Properties

Label 126.3.r.a.23.2
Level $126$
Weight $3$
Character 126.23
Analytic conductor $3.433$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,3,Mod(11,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.11"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 23.2
Character \(\chi\) \(=\) 126.23
Dual form 126.3.r.a.11.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} +(-2.24880 + 1.98568i) q^{3} -2.00000 q^{4} +(1.84316 - 1.06415i) q^{5} +(2.80817 + 3.18028i) q^{6} +(6.16730 - 3.31125i) q^{7} +2.82843i q^{8} +(1.11417 - 8.93077i) q^{9} +(-1.50493 - 2.60662i) q^{10} +(7.75793 + 4.47904i) q^{11} +(4.49759 - 3.97135i) q^{12} +(10.4189 - 18.0461i) q^{13} +(-4.68282 - 8.72188i) q^{14} +(-2.03183 + 6.05296i) q^{15} +4.00000 q^{16} +(9.01197 - 5.20307i) q^{17} +(-12.6300 - 1.57568i) q^{18} +(6.15121 - 10.6542i) q^{19} +(-3.68631 + 2.12829i) q^{20} +(-7.29392 + 19.6926i) q^{21} +(6.33432 - 10.9714i) q^{22} +(-16.5455 + 9.55254i) q^{23} +(-5.61634 - 6.36056i) q^{24} +(-10.2352 + 17.7279i) q^{25} +(-25.5210 - 14.7346i) q^{26} +(15.2281 + 22.2959i) q^{27} +(-12.3346 + 6.62251i) q^{28} +(-28.3968 + 16.3949i) q^{29} +(8.56018 + 2.87344i) q^{30} +37.8877 q^{31} -5.65685i q^{32} +(-26.3399 + 5.33229i) q^{33} +(-7.35825 - 12.7449i) q^{34} +(7.84364 - 12.6661i) q^{35} +(-2.22834 + 17.8615i) q^{36} +(16.9479 - 29.3546i) q^{37} +(-15.0673 - 8.69913i) q^{38} +(12.4037 + 61.2705i) q^{39} +(3.00986 + 5.21323i) q^{40} +(-28.7819 - 16.6172i) q^{41} +(27.8495 + 10.3152i) q^{42} +(10.3473 + 17.9220i) q^{43} +(-15.5159 - 8.95808i) q^{44} +(-7.45006 - 17.6464i) q^{45} +(13.5093 + 23.3988i) q^{46} +66.2205i q^{47} +(-8.99519 + 7.94271i) q^{48} +(27.0712 - 40.8430i) q^{49} +(25.0710 + 14.4747i) q^{50} +(-9.93449 + 29.5955i) q^{51} +(-20.8378 + 36.0921i) q^{52} +(2.72252 - 1.57185i) q^{53} +(31.5311 - 21.5358i) q^{54} +19.0654 q^{55} +(9.36564 + 17.4438i) q^{56} +(7.32300 + 36.1735i) q^{57} +(23.1859 + 40.1591i) q^{58} -84.2461i q^{59} +(4.06366 - 12.1059i) q^{60} -92.0227 q^{61} -53.5813i q^{62} +(-22.7006 - 58.7680i) q^{63} -8.00000 q^{64} -44.3490i q^{65} +(7.54099 + 37.2503i) q^{66} -66.7710 q^{67} +(-18.0239 + 10.4061i) q^{68} +(18.2392 - 54.3357i) q^{69} +(-17.9125 - 11.0926i) q^{70} +115.837i q^{71} +(25.2600 + 3.15135i) q^{72} +(-19.6033 - 33.9540i) q^{73} +(-41.5136 - 23.9679i) q^{74} +(-12.1850 - 60.1901i) q^{75} +(-12.3024 + 21.3084i) q^{76} +(62.6767 + 1.93513i) q^{77} +(86.6496 - 17.5415i) q^{78} +52.4167 q^{79} +(7.37263 - 4.25659i) q^{80} +(-78.5172 - 19.9008i) q^{81} +(-23.5003 + 40.7037i) q^{82} +(9.25626 - 5.34410i) q^{83} +(14.5878 - 39.3852i) q^{84} +(11.0737 - 19.1801i) q^{85} +(25.3456 - 14.6333i) q^{86} +(31.3036 - 93.2556i) q^{87} +(-12.6686 + 21.9427i) q^{88} +(-61.9503 - 35.7670i) q^{89} +(-24.9558 + 10.5360i) q^{90} +(4.50139 - 145.795i) q^{91} +(33.0910 - 19.1051i) q^{92} +(-85.2017 + 75.2327i) q^{93} +93.6500 q^{94} -26.1832i q^{95} +(11.2327 + 12.7211i) q^{96} +(64.5880 + 111.870i) q^{97} +(-57.7607 - 38.2845i) q^{98} +(48.6449 - 64.2938i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 64 q^{4} + 8 q^{6} + 2 q^{7} - 20 q^{9} - 36 q^{11} + 10 q^{13} + 36 q^{14} + 10 q^{15} + 128 q^{16} - 54 q^{17} + 28 q^{19} + 28 q^{21} - 126 q^{23} - 16 q^{24} + 80 q^{25} - 72 q^{26} - 126 q^{27}+ \cdots + 394 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) −2.24880 + 1.98568i −0.749599 + 0.661892i
\(4\) −2.00000 −0.500000
\(5\) 1.84316 1.06415i 0.368631 0.212829i −0.304229 0.952599i \(-0.598399\pi\)
0.672860 + 0.739770i \(0.265065\pi\)
\(6\) 2.80817 + 3.18028i 0.468029 + 0.530046i
\(7\) 6.16730 3.31125i 0.881043 0.473036i
\(8\) 2.82843i 0.353553i
\(9\) 1.11417 8.93077i 0.123797 0.992308i
\(10\) −1.50493 2.60662i −0.150493 0.260662i
\(11\) 7.75793 + 4.47904i 0.705266 + 0.407185i 0.809306 0.587388i \(-0.199844\pi\)
−0.104040 + 0.994573i \(0.533177\pi\)
\(12\) 4.49759 3.97135i 0.374799 0.330946i
\(13\) 10.4189 18.0461i 0.801454 1.38816i −0.117205 0.993108i \(-0.537393\pi\)
0.918659 0.395051i \(-0.129273\pi\)
\(14\) −4.68282 8.72188i −0.334487 0.622991i
\(15\) −2.03183 + 6.05296i −0.135455 + 0.403531i
\(16\) 4.00000 0.250000
\(17\) 9.01197 5.20307i 0.530116 0.306063i −0.210948 0.977497i \(-0.567655\pi\)
0.741064 + 0.671435i \(0.234322\pi\)
\(18\) −12.6300 1.57568i −0.701667 0.0875375i
\(19\) 6.15121 10.6542i 0.323748 0.560748i −0.657510 0.753446i \(-0.728390\pi\)
0.981258 + 0.192698i \(0.0617237\pi\)
\(20\) −3.68631 + 2.12829i −0.184316 + 0.106415i
\(21\) −7.29392 + 19.6926i −0.347330 + 0.937743i
\(22\) 6.33432 10.9714i 0.287924 0.498698i
\(23\) −16.5455 + 9.55254i −0.719369 + 0.415328i −0.814520 0.580135i \(-0.803000\pi\)
0.0951515 + 0.995463i \(0.469666\pi\)
\(24\) −5.61634 6.36056i −0.234014 0.265023i
\(25\) −10.2352 + 17.7279i −0.409407 + 0.709114i
\(26\) −25.5210 14.7346i −0.981577 0.566714i
\(27\) 15.2281 + 22.2959i 0.564003 + 0.825773i
\(28\) −12.3346 + 6.62251i −0.440521 + 0.236518i
\(29\) −28.3968 + 16.3949i −0.979199 + 0.565341i −0.902028 0.431677i \(-0.857922\pi\)
−0.0771708 + 0.997018i \(0.524589\pi\)
\(30\) 8.56018 + 2.87344i 0.285339 + 0.0957814i
\(31\) 37.8877 1.22218 0.611092 0.791560i \(-0.290731\pi\)
0.611092 + 0.791560i \(0.290731\pi\)
\(32\) 5.65685i 0.176777i
\(33\) −26.3399 + 5.33229i −0.798179 + 0.161584i
\(34\) −7.35825 12.7449i −0.216419 0.374849i
\(35\) 7.84364 12.6661i 0.224104 0.361888i
\(36\) −2.22834 + 17.8615i −0.0618984 + 0.496154i
\(37\) 16.9479 29.3546i 0.458051 0.793367i −0.540807 0.841146i \(-0.681881\pi\)
0.998858 + 0.0477797i \(0.0152145\pi\)
\(38\) −15.0673 8.69913i −0.396509 0.228924i
\(39\) 12.4037 + 61.2705i 0.318043 + 1.57104i
\(40\) 3.00986 + 5.21323i 0.0752465 + 0.130331i
\(41\) −28.7819 16.6172i −0.701997 0.405298i 0.106094 0.994356i \(-0.466166\pi\)
−0.808091 + 0.589058i \(0.799499\pi\)
\(42\) 27.8495 + 10.3152i 0.663085 + 0.245599i
\(43\) 10.3473 + 17.9220i 0.240634 + 0.416791i 0.960895 0.276912i \(-0.0893112\pi\)
−0.720261 + 0.693703i \(0.755978\pi\)
\(44\) −15.5159 8.95808i −0.352633 0.203593i
\(45\) −7.45006 17.6464i −0.165557 0.392143i
\(46\) 13.5093 + 23.3988i 0.293681 + 0.508671i
\(47\) 66.2205i 1.40895i 0.709730 + 0.704474i \(0.248817\pi\)
−0.709730 + 0.704474i \(0.751183\pi\)
\(48\) −8.99519 + 7.94271i −0.187400 + 0.165473i
\(49\) 27.0712 40.8430i 0.552473 0.833531i
\(50\) 25.0710 + 14.4747i 0.501420 + 0.289495i
\(51\) −9.93449 + 29.5955i −0.194794 + 0.580304i
\(52\) −20.8378 + 36.0921i −0.400727 + 0.694080i
\(53\) 2.72252 1.57185i 0.0513684 0.0296575i −0.474096 0.880473i \(-0.657225\pi\)
0.525464 + 0.850816i \(0.323892\pi\)
\(54\) 31.5311 21.5358i 0.583910 0.398810i
\(55\) 19.0654 0.346644
\(56\) 9.36564 + 17.4438i 0.167244 + 0.311496i
\(57\) 7.32300 + 36.1735i 0.128474 + 0.634622i
\(58\) 23.1859 + 40.1591i 0.399756 + 0.692398i
\(59\) 84.2461i 1.42790i −0.700197 0.713950i \(-0.746904\pi\)
0.700197 0.713950i \(-0.253096\pi\)
\(60\) 4.06366 12.1059i 0.0677277 0.201765i
\(61\) −92.0227 −1.50857 −0.754285 0.656547i \(-0.772016\pi\)
−0.754285 + 0.656547i \(0.772016\pi\)
\(62\) 53.5813i 0.864214i
\(63\) −22.7006 58.7680i −0.360327 0.932826i
\(64\) −8.00000 −0.125000
\(65\) 44.3490i 0.682292i
\(66\) 7.54099 + 37.2503i 0.114257 + 0.564398i
\(67\) −66.7710 −0.996582 −0.498291 0.867010i \(-0.666039\pi\)
−0.498291 + 0.867010i \(0.666039\pi\)
\(68\) −18.0239 + 10.4061i −0.265058 + 0.153031i
\(69\) 18.2392 54.3357i 0.264336 0.787474i
\(70\) −17.9125 11.0926i −0.255893 0.158465i
\(71\) 115.837i 1.63151i 0.578397 + 0.815755i \(0.303678\pi\)
