856\pi\)
\(150\) 0 0
\(151\) −4.52849 + 7.84358i −0.368524 + 0.638302i −0.989335 0.145658i \(-0.953470\pi\)
0.620811 + 0.783960i \(0.286803\pi\)
\(152\) 0 0
\(153\) 2.47455 5.90045i 0.200056 0.477023i
\(154\) 0 0
\(155\) 6.87788 1.48101i 0.552445 0.118957i
\(156\) 0 0
\(157\) −0.367182 0.635978i −0.0293043 0.0507566i 0.851001 0.525164i \(-0.175996\pi\)
−0.880306 + 0.474407i \(0.842663\pi\)
\(158\) 0 0
\(159\) −14.4844 2.91429i −1.14868 0.231118i
\(160\) 0 0
\(161\) −3.11973 5.55053i −0.245869 0.437443i
\(162\) 0 0
\(163\) 1.08999i 0.0853745i −0.999088 0.0426873i \(-0.986408\pi\)
0.999088 0.0426873i \(-0.0135919\pi\)
\(164\) 0 0
\(165\) 8.48851 + 14.2533i 0.660830 + 1.10962i
\(166\) 0 0
\(167\) 1.67239 0.965552i 0.129413 0.0747167i −0.433896 0.900963i \(-0.642861\pi\)
0.563309 + 0.826246i \(0.309528\pi\)
\(168\) 0 0
\(169\) 2.69594 4.66951i 0.207380 0.359193i
\(170\) 0 0
\(171\) −0.401595 + 0.957586i −0.0307108 + 0.0732284i
\(172\) 0 0
\(173\) −7.68318 4.43589i −0.584141 0.337254i 0.178636 0.983915i \(-0.442832\pi\)
−0.762777 + 0.646661i \(0.776165\pi\)
\(174\) 0 0
\(175\) −10.6535 7.84233i −0.805332 0.592824i
\(176\) 0 0
\(177\) −0.662525 1.96595i −0.0497984 0.147770i
\(178\) 0 0
\(179\) 16.3073i 1.21886i −0.792839 0.609431i \(-0.791398\pi\)
0.792839 0.609431i \(-0.208602\pi\)
\(180\) 0 0
\(181\) 23.6833i 1.76037i −0.474633 0.880184i \(-0.657419\pi\)
0.474633 0.880184i \(-0.342581\pi\)
\(182\) 0 0
\(183\) 10.8855 + 9.58882i 0.804680 + 0.708826i
\(184\) 0 0
\(185\) −5.92265 + 18.3938i −0.435442 + 1.35234i
\(186\) 0 0
\(187\) 4.56777 7.91162i 0.334029 0.578555i
\(188\) 0 0
\(189\) 11.2903 + 7.84404i 0.821249 + 0.570570i
\(190\) 0 0
\(191\) −9.28174 5.35881i −0.671603 0.387750i 0.125081 0.992147i \(-0.460081\pi\)
−0.796684 + 0.604396i \(0.793414\pi\)
\(192\) 0 0
\(193\) −9.09405 + 5.25045i −0.654604 + 0.377936i −0.790218 0.612826i \(-0.790033\pi\)
0.135614 + 0.990762i \(0.456699\pi\)
\(194\) 0 0
\(195\) 0.144626 + 10.6818i 0.0103569 + 0.764940i
\(196\) 0 0
\(197\) −13.3390 −0.950366 −0.475183 0.879887i \(-0.657618\pi\)
−0.475183 + 0.879887i \(0.657618\pi\)
\(198\) 0 0
\(199\) 0.909948i 0.0645045i 0.999480 + 0.0322523i \(0.0102680\pi\)
−0.999480 + 0.0322523i \(0.989732\pi\)
\(200\) 0 0
\(201\) 11.8698 4.00011i 0.837228 0.282146i
\(202\) 0 0
\(203\) 9.35839 + 5.54809i 0.656830 + 0.389399i
\(204\) 0 0
\(205\) 4.22428 + 19.6178i 0.295037 + 1.37017i
\(206\) 0 0
\(207\) 0.910826 + 7.16203i 0.0633068 + 0.497796i
\(208\) 0 0
\(209\) −0.741305 + 1.28398i −0.0512772 + 0.0888146i
\(210\) 0 0
\(211\) −4.59148 7.95268i −0.316091 0.547485i 0.663578 0.748107i \(-0.269037\pi\)
−0.979669 + 0.200622i \(0.935704\pi\)
\(212\) 0 0
\(213\) −5.31867 + 26.4344i −0.364429 + 1.81125i
\(214\) 0 0
\(215\) 15.4689 + 17.0886i 1.05497 + 1.16543i
\(216\) 0 0
\(217\) 7.25684 4.07877i 0.492627 0.276885i
\(218\) 0 0
\(219\) 13.1310 + 2.64200i 0.887313 + 0.178530i
\(220\) 0 0
\(221\) 5.09466 2.94140i 0.342704 0.197860i
\(222\) 0 0
\(223\) 5.22090 9.04286i 0.349617 0.605555i −0.636564 0.771224i \(-0.719645\pi\)
0.986181 + 0.165669i \(0.0529783\pi\)
\(224\) 0 0
\(225\) 7.84895 + 12.7826i 0.523264 + 0.852171i
\(226\) 0 0
\(227\) 10.8980 + 6.29195i 0.723324 + 0.417611i 0.815975 0.578087i \(-0.196201\pi\)
−0.0926508 + 0.995699i \(0.529534\pi\)
\(228\) 0 0
\(229\) −19.5072 + 11.2625i −1.28907 + 0.744247i −0.978489 0.206298i \(-0.933858\pi\)
−0.310585 + 0.950546i \(0.600525\pi\)
\(230\) 0 0
\(231\) 14.5786 + 13.1439i 0.959199 + 0.864808i
\(232\) 0 0
\(233\) 16.8342 1.10285 0.551424 0.834225i \(-0.314085\pi\)
0.551424 + 0.834225i \(0.314085\pi\)
\(234\) 0 0
\(235\) −2.41431 2.66711i −0.157492 0.173983i
\(236\) 0 0
\(237\) 11.4659 13.0164i 0.744791 0.845508i
\(238\) 0 0
\(239\) −6.36365 + 3.67406i −0.411631 + 0.237655i −0.691490 0.722386i \(-0.743045\pi\)
0.279860 + 0.960041i \(0.409712\pi\)
\(240\) 0 0
\(241\) 24.2344 + 13.9917i 1.56107 + 0.901287i 0.997149 + 0.0754616i \(0.0240430\pi\)
0.563926 + 0.825825i \(0.309290\pi\)
\(242\) 0 0
\(243\) −8.51724 13.0559i −0.546381 0.837537i
\(244\) 0 0
\(245\) −14.7844 5.14010i −0.944543 0.328389i
\(246\) 0 0
\(247\) −0.826814 + 0.477361i −0.0526089 + 0.0303738i
\(248\) 0 0
\(249\) −6.44741 5.67940i −0.408588 0.359917i
\(250\) 0 0
\(251\) −25.9957 −1.64083 −0.820417 0.571765i \(-0.806259\pi\)
−0.820417 + 0.571765i \(0.806259\pi\)
\(252\) 0 0
\(253\) 10.3083i 0.648078i
\(254\) 0 0
\(255\) 4.03288 7.20882i 0.252549 0.451434i
