Properties

Label 126.3.r.a.23.13
Level $126$
Weight $3$
Character 126.23
Analytic conductor $3.433$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,3,Mod(11,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.11"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 23.13
Character \(\chi\) \(=\) 126.23
Dual form 126.3.r.a.11.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} +(0.146807 - 2.99641i) q^{3} -2.00000 q^{4} +(2.36201 - 1.36371i) q^{5} +(4.23756 + 0.207617i) q^{6} +(-2.54299 - 6.52175i) q^{7} -2.82843i q^{8} +(-8.95690 - 0.879787i) q^{9} +(1.92857 + 3.34039i) q^{10} +(-2.52158 - 1.45583i) q^{11} +(-0.293614 + 5.99281i) q^{12} +(10.4745 - 18.1424i) q^{13} +(9.22314 - 3.59634i) q^{14} +(-3.73946 - 7.27775i) q^{15} +4.00000 q^{16} +(24.7647 - 14.2979i) q^{17} +(1.24421 - 12.6670i) q^{18} +(-17.7418 + 30.7298i) q^{19} +(-4.72402 + 2.72742i) q^{20} +(-19.9151 + 6.66240i) q^{21} +(2.05886 - 3.56605i) q^{22} +(13.6186 - 7.86269i) q^{23} +(-8.47512 - 0.415233i) q^{24} +(-8.78060 + 15.2084i) q^{25} +(25.6572 + 14.8132i) q^{26} +(-3.95113 + 26.7093i) q^{27} +(5.08599 + 13.0435i) q^{28} +(18.1582 - 10.4836i) q^{29} +(10.2923 - 5.28840i) q^{30} -12.4651 q^{31} +5.65685i q^{32} +(-4.73245 + 7.34194i) q^{33} +(20.2203 + 35.0226i) q^{34} +(-14.9003 - 11.9365i) q^{35} +(17.9138 + 1.75957i) q^{36} +(-5.80585 + 10.0560i) q^{37} +(-43.4585 - 25.0908i) q^{38} +(-52.8242 - 34.0493i) q^{39} +(-3.85715 - 6.68078i) q^{40} +(26.4059 + 15.2455i) q^{41} +(-9.42206 - 28.1642i) q^{42} +(-12.6505 - 21.9113i) q^{43} +(5.04315 + 2.91167i) q^{44} +(-22.3561 + 10.1365i) q^{45} +(11.1195 + 19.2596i) q^{46} +84.6070i q^{47} +(0.587228 - 11.9856i) q^{48} +(-36.0664 + 33.1695i) q^{49} +(-21.5080 - 12.4176i) q^{50} +(-39.2067 - 76.3041i) q^{51} +(-20.9490 + 36.2847i) q^{52} +(15.1905 - 8.77025i) q^{53} +(-37.7727 - 5.58775i) q^{54} -7.94133 q^{55} +(-18.4463 + 7.19267i) q^{56} +(89.4743 + 57.6731i) q^{57} +(14.8261 + 25.6795i) q^{58} -43.1446i q^{59} +(7.47893 + 14.5555i) q^{60} +30.2949 q^{61} -17.6283i q^{62} +(17.0396 + 60.6519i) q^{63} -8.00000 q^{64} -57.1367i q^{65} +(-10.3831 - 6.69270i) q^{66} +86.4501 q^{67} +(-49.5294 + 28.5958i) q^{68} +(-21.5605 - 41.9611i) q^{69} +(16.8808 - 21.0723i) q^{70} -1.24828i q^{71} +(-2.48841 + 25.3339i) q^{72} +(-6.48414 - 11.2309i) q^{73} +(-14.2214 - 8.21071i) q^{74} +(44.2816 + 28.5429i) q^{75} +(35.4837 - 61.4596i) q^{76} +(-3.08222 + 20.1473i) q^{77} +(48.1530 - 74.7047i) q^{78} +103.529 q^{79} +(9.44805 - 5.45483i) q^{80} +(79.4519 + 15.7603i) q^{81} +(-21.5604 + 37.3436i) q^{82} +(35.2944 - 20.3772i) q^{83} +(39.8303 - 13.3248i) q^{84} +(38.9964 - 67.5437i) q^{85} +(30.9872 - 17.8905i) q^{86} +(-28.7475 - 55.9484i) q^{87} +(-4.11772 + 7.13210i) q^{88} +(15.5031 + 8.95074i) q^{89} +(-14.3352 - 31.6163i) q^{90} +(-144.957 - 22.1761i) q^{91} +(-27.2372 + 15.7254i) q^{92} +(-1.82997 + 37.3505i) q^{93} -119.652 q^{94} +96.7788i q^{95} +(16.9502 + 0.830466i) q^{96} +(-2.62198 - 4.54141i) q^{97} +(-46.9088 - 51.0055i) q^{98} +(21.3047 + 15.2582i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 64 q^{4} + 8 q^{6} + 2 q^{7} - 20 q^{9} - 36 q^{11} + 10 q^{13} + 36 q^{14} + 10 q^{15} + 128 q^{16} - 54 q^{17} + 28 q^{19} + 28 q^{21} - 126 q^{23} - 16 q^{24} + 80 q^{25} - 72 q^{26} - 126 q^{27}+ \cdots + 394 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0.146807 2.99641i 0.0489357 0.998802i
\(4\) −2.00000 −0.500000
\(5\) 2.36201 1.36371i 0.472402 0.272742i −0.244842 0.969563i \(-0.578736\pi\)
0.717245 + 0.696821i \(0.245403\pi\)
\(6\) 4.23756 + 0.207617i 0.706260 + 0.0346028i
\(7\) −2.54299 6.52175i −0.363285 0.931678i
\(8\) 2.82843i 0.353553i
\(9\) −8.95690 0.879787i −0.995211 0.0977541i
\(10\) 1.92857 + 3.34039i 0.192857 + 0.334039i
\(11\) −2.52158 1.45583i −0.229234 0.132348i 0.380984 0.924581i \(-0.375585\pi\)
−0.610219 + 0.792233i \(0.708918\pi\)
\(12\) −0.293614 + 5.99281i −0.0244678 + 0.499401i
\(13\) 10.4745 18.1424i 0.805731 1.39557i −0.110065 0.993924i \(-0.535106\pi\)
0.915796 0.401643i \(-0.131561\pi\)
\(14\) 9.22314 3.59634i 0.658796 0.256881i
\(15\) −3.73946 7.27775i −0.249298 0.485183i
\(16\) 4.00000 0.250000
\(17\) 24.7647 14.2979i 1.45675 0.841053i 0.457898 0.889005i \(-0.348603\pi\)
0.998850 + 0.0479514i \(0.0152693\pi\)
\(18\) 1.24421 12.6670i 0.0691226 0.703720i
\(19\) −17.7418 + 30.7298i −0.933782 + 1.61736i −0.156989 + 0.987600i \(0.550179\pi\)
−0.776792 + 0.629757i \(0.783155\pi\)
\(20\) −4.72402 + 2.72742i −0.236201 + 0.136371i
\(21\) −19.9151 + 6.66240i −0.948339 + 0.317257i
\(22\) 2.05886 3.56605i 0.0935845 0.162093i
\(23\) 13.6186 7.86269i 0.592112 0.341856i −0.173820 0.984777i \(-0.555611\pi\)
0.765932 + 0.642921i \(0.222278\pi\)
\(24\) −8.47512 0.415233i −0.353130 0.0173014i
\(25\) −8.78060 + 15.2084i −0.351224 + 0.608338i
\(26\) 25.6572 + 14.8132i 0.986815 + 0.569738i
\(27\) −3.95113 + 26.7093i −0.146338 + 0.989235i
\(28\) 5.08599 + 13.0435i 0.181642 + 0.465839i
\(29\) 18.1582 10.4836i 0.626144 0.361505i −0.153113 0.988209i \(-0.548930\pi\)
0.779257 + 0.626704i \(0.215597\pi\)
\(30\) 10.2923 5.28840i 0.343076 0.176280i