−0.578397 + 0.815755i \(0.696322\pi\)
\(72\) 25.2600 + 3.15135i 0.350834 + 0.0437688i
\(73\) −19.6033 33.9540i −0.268539 0.465123i 0.699946 0.714196i \(-0.253207\pi\)
−0.968485 + 0.249073i \(0.919874\pi\)
\(74\) −41.5136 23.9679i −0.560995 0.323891i
\(75\) −12.1850 60.1901i −0.162466 0.802535i
\(76\) −12.3024 + 21.3084i −0.161874 + 0.280374i
\(77\) 62.6767 + 1.93513i 0.813983 + 0.0251315i
\(78\) 86.6496 17.5415i 1.11089 0.224890i
\(79\) 52.4167 0.663503 0.331752 0.943367i \(-0.392360\pi\)
0.331752 + 0.943367i \(0.392360\pi\)
\(80\) 7.37263 4.25659i 0.0921578 0.0532073i
\(81\) −78.5172 19.9008i −0.969349 0.245689i
\(82\) −23.5003 + 40.7037i −0.286589 + 0.496387i
\(83\) 9.25626 5.34410i 0.111521 0.0643868i −0.443202 0.896422i \(-0.646158\pi\)
0.554723 + 0.832035i \(0.312824\pi\)
\(84\) 14.5878 39.3852i 0.173665 0.468872i
\(85\) 11.0737 19.1801i 0.130278 0.225649i
\(86\) 25.3456 14.6333i 0.294716 0.170154i
\(87\) 31.3036 93.2556i 0.359812 1.07190i
\(88\) −12.6686 + 21.9427i −0.143962 + 0.249349i
\(89\) −61.9503 35.7670i −0.696071 0.401877i 0.109811 0.993952i \(-0.464975\pi\)
−0.805882 + 0.592076i \(0.798309\pi\)
\(90\) −24.9558 + 10.5360i −0.277287 + 0.117066i
\(91\) 4.50139 145.795i 0.0494658 1.60214i
\(92\) 33.0910 19.1051i 0.359684 0.207664i
\(93\) −85.2017 + 75.2327i −0.916147 + 0.808954i
\(94\) 93.6500 0.996276
\(95\) 26.1832i 0.275612i
\(96\) 11.2327 + 12.7211i 0.117007 + 0.132512i
\(97\) 64.5880 + 111.870i 0.665855 + 1.15330i 0.979053 + 0.203607i \(0.0652666\pi\)
−0.313197 + 0.949688i \(0.601400\pi\)
\(98\) −57.7607 38.2845i −0.589395 0.390658i
\(99\) 48.6449 64.2938i 0.491363 0.649432i
\(100\) 20.4704 35.4557i 0.204704 0.354557i
\(101\) 54.1471 + 31.2619i 0.536110 + 0.309523i 0.743501 0.668735i \(-0.233164\pi\)
−0.207391 + 0.978258i \(0.566497\pi\)
\(102\) 41.8544 + 14.0495i 0.410337 + 0.137740i
\(103\) 70.6270 + 122.330i 0.685699 + 1.18767i 0.973216 + 0.229891i \(0.0738369\pi\)
−0.287517 + 0.957776i \(0.592830\pi\)
\(104\) 51.0420 + 29.4691i 0.490788 + 0.283357i
\(105\) 7.51198 + 44.0584i 0.0715427 + 0.419603i
\(106\) −2.22293 3.85023i −0.0209710 0.0363229i
\(107\) 28.1441 + 16.2490i 0.263029 + 0.151860i 0.625715 0.780051i \(-0.284807\pi\)
−0.362687 + 0.931911i \(0.618140\pi\)
\(108\) −30.4562 44.5917i −0.282001 0.412886i
\(109\) −39.6151 68.6153i −0.363441 0.629499i 0.625084 0.780558i \(-0.285065\pi\)
−0.988525 + 0.151059i \(0.951732\pi\)
\(110\) 26.9626i 0.245114i
\(111\) 20.1764 + 99.6655i 0.181769 + 0.897887i
\(112\) 24.6692 13.2450i 0.220261 0.118259i
\(113\) 165.260 + 95.4129i 1.46248 + 0.844362i 0.999125 0.0418121i \(-0.0133131\pi\)
0.463352 + 0.886174i \(0.346646\pi\)
\(114\) 51.1570 10.3563i 0.448746 0.0908447i
\(115\) −20.3306 + 35.2136i −0.176788 + 0.306206i
\(116\) 56.7935 32.7898i 0.489600 0.282670i
\(117\) −149.557 113.155i −1.27826 0.967139i
\(118\) −119.142 −1.00968
\(119\) 38.3509 61.9298i 0.322276 0.520419i
\(120\) −17.1204 5.74689i −0.142670 0.0478907i
\(121\) −20.3764 35.2930i −0.168400 0.291677i
\(122\) 130.140i 1.06672i
\(123\) 97.7210 19.7828i 0.794480 0.160835i
\(124\) −75.7753 −0.611092
\(125\) 96.7743i 0.774194i
\(126\) −83.1106 + 32.1035i −0.659608 + 0.254790i
\(127\) −188.069 −1.48086 −0.740430 0.672134i \(-0.765378\pi\)
−0.740430 + 0.672134i \(0.765378\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) −58.8563 19.7566i −0.456250 0.153152i
\(130\) −62.7189 −0.482453
\(131\) −70.2146 + 40.5384i −0.535989 + 0.309454i −0.743452 0.668789i \(-0.766813\pi\)
0.207463 + 0.978243i \(0.433479\pi\)
\(132\) 52.6798 10.6646i 0.399090 0.0807922i
\(133\) 2.65757 86.0759i 0.0199818 0.647188i
\(134\) 94.4285i 0.704690i
\(135\) 51.7938 + 24.8899i 0.383658 + 0.184369i
\(136\) 14.7165 + 25.4897i 0.108210 + 0.187424i
\(137\) 131.502 + 75.9226i 0.959867 + 0.554180i 0.896132 0.443787i \(-0.146365\pi\)
0.0637351 + 0.997967i \(0.479699\pi\)
\(138\) −76.8423 25.7941i −0.556828 0.186914i
\(139\) −35.1300 + 60.8469i −0.252734 + 0.437747i −0.964277 0.264894i \(-0.914663\pi\)
0.711544 + 0.702642i \(0.247996\pi\)
\(140\) −15.6873 + 25.3321i −0.112052 + 0.180944i
\(141\) −131.493 148.917i −0.932572 1.05615i
\(142\) 163.819 1.15365
\(143\) 161.658 93.3334i 1.13048 0.652681i
\(144\) 4.45668 35.7231i 0.0309492 0.248077i
\(145\) −34.8931 + 60.4367i −0.240642 + 0.416805i
\(146\) −48.0182 + 27.7233i −0.328892 + 0.189886i
\(147\) 20.2234 + 145.602i 0.137574 + 0.990491i
\(148\) −33.8957 + 58.7091i −0.229025 + 0.396683i
\(149\) −179.108 + 103.408i −1.20207 + 0.694013i −0.961014 0.276500i \(-0.910826\pi\)
−0.241051 + 0.970512i \(0.577492\pi\)
\(150\) −85.1217 + 17.2321i −0.567478 + 0.114881i
\(151\) −94.9961 + 164.538i −0.629113 + 1.08966i 0.358617 + 0.933485i \(0.383248\pi\)
−0.987730 + 0.156171i \(0.950085\pi\)
\(152\) 30.1347 + 17.3983i 0.198254 + 0.114462i
\(153\) −36.4265 86.2810i −0.238082 0.563928i
\(154\) 2.73668 88.6382i 0.0177707 0.575573i
\(155\) 69.8329 40.3180i 0.450535 0.260116i
\(156\) −24.8074 122.541i −0.159022 0.785519i
\(157\) 89.3468 0.569088 0.284544 0.958663i \(-0.408158\pi\)
0.284544 + 0.958663i \(0.408158\pi\)
\(158\) 74.1285i 0.469168i
\(159\) −3.00121 + 8.94082i −0.0188756 + 0.0562316i
\(160\) −6.01972 10.4265i −0.0376233 0.0651654i
\(161\) −70.4101 + 113.700i −0.437330 + 0.706209i
\(162\) −28.1440 + 111.040i −0.173728 + 0.685433i
\(163\) −71.0871 + 123.126i −0.436117 + 0.755377i −0.997386 0.0722564i \(-0.976980\pi\)
0.561269 + 0.827634i \(0.310313\pi\)
\(164\) 57.5638 + 33.2344i 0.350999 + 0.202649i
\(165\) −42.8743 + 37.8578i −0.259844 + 0.229441i
\(166\) −7.55770 13.0903i −0.0455283 0.0788574i
\(167\) −78.5277 45.3380i −0.470226 0.271485i 0.246108 0.969242i \(-0.420848\pi\)
−0.716334 + 0.697757i \(0.754181\pi\)
\(168\) −55.6991 20.6303i −0.331542 0.122800i
\(169\) −132.607 229.682i −0.784657 1.35907i
\(170\) −27.1248 15.6605i −0.159558 0.0921206i
\(171\) −88.2968 66.8057i −0.516356 0.390676i
\(172\) −20.6946 35.8440i −0.120317 0.208395i
\(173\) 50.8580i 0.293977i −0.989138 0.146988i \(-0.953042\pi\)
0.989138 0.146988i \(-0.0469580\pi\)
\(174\) −131.883 44.2700i −0.757950 0.254425i
\(175\) −4.42202 + 143.224i −0.0252687 + 0.818425i
\(176\) 31.0317 + 17.9162i 0.176316 + 0.101796i
\(177\) 167.286 + 189.452i 0.945116 + 1.07035i
\(178\) −50.5822 + 87.6110i −0.284170 + 0.492196i
\(179\) 32.9549 19.0265i 0.184106 0.106293i −0.405115 0.914266i \(-0.632768\pi\)
0.589220 + 0.807972i \(0.299435\pi\)
\(180\) 14.9001 + 35.2929i 0.0827784 + 0.196072i
\(181\) 123.528 0.682475 0.341237 0.939977i \(-0.389154\pi\)
0.341237 + 0.939977i \(0.389154\pi\)
\(182\) −206.185 6.36593i −1.13289 0.0349776i
\(183\) 206.940 182.727i 1.13082 0.998511i
\(184\) −27.0187 46.7977i −0.146841 0.254335i
\(185\) 72.1401i 0.389946i
\(186\) 106.395 + 120.493i 0.572017 + 0.647814i
\(187\) 93.2190 0.498497
\(188\) 132.441i 0.704474i
\(189\) 167.743 + 87.0813i 0.887531 + 0.460747i
\(190\) −37.0286 −0.194887
\(191\) 277.694i 1.45390i −0.686692 0.726949i \(-0.740938\pi\)
0.686692 0.726949i \(-0.259062\pi\)
\(192\) 17.9904 15.8854i 0.0936999 0.0827366i
\(193\) 213.818 1.10786 0.553932 0.832562i \(-0.313127\pi\)
0.553932 + 0.832562i \(0.313127\pi\)
\(194\) 158.208 91.3412i 0.815503 0.470831i
\(195\) 88.0627 + 99.7318i 0.451604 + 0.511445i
\(196\) −54.1424 + 81.6860i −0.276237 + 0.416765i
\(197\) 332.031i 1.68544i 0.538356 + 0.842718i \(0.319046\pi\)
−0.538356 + 0.842718i \(0.680954\pi\)
\(198\) −90.9252 68.7943i −0.459218 0.347446i