\(256\) 0 0
\(257\) 22.1950 12.8143i 1.38449 0.799335i 0.391802 0.920050i \(-0.371852\pi\)
0.992687 + 0.120715i \(0.0385186\pi\)
\(258\) 0 0
\(259\) −0.263949 + 22.8627i −0.0164010 + 1.42062i
\(260\) 0 0
\(261\) −7.46653 9.81982i −0.462167 0.607832i
\(262\) 0 0
\(263\) −2.08441 + 3.61030i −0.128530 + 0.222621i −0.923107 0.384542i \(-0.874359\pi\)
0.794577 + 0.607163i \(0.207693\pi\)
\(264\) 0 0
\(265\) −18.1560 5.84607i −1.11531 0.359121i
\(266\) 0 0
\(267\) −29.5298 5.94148i −1.80720 0.363613i
\(268\) 0 0
\(269\) 15.6718 0.955525 0.477762 0.878489i \(-0.341448\pi\)
0.477762 + 0.878489i \(0.341448\pi\)
\(270\) 0 0
\(271\) 0.149723i 0.00909502i 0.999990 + 0.00454751i \(0.00144752\pi\)
−0.999990 + 0.00454751i \(0.998552\pi\)
\(272\) 0 0
\(273\) 3.89809 + 12.0239i 0.235923 + 0.727723i
\(274\) 0 0
\(275\) 8.81469 + 19.5189i 0.531546 + 1.17704i
\(276\) 0 0
\(277\) −20.5905 11.8879i −1.23717 0.714278i −0.268651 0.963238i \(-0.586578\pi\)
−0.968514 + 0.248960i \(0.919911\pi\)
\(278\) 0 0
\(279\) −9.36374 + 1.19083i −0.560592 + 0.0712929i
\(280\) 0 0
\(281\) −9.40064 5.42746i −0.560795 0.323775i 0.192669 0.981264i \(-0.438286\pi\)
−0.753465 + 0.657488i \(0.771619\pi\)
\(282\) 0 0
\(283\) 16.6100 + 28.7694i 0.987363 + 1.71016i 0.630923 + 0.775846i \(0.282677\pi\)
0.356441 + 0.934318i \(0.383990\pi\)
\(284\) 0 0
\(285\) −0.654498 + 1.16992i −0.0387691 + 0.0693001i
\(286\) 0 0
\(287\) 11.6339 + 20.6987i 0.686727 + 1.22181i
\(288\) 0 0
\(289\) 12.4513 0.732427
\(290\) 0 0
\(291\) −17.7820 + 20.1867i −1.04240 + 1.18336i
\(292\) 0 0
\(293\) 5.51318 3.18304i 0.322084 0.185955i −0.330237 0.943898i \(-0.607129\pi\)
0.652321 + 0.757943i \(0.273795\pi\)
\(294\) 0 0
\(295\) −0.563788 2.61826i −0.0328250 0.152441i
\(296\) 0 0
\(297\) −9.71201 20.0265i −0.563548 1.16205i
\(298\) 0 0
\(299\) −3.31900 + 5.74868i −0.191943 + 0.332455i
\(300\) 0 0
\(301\) 23.4603 + 13.9084i 1.35223 + 0.801665i
\(302\) 0 0
\(303\) −12.4175 + 14.0967i −0.713366 + 0.809834i
\(304\) 0 0
\(305\) 12.5682 + 13.8842i 0.719655 + 0.795010i
\(306\) 0 0
\(307\) 26.6866 1.52309 0.761543 0.648115i \(-0.224442\pi\)
0.761543 + 0.648115i \(0.224442\pi\)
\(308\) 0 0
\(309\) −0.106741 0.316740i −0.00607231 0.0180187i
\(310\) 0 0
\(311\) 10.1102 + 17.5114i 0.573297 + 0.992979i 0.996224 + 0.0868156i \(0.0276691\pi\)
−0.422928 + 0.906163i \(0.638998\pi\)
\(312\) 0 0
\(313\) 12.2020 21.1345i 0.689698 1.19459i −0.282238 0.959345i \(-0.591077\pi\)
0.971936 0.235247i \(-0.0755900\pi\)
\(314\) 0 0
\(315\) 13.3414 + 11.7050i 0.751703 + 0.659502i
\(316\) 0 0
\(317\) −2.23508 + 3.87127i −0.125534 + 0.217432i −0.921942 0.387329i \(-0.873398\pi\)
0.796407 + 0.604761i \(0.206731\pi\)
\(318\) 0 0
\(319\) −8.80670 15.2537i −0.493081 0.854041i
\(320\) 0 0
\(321\) −2.54496 0.512052i −0.142046 0.0285800i
\(322\) 0 0
\(323\) 0.738217 0.0410755
\(324\) 0 0
\(325\) −1.36885 + 13.7233i −0.0759304 + 0.761232i
\(326\) 0 0
\(327\) 19.7754 + 3.97886i 1.09358 + 0.220031i
\(328\) 0 0
\(329\) −3.66158 2.17075i −0.201869 0.119678i
\(330\) 0 0
\(331\) −5.97922 + 10.3563i −0.328648 + 0.569235i −0.982244 0.187609i \(-0.939926\pi\)
0.653596 + 0.756844i \(0.273260\pi\)
\(332\) 0 0
\(333\) 10.0267 23.9082i 0.549461 1.31016i
\(334\) 0 0
\(335\) 15.8082 3.40397i 0.863695 0.185978i
\(336\) 0 0
\(337\) −13.7406 + 7.93316i −0.748500 + 0.432147i −0.825152 0.564911i \(-0.808910\pi\)
0.0766518 + 0.997058i \(0.475577\pi\)
\(338\) 0 0
\(339\) −2.15500 6.39465i −0.117043 0.347309i
\(340\) 0 0
\(341\) −13.4772 −0.729833
\(342\) 0 0
\(343\) −18.5092 0.641289i −0.999400 0.0346263i
\(344\) 0 0
\(345\) 0.126185 + 9.31976i 0.00679356 + 0.501759i
\(346\) 0 0
\(347\) −9.11589 15.7892i −0.489367 0.847608i 0.510559 0.859843i \(-0.329439\pi\)
−0.999925 + 0.0122352i \(0.996105\pi\)
\(348\) 0 0
\(349\) −15.6374 9.02828i −0.837053 0.483273i 0.0192087 0.999815i \(-0.493885\pi\)
−0.856261 + 0.516543i \(0.827219\pi\)
\(350\) 0 0
\(351\) 1.03185 14.2953i 0.0550763 0.763024i
\(352\) 0 0
\(353\) 9.63520 + 5.56289i 0.512830 + 0.296083i 0.733996 0.679154i \(-0.237653\pi\)
−0.221166 + 0.975236i \(0.570986\pi\)
\(354\) 0 0
\(355\) −10.6692 + 33.1352i −0.566265 + 1.75863i
\(356\) 0 0
\(357\) 2.03833 9.55871i 0.107880 0.505901i
\(358\) 0 0
\(359\) 23.2660i 1.22793i −0.789332 0.613966i \(-0.789573\pi\)
0.789332 0.613966i \(-0.210427\pi\)
\(360\) 0 0
\(361\) 18.8802 0.993694
\(362\) 0 0
\(363\) −4.06418 12.0599i −0.213314 0.632979i