\(199\) 45.1355 + 78.1769i 0.226811 + 0.392849i 0.956861 0.290545i \(-0.0938366\pi\)
−0.730050 + 0.683394i \(0.760503\pi\)
\(200\) −50.1420 28.9495i −0.250710 0.144747i
\(201\) 150.154 132.586i 0.747037 0.659630i
\(202\) 44.2109 76.5756i 0.218866 0.379087i
\(203\) −120.844 + 195.141i −0.595290 + 0.961286i
\(204\) 19.8690 59.1910i 0.0973969 0.290152i
\(205\) −70.7327 −0.345037
\(206\) 173.000 99.8817i 0.839807 0.484863i
\(207\) 66.8770 + 158.407i 0.323077 + 0.765251i
\(208\) 41.6756 72.1843i 0.200364 0.347040i
\(209\) 95.4413 55.1031i 0.456657 0.263651i
\(210\) 62.3079 10.6236i 0.296704 0.0505883i
\(211\) 40.3852 69.9492i 0.191399 0.331513i −0.754315 0.656513i \(-0.772031\pi\)
0.945714 + 0.325000i \(0.105364\pi\)
\(212\) −5.44505 + 3.14370i −0.0256842 + 0.0148288i
\(213\) −230.015 260.494i −1.07988 1.22298i
\(214\) 22.9795 39.8017i 0.107381 0.185989i
\(215\) 38.1433 + 22.0220i 0.177411 + 0.102428i
\(216\) −63.0622 + 43.0715i −0.291955 + 0.199405i
\(217\) 233.665 125.456i 1.07680 0.578137i
\(218\) −97.0367 + 56.0242i −0.445123 + 0.256992i
\(219\) 111.506 + 37.4297i 0.509158 + 0.170912i
\(220\) −38.1309 −0.173322
\(221\) 216.841i 0.981181i
\(222\) 140.948 28.5337i 0.634902 0.128530i
\(223\) 157.577 + 272.932i 0.706624 + 1.22391i 0.966102 + 0.258160i \(0.0831160\pi\)
−0.259478 + 0.965749i \(0.583551\pi\)
\(224\) −18.7313 34.8875i −0.0836218 0.155748i
\(225\) 146.920 + 111.160i 0.652976 + 0.494044i
\(226\) 134.934 233.713i 0.597054 1.03413i
\(227\) −243.851 140.787i −1.07423 0.620208i −0.144897 0.989447i \(-0.546285\pi\)
−0.929335 + 0.369239i \(0.879619\pi\)
\(228\) −14.6460 72.3469i −0.0642369 0.317311i
\(229\) −90.0637 155.995i −0.393291 0.681201i 0.599590 0.800307i \(-0.295330\pi\)
−0.992881 + 0.119107i \(0.961997\pi\)
\(230\) 49.7996 + 28.7518i 0.216520 + 0.125008i
\(231\) −144.790 + 120.104i −0.626795 + 0.519931i
\(232\) −46.3717 80.3182i −0.199878 0.346199i
\(233\) −185.936 107.350i −0.798009 0.460731i 0.0447652 0.998998i \(-0.485746\pi\)
−0.842775 + 0.538267i \(0.819079\pi\)
\(234\) −160.026 + 211.505i −0.683870 + 0.903869i
\(235\) 70.4684 + 122.055i 0.299865 + 0.519382i
\(236\) 168.492i 0.713950i
\(237\) −117.875 + 104.083i −0.497361 + 0.439168i
\(238\) −87.5820 54.2363i −0.367992 0.227884i
\(239\) −395.735 228.477i −1.65579 0.955973i −0.974625 0.223846i \(-0.928139\pi\)
−0.681169 0.732127i \(-0.738528\pi\)
\(240\) −8.12733 + 24.2119i −0.0338639 + 0.100883i
\(241\) −161.681 + 280.041i −0.670877 + 1.16199i 0.306778 + 0.951781i \(0.400749\pi\)
−0.977656 + 0.210213i \(0.932584\pi\)
\(242\) −49.9118 + 28.8166i −0.206247 + 0.119077i
\(243\) 216.086 111.157i 0.889242 0.457436i
\(244\) 184.045 0.754285
\(245\) 6.43350 104.088i 0.0262592 0.424848i
\(246\) −27.9771 138.198i −0.113728 0.561782i
\(247\) −128.178 222.010i −0.518938 0.898827i
\(248\) 107.163i 0.432107i
\(249\) −10.2038 + 30.3977i −0.0409790 + 0.122079i
\(250\) 136.860 0.547438
\(251\) 382.763i 1.52495i −0.647017 0.762476i \(-0.723984\pi\)
0.647017 0.762476i \(-0.276016\pi\)
\(252\) 45.4012 + 117.536i 0.180164 + 0.466413i
\(253\) −171.145 −0.676462
\(254\) 265.970i 1.04713i
\(255\) 13.1832 + 65.1209i 0.0516987 + 0.255376i
\(256\) 16.0000 0.0625000
\(257\) 289.608 167.205i 1.12688 0.650605i 0.183732 0.982976i \(-0.441182\pi\)
0.943149 + 0.332371i \(0.107849\pi\)
\(258\) −27.9401 + 83.2353i −0.108295 + 0.322618i
\(259\) 7.32217 237.157i 0.0282709 0.915665i
\(260\) 88.6979i 0.341146i
\(261\) 114.780 + 271.872i 0.439770 + 1.04165i
\(262\) 57.3300 + 99.2984i 0.218817 + 0.379002i
\(263\) −36.4925 21.0689i −0.138755 0.0801100i 0.429016 0.903297i \(-0.358861\pi\)
−0.567770 + 0.823187i \(0.692194\pi\)
\(264\) −15.0820 74.5006i −0.0571287 0.282199i
\(265\) 3.34536 5.79433i 0.0126240 0.0218654i
\(266\) −121.730 3.75838i −0.457631 0.0141292i
\(267\) 210.335 42.5806i 0.787773 0.159478i
\(268\) 133.542 0.498291
\(269\) 70.7724 40.8605i 0.263094 0.151898i −0.362651 0.931925i \(-0.618128\pi\)
0.625745 + 0.780027i \(0.284795\pi\)
\(270\) 35.1996 73.2475i 0.130369 0.271287i
\(271\) −121.924 + 211.178i −0.449903 + 0.779256i −0.998379 0.0569108i \(-0.981875\pi\)
0.548476 + 0.836166i \(0.315208\pi\)
\(272\) 36.0479 20.8123i 0.132529 0.0765157i
\(273\) 279.379 + 336.802i 1.02337 + 1.23371i
\(274\) 107.371 185.972i 0.391864 0.678729i
\(275\) −158.808 + 91.6876i −0.577482 + 0.333409i
\(276\) −36.4783 + 108.671i −0.132168 + 0.393737i
\(277\) 223.980 387.945i 0.808593 1.40052i −0.105246 0.994446i \(-0.533563\pi\)
0.913839 0.406078i \(-0.133104\pi\)
\(278\) 86.0505 + 49.6813i 0.309534 + 0.178710i
\(279\) 42.2133 338.366i 0.151302 1.21278i
\(280\) 35.8251 + 22.1852i 0.127947 + 0.0792327i
\(281\) −63.8589 + 36.8690i −0.227256 + 0.131206i −0.609305 0.792936i \(-0.708552\pi\)
0.382050 + 0.924142i \(0.375218\pi\)
\(282\) −210.600 + 185.959i −0.746808 + 0.659428i
\(283\) −73.4556 −0.259560 −0.129780 0.991543i \(-0.541427\pi\)
−0.129780 + 0.991543i \(0.541427\pi\)
\(284\) 231.675i 0.815755i
\(285\) 51.9913 + 58.8806i 0.182426 + 0.206599i
\(286\) −131.993 228.619i −0.461515 0.799368i
\(287\) −232.530 7.17932i −0.810210 0.0250150i
\(288\) −50.5201 6.30270i −0.175417 0.0218844i
\(289\) −90.3562 + 156.502i −0.312651 + 0.541528i
\(290\) 85.4704 + 49.3463i 0.294725 + 0.170160i
\(291\) −367.382 123.321i −1.26248 0.423784i
\(292\) 39.2067 + 67.9080i 0.134269 + 0.232562i
\(293\) −329.350 190.150i −1.12406 0.648977i −0.181626 0.983368i \(-0.558136\pi\)
−0.942434 + 0.334391i \(0.891469\pi\)
\(294\) 205.913 28.6002i 0.700383 0.0972796i
\(295\) −89.6502 155.279i −0.303899 0.526369i
\(296\) 83.0273 + 47.9358i 0.280498 + 0.161945i
\(297\) 18.2742 + 241.177i 0.0615294 + 0.812043i
\(298\) 146.241 + 253.297i 0.490741 + 0.849989i
\(299\) 398.108i 1.33146i
\(300\) 24.3699 + 120.380i 0.0812331 + 0.401267i
\(301\) 123.159 + 76.2680i 0.409166 + 0.253382i
\(302\) 232.692 + 134.345i 0.770503 + 0.444850i
\(303\) −183.842 + 37.2172i −0.606739 + 0.122829i
\(304\) 24.6048 42.6168i 0.0809370 0.140187i
\(305\) −169.612 + 97.9257i −0.556106 + 0.321068i
\(306\) −122.020 + 51.5148i −0.398757 + 0.168349i
\(307\) 171.378 0.558235 0.279118 0.960257i \(-0.409958\pi\)
0.279118 + 0.960257i \(0.409958\pi\)
\(308\) −125.353 3.87026i −0.406992 0.0125658i
\(309\) −401.733 134.852i −1.30011 0.436414i
\(310\) −57.0183 98.7586i −0.183930 0.318576i
\(311\) 168.397i 0.541470i −0.962654 0.270735i \(-0.912733\pi\)
0.962654 0.270735i \(-0.0872666\pi\)
\(312\) −173.299 + 35.0829i −0.555446 + 0.112445i
\(313\) 207.059 0.661531 0.330766 0.943713i \(-0.392693\pi\)
0.330766 + 0.943713i \(0.392693\pi\)
\(314\) 126.355i 0.402406i
\(315\) −104.379 84.1619i −0.331361 0.267181i
\(316\) −104.833 −0.331752
\(317\) 129.922i 0.409850i −0.978778 0.204925i \(-0.934305\pi\)
0.978778 0.204925i \(-0.0656950\pi\)
\(318\) 12.6442 + 4.24436i 0.0397617 + 0.0133470i
\(319\) −293.733 −0.920794
\(320\) −14.7453 + 8.51317i −0.0460789 + 0.0266037i
\(321\) −95.5555 + 19.3444i −0.297681 + 0.0602628i
\(322\) 160.796 + 99.5749i 0.499365 + 0.309239i
\(323\) 128.021i 0.396349i
\(324\) 157.034 + 39.8016i 0.484674 + 0.122844i
\(325\) 213.279 + 369.410i 0.656242 + 1.13665i
\(326\) 174.127 + 100.532i 0.534132 + 0.308381i
\(327\) 225.334 + 75.6392i 0.689095 + 0.231312i
\(328\) 47.0006 81.4074i 0.143295 0.248193i
\(329\) 219.273 + 408.402i 0.666483 + 1.24134i
\(330\) 53.5390 + 60.6334i 0.162239 + 0.183737i
\(331\) 43.0801 0.130151 0.0650756 0.997880i \(-0.479271\pi\)
0.0650756 + 0.997880i \(0.479271\pi\)
\(332\) −18.5125 + 10.6882i −0.0557606 + 0.0321934i
\(333\) −243.276 184.064i −0.730559 0.552743i
\(334\) −64.1176 + 111.055i −0.191969 + 0.332500i
\(335\) −123.069 + 71.0542i −0.367371 + 0.212102i
\(336\) −29.1757 + 78.7704i −0.0868324 + 0.234436i
\(337\) −104.291 + 180.638i −0.309469 + 0.536017i −0.978246 0.207446i \(-0.933485\pi\)
0.668777 + 0.743463i \(0.266818\pi\)
\(338\) −324.820 + 187.535i −0.961005 + 0.554836i
\(339\) −561.095 + 113.589i −1.65515 + 0.335070i
\(340\) −22.1473 + 38.3603i −0.0651391 + 0.112824i
\(341\) 293.930 + 169.700i 0.861964 + 0.497655i
\(342\) −94.4775 + 124.871i −0.276250 + 0.365118i
\(343\) 31.7147 341.531i 0.0924626 0.995716i
\(344\) −50.6911 + 29.2665i −0.147358 + 0.0850771i
\(345\) −24.2035 119.558i −0.0701552 0.346546i
\(346\) −71.9240 −0.207873
\(347\) 427.035i 1.23065i 0.788274 + 0.615324i \(0.210975\pi\)
−0.788274 + 0.615324i \(0.789025\pi\)
\(348\) −62.6072 + 186.511i −0.179906 + 0.535952i
\(349\) −286.863 496.862i −0.821957 1.42367i −0.904223 0.427061i \(-0.859549\pi\)
0.0822652 0.996610i \(-0.473785\pi\)
\(350\) 202.550 + 6.25368i 0.578714 + 0.0178676i
\(351\) 561.013 42.5086i 1.59833 0.121107i
\(352\) 25.3373 43.8855i 0.0719809 0.124675i
\(353\) 266.085 + 153.624i 0.753782 + 0.435196i 0.827059 0.562115i \(-0.190012\pi\)
−0.0732768 + 0.997312i \(0.523346\pi\)
\(354\) 267.926 236.578i 0.756853 0.668298i
\(355\) 123.268 + 213.506i 0.347233 + 0.601426i
\(356\) 123.901 + 71.5340i 0.348035 + 0.200938i
\(357\) 36.7293 + 215.420i 0.102883 + 0.603417i
\(358\) −26.9076 46.6053i −0.0751609 0.130182i
\(359\) −315.969 182.425i −0.880137 0.508147i −0.00943342 0.999956i \(-0.503003\pi\)
−0.870704 + 0.491808i \(0.836336\pi\)
\(360\) 49.9117 21.0719i 0.138644 0.0585332i
\(361\) 104.825 + 181.563i 0.290374 + 0.502943i
\(362\) 174.695i 0.482583i
\(363\) 115.903 + 38.9057i 0.319291 + 0.107178i
\(364\) −9.00278 + 291.590i −0.0247329 + 0.801072i
\(365\) −72.2641 41.7217i −0.197984 0.114306i
\(366\) −258.416 292.658i −0.706054 0.799612i
\(367\) −252.978 + 438.171i −0.689313 + 1.19393i 0.282747 + 0.959194i \(0.408754\pi\)
−0.972060 + 0.234731i \(0.924579\pi\)
\(368\) −66.1819 + 38.2102i −0.179842 + 0.103832i
\(369\) −180.473 + 238.530i −0.489085 + 0.646422i
\(370\) −102.021 −0.275734
\(371\) 11.5858 18.7090i 0.0312286 0.0504287i
\(372\) 170.403 150.465i 0.458073 0.404477i
\(373\) −119.155 206.382i −0.319450 0.553303i 0.660924 0.750453i \(-0.270165\pi\)
−0.980373 + 0.197150i \(0.936831\pi\)
\(374\) 131.832i 0.352491i
\(375\) −192.163 217.626i −0.512433 0.580335i
\(376\) −187.300 −0.498138
\(377\) 683.267i 1.81238i
\(378\) 123.151 237.225i 0.325798 0.627579i
\(379\) −308.529 −0.814061 −0.407031 0.913415i \(-0.633436\pi\)
−0.407031 + 0.913415i \(0.633436\pi\)
\(380\) 52.3663i 0.137806i
\(381\) 422.929 373.445i 1.11005 0.980170i
\(382\) −392.719 −1.02806
\(383\) 348.921 201.450i 0.911021 0.525978i 0.0302615 0.999542i \(-0.490366\pi\)
0.880760 + 0.473564i \(0.157033\pi\)
\(384\) −22.4654 25.4422i −0.0585036 0.0662558i
\(385\) 117.582 63.1305i 0.305408 0.163975i
\(386\) 302.384i 0.783377i
\(387\) 171.586 72.4410i 0.443375 0.187186i
\(388\) −129.176 223.739i −0.332928 0.576648i
\(389\) 187.262 + 108.116i 0.481394 + 0.277933i 0.720997 0.692938i \(-0.243684\pi\)
−0.239603 + 0.970871i \(0.577017\pi\)
\(390\) 141.042 124.540i 0.361646 0.319332i
\(391\) −99.4050 + 172.174i −0.254233 + 0.440344i
\(392\) 115.521 + 76.5689i 0.294698 + 0.195329i
\(393\) 77.4021 230.586i 0.196952 0.586733i
\(394\) 469.562 1.19178
\(395\) 96.6123 55.7791i 0.244588 0.141213i
\(396\) −97.2899 + 128.588i −0.245681 + 0.324716i
\(397\) 130.421 225.896i 0.328516 0.569007i −0.653701 0.756753i \(-0.726785\pi\)
0.982218 + 0.187746i \(0.0601181\pi\)
\(398\) 110.559 63.8312i 0.277786 0.160380i
\(399\) 164.943 + 198.844i 0.413390 + 0.498357i
\(400\) −40.9407 + 70.9114i −0.102352 + 0.177279i
\(401\) 631.146 364.392i 1.57393 0.908709i 0.578251 0.815859i \(-0.303736\pi\)
0.995680 0.0928504i \(-0.0295978\pi\)
\(402\) −187.504 212.350i −0.466429 0.528235i
\(403\) 394.748 683.724i 0.979524 1.69658i
\(404\) −108.294 62.5237i −0.268055 0.154762i
\(405\) −165.897 + 46.8736i −0.409622 + 0.115737i
\(406\) 275.971 + 170.899i 0.679732 + 0.420933i
\(407\) 262.961 151.820i 0.646095 0.373023i
\(408\) −83.7087 28.0990i −0.205168 0.0688700i
\(409\) 236.165 0.577421 0.288711 0.957416i \(-0.406773\pi\)
0.288711 + 0.957416i \(0.406773\pi\)
\(410\) 100.031i 0.243978i
\(411\) −446.479 + 90.3857i −1.08632 + 0.219917i
\(412\) −141.254 244.659i −0.342850 0.593833i
\(413\) −278.960 519.571i −0.675448 1.25804i
\(414\) 224.021 94.5784i 0.541114 0.228450i
\(415\) 11.3738 19.7000i 0.0274068 0.0474700i
\(416\) −102.084 58.9382i −0.245394 0.141678i
\(417\) −41.8221 206.589i −0.100293 0.495417i
\(418\) −77.9275 134.974i −0.186429 0.322905i
\(419\) 22.4520 + 12.9626i 0.0535846 + 0.0309371i 0.526553 0.850142i \(-0.323484\pi\)
−0.472968 + 0.881079i \(0.656818\pi\)
\(420\) −15.0240 88.1167i −0.0357714 0.209802i
\(421\) 163.113 + 282.520i 0.387442 + 0.671069i 0.992105 0.125413i \(-0.0400255\pi\)
−0.604663 + 0.796481i \(0.706692\pi\)
\(422\) −98.9231 57.1133i −0.234415 0.135340i
\(423\) 591.400 + 73.7810i 1.39811 + 0.174423i
\(424\) 4.44586 + 7.70046i 0.0104855 + 0.0181615i
\(425\) 213.017i 0.501217i
\(426\) −368.395 + 325.291i −0.864776 + 0.763594i
\(427\) −567.532 + 304.711i −1.32911 + 0.713608i
\(428\) −56.2881 32.4980i −0.131514 0.0759298i
\(429\) −178.206 + 530.889i −0.415399 + 1.23750i
\(430\) 31.1439 53.9428i 0.0724276 0.125448i
\(431\) 356.337 205.731i 0.826768 0.477335i −0.0259770 0.999663i \(-0.508270\pi\)
0.852745 + 0.522328i \(0.174936\pi\)
\(432\) 60.9123 + 89.1835i 0.141001 + 0.206443i
\(433\) 407.282 0.940605 0.470303 0.882505i \(-0.344145\pi\)
0.470303 + 0.882505i \(0.344145\pi\)
\(434\) −177.421 330.452i −0.408805 0.761410i
\(435\) −41.5402 205.196i −0.0954947 0.471716i
\(436\) 79.2302 + 137.231i 0.181721 + 0.314749i
\(437\) 235.039i 0.537846i
\(438\) 52.9336 157.693i 0.120853 0.360029i
\(439\) −153.542 −0.349753 −0.174877 0.984590i \(-0.555953\pi\)
−0.174877 + 0.984590i \(0.555953\pi\)
\(440\) 53.9252i 0.122557i
\(441\) −334.597 287.273i −0.758724 0.651412i
\(442\) −306.659 −0.693800
\(443\) 86.7223i 0.195761i −0.995198 0.0978807i \(-0.968794\pi\)
0.995198 0.0978807i \(-0.0312064\pi\)
\(444\) −40.3528 199.331i −0.0908847 0.448944i
\(445\) −152.245 −0.342125
\(446\) 385.984 222.848i 0.865434 0.499659i
\(447\) 197.442 588.194i 0.441705 1.31587i
\(448\) −49.3384 + 26.4900i −0.110130 + 0.0591295i
\(449\) 745.441i 1.66022i 0.557596 + 0.830112i \(0.311724\pi\)
−0.557596 + 0.830112i \(0.688276\pi\)
\(450\) 157.204 207.776i 0.349342 0.461724i
\(451\) −148.858 257.830i −0.330063 0.571686i
\(452\) −330.520 190.826i −0.731239 0.422181i
\(453\) −113.093 558.644i −0.249653 1.23321i
\(454\) −199.103 + 344.857i −0.438553 + 0.759597i
\(455\) −146.851 273.513i −0.322749 0.601128i
\(456\) −102.314 + 20.7126i −0.224373 + 0.0454223i
\(457\) 463.102 1.01335 0.506677 0.862136i \(-0.330874\pi\)
0.506677 + 0.862136i \(0.330874\pi\)
\(458\) −220.610 + 127.369i −0.481682 + 0.278099i
\(459\) 253.242 + 121.697i 0.551725 + 0.265135i
\(460\) 40.6612 70.4273i 0.0883939 0.153103i
\(461\) 407.470 235.253i 0.883883 0.510310i 0.0119464 0.999929i \(-0.496197\pi\)
0.871937 + 0.489618i \(0.162864\pi\)
\(462\) 169.853 + 204.764i 0.367647 + 0.443211i
\(463\) −103.171 + 178.698i −0.222832 + 0.385956i −0.955667 0.294451i \(-0.904863\pi\)
0.732835 + 0.680406i \(0.238197\pi\)
\(464\) −113.587 + 65.5795i −0.244800 + 0.141335i