\(364\) 0 0
\(365\) 16.4596 + 5.29985i 0.861535 + 0.277407i
\(366\) 0 0
\(367\) 2.75639 4.77421i 0.143883 0.249212i −0.785073 0.619403i \(-0.787375\pi\)
0.928955 + 0.370191i \(0.120708\pi\)
\(368\) 0 0
\(369\) −3.39660 26.7082i −0.176820 1.39037i
\(370\) 0 0
\(371\) −22.5671 0.260536i −1.17163 0.0135263i
\(372\) 0 0
\(373\) 8.15009 4.70546i 0.421996 0.243639i −0.273935 0.961748i \(-0.588325\pi\)
0.695931 + 0.718109i \(0.254992\pi\)
\(374\) 0 0
\(375\) 8.20831 + 17.5392i 0.423875 + 0.905721i
\(376\) 0 0
\(377\) 11.3421i 0.584148i
\(378\) 0 0
\(379\) −10.1546 −0.521607 −0.260804 0.965392i \(-0.583988\pi\)
−0.260804 + 0.965392i \(0.583988\pi\)
\(380\) 0 0
\(381\) −5.36585 + 26.6689i −0.274901 + 1.36629i
\(382\) 0 0
\(383\) 0.167578 0.0967510i 0.00856282 0.00494374i −0.495712 0.868487i \(-0.665093\pi\)
0.504275 + 0.863543i \(0.331760\pi\)
\(384\) 0 0
\(385\) 16.7882 + 18.9820i 0.855608 + 0.967414i
\(386\) 0 0
\(387\) −18.7177 24.6171i −0.951472 1.25136i
\(388\) 0 0
\(389\) 15.6085 + 9.01156i 0.791381 + 0.456904i 0.840448 0.541891i \(-0.182292\pi\)
−0.0490675 + 0.998795i \(0.515625\pi\)
\(390\) 0 0
\(391\) 4.44504 2.56634i 0.224795 0.129786i
\(392\) 0 0
\(393\) −1.22608 3.63822i −0.0618476 0.183524i
\(394\) 0 0
\(395\) 16.6022 15.0286i 0.835347 0.756169i
\(396\) 0 0
\(397\) −31.1532 −1.56353 −0.781766 0.623572i \(-0.785681\pi\)
−0.781766 + 0.623572i \(0.785681\pi\)
\(398\) 0 0
\(399\) −0.330801 + 1.55129i −0.0165608 + 0.0776614i
\(400\) 0 0
\(401\) 1.35629 0.783054i 0.0677298 0.0391038i −0.465753 0.884915i \(-0.654216\pi\)
0.533482 + 0.845811i \(0.320883\pi\)
\(402\) 0 0
\(403\) −7.51590 4.33931i −0.374394 0.216156i
\(404\) 0 0
\(405\) −9.02579 17.9871i −0.448495 0.893785i
\(406\) 0 0
\(407\) 18.5083 32.0573i 0.917423 1.58902i
\(408\) 0 0
\(409\) −12.9573 + 7.48092i −0.640699 + 0.369908i −0.784884 0.619643i \(-0.787277\pi\)
0.144185 + 0.989551i \(0.453944\pi\)
\(410\) 0 0
\(411\) −22.6477 + 25.7103i −1.11713 + 1.26820i
\(412\) 0 0
\(413\) −1.55270 2.76252i −0.0764035 0.135935i
\(414\) 0 0
\(415\) −7.44408 8.22355i −0.365416 0.403678i
\(416\) 0 0
\(417\) 11.1293 3.75056i 0.545002 0.183666i
\(418\) 0 0
\(419\) −11.9778 20.7462i −0.585155 1.01352i −0.994856 0.101299i \(-0.967700\pi\)
0.409701 0.912220i \(-0.365633\pi\)
\(420\) 0 0
\(421\) −14.6525 + 25.3789i −0.714121 + 1.23689i 0.249176 + 0.968458i \(0.419840\pi\)
−0.963298 + 0.268436i \(0.913493\pi\)
\(422\) 0 0
\(423\) 2.92137 + 3.84212i 0.142042 + 0.186810i
\(424\) 0 0
\(425\) 6.22225 8.66039i 0.301824 0.420090i
\(426\) 0 0
\(427\) 19.0612 + 11.3004i 0.922435 + 0.546862i
\(428\) 0 0
\(429\) 4.03649 20.0618i 0.194884 0.968594i
\(430\) 0 0
\(431\) 3.61546i 0.174151i −0.996202 0.0870754i \(-0.972248\pi\)
0.996202 0.0870754i \(-0.0277521\pi\)
\(432\) 0 0
\(433\) −0.611625 −0.0293928 −0.0146964 0.999892i \(-0.504678\pi\)
−0.0146964 + 0.999892i \(0.504678\pi\)
\(434\) 0 0
\(435\) −8.14887 13.6830i −0.390709 0.656052i
\(436\) 0 0
\(437\) −0.721386 + 0.416493i −0.0345086 + 0.0199235i
\(438\) 0 0
\(439\) 5.69916 + 3.29041i 0.272006 + 0.157043i 0.629799 0.776758i \(-0.283137\pi\)
−0.357793 + 0.933801i \(0.616471\pi\)
\(440\) 0 0
\(441\) 19.1732 + 8.56666i 0.913010 + 0.407936i
\(442\) 0 0
\(443\) −17.5041 + 30.3181i −0.831647 + 1.44045i 0.0650847 + 0.997880i \(0.479268\pi\)
−0.896732 + 0.442575i \(0.854065\pi\)
\(444\) 0 0
\(445\) −37.0153 11.9186i −1.75469 0.564996i
\(446\) 0 0
\(447\) 13.5168 4.55517i 0.639324 0.215452i
\(448\) 0 0
\(449\) 34.6774i 1.63653i 0.574841 + 0.818265i \(0.305064\pi\)
−0.574841 + 0.818265i \(0.694936\pi\)
\(450\) 0 0
\(451\) 38.4411i 1.81012i
\(452\) 0 0
\(453\) 10.3692 11.7714i 0.487188 0.553070i
\(454\) 0 0
\(455\) 3.25066 + 15.9912i 0.152393 + 0.749677i
\(456\) 0 0
\(457\) −0.773990 0.446863i −0.0362057 0.0209034i 0.481788 0.876288i \(-0.339988\pi\)
−0.517994 + 0.855384i \(0.673321\pi\)
\(458\) 0 0
\(459\) −6.21771 + 9.17367i −0.290218 + 0.428190i
\(460\) 0 0
\(461\) −9.10914 + 15.7775i −0.424255 + 0.734831i −0.996351 0.0853557i \(-0.972797\pi\)
0.572095 + 0.820187i \(0.306131\pi\)
\(462\) 0 0
\(463\) 2.63661 1.52225i 0.122534 0.0707448i −0.437480 0.899228i \(-0.644129\pi\)
0.560014 + 0.828483i \(0.310796\pi\)
\(464\) 0 0
\(465\) −12.1848 + 0.164976i −0.565056 + 0.00765056i
\(466\) 0 0
\(467\) 33.2644i 1.53929i −0.638471 0.769646i \(-0.720433\pi\)
0.638471 0.769646i \(-0.279567\pi\)
\(468\) 0 0
\(469\) 16.6792 9.37470i 0.770175 0.432884i