\(465\) −76.9814 + 229.333i −0.165551 + 0.493189i
\(466\) −151.816 + 262.954i −0.325786 + 0.564278i
\(467\) −286.525 165.425i −0.613544 0.354230i 0.160807 0.986986i \(-0.448590\pi\)
−0.774351 + 0.632756i \(0.781924\pi\)
\(468\) 299.114 + 226.310i 0.639132 + 0.483569i
\(469\) −411.797 + 221.096i −0.878032 + 0.471420i
\(470\) 172.612 99.6573i 0.367259 0.212037i
\(471\) −200.923 + 177.414i −0.426587 + 0.376675i
\(472\) 238.284 0.504839
\(473\) 185.384i 0.391931i
\(474\) 147.195 + 166.700i 0.310538 + 0.351687i
\(475\) 125.918 + 218.096i 0.265090 + 0.459149i
\(476\) −76.7018 + 123.860i −0.161138 + 0.260209i
\(477\) −11.0045 26.0655i −0.0230702 0.0546447i
\(478\) −323.116 + 559.653i −0.675975 + 1.17082i
\(479\) −645.847 372.880i −1.34832 0.778455i −0.360312 0.932832i \(-0.617330\pi\)
−0.988012 + 0.154377i \(0.950663\pi\)
\(480\) 34.2407 + 11.4938i 0.0713349 + 0.0239454i
\(481\) −353.156 611.685i −0.734213 1.27169i
\(482\) 396.037 + 228.652i 0.821654 + 0.474382i
\(483\) −67.4329 395.499i −0.139613 0.818839i
\(484\) 40.7528 + 70.5859i 0.0842000 + 0.145839i
\(485\) 238.091 + 137.462i 0.490910 + 0.283427i
\(486\) −157.200 305.592i −0.323456 0.628789i
\(487\) 211.707 + 366.687i 0.434717 + 0.752951i 0.997272 0.0738079i \(-0.0235152\pi\)
−0.562556 + 0.826759i \(0.690182\pi\)
\(488\) 260.280i 0.533360i
\(489\) −84.6290 418.042i −0.173065 0.854892i
\(490\) −147.202 9.09835i −0.300413 0.0185681i
\(491\) 464.317 + 268.074i 0.945656 + 0.545975i 0.891729 0.452570i \(-0.149493\pi\)
0.0539270 + 0.998545i \(0.482826\pi\)
\(492\) −195.442 + 39.5655i −0.397240 + 0.0804177i
\(493\) −170.607 + 295.501i −0.346060 + 0.599393i
\(494\) −313.970 + 181.271i −0.635567 + 0.366945i
\(495\) 21.2421 170.269i 0.0429134 0.343978i
\(496\) 151.551 0.305546
\(497\) 383.567 + 714.403i 0.771764 + 1.43743i
\(498\) 42.9889 + 14.4303i 0.0863231 + 0.0289765i
\(499\) −158.970 275.344i −0.318577 0.551791i 0.661615 0.749844i \(-0.269871\pi\)
−0.980191 + 0.198053i \(0.936538\pi\)
\(500\) 193.549i 0.387097i
\(501\) 266.619 53.9748i 0.532174 0.107734i
\(502\) −541.308 −1.07830
\(503\) 347.660i 0.691173i 0.938387 + 0.345587i \(0.112320\pi\)
−0.938387 + 0.345587i \(0.887680\pi\)
\(504\) 166.221 64.2070i 0.329804 0.127395i
\(505\) 133.069 0.263503
\(506\) 242.035i 0.478331i
\(507\) 754.281 + 253.194i 1.48773 + 0.499396i
\(508\) 376.138 0.740430
\(509\) −100.375 + 57.9514i −0.197200 + 0.113853i −0.595349 0.803467i \(-0.702986\pi\)
0.398149 + 0.917321i \(0.369653\pi\)
\(510\) 92.0949 18.6438i 0.180578 0.0365565i
\(511\) −233.330 144.493i −0.456614 0.282765i
\(512\) 22.6274i 0.0441942i
\(513\) 331.216 25.0966i 0.645645 0.0489213i
\(514\) −236.464 409.568i −0.460047 0.796825i
\(515\) 260.353 + 150.315i 0.505541 + 0.291874i
\(516\) 117.713 + 39.5132i 0.228125 + 0.0765760i
\(517\) −296.604 + 513.734i −0.573703 + 0.993683i
\(518\) −335.391 10.3551i −0.647473 0.0199906i
\(519\) 100.988 + 114.369i 0.194581 + 0.220365i
\(520\) 125.438 0.241227
\(521\) 708.353 408.968i 1.35960 0.784967i 0.370033 0.929018i \(-0.379346\pi\)
0.989570 + 0.144051i \(0.0460129\pi\)
\(522\) 384.485 162.324i 0.736561 0.310965i
\(523\) −162.739 + 281.873i −0.311165 + 0.538954i −0.978615 0.205701i \(-0.934053\pi\)
0.667450 + 0.744655i \(0.267386\pi\)
\(524\) 140.429 81.0768i 0.267995 0.154727i
\(525\) −274.453 330.863i −0.522768 0.630215i
\(526\) −29.7960 + 51.6082i −0.0566463 + 0.0981144i
\(527\) 341.443 197.132i 0.647899 0.374065i
\(528\) −105.360 + 21.3291i −0.199545 + 0.0403961i
\(529\) −81.9980 + 142.025i −0.155006 + 0.268478i
\(530\) −8.19442 4.73105i −0.0154612 0.00892651i
\(531\) −752.382 93.8646i −1.41692 0.176769i
\(532\) −5.31515 + 172.152i −0.00999088 + 0.323594i
\(533\) −599.751 + 346.266i −1.12524 + 0.649656i
\(534\) −60.2180 297.459i −0.112768 0.557040i
\(535\) 69.1652 0.129281
\(536\) 188.857i 0.352345i
\(537\) −36.3284 + 108.225i −0.0676506 + 0.201536i
\(538\) −57.7854 100.087i −0.107408 0.186036i
\(539\) 392.954 195.604i 0.729042 0.362902i
\(540\) −103.588 49.7797i −0.191829 0.0921846i
\(541\) −335.424 + 580.972i −0.620008 + 1.07389i 0.369475 + 0.929241i \(0.379537\pi\)
−0.989484 + 0.144645i \(0.953796\pi\)
\(542\) 298.651 + 172.426i 0.551017 + 0.318130i
\(543\) −277.789 + 245.287i −0.511582 + 0.451725i
\(544\) −29.4330 50.9794i −0.0541048 0.0937122i
\(545\) −146.034 84.3125i −0.267952 0.154702i
\(546\) 476.310 395.102i 0.872362 0.723630i
\(547\) 212.349 + 367.799i 0.388207 + 0.672393i 0.992208 0.124589i \(-0.0397614\pi\)
−0.604002 + 0.796983i \(0.706428\pi\)
\(548\) −263.004 151.845i −0.479934 0.277090i
\(549\) −102.529 + 821.834i −0.186756 + 1.49696i
\(550\) 129.666 + 224.588i 0.235756 + 0.408341i
\(551\) 403.394i 0.732112i
\(552\) 153.685 + 51.5881i 0.278414 + 0.0934568i
\(553\) 323.270 173.565i 0.584575 0.313861i
\(554\) −548.637 316.756i −0.990320 0.571761i
\(555\) 143.247 + 162.228i 0.258103 + 0.292303i
\(556\) 70.2599 121.694i 0.126367 0.218874i
\(557\) −352.922 + 203.759i −0.633611 + 0.365816i −0.782149 0.623091i \(-0.785877\pi\)
0.148538 + 0.988907i \(0.452543\pi\)
\(558\) −478.522 59.6987i −0.857566 0.106987i
\(559\) 431.229 0.771430
\(560\) 31.3746 50.6643i 0.0560260 0.0904719i
\(561\) −209.630 + 185.103i −0.373673 + 0.329952i
\(562\) 52.1406 + 90.3101i 0.0927768 + 0.160694i
\(563\) 387.796i 0.688803i 0.938822 + 0.344402i \(0.111918\pi\)
−0.938822 + 0.344402i \(0.888082\pi\)
\(564\) 262.985 + 297.833i 0.466286 + 0.528073i
\(565\) 406.133 0.718820
\(566\) 103.882i 0.183537i
\(567\) −550.136 + 137.256i −0.970258 + 0.242075i
\(568\) −327.637 −0.576826
\(569\) 682.994i 1.20034i −0.799872 0.600170i \(-0.795100\pi\)
0.799872 0.600170i \(-0.204900\pi\)
\(570\) 83.2698 73.5268i 0.146087 0.128994i
\(571\) 790.279 1.38403 0.692013 0.721885i \(-0.256724\pi\)
0.692013 + 0.721885i \(0.256724\pi\)
\(572\) −323.316 + 186.667i −0.565238 + 0.326340i
\(573\) 551.412 + 624.478i 0.962324 + 1.08984i
\(574\) −10.1531 + 328.848i −0.0176883 + 0.572905i
\(575\) 391.088i 0.680153i
\(576\) −8.91337 + 71.4461i −0.0154746 + 0.124038i
\(577\) −478.802 829.310i −0.829813 1.43728i −0.898185 0.439619i \(-0.855114\pi\)
0.0683714 0.997660i \(-0.478220\pi\)
\(578\) 221.327 + 127.783i 0.382918 + 0.221078i
\(579\) −480.832 + 424.573i −0.830453 + 0.733286i
\(580\) 69.7863 120.873i 0.120321 0.208402i
\(581\) 39.3905 63.6085i 0.0677977 0.109481i
\(582\) −174.403 + 519.557i −0.299661 + 0.892710i
\(583\) 28.1615 0.0483045
\(584\) 96.0364 55.4466i 0.164446 0.0949429i
\(585\) −396.070 49.4123i −0.677043 0.0844655i
\(586\) −268.913 + 465.771i −0.458896 + 0.794831i
\(587\) −790.499 + 456.395i −1.34668 + 0.777504i −0.987777 0.155872i \(-0.950181\pi\)
−0.358899 + 0.933376i \(0.616848\pi\)
\(588\) −40.4468 291.204i −0.0687871 0.495246i
\(589\) 233.055 403.663i 0.395679 0.685337i
\(590\) −219.597 + 126.785i −0.372199 + 0.214889i
\(591\) −659.306 746.670i −1.11558 1.26340i
\(592\) 67.7915 117.418i 0.114513 0.198342i
\(593\) −650.841 375.763i −1.09754 0.633665i −0.161966 0.986796i \(-0.551783\pi\)
−0.935574 + 0.353132i \(0.885117\pi\)
\(594\) 341.076 25.8437i 0.574201 0.0435079i
\(595\) 4.78427 154.957i 0.00804079 0.260432i
\(596\) 358.215 206.816i 0.601033 0.347006i
\(597\) −256.735 86.1795i −0.430041 0.144354i
\(598\) 563.010 0.941488
\(599\) 837.451i 1.39808i 0.715081 + 0.699041i \(0.246390\pi\)
−0.715081 + 0.699041i \(0.753610\pi\)
\(600\) 170.243 34.4643i 0.283739 0.0574405i
\(601\) −178.129 308.529i −0.296388 0.513359i 0.678919 0.734213i \(-0.262449\pi\)
−0.975307 + 0.220855i \(0.929115\pi\)
\(602\) 107.859 174.173i 0.179168 0.289324i
\(603\) −74.3943 + 596.316i −0.123374 + 0.988916i
\(604\) 189.992 329.076i 0.314557 0.544828i
\(605\) −75.1138 43.3670i −0.124155 0.0716809i
\(606\) 52.6330 + 259.992i 0.0868532 + 0.429029i
\(607\) −288.539 499.764i −0.475352 0.823334i 0.524249 0.851565i \(-0.324346\pi\)
−0.999601 + 0.0282308i \(0.991013\pi\)
\(608\) −60.2693 34.7965i −0.0991272 0.0572311i
\(609\) −115.734 678.789i −0.190040 1.11460i
\(610\) 138.488 + 239.868i 0.227029 + 0.393226i
\(611\) 1195.02 + 689.945i 1.95584 + 1.12921i
\(612\) 72.8530 + 172.562i 0.119041 + 0.281964i
\(613\) −493.390 854.577i −0.804878 1.39409i −0.916373 0.400325i \(-0.868897\pi\)
0.111495 0.993765i \(-0.464436\pi\)
\(614\) 242.365i 0.394732i
\(615\) 159.063 140.452i 0.258640 0.228378i
\(616\) −5.47337 + 177.276i −0.00888534 + 0.287786i
\(617\) −683.671 394.718i −1.10806 0.639737i −0.169732 0.985490i \(-0.554290\pi\)
−0.938325 + 0.345753i \(0.887623\pi\)
\(618\) −190.709 + 568.136i −0.308591 + 0.919314i
\(619\) 80.1860 138.886i 0.129541 0.224372i −0.793958 0.607973i \(-0.791983\pi\)
0.923499 + 0.383601i \(0.125316\pi\)
\(620\) −139.666 + 80.6361i −0.225267 + 0.130058i
\(621\) −464.938 223.429i −0.748692 0.359789i
\(622\) −238.149 −0.382877
\(623\) −500.500 15.4528i −0.803371 0.0248039i
\(624\) 49.6147 + 245.082i 0.0795108 + 0.392760i
\(625\) −152.898 264.826i −0.244636 0.423722i
\(626\) 292.826i 0.467773i
\(627\) −105.211 + 313.431i −0.167801 + 0.499890i
\(628\) −178.694 −0.284544
\(629\) 352.724i 0.560769i
\(630\) −119.023 + 147.614i −0.188925 + 0.234307i
\(631\) 836.748 1.32607 0.663033 0.748590i \(-0.269269\pi\)
0.663033 + 0.748590i \(0.269269\pi\)
\(632\) 148.257i 0.234584i
\(633\) 48.0785 + 237.493i 0.0759533 + 0.375187i
\(634\) −183.738 −0.289807
\(635\) −346.641 + 200.133i −0.545891 + 0.315170i
\(636\) 6.00243 17.8816i 0.00943778 0.0281158i
\(637\) −455.003 914.068i −0.714291 1.43496i
\(638\) 415.402i 0.651100i
\(639\) 1034.52 + 129.063i 1.61896 + 0.201976i
\(640\) 12.0394 + 20.8529i 0.0188116 + 0.0325827i
\(641\) −129.348 74.6790i −0.201791 0.116504i 0.395700 0.918380i \(-0.370502\pi\)
−0.597490 + 0.801876i \(0.703835\pi\)
\(642\) 27.3571 + 135.136i 0.0426123 + 0.210492i
\(643\) −5.29334 + 9.16834i −0.00823226 + 0.0142587i −0.870112 0.492854i \(-0.835954\pi\)
0.861880 + 0.507112i \(0.169287\pi\)
\(644\) 140.820 227.399i 0.218665 0.353105i
\(645\) −129.505 + 26.2172i −0.200783 + 0.0406468i
\(646\) −181.049 −0.280261
\(647\) −698.353 + 403.194i −1.07937 + 0.623175i −0.930727 0.365716i \(-0.880824\pi\)
−0.148644 + 0.988891i \(0.547491\pi\)
\(648\) 56.2880 222.080i 0.0868642 0.342717i
\(649\) 377.342 653.575i 0.581420 1.00705i
\(650\) 522.424 301.622i 0.803729 0.464033i
\(651\) −276.350 + 746.107i −0.424500 + 1.14609i
\(652\) 142.174 246.253i 0.218059 0.377689i
\(653\) 96.8368 55.9088i 0.148295 0.0856183i −0.424016 0.905655i \(-0.639380\pi\)
0.572312 + 0.820036i \(0.306047\pi\)
\(654\) 106.970 318.671i 0.163563 0.487264i
\(655\) −86.2777 + 149.437i −0.131722 + 0.228149i
\(656\) −115.128 66.4689i −0.175499 0.101325i
\(657\) −325.077 + 137.242i −0.494789 + 0.208893i
\(658\) 577.568 310.099i 0.877762 0.471275i
\(659\) 510.814 294.918i 0.775135 0.447524i −0.0595686 0.998224i \(-0.518972\pi\)
0.834703 + 0.550700i \(0.185639\pi\)
\(660\) 85.7485 75.7156i 0.129922 0.114721i
\(661\) 448.693 0.678810 0.339405 0.940640i \(-0.389774\pi\)
0.339405 + 0.940640i \(0.389774\pi\)
\(662\) 60.9244i 0.0920309i
\(663\) 430.576 + 487.631i 0.649436 + 0.735492i
\(664\) 15.1154 + 26.1807i 0.0227642 + 0.0394287i
\(665\) −86.6991 161.479i −0.130375 0.242826i
\(666\) −260.305 + 344.044i −0.390849 + 0.516583i
\(667\) 313.226 542.523i 0.469603 0.813377i
\(668\) 157.055 + 90.6760i 0.235113 + 0.135742i
\(669\) −896.313 300.870i −1.33978 0.449731i
\(670\) 100.486 + 174.046i 0.149979 + 0.259771i
\(671\) −713.905 412.174i −1.06394 0.614268i
\(672\) 111.398 + 41.2607i 0.165771 + 0.0613998i
\(673\) 466.228 + 807.530i 0.692760 + 1.19990i 0.970930 + 0.239364i \(0.0769389\pi\)
−0.278170 + 0.960532i \(0.589728\pi\)
\(674\) 255.460 + 147.490i 0.379021 + 0.218828i
\(675\) −551.120 + 41.7590i −0.816474 + 0.0618652i
\(676\) 265.214 + 459.364i 0.392329 + 0.679533i
\(677\) 253.972i 0.375143i −0.982251 0.187571i \(-0.939938\pi\)
0.982251 0.187571i \(-0.0600616\pi\)
\(678\) 160.639 + 793.509i 0.236930 + 1.17037i
\(679\) 768.762 + 476.067i 1.13220 + 0.701129i
\(680\) 54.2496 + 31.3210i 0.0797788 + 0.0460603i
\(681\) 827.928 167.607i 1.21575 0.246119i
\(682\) 239.993 415.679i 0.351895 0.609501i
\(683\) 956.390 552.172i 1.40028 0.808451i 0.405857 0.913936i \(-0.366973\pi\)
0.994421 + 0.105485i \(0.0336396\pi\)
\(684\) 176.594 + 133.611i 0.258178 + 0.195338i
\(685\) 323.171 0.471783
\(686\) −482.997 44.8513i −0.704078 0.0653809i
\(687\) 512.291 + 171.963i 0.745692 + 0.250311i
\(688\) 41.3891 + 71.6880i 0.0601586 + 0.104198i
\(689\) 65.5078i 0.0950766i
\(690\) −169.081 + 34.2290i −0.245045 + 0.0496072i
\(691\) 4.23924 0.00613494 0.00306747 0.999995i \(-0.499024\pi\)
0.00306747 + 0.999995i \(0.499024\pi\)
\(692\) 101.716i 0.146988i
\(693\) 87.1147 557.595i 0.125707 0.804610i
\(694\) 603.919 0.870200
\(695\) 149.534i 0.215156i
\(696\) 263.767 + 88.5400i 0.378975 + 0.127213i
\(697\) −345.842 −0.496187
\(698\) −702.668 + 405.686i −1.00669 + 0.581212i
\(699\) 631.296 127.800i 0.903141 0.182833i
\(700\) 8.84403 286.449i 0.0126343 0.409212i
\(701\) 811.266i 1.15730i −0.815576 0.578649i \(-0.803580\pi\)
0.815576 0.578649i \(-0.196420\pi\)
\(702\) −60.1162 793.392i −0.0856356 1.13019i
\(703\) −208.500 361.132i −0.296586 0.513702i
\(704\) −62.0634 35.8323i −0.0881582 0.0508982i
\(705\) −400.830 134.549i −0.568554 0.190850i
\(706\) 217.258 376.301i 0.307730 0.533004i
\(707\) 437.458 + 13.5064i 0.618752 + 0.0191038i
\(708\) −334.571 378.905i −0.472558 0.535176i
\(709\) −679.761 −0.958761 −0.479380 0.877607i \(-0.659139\pi\)
−0.479380 + 0.877607i \(0.659139\pi\)
\(710\) 301.943 174.327i 0.425272 0.245531i
\(711\) 58.4012 468.122i 0.0821395 0.658399i
\(712\) 101.164 175.222i 0.142085 0.246098i
\(713\) −626.870 + 361.923i −0.879200 + 0.507607i
\(714\) 304.650 51.9431i 0.426681 0.0727494i
\(715\) 198.641 344.056i 0.277819 0.481197i
\(716\) −65.9099 + 38.0531i −0.0920529 + 0.0531467i
\(717\) 1343.61 272.002i 1.87393 0.379361i
\(718\) −257.988 + 446.848i −0.359314 + 0.622351i
\(719\) 93.3734 + 53.9092i 0.129866 + 0.0749780i 0.563525 0.826099i \(-0.309445\pi\)
−0.433660 + 0.901077i \(0.642778\pi\)
\(720\) −29.8002 70.5858i −0.0413892 0.0980358i
\(721\) 840.643 + 520.579i 1.16594 + 0.722024i
\(722\) 256.768 148.245i 0.355635 0.205326i
\(723\) −192.481 950.801i −0.266226 1.31508i
\(724\) −247.056 −0.341237
\(725\) 671.219i 0.925819i
\(726\) 55.0210 163.911i 0.0757865 0.225773i
\(727\) −220.335 381.632i −0.303075 0.524941i 0.673756 0.738954i \(-0.264680\pi\)
−0.976831 + 0.214013i \(0.931346\pi\)
\(728\) 412.371 + 12.7319i 0.566444 + 0.0174888i
\(729\) −265.211 + 679.046i −0.363801 + 0.931477i
\(730\) −59.0034 + 102.197i −0.0808265 + 0.139996i
\(731\) 186.499 + 107.675i 0.255128 + 0.147298i
\(732\) −413.881 + 365.455i −0.565411 + 0.499255i
\(733\) 112.200 + 194.337i 0.153070 + 0.265125i 0.932355 0.361545i \(-0.117751\pi\)
−0.779284 + 0.626670i \(0.784417\pi\)
\(734\) 619.667 + 357.765i 0.844233 + 0.487418i
\(735\) 192.217 + 246.847i 0.261520 + 0.335846i
\(736\) 54.0373 + 93.5954i 0.0734203 + 0.127168i
\(737\) −518.005 299.070i −0.702856 0.405794i