\(470\) 0 0
\(471\) 0.406204 + 1.20535i 0.0187169 + 0.0555397i
\(472\) 0 0
\(473\) −22.0773 38.2390i −1.01512 1.75823i
\(474\) 0 0
\(475\) −1.00981 + 1.40550i −0.0463333 + 0.0644886i
\(476\) 0 0
\(477\) 23.5991 + 9.89706i 1.08053 + 0.453155i
\(478\) 0 0
\(479\) 6.15474 10.6603i 0.281217 0.487083i −0.690467 0.723363i \(-0.742595\pi\)
0.971685 + 0.236281i \(0.0759284\pi\)
\(480\) 0 0
\(481\) 20.6432 11.9184i 0.941250 0.543431i
\(482\) 0 0
\(483\) 3.40104 + 10.4908i 0.154753 + 0.477347i
\(484\) 0 0
\(485\) −25.7477 + 23.3072i −1.16914 + 1.05833i
\(486\) 0 0
\(487\) 9.64903i 0.437239i −0.975810 0.218620i \(-0.929845\pi\)
0.975810 0.218620i \(-0.0701554\pi\)
\(488\) 0 0
\(489\) −0.372391 + 1.85082i −0.0168401 + 0.0836972i
\(490\) 0 0
\(491\) 26.2176 15.1367i 1.18318 0.683111i 0.226434 0.974026i \(-0.427293\pi\)
0.956749 + 0.290916i \(0.0939599\pi\)
\(492\) 0 0
\(493\) −4.38501 + 7.59506i −0.197491 + 0.342064i
\(494\) 0 0
\(495\) −9.54407 27.1026i −0.428974 1.21817i
\(496\) 0 0
\(497\) −0.475485 + 41.1856i −0.0213284 + 1.84743i
\(498\) 0 0
\(499\) −14.4570 25.0403i −0.647185 1.12096i −0.983792 0.179312i \(-0.942613\pi\)
0.336607 0.941645i \(-0.390721\pi\)
\(500\) 0 0
\(501\) −3.16963 + 1.06816i −0.141608 + 0.0477220i
\(502\) 0 0
\(503\) 0.957888i 0.0427101i −0.999772 0.0213550i \(-0.993202\pi\)
0.999772 0.0213550i \(-0.00679804\pi\)
\(504\) 0 0
\(505\) −17.9801 + 16.2758i −0.800102 + 0.724265i
\(506\) 0 0
\(507\) −6.17309 + 7.00787i −0.274156 + 0.311230i
\(508\) 0 0
\(509\) −3.51350 6.08557i −0.155733 0.269738i 0.777593 0.628769i \(-0.216441\pi\)
−0.933326 + 0.359031i \(0.883107\pi\)
\(510\) 0 0
\(511\) 20.4586 + 0.236193i 0.905035 + 0.0104486i
\(512\) 0 0
\(513\) 1.00907 1.48880i 0.0445517 0.0657320i
\(514\) 0 0
\(515\) −0.0908336 0.421837i −0.00400261 0.0185883i
\(516\) 0 0
\(517\) 3.44573 + 5.96817i 0.151543 + 0.262480i
\(518\) 0 0
\(519\) 11.5307 + 10.1572i 0.506142 + 0.445850i
\(520\) 0 0
\(521\) −40.1160 −1.75751 −0.878757 0.477270i \(-0.841626\pi\)
−0.878757 + 0.477270i \(0.841626\pi\)
\(522\) 0 0
\(523\) −14.5004 −0.634057 −0.317029 0.948416i \(-0.602685\pi\)
−0.317029 + 0.948416i \(0.602685\pi\)
\(524\) 0 0
\(525\) 15.4106 + 16.9562i 0.672575 + 0.740029i
\(526\) 0 0
\(527\) 3.35527 + 5.81150i 0.146158 + 0.253153i
\(528\) 0 0
\(529\) 8.60420 14.9029i 0.374096 0.647953i
\(530\) 0 0
\(531\) 0.453322 + 3.56457i 0.0196725 + 0.154689i
\(532\) 0 0
\(533\) 12.3770 21.4376i 0.536108 0.928567i
\(534\) 0 0
\(535\) −3.19007 1.02718i −0.137919 0.0444087i
\(536\) 0 0
\(537\) −5.57132 + 27.6901i −0.240420 + 1.19492i
\(538\) 0 0
\(539\) 25.6137 + 15.5874i 1.10326 + 0.671397i
\(540\) 0 0
\(541\) 32.2880 1.38817 0.694084 0.719894i \(-0.255810\pi\)
0.694084 + 0.719894i \(0.255810\pi\)
\(542\) 0 0
\(543\) −8.09133 + 40.2148i −0.347232 + 1.72578i
\(544\) 0 0
\(545\) 24.7882 + 7.98158i 1.06181 + 0.341893i
\(546\) 0 0
\(547\) 5.42139 + 3.13004i 0.231802 + 0.133831i 0.611403 0.791319i \(-0.290605\pi\)
−0.379601 + 0.925150i \(0.623939\pi\)
\(548\) 0 0
\(549\) −15.2078 20.0010i −0.649055 0.853623i
\(550\) 0 0
\(551\) 0.711644 1.23260i 0.0303171 0.0525107i
\(552\) 0 0
\(553\) 13.5125 22.7925i 0.574609 0.969237i
\(554\) 0 0
\(555\) 16.3410 29.2097i 0.693636 1.23988i
\(556\) 0 0
\(557\) −22.5574 −0.955787 −0.477893 0.878418i \(-0.658599\pi\)
−0.477893 + 0.878418i \(0.658599\pi\)
\(558\) 0 0
\(559\) 28.4332i 1.20260i
\(560\) 0 0
\(561\) −10.4592 + 11.8735i −0.441586 + 0.501301i
\(562\) 0 0
\(563\) −31.9908 + 18.4699i −1.34825 + 0.778414i −0.988002 0.154442i \(-0.950642\pi\)
−0.360250 + 0.932856i \(0.617309\pi\)
\(564\) 0 0
\(565\) −1.83383 8.51643i −0.0771499 0.358289i
\(566\) 0 0
\(567\) −16.4913 17.1766i −0.692569 0.721351i
\(568\) 0 0
\(569\) −24.6918 14.2558i −1.03513 0.597635i −0.116683 0.993169i \(-0.537226\pi\)
−0.918451 + 0.395534i \(0.870559\pi\)
\(570\) 0 0
\(571\) −8.81393 15.2662i −0.368852 0.638870i 0.620535 0.784179i \(-0.286916\pi\)
−0.989386 + 0.145309i \(0.953582\pi\)
\(572\) 0 0
\(573\) 13.9298 + 12.2705i 0.581924 + 0.512606i
\(574\) 0 0
\(575\) −1.19431 + 11.9734i −0.0498062 + 0.499327i
\(576\) 0 0
\(577\) −39.6838 −1.65206 −0.826028 0.563629i \(-0.809405\pi\)
−0.826028 + 0.563629i \(0.809405\pi\)
\(578\) 0 0
\(579\) 17.2357 5.80843i 0.716291 0.241390i
\(580\) 0 0
\(581\) −11.2898 6.69312i −0.468380 0.277678i
\(582\) 0 0
\(583\) 31.6428 + 18.2690i 1.31051 + 0.756624i
\(584\) 0 0
\(585\) 3.40382 18.1873i 0.140731 0.751954i