\(738\) 337.332 + 255.227i 0.457090 + 0.345836i
\(739\) −351.064 608.061i −0.475053 0.822816i 0.524539 0.851387i \(-0.324238\pi\)
−0.999592 + 0.0285707i \(0.990904\pi\)
\(740\) 144.280i 0.194973i
\(741\) 729.087 + 244.736i 0.983923 + 0.330279i
\(742\) −26.4586 16.3848i −0.0356584 0.0220820i
\(743\) 627.910 + 362.524i 0.845100 + 0.487919i 0.858995 0.511985i \(-0.171089\pi\)
−0.0138943 + 0.999903i \(0.504423\pi\)
\(744\) −212.790 240.987i −0.286008 0.323907i
\(745\) −220.082 + 381.194i −0.295413 + 0.511670i
\(746\) −291.868 + 168.510i −0.391244 + 0.225885i
\(747\) −37.4139 88.6198i −0.0500855 0.118634i
\(748\) −186.438 −0.249249
\(749\) 227.377 + 7.02022i 0.303575 + 0.00937279i
\(750\) −307.769 + 271.759i −0.410359 + 0.362345i
\(751\) −158.250 274.097i −0.210719 0.364976i 0.741221 0.671261i \(-0.234247\pi\)
−0.951940 + 0.306286i \(0.900914\pi\)
\(752\) 264.882i 0.352237i
\(753\) 760.043 + 860.756i 1.00935 + 1.14310i
\(754\) 966.285 1.28155
\(755\) 404.359i 0.535575i
\(756\) −335.487 174.163i −0.443766 0.230374i
\(757\) 351.377 0.464171 0.232085 0.972695i \(-0.425445\pi\)
0.232085 + 0.972695i \(0.425445\pi\)
\(758\) 436.326i 0.575628i
\(759\) 384.870 339.838i 0.507075 0.447745i
\(760\) 74.0572 0.0974437
\(761\) 114.692 66.2177i 0.150713 0.0870141i −0.422747 0.906248i \(-0.638934\pi\)
0.573460 + 0.819234i \(0.305601\pi\)
\(762\) −528.131 598.112i −0.693085 0.784924i
\(763\) −471.521 291.996i −0.617983 0.382694i
\(764\) 555.389i 0.726949i
\(765\) −158.955 120.266i −0.207785 0.157211i
\(766\) −284.893 493.449i −0.371923 0.644189i
\(767\) −1520.31 877.752i −1.98215 1.14440i
\(768\) −35.9807 + 31.7708i −0.0468499 + 0.0413683i
\(769\) −190.808 + 330.489i −0.248125 + 0.429765i −0.963006 0.269482i \(-0.913148\pi\)
0.714881 + 0.699246i \(0.246481\pi\)
\(770\) −89.2800 166.286i −0.115948 0.215956i
\(771\) −319.254 + 951.080i −0.414078 + 1.23357i
\(772\) −427.635 −0.553932
\(773\) −935.432 + 540.072i −1.21013 + 0.698670i −0.962788 0.270258i \(-0.912891\pi\)
−0.247344 + 0.968928i \(0.579558\pi\)
\(774\) −102.447 242.659i −0.132360 0.313513i
\(775\) −387.787 + 671.667i −0.500371 + 0.866667i
\(776\) −316.415 + 182.682i −0.407751 + 0.235415i
\(777\) 454.452 + 547.858i 0.584880 + 0.705094i
\(778\) 152.899 264.829i 0.196528 0.340397i
\(779\) −354.087 + 204.432i −0.454540 + 0.262429i
\(780\) −176.125 199.464i −0.225802 0.255723i
\(781\) −518.840 + 898.657i −0.664328 + 1.15065i
\(782\) 243.491 + 140.580i 0.311370 + 0.179770i
\(783\) −797.966 383.468i −1.01911 0.489742i
\(784\) 108.285 163.372i 0.138118 0.208383i
\(785\) 164.680 95.0781i 0.209783 0.121119i
\(786\) −326.098 109.463i −0.414883 0.139266i
\(787\) 1412.73 1.79509 0.897544 0.440925i \(-0.145349\pi\)
0.897544 + 0.440925i \(0.145349\pi\)
\(788\) 664.062i 0.842718i
\(789\) 123.900 25.0825i 0.157035 0.0317903i
\(790\) −78.8836 136.630i −0.0998526 0.172950i
\(791\) 1335.14 + 41.2223i 1.68792 + 0.0521141i
\(792\) 181.850 + 137.589i 0.229609 + 0.173723i
\(793\) −958.776 + 1660.65i −1.20905 + 2.09413i
\(794\) −319.465 184.443i −0.402349 0.232296i
\(795\) 3.98264 + 19.6731i 0.00500961 + 0.0247460i
\(796\) −90.2709 156.354i −0.113406 0.196424i
\(797\) −590.806 341.102i −0.741287 0.427982i 0.0812501 0.996694i \(-0.474109\pi\)
−0.822537 + 0.568711i \(0.807442\pi\)
\(798\) 281.208 233.264i 0.352391 0.292311i
\(799\) 344.550 + 596.778i 0.431226 + 0.746906i
\(800\) 100.284 + 57.8989i 0.125355 + 0.0723737i
\(801\) −388.450 + 513.413i −0.484957 + 0.640965i
\(802\) −515.329 892.576i −0.642555 1.11294i
\(803\) 351.217i 0.437381i
\(804\) −300.309 + 265.171i −0.373518 + 0.329815i
\(805\) −8.78365 + 284.493i −0.0109114 + 0.353407i
\(806\) −966.931 558.258i −1.19967 0.692628i
\(807\) −78.0170 + 232.418i −0.0966753 + 0.288002i
\(808\) −88.4219 + 153.151i −0.109433 + 0.189544i
\(809\) −717.748 + 414.392i −0.887204 + 0.512227i −0.873027 0.487672i \(-0.837846\pi\)
−0.0141768 + 0.999900i \(0.504513\pi\)
\(810\) 66.2893 + 234.614i 0.0818386 + 0.289647i
\(811\) −269.981 −0.332898 −0.166449 0.986050i \(-0.553230\pi\)
−0.166449 + 0.986050i \(0.553230\pi\)
\(812\) 241.688 390.282i 0.297645 0.480643i
\(813\) −145.150 716.998i −0.178536 0.881917i
\(814\) −214.706 371.882i −0.263767 0.456858i
\(815\) 302.588i 0.371274i
\(816\) −39.7379 + 118.382i −0.0486985 + 0.145076i
\(817\) 254.593 0.311620
\(818\) 333.988i 0.408298i
\(819\) −1297.05 202.642i −1.58370 0.247426i
\(820\) 141.465 0.172519
\(821\) 540.660i 0.658538i 0.944236 + 0.329269i \(0.106802\pi\)
−0.944236 + 0.329269i \(0.893198\pi\)
\(822\) 127.825 + 631.416i 0.155504 + 0.768146i
\(823\) −31.8686 −0.0387225 −0.0193612 0.999813i \(-0.506163\pi\)
−0.0193612 + 0.999813i \(0.506163\pi\)
\(824\) −346.000 + 199.763i −0.419903 + 0.242431i
\(825\) 175.064 521.527i 0.212199 0.632154i
\(826\) −734.784 + 394.509i −0.889569 + 0.477614i
\(827\) 1309.68i 1.58365i −0.610749 0.791824i \(-0.709131\pi\)
0.610749 0.791824i \(-0.290869\pi\)
\(828\) −133.754 316.814i −0.161539 0.382626i
\(829\) −458.707 794.505i −0.553326 0.958389i −0.998032 0.0627123i \(-0.980025\pi\)
0.444705 0.895677i \(-0.353308\pi\)
\(830\) −27.8601 16.0850i −0.0335663 0.0193795i
\(831\) 266.648 + 1317.16i 0.320876 + 1.58503i
\(832\) −83.3512 + 144.369i −0.100182 + 0.173520i
\(833\) 31.4561 508.929i 0.0377625 0.610960i
\(834\) −292.161 + 59.1454i −0.350313 + 0.0709178i
\(835\) −192.985 −0.231120
\(836\) −190.883 + 110.206i −0.228328 + 0.131825i
\(837\) 576.957 + 844.738i 0.689315 + 1.00925i
\(838\) 18.3320 31.7519i 0.0218758 0.0378901i
\(839\) 1092.02 630.476i 1.30157 0.751461i 0.320896 0.947114i \(-0.396016\pi\)
0.980673 + 0.195653i \(0.0626827\pi\)
\(840\) −124.616 + 21.2471i −0.148352 + 0.0252942i
\(841\) 117.084 202.796i 0.139221 0.241137i
\(842\) 399.543 230.676i 0.474517 0.273963i
\(843\) 70.3958 209.714i 0.0835063 0.248771i
\(844\) −80.7704 + 139.898i −0.0956995 + 0.165756i
\(845\) −488.831 282.227i −0.578498 0.333996i
\(846\) 104.342 836.366i 0.123336 0.988613i
\(847\) −242.531 150.191i −0.286342 0.177321i
\(848\) 10.8901 6.28740i 0.0128421 0.00741438i
\(849\) 165.187 145.859i 0.194566 0.171801i
\(850\) 301.252 0.354414
\(851\) 647.581i 0.760964i
\(852\) 460.031 + 520.989i 0.539942 + 0.611489i
\(853\) 150.056 + 259.905i 0.175916 + 0.304696i 0.940478 0.339855i \(-0.110378\pi\)
−0.764562 + 0.644550i \(0.777045\pi\)
\(854\) 430.926 + 802.611i 0.504597 + 0.939826i
\(855\) −233.836 29.1725i −0.273492 0.0341199i
\(856\) −45.9591 + 79.6034i −0.0536905 + 0.0929947i
\(857\) 442.157 + 255.280i 0.515936 + 0.297876i 0.735270 0.677774i \(-0.237055\pi\)
−0.219334 + 0.975650i \(0.570388\pi\)
\(858\) 750.790 + 252.022i 0.875047 + 0.293732i
\(859\) 659.044 + 1141.50i 0.767223 + 1.32887i 0.939063 + 0.343744i \(0.111695\pi\)
−0.171841 + 0.985125i \(0.554971\pi\)
\(860\) −76.2866 44.0441i −0.0887054 0.0512141i
\(861\) 537.169 445.585i 0.623890 0.517521i
\(862\) −290.948 503.936i −0.337527 0.584613i
\(863\) 348.229 + 201.050i 0.403509 + 0.232966i 0.687997 0.725713i \(-0.258490\pi\)
−0.284488 + 0.958680i \(0.591824\pi\)
\(864\) 126.124 86.1430i 0.145977 0.0997026i
\(865\) −54.1204 93.7392i −0.0625669 0.108369i
\(866\) 575.984i 0.665109i
\(867\) −107.569 531.358i −0.124070 0.612870i
\(868\) −467.329 + 250.911i −0.538398 + 0.289068i
\(869\) 406.645 + 234.777i 0.467946 + 0.270169i
\(870\) −290.191 + 58.7467i −0.333553 + 0.0675249i
\(871\) −695.681 + 1204.95i −0.798715 + 1.38341i
\(872\) 194.073 112.048i 0.222561 0.128496i
\(873\) 1071.04 452.178i 1.22685 0.517959i