\(586\) 0 0
\(587\) −28.2479 16.3090i −1.16592 0.673143i −0.213202 0.977008i \(-0.568389\pi\)
−0.952715 + 0.303865i \(0.901723\pi\)
\(588\) 0 0
\(589\) −0.544528 0.943150i −0.0224369 0.0388618i
\(590\) 0 0
\(591\) 22.6499 + 4.55723i 0.931694 + 0.187459i
\(592\) 0 0
\(593\) 4.73830i 0.194579i 0.995256 + 0.0972893i \(0.0310172\pi\)
−0.995256 + 0.0972893i \(0.968983\pi\)
\(594\) 0 0
\(595\) 4.00565 11.9650i 0.164216 0.490517i
\(596\) 0 0
\(597\) 0.310881 1.54511i 0.0127235 0.0632372i
\(598\) 0 0
\(599\) 31.7120 18.3090i 1.29572 0.748084i 0.316057 0.948740i \(-0.397641\pi\)
0.979662 + 0.200657i \(0.0643076\pi\)
\(600\) 0 0
\(601\) 6.81561 + 3.93499i 0.278014 + 0.160512i 0.632524 0.774541i \(-0.282019\pi\)
−0.354510 + 0.935052i \(0.615352\pi\)
\(602\) 0 0
\(603\) −21.5217 + 2.73701i −0.876433 + 0.111460i
\(604\) 0 0
\(605\) −3.45848 16.0614i −0.140607 0.652989i
\(606\) 0 0
\(607\) 4.73509 + 8.20141i 0.192191 + 0.332885i 0.945976 0.324236i \(-0.105107\pi\)
−0.753785 + 0.657121i \(0.771774\pi\)
\(608\) 0 0
\(609\) −13.9953 12.6180i −0.567116 0.511309i
\(610\) 0 0
\(611\) 4.43773i 0.179531i
\(612\) 0 0
\(613\) 7.15407i 0.288950i 0.989508 + 0.144475i \(0.0461493\pi\)
−0.989508 + 0.144475i \(0.953851\pi\)
\(614\) 0 0
\(615\) −0.470561 34.7547i −0.0189748 1.40144i
\(616\) 0 0
\(617\) 2.96136 + 5.12923i 0.119220 + 0.206495i 0.919459 0.393186i \(-0.128627\pi\)
−0.800239 + 0.599681i \(0.795294\pi\)
\(618\) 0 0
\(619\) 12.1693 + 7.02595i 0.489125 + 0.282397i 0.724211 0.689578i \(-0.242204\pi\)
−0.235086 + 0.971975i \(0.575537\pi\)
\(620\) 0 0
\(621\) 0.900282 12.4725i 0.0361271 0.500503i
\(622\) 0 0
\(623\) −46.0085 0.531165i −1.84329 0.0212807i
\(624\) 0 0
\(625\) 7.97711 + 23.6932i 0.319084 + 0.947726i
\(626\) 0 0
\(627\) 1.69742 1.92696i 0.0677884 0.0769553i
\(628\) 0 0
\(629\) −18.4312 −0.734901
\(630\) 0 0
\(631\) 35.2765 1.40434 0.702169 0.712011i \(-0.252215\pi\)
0.702169 + 0.712011i \(0.252215\pi\)
\(632\) 0 0
\(633\) 5.07943 + 15.0725i 0.201889 + 0.599078i
\(634\) 0 0
\(635\) −10.7639 + 33.4291i −0.427152 + 1.32660i
\(636\) 0 0
\(637\) 9.26537 + 16.9396i 0.367107 + 0.671172i
\(638\) 0 0
\(639\) 18.0624 43.0690i 0.714538 1.70378i
\(640\) 0 0
\(641\) 20.5063 + 11.8393i 0.809951 + 0.467626i 0.846939 0.531690i \(-0.178443\pi\)
−0.0369876 + 0.999316i \(0.511776\pi\)
\(642\) 0 0
\(643\) −12.3801 21.4429i −0.488223 0.845627i 0.511685 0.859173i \(-0.329021\pi\)
−0.999908 + 0.0135458i \(0.995688\pi\)
\(644\) 0 0
\(645\) −20.4282 34.3017i −0.804360 1.35063i
\(646\) 0 0
\(647\) 1.54003i 0.0605449i 0.999542 + 0.0302725i \(0.00963750\pi\)
−0.999542 + 0.0302725i \(0.990363\pi\)
\(648\) 0 0
\(649\) 5.13049i 0.201389i
\(650\) 0 0
\(651\) −13.7158 + 4.44657i −0.537564 + 0.174275i
\(652\) 0 0
\(653\) −12.7197 22.0312i −0.497760 0.862146i 0.502236 0.864730i \(-0.332511\pi\)
−0.999997 + 0.00258435i \(0.999177\pi\)
\(654\) 0 0
\(655\) −1.04336 4.84540i −0.0407673 0.189326i
\(656\) 0 0
\(657\) −21.3942 8.97235i −0.834666 0.350045i
\(658\) 0 0
\(659\) 31.5730 + 18.2287i 1.22991 + 0.710088i 0.967011 0.254736i \(-0.0819885\pi\)
0.262898 + 0.964824i \(0.415322\pi\)
\(660\) 0 0
\(661\) 27.8076 16.0547i 1.08159 0.624457i 0.150265 0.988646i \(-0.451987\pi\)
0.931325 + 0.364189i \(0.118654\pi\)
\(662\) 0 0
\(663\) −9.65576 + 3.25399i −0.374999 + 0.126375i
\(664\) 0 0
\(665\) −0.650078 + 1.94180i −0.0252089 + 0.0752998i
\(666\) 0 0
\(667\) 9.89586i 0.383169i
\(668\) 0 0
\(669\) −11.9547 + 13.5713i −0.462194 + 0.524696i
\(670\) 0 0
\(671\) −17.9375 31.0687i −0.692469 1.19939i
\(672\) 0 0
\(673\) 33.5398 + 19.3642i 1.29287 + 0.746436i 0.979161 0.203084i \(-0.0650966\pi\)
0.313704 + 0.949521i \(0.398430\pi\)
\(674\) 0 0
\(675\) −8.96057 24.3866i −0.344893 0.938642i
\(676\) 0 0
\(677\) 12.7782 + 7.37752i 0.491107 + 0.283541i 0.725034 0.688713i \(-0.241824\pi\)
−0.233926 + 0.972254i \(0.575157\pi\)
\(678\) 0 0
\(679\) −20.9560 + 35.3481i −0.804217 + 1.35653i
\(680\) 0 0
\(681\) −16.3554 14.4071i −0.626739 0.552082i
\(682\) 0 0
\(683\) 28.9474 1.10764 0.553820 0.832636i \(-0.313170\pi\)
0.553820 + 0.832636i \(0.313170\pi\)
\(684\) 0 0
\(685\) −32.7930 + 29.6848i −1.25296 + 1.13420i
\(686\) 0 0
\(687\) 36.9715 12.4594i 1.41055 0.475356i
\(688\) 0 0
\(689\) 11.7643 + 20.3763i 0.448183 + 0.776275i
\(690\) 0 0
\(691\) 5.99348 + 3.46034i 0.228003 + 0.131638i 0.609650 0.792670i \(-0.291310\pi\)
−0.381648 + 0.924308i \(0.624643\pi\)
\(692\) 0 0
\(693\) −20.2641 27.2994i −0.769771 1.03702i
\(694\) 0 0
\(695\) 14.8220 3.19161i 0.562231 0.121065i
\(696\) 0 0
\(697\) −16.5762 + 9.57025i −0.627867 + 0.362499i
\(698\) 0 0
\(699\) −28.5849 5.75136i −1.08118 0.217537i
\(700\) 0 0
\(701\) 3.20191i 0.120935i 0.998170 + 0.0604673i \(0.0192591\pi\)
−0.998170 + 0.0604673i \(0.980741\pi\)
\(702\) 0 0
\(703\) 2.99121 0.112816
\(704\) 0 0
\(705\) 3.18834 + 5.35365i 0.120080 + 0.201630i
\(706\) 0 0
\(707\) −14.6339 + 24.6841i −0.550365 + 0.928343i
\(708\) 0 0
\(709\) 20.4978 35.5032i 0.769810 1.33335i −0.167856 0.985812i \(-0.553684\pi\)
0.937666 0.347539i \(-0.112982\pi\)
\(710\) 0 0
\(711\) −23.9164 + 18.1849i −0.896934 + 0.681986i
\(712\) 0 0
\(713\) −6.55755 3.78600i −0.245582 0.141787i
\(714\) 0 0
\(715\) 8.09721 25.1473i 0.302818 0.940455i
\(716\) 0 0
\(717\) 12.0609 4.06451i 0.450421 0.151792i
\(718\) 0 0
\(719\) −19.5783 −0.730146 −0.365073 0.930979i \(-0.618956\pi\)
−0.365073 + 0.930979i \(0.618956\pi\)
\(720\) 0 0
\(721\) −0.250161 0.445079i −0.00931647 0.0165756i
\(722\) 0 0
\(723\) −36.3703 32.0379i −1.35263 1.19150i
\(724\) 0 0
\(725\) −8.46200 18.7380i −0.314271 0.695910i
\(726\) 0 0
\(727\) 18.3379 31.7621i 0.680114 1.17799i −0.294832 0.955549i \(-0.595264\pi\)
0.974946 0.222443i \(-0.0714031\pi\)
\(728\) 0 0
\(729\) 10.0020 + 25.0791i 0.370443 + 0.928855i
\(730\) 0 0
\(731\) −10.9927 + 19.0399i −0.406579 + 0.704215i
\(732\) 0 0
\(733\) 6.51978 + 11.2926i 0.240813 + 0.417101i 0.960946 0.276735i \(-0.0892525\pi\)
−0.720133 + 0.693836i \(0.755919\pi\)
\(734\) 0 0
\(735\) 23.3482 + 13.7790i 0.861211 + 0.508248i
\(736\) 0 0
\(737\) −30.9762 −1.14102
\(738\) 0 0
\(739\) 12.8263 0.471823 0.235912 0.971775i \(-0.424192\pi\)
0.235912 + 0.971775i \(0.424192\pi\)
\(740\) 0 0
\(741\) 1.56704 0.528091i 0.0575665 0.0193999i
\(742\) 0 0
\(743\) 2.69367 + 4.66557i 0.0988211 + 0.171163i 0.911197 0.411971i \(-0.135160\pi\)
−0.812376 + 0.583134i \(0.801826\pi\)
\(744\) 0 0
\(745\) 18.0018 3.87631i 0.659535 0.142017i
\(746\) 0 0
\(747\) 9.00750 + 11.8465i 0.329567 + 0.433440i
\(748\) 0 0
\(749\) −3.96513 0.0457771i −0.144883 0.00167266i
\(750\) 0 0
\(751\) 17.6704 + 30.6060i 0.644802 + 1.11683i 0.984347 + 0.176240i \(0.0563935\pi\)
−0.339545 + 0.940590i \(0.610273\pi\)
\(752\) 0 0
\(753\) 44.1413 + 8.88135i 1.60860 + 0.323654i
\(754\) 0 0
\(755\) 15.0142 13.5911i 0.546423 0.494631i
\(756\) 0 0
\(757\) 17.4393i 0.633841i 0.948452 + 0.316921i \(0.102649\pi\)
−0.948452 + 0.316921i \(0.897351\pi\)
\(758\) 0 0
\(759\) 3.52180 17.5037i 0.127833 0.635345i
\(760\) 0 0
\(761\) −22.4481 38.8813i −0.813744 1.40945i −0.910227 0.414110i \(-0.864093\pi\)
0.0964831 0.995335i \(-0.469241\pi\)
\(762\) 0 0
\(763\) 30.8107 + 0.355707i 1.11542 + 0.0128775i
\(764\) 0 0
\(765\) −9.31079 + 10.8629i −0.336632 + 0.392749i
\(766\) 0 0
\(767\) −1.65188 + 2.86114i −0.0596460 + 0.103310i
\(768\) 0 0
\(769\) −26.3792 + 15.2301i −0.951260 + 0.549210i −0.893472 0.449119i \(-0.851738\pi\)
−0.0577877 + 0.998329i \(0.518405\pi\)
\(770\) 0 0
\(771\) −42.0656 + 14.1761i −1.51496 + 0.510541i
\(772\) 0 0
\(773\) 26.9502i 0.969333i 0.874699 + 0.484666i \(0.161059\pi\)
−0.874699 + 0.484666i \(0.838941\pi\)
\(774\) 0 0
\(775\) −15.6542 1.56146i −0.562317 0.0560893i
\(776\) 0 0
\(777\) 8.25917 38.7313i 0.296296 1.38948i
\(778\) 0 0
\(779\) 2.69015 1.55316i 0.0963846 0.0556477i
\(780\) 0 0
\(781\) 33.3414 57.7490i 1.19305 2.06642i
\(782\) 0 0
\(783\) 9.32342 + 19.2252i 0.333192 + 0.687052i
\(784\) 0 0
\(785\) 0.345666 + 1.60529i 0.0123374 + 0.0572954i
\(786\) 0 0
\(787\) 1.10635 + 1.91626i 0.0394372 + 0.0683072i 0.885070 0.465457i \(-0.154110\pi\)
−0.845633 + 0.533765i \(0.820777\pi\)
\(788\) 0 0
\(789\) 4.77282 5.41824i 0.169917 0.192894i
\(790\) 0 0
\(791\) −5.05047 8.98567i −0.179574 0.319494i
\(792\) 0 0
\(793\) 23.1016i 0.820361i
\(794\) 0 0
\(795\) 28.8320 + 16.1297i 1.02256 + 0.572061i
\(796\) 0 0
\(797\) −16.7807 + 9.68833i −0.594402 + 0.343178i −0.766836 0.641843i \(-0.778170\pi\)
0.172434 + 0.985021i \(0.444837\pi\)
\(798\) 0 0
\(799\) 1.71569 2.97166i 0.0606966 0.105130i
\(800\) 0 0
\(801\) 48.1124 + 20.1775i 1.69997 + 0.712938i
\(802\) 0 0
\(803\) −28.6863 16.5621i −1.01232 0.584463i
\(804\) 0 0
\(805\) 2.83617 + 13.9521i 0.0999618 + 0.491748i
\(806\) 0 0
\(807\) −26.6110 5.35421i −0.936752 0.188477i
\(808\) 0 0
\(809\) 47.2683i 1.66187i 0.556372 + 0.830933i \(0.312193\pi\)
−0.556372 + 0.830933i \(0.687807\pi\)