\(874\) 332.395 0.380315
\(875\) 320.444 + 596.836i 0.366222 + 0.682098i
\(876\) −223.011 74.8594i −0.254579 0.0854559i
\(877\) 403.270 + 698.484i 0.459829 + 0.796446i 0.998952 0.0457806i \(-0.0145775\pi\)
−0.539123 + 0.842227i \(0.681244\pi\)
\(878\) 217.141i 0.247313i
\(879\) 1118.22 226.373i 1.27215 0.257535i
\(880\) 76.2617 0.0866610
\(881\) 463.240i 0.525812i −0.964821 0.262906i \(-0.915319\pi\)
0.964821 0.262906i \(-0.0846809\pi\)
\(882\) −406.265 + 473.192i −0.460618 + 0.536499i
\(883\) −390.166 −0.441864 −0.220932 0.975289i \(-0.570910\pi\)
−0.220932 + 0.975289i \(0.570910\pi\)
\(884\) 433.682i 0.490590i
\(885\) 509.939 + 171.174i 0.576202 + 0.193417i
\(886\) −122.644 −0.138424
\(887\) −508.211 + 293.416i −0.572954 + 0.330795i −0.758328 0.651873i \(-0.773984\pi\)
0.185374 + 0.982668i \(0.440650\pi\)
\(888\) −281.896 + 57.0675i −0.317451 + 0.0642652i
\(889\) −1159.88 + 622.745i −1.30470 + 0.700500i
\(890\) 215.308i 0.241919i
\(891\) −519.994 506.071i −0.583608 0.567981i
\(892\) −315.154 545.863i −0.353312 0.611954i
\(893\) 705.528 + 407.337i 0.790064 + 0.456144i
\(894\) −831.831 279.225i −0.930460 0.312333i
\(895\) 40.4941 70.1378i 0.0452448 0.0783662i
\(896\) 37.4626 + 69.7750i 0.0418109 + 0.0778739i
\(897\) −790.514 895.264i −0.881286 0.998064i
\(898\) 1054.21 1.17396
\(899\) −1075.89 + 621.164i −1.19676 + 0.690950i
\(900\) −293.839 222.320i −0.326488 0.247022i
\(901\) 16.3569 28.3309i 0.0181541 0.0314439i
\(902\) −364.627 + 210.518i −0.404243 + 0.233390i
\(903\) −428.403 + 73.0431i −0.474422 + 0.0808894i
\(904\) −269.868 + 467.426i −0.298527 + 0.517064i
\(905\) 227.681 131.452i 0.251582 0.145251i
\(906\) −790.042 + 159.937i −0.872011 + 0.176531i
\(907\) 639.983 1108.48i 0.705604 1.22214i −0.260869 0.965374i \(-0.584009\pi\)
0.966473 0.256768i \(-0.0826576\pi\)
\(908\) 487.701 + 281.574i 0.537116 + 0.310104i
\(909\) 339.522 448.744i 0.373511 0.493668i
\(910\) −386.806 + 207.678i −0.425062 + 0.228218i
\(911\) −843.131 + 486.782i −0.925501 + 0.534338i −0.885386 0.464857i \(-0.846106\pi\)
−0.0401151 + 0.999195i \(0.512772\pi\)
\(912\) 29.2920 + 144.694i 0.0321184 + 0.158656i
\(913\) 95.7458 0.104869
\(914\) 654.926i 0.716549i
\(915\) 186.975 557.010i 0.204344 0.608754i
\(916\) 180.127 + 311.990i 0.196646 + 0.340600i
\(917\) −298.802 + 482.511i −0.325847 + 0.526184i
\(918\) 172.106 358.138i 0.187479 0.390129i
\(919\) −478.115 + 828.120i −0.520256 + 0.901110i 0.479466 + 0.877560i \(0.340830\pi\)
−0.999723 + 0.0235500i \(0.992503\pi\)
\(920\) −99.5992 57.5036i −0.108260 0.0625040i
\(921\) −385.395 + 340.302i −0.418453 + 0.369492i
\(922\) −332.698 576.250i −0.360844 0.625000i
\(923\) 2090.41 + 1206.90i 2.26480 + 1.30758i
\(924\) 289.579 240.208i 0.313398 0.259965i
\(925\) 346.929 + 600.899i 0.375058 + 0.649620i
\(926\) 252.716 + 145.906i 0.272912 + 0.157566i
\(927\) 1171.19 494.458i 1.26342 0.533395i
\(928\) 92.7435 + 160.636i 0.0999391 + 0.173100i
\(929\) 542.404i 0.583857i 0.956440 + 0.291929i \(0.0942970\pi\)
−0.956440 + 0.291929i \(0.905703\pi\)
\(930\) 324.325 + 108.868i 0.348737 + 0.117062i
\(931\) −268.629 539.656i −0.288538 0.579652i
\(932\) 371.872 + 214.701i 0.399005 + 0.230365i
\(933\) 334.382 + 378.691i 0.358395 + 0.405885i
\(934\) −233.947 + 405.208i −0.250478 + 0.433841i
\(935\) 171.817 99.1987i 0.183762 0.106095i
\(936\) 320.051 423.011i 0.341935 0.451934i
\(937\) −1094.99 −1.16862 −0.584308 0.811532i \(-0.698634\pi\)
−0.584308 + 0.811532i \(0.698634\pi\)
\(938\) 312.677 + 582.369i 0.333344 + 0.620862i
\(939\) −465.634 + 411.153i −0.495883 + 0.437863i
\(940\) −140.937 244.110i −0.149933 0.259691i
\(941\) 15.0511i 0.0159947i 0.999968 + 0.00799737i \(0.00254567\pi\)
−0.999968 + 0.00799737i \(0.997454\pi\)
\(942\) 250.901 + 284.148i 0.266349 + 0.301643i
\(943\) 634.947 0.673326
\(944\) 336.984i 0.356975i
\(945\) 401.845 17.9993i 0.425232 0.0190468i
\(946\) 262.172 0.277137
\(947\) 844.311i 0.891564i −0.895142 0.445782i \(-0.852926\pi\)
0.895142 0.445782i \(-0.147074\pi\)
\(948\) 235.749 208.166i 0.248681 0.219584i
\(949\) −816.981 −0.860887
\(950\) 308.434 178.074i 0.324667 0.187447i
\(951\) 257.984 + 292.169i 0.271276 + 0.307223i
\(952\) 175.164 + 108.473i 0.183996 + 0.113942i
\(953\) 1313.93i 1.37873i −0.724413 0.689367i \(-0.757889\pi\)
0.724413 0.689367i \(-0.242111\pi\)
\(954\) −36.8622 + 15.5627i −0.0386396 + 0.0163131i
\(955\) −295.508 511.834i −0.309432 0.535952i
\(956\) 791.469 + 456.955i 0.827897 + 0.477986i
\(957\) 660.547 583.260i 0.690226 0.609467i
\(958\) −527.332 + 913.366i −0.550451 + 0.953409i
\(959\) 1062.41 + 32.8017i 1.10783 + 0.0342040i
\(960\) 16.2547 48.4237i 0.0169319 0.0504414i
\(961\) 474.476 0.493731
\(962\) −865.053 + 499.439i −0.899224 + 0.519167i
\(963\) 176.473 233.244i 0.183254 0.242206i
\(964\) 323.363 560.081i 0.335439 0.580997i
\(965\) 394.099 227.533i 0.408393 0.235786i
\(966\) −559.320 + 95.3645i −0.579006 + 0.0987211i
\(967\) 440.465 762.908i 0.455496 0.788943i −0.543220 0.839590i \(-0.682795\pi\)
0.998717 + 0.0506473i \(0.0161284\pi\)
\(968\) 99.8236 57.6332i 0.103124 0.0595384i
\(969\) 254.208 + 287.892i 0.262340 + 0.297103i
\(970\) 194.401 336.712i 0.200413 0.347126i
\(971\) −853.170 492.578i −0.878651 0.507289i −0.00843742 0.999964i \(-0.502686\pi\)
−0.870213 + 0.492675i \(0.836019\pi\)
\(972\) −432.172 + 222.314i −0.444621 + 0.228718i
\(973\) −15.1776 + 491.585i −0.0155987 + 0.505226i
\(974\) 518.574 299.399i 0.532417 0.307391i
\(975\) −1213.15 407.224i −1.24426 0.417666i
\(976\) −368.091 −0.377142
\(977\) 132.173i 0.135284i 0.997710 + 0.0676421i \(0.0215476\pi\)
−0.997710 + 0.0676421i \(0.978452\pi\)
\(978\) −591.201 + 119.684i −0.604500 + 0.122376i
\(979\) −320.404 554.956i −0.327277 0.566860i
\(980\) −12.8670 + 208.176i −0.0131296 + 0.212424i
\(981\) −656.926 + 277.344i −0.669649 + 0.282716i
\(982\) 379.113 656.643i 0.386062 0.668680i
\(983\) −1278.76 738.290i −1.30087 0.751058i −0.320318 0.947310i \(-0.603790\pi\)
−0.980554 + 0.196252i \(0.937123\pi\)
\(984\) 55.9541 + 276.397i 0.0568639 + 0.280891i
\(985\) 353.329 + 611.985i 0.358710 + 0.621304i
\(986\) 417.901 + 241.275i 0.423835 + 0.244701i
\(987\) −1304.05 483.007i −1.32123 0.489369i
\(988\) 256.356 + 444.021i 0.259469 + 0.449414i
\(989\) −342.401 197.686i −0.346210 0.199884i
\(990\) −240.797 30.0409i −0.243229 0.0303444i
\(991\) 436.313 + 755.716i 0.440275 + 0.762579i 0.997710 0.0676421i \(-0.0215476\pi\)
−0.557435 + 0.830221i \(0.688214\pi\)
\(992\) 214.325i 0.216053i
\(993\) −96.8783 + 85.5431i −0.0975612 + 0.0861461i
\(994\) 1010.32 542.445i 1.01642 0.545719i
\(995\) 166.383 + 96.0615i 0.167220 + 0.0965442i
\(996\) 20.4076 60.7955i 0.0204895 0.0610397i
\(997\) 190.155 329.359i 0.190727 0.330350i −0.754764 0.655996i \(-0.772249\pi\)
0.945492 + 0.325647i \(0.105582\pi\)
\(998\) −389.395 + 224.817i −0.390175 + 0.225268i
\(999\) 912.569 69.1464i 0.913483 0.0692156i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.r.a.23.2 yes 32
3.2 odd 2 378.3.r.a.233.12 32
7.4 even 3 126.3.i.a.95.15 yes 32
9.2 odd 6 126.3.i.a.65.15 32
9.7 even 3 378.3.i.a.359.5 32
21.11 odd 6 378.3.i.a.179.4 32
63.11 odd 6 inner 126.3.r.a.11.10 yes 32
63.25 even 3 378.3.r.a.305.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.15 32 9.2 odd 6
126.3.i.a.95.15 yes 32 7.4 even 3
126.3.r.a.11.10 yes 32 63.11 odd 6 inner
126.3.r.a.23.2 yes 32 1.1 even 1 trivial
378.3.i.a.179.4 32 21.11 odd 6
378.3.i.a.359.5 32 9.7 even 3
378.3.r.a.233.12 32 3.2 odd 2
378.3.r.a.305.4 32 63.25 even 3