\(810\) 0 0
\(811\) 35.6802i 1.25290i −0.779461 0.626451i \(-0.784507\pi\)
0.779461 0.626451i \(-0.215493\pi\)
\(812\) 0 0
\(813\) 0.0511523 0.254233i 0.00179399 0.00891633i
\(814\) 0 0
\(815\) −0.747016 + 2.31999i −0.0261668 + 0.0812656i
\(816\) 0 0
\(817\) 1.78400 3.08999i 0.0624144 0.108105i
\(818\) 0 0
\(819\) −2.51110 21.7487i −0.0877449 0.759961i
\(820\) 0 0
\(821\) 4.03145 + 2.32756i 0.140699 + 0.0812324i 0.568697 0.822547i \(-0.307448\pi\)
−0.427998 + 0.903780i \(0.640781\pi\)
\(822\) 0 0
\(823\) −33.6094 + 19.4044i −1.17155 + 0.676396i −0.954045 0.299663i \(-0.903126\pi\)
−0.217506 + 0.976059i \(0.569792\pi\)
\(824\) 0 0
\(825\) −8.29895 36.1551i −0.288932 1.25876i
\(826\) 0 0
\(827\) −10.9775 −0.381724 −0.190862 0.981617i \(-0.561128\pi\)
−0.190862 + 0.981617i \(0.561128\pi\)
\(828\) 0 0
\(829\) 39.5241i 1.37273i 0.727258 + 0.686364i \(0.240794\pi\)
−0.727258 + 0.686364i \(0.759206\pi\)
\(830\) 0 0
\(831\) 30.9017 + 27.2207i 1.07197 + 0.944275i
\(832\) 0 0
\(833\) 0.344673 14.9255i 0.0119422 0.517137i
\(834\) 0 0
\(835\) −4.22133 + 0.908973i −0.146085 + 0.0314563i
\(836\) 0 0
\(837\) 16.3067 + 1.17704i 0.563641 + 0.0406845i
\(838\) 0 0
\(839\) 4.28259 7.41766i 0.147851 0.256086i −0.782582 0.622548i \(-0.786098\pi\)
0.930433 + 0.366462i \(0.119431\pi\)
\(840\) 0 0
\(841\) −6.04567 10.4714i −0.208471 0.361083i
\(842\) 0 0
\(843\) 14.1082 + 12.4276i 0.485913 + 0.428031i
\(844\) 0 0
\(845\) −8.93839 + 8.09117i −0.307490 + 0.278345i
\(846\) 0 0
\(847\) −9.52485 16.9464i −0.327278 0.582284i
\(848\) 0 0
\(849\) −18.3752 54.5258i −0.630636 1.87132i
\(850\) 0 0
\(851\) 18.0110 10.3987i 0.617409 0.356461i
\(852\) 0 0
\(853\) −24.3432 + 42.1636i −0.833495 + 1.44366i 0.0617555 + 0.998091i \(0.480330\pi\)
−0.895250 + 0.445564i \(0.853003\pi\)
\(854\) 0 0
\(855\) 1.51105 1.76294i 0.0516769 0.0602914i
\(856\) 0 0
\(857\) −24.3603 14.0644i −0.832132 0.480432i 0.0224500 0.999748i \(-0.492853\pi\)
−0.854582 + 0.519316i \(0.826187\pi\)
\(858\) 0 0
\(859\) 37.0828 21.4097i 1.26525 0.730491i 0.291163 0.956674i \(-0.405958\pi\)
0.974085 + 0.226183i \(0.0726246\pi\)
\(860\) 0 0
\(861\) −12.6830 39.1216i −0.432234 1.33326i
\(862\) 0 0
\(863\) −21.0474 −0.716462 −0.358231 0.933633i \(-0.616620\pi\)
−0.358231 + 0.933633i \(0.616620\pi\)
\(864\) 0 0
\(865\) 13.3132 + 14.7072i 0.452661 + 0.500059i
\(866\) 0 0
\(867\) −21.1425 4.25393i −0.718037 0.144471i
\(868\) 0 0
\(869\) −37.1506 + 21.4489i −1.26025 + 0.727604i
\(870\) 0 0
\(871\) −17.2746 9.97352i −0.585329 0.337940i
\(872\) 0 0
\(873\) 37.0910 28.2022i 1.25534 0.954501i
\(874\) 0 0
\(875\) 17.3009 + 23.9933i 0.584876 + 0.811123i
\(876\) 0 0
\(877\) 28.6471 16.5394i 0.967343 0.558496i 0.0689181 0.997622i \(-0.478045\pi\)
0.898425 + 0.439126i \(0.144712\pi\)
\(878\) 0 0
\(879\) −10.4490 + 3.52131i −0.352435 + 0.118771i
\(880\) 0 0
\(881\) −11.5605 −0.389482 −0.194741 0.980855i \(-0.562387\pi\)
−0.194741 + 0.980855i \(0.562387\pi\)
\(882\) 0 0
\(883\) 13.1817i 0.443601i −0.975092 0.221800i \(-0.928807\pi\)
0.975092 0.221800i \(-0.0711934\pi\)
\(884\) 0 0
\(885\) 0.0628027 + 4.63848i 0.00211109 + 0.155921i
\(886\) 0 0
\(887\) −17.7116 + 10.2258i −0.594698 + 0.343349i −0.766953 0.641703i \(-0.778228\pi\)
0.172255 + 0.985052i \(0.444895\pi\)
\(888\) 0 0
\(889\) −0.479704 + 41.5510i −0.0160887 + 1.39358i
\(890\) 0 0
\(891\) 9.64923 + 37.3235i 0.323261 + 1.25038i
\(892\) 0 0
\(893\) −0.278439 + 0.482271i −0.00931761 + 0.0161386i
\(894\) 0 0
\(895\) −11.1761 + 34.7092i −0.373575 + 1.16020i
\(896\) 0 0
\(897\) 7.59975 8.62746i 0.253748 0.288062i
\(898\) 0 0
\(899\) 12.9380 0.431506
\(900\) 0 0
\(901\) 18.1929i 0.606093i
\(902\) 0 0
\(903\) −35.0844 31.6319i −1.16753 1.05264i
\(904\) 0 0
\(905\) −16.2312 + 50.4088i −0.539543 + 1.67565i
\(906\) 0 0
\(907\) 23.9204 + 13.8105i 0.794265 + 0.458569i 0.841462 0.540317i \(-0.181695\pi\)
−0.0471969 + 0.998886i \(0.515029\pi\)
\(908\) 0 0
\(909\) 25.9013 19.6941i 0.859090 0.653212i
\(910\) 0 0
\(911\) 20.7831 + 11.9991i 0.688575 + 0.397549i 0.803078 0.595874i \(-0.203194\pi\)
−0.114503 + 0.993423i \(0.536528\pi\)
\(912\) 0 0
\(913\) 10.6243 + 18.4018i 0.351612 + 0.609009i
\(914\) 0 0
\(915\) −16.5976 27.8696i −0.548701 0.921342i
\(916\) 0 0
\(917\) −2.87346 5.11238i −0.0948899 0.168826i
\(918\) 0 0
\(919\) −12.9276 −0.426441 −0.213220 0.977004i \(-0.568395\pi\)
−0.213220 + 0.977004i \(0.568395\pi\)
\(920\) 0 0
\(921\) −45.3145 9.11739i −1.49316 0.300428i
\(922\) 0 0
\(923\) 37.1873 21.4701i 1.22404 0.706697i
\(924\) 0 0
\(925\) 25.2122 35.0913i 0.828971 1.15380i
\(926\) 0 0
\(927\) 0.0730361 + 0.574300i 0.00239882 + 0.0188625i
\(928\) 0 0
\(929\) −3.86173 + 6.68872i −0.126699 + 0.219450i −0.922396 0.386246i \(-0.873772\pi\)
0.795697 + 0.605695i \(0.207105\pi\)
\(930\) 0 0
\(931\) −0.0559371 + 2.42226i −0.00183326 + 0.0793863i
\(932\) 0 0
\(933\) −11.1846 33.1888i −0.366168 1.08655i
\(934\) 0 0
\(935\) −15.1445 + 13.7090i −0.495277 + 0.448332i
\(936\) 0 0
\(937\) 36.5949 1.19550 0.597751 0.801682i \(-0.296061\pi\)
0.597751 + 0.801682i \(0.296061\pi\)
\(938\) 0 0
\(939\) −27.9398 + 31.7180i −0.911781 + 1.03508i
\(940\) 0 0
\(941\) −26.1593 45.3092i −0.852768 1.47704i −0.878700 0.477374i \(-0.841589\pi\)
0.0259323 0.999664i \(-0.491745\pi\)
\(942\) 0 0
\(943\) 10.7988 18.7041i 0.351658 0.609090i
\(944\) 0 0
\(945\) −18.6550 24.4334i −0.606847 0.794818i
\(946\) 0 0
\(947\) −6.99813 + 12.1211i −0.227409 + 0.393883i −0.957039 0.289958i \(-0.906359\pi\)
0.729631 + 0.683841i \(0.239692\pi\)
\(948\) 0 0
\(949\) −10.6651 18.4725i −0.346203 0.599642i
\(950\) 0 0
\(951\) 5.11782 5.80989i 0.165957 0.188399i
\(952\) 0 0
\(953\) −31.4101 −1.01747 −0.508736 0.860922i \(-0.669887\pi\)
−0.508736 + 0.860922i \(0.669887\pi\)
\(954\) 0 0
\(955\) 16.0831 + 17.7671i 0.520437 + 0.574931i
\(956\) 0 0
\(957\) 9.74261 + 28.9098i 0.314934 + 0.934522i
\(958\) 0 0
\(959\) −26.6902 + 45.0204i −0.861871 + 1.45378i
\(960\) 0 0
\(961\) −10.5501 + 18.2734i −0.340327 + 0.589463i
\(962\) 0 0
\(963\) 4.14645 + 1.73895i 0.133618 + 0.0560369i
\(964\) 0 0
\(965\) 22.9546 4.94279i 0.738935 0.159114i
\(966\) 0 0
\(967\) −21.7492 + 12.5569i −0.699407 + 0.403803i −0.807126 0.590379i \(-0.798978\pi\)
0.107720 + 0.994181i \(0.465645\pi\)
\(968\) 0 0
\(969\) −1.25351 0.252210i −0.0402685 0.00810214i
\(970\) 0 0
\(971\) −38.9983 −1.25151 −0.625757 0.780018i \(-0.715210\pi\)
−0.625757 + 0.780018i \(0.715210\pi\)
\(972\) 0 0
\(973\) 15.6387 8.78986i 0.501353 0.281790i
\(974\) 0 0
\(975\) 7.01287 22.8348i 0.224591 0.731299i
\(976\) 0 0
\(977\) 4.06344 + 7.03809i 0.130001 + 0.225168i 0.923677 0.383173i \(-0.125169\pi\)
−0.793676 + 0.608341i \(0.791835\pi\)
\(978\) 0 0
\(979\) 64.5115 + 37.2457i 2.06180 + 1.19038i
\(980\) 0 0
\(981\) −32.2196 13.5124i −1.02869 0.431417i
\(982\) 0 0
\(983\) 9.16936 + 5.29393i 0.292457 + 0.168850i 0.639049 0.769166i \(-0.279328\pi\)
−0.346592 + 0.938016i \(0.612661\pi\)
\(984\) 0 0
\(985\) 28.3915 + 9.14181i 0.904627 + 0.291282i
\(986\) 0 0
\(987\) 5.47581 + 4.93695i 0.174297 + 0.157145i
\(988\) 0 0
\(989\) 24.8077i 0.788839i
\(990\) 0 0
\(991\) −53.8090 −1.70930 −0.854650 0.519204i \(-0.826228\pi\)
−0.854650 + 0.519204i \(0.826228\pi\)
\(992\) 0 0
\(993\) 13.6910 15.5425i 0.434472 0.493225i
\(994\) 0 0
\(995\) 0.623627 1.93678i 0.0197703 0.0614001i
\(996\) 0 0
\(997\) −21.7889 + 37.7394i −0.690060 + 1.19522i 0.281758 + 0.959486i \(0.409083\pi\)
−0.971818 + 0.235734i \(0.924251\pi\)
\(998\) 0 0
\(999\) −25.1938 + 37.1711i −0.797095 + 1.17604i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1260.2.cj.c.209.3 80
3.2 odd 2 3780.2.cj.c.629.37 80
5.4 even 2 inner 1260.2.cj.c.209.38 yes 80
7.6 odd 2 inner 1260.2.cj.c.209.37 yes 80
9.4 even 3 3780.2.cj.c.3149.24 80
9.5 odd 6 inner 1260.2.cj.c.1049.4 yes 80
15.14 odd 2 3780.2.cj.c.629.17 80
21.20 even 2 3780.2.cj.c.629.4 80
35.34 odd 2 inner 1260.2.cj.c.209.4 yes 80
45.4 even 6 3780.2.cj.c.3149.4 80
45.14 odd 6 inner 1260.2.cj.c.1049.37 yes 80
63.13 odd 6 3780.2.cj.c.3149.17 80
63.41 even 6 inner 1260.2.cj.c.1049.38 yes 80
105.104 even 2 3780.2.cj.c.629.24 80
315.104 even 6 inner 1260.2.cj.c.1049.3 yes 80
315.139 odd 6 3780.2.cj.c.3149.37 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1260.2.cj.c.209.3 80 1.1 even 1 trivial
1260.2.cj.c.209.4 yes 80 35.34 odd 2 inner
1260.2.cj.c.209.37 yes 80 7.6 odd 2 inner
1260.2.cj.c.209.38 yes 80 5.4 even 2 inner
1260.2.cj.c.1049.3 yes 80 315.104 even 6 inner
1260.2.cj.c.1049.4 yes 80 9.5 odd 6 inner
1260.2.cj.c.1049.37 yes 80 45.14 odd 6 inner
1260.2.cj.c.1049.38 yes 80 63.41 even 6 inner
3780.2.cj.c.629.4 80 21.20 even 2
3780.2.cj.c.629.17 80 15.14 odd 2
3780.2.cj.c.629.24 80 105.104 even 2
3780.2.cj.c.629.37 80 3.2 odd 2
3780.2.cj.c.3149.4 80 45.4 even 6
3780.2.cj.c.3149.17 80 63.13 odd 6
3780.2.cj.c.3149.24 80 9.4 even 3
3780.2.cj.c.3149.37 80 315.139 odd 6