\(31\) −12.4651 −0.402101 −0.201050 0.979581i \(-0.564435\pi\)
−0.201050 + 0.979581i \(0.564435\pi\)
\(32\) 5.65685i 0.176777i
\(33\) −4.73245 + 7.34194i −0.143408 + 0.222483i
\(34\) 20.2203 + 35.0226i 0.594715 + 1.03008i
\(35\) −14.9003 11.9365i −0.425724 0.341044i
\(36\) 17.9138 + 1.75957i 0.497605 + 0.0488771i
\(37\) −5.80585 + 10.0560i −0.156915 + 0.271785i −0.933755 0.357914i \(-0.883488\pi\)
0.776840 + 0.629698i \(0.216821\pi\)
\(38\) −43.4585 25.0908i −1.14364 0.660283i
\(39\) −52.8242 34.0493i −1.35447 0.873059i
\(40\) −3.85715 6.68078i −0.0964287 0.167019i
\(41\) 26.4059 + 15.2455i 0.644047 + 0.371841i 0.786172 0.618008i \(-0.212060\pi\)
−0.142125 + 0.989849i \(0.545393\pi\)
\(42\) −9.42206 28.1642i −0.224335 0.670577i
\(43\) −12.6505 21.9113i −0.294197 0.509564i 0.680601 0.732655i \(-0.261719\pi\)
−0.974798 + 0.223090i \(0.928386\pi\)
\(44\) 5.04315 + 2.91167i 0.114617 + 0.0661742i
\(45\) −22.3561 + 10.1365i −0.496802 + 0.225256i
\(46\) 11.1195 + 19.2596i 0.241729 + 0.418687i
\(47\) 84.6070i 1.80015i 0.435736 + 0.900075i \(0.356488\pi\)
−0.435736 + 0.900075i \(0.643512\pi\)
\(48\) 0.587228 11.9856i 0.0122339 0.249700i
\(49\) −36.0664 + 33.1695i −0.736048 + 0.676929i
\(50\) −21.5080 12.4176i −0.430160 0.248353i
\(51\) −39.2067 76.3041i −0.768759 1.49616i
\(52\) −20.9490 + 36.2847i −0.402866 + 0.697784i
\(53\) 15.1905 8.77025i 0.286614 0.165476i −0.349800 0.936824i \(-0.613750\pi\)
0.636414 + 0.771348i \(0.280417\pi\)
\(54\) −37.7727 5.58775i −0.699494 0.103477i
\(55\) −7.94133 −0.144388
\(56\) −18.4463 + 7.19267i −0.329398 + 0.128441i
\(57\) 89.4743 + 57.6731i 1.56972 + 1.01181i
\(58\) 14.8261 + 25.6795i 0.255622 + 0.442751i
\(59\) 43.1446i 0.731264i −0.930760 0.365632i \(-0.880853\pi\)
0.930760 0.365632i \(-0.119147\pi\)
\(60\) 7.47893 + 14.5555i 0.124649 + 0.242592i
\(61\) 30.2949 0.496637 0.248319 0.968678i \(-0.420122\pi\)
0.248319 + 0.968678i \(0.420122\pi\)
\(62\) 17.6283i 0.284328i
\(63\) 17.0396 + 60.6519i 0.270470 + 0.962729i
\(64\) −8.00000 −0.125000
\(65\) 57.1367i 0.879026i
\(66\) −10.3831 6.69270i −0.157319 0.101405i
\(67\) 86.4501 1.29030 0.645150 0.764056i \(-0.276795\pi\)
0.645150 + 0.764056i \(0.276795\pi\)
\(68\) −49.5294 + 28.5958i −0.728374 + 0.420527i
\(69\) −21.5605 41.9611i −0.312471 0.608132i
\(70\) 16.8808 21.0723i 0.241155 0.301032i
\(71\) 1.24828i 0.0175814i −0.999961 0.00879071i \(-0.997202\pi\)
0.999961 0.00879071i \(-0.00279821\pi\)
\(72\) −2.48841 + 25.3339i −0.0345613 + 0.351860i
\(73\) −6.48414 11.2309i −0.0888239 0.153848i 0.818190 0.574947i \(-0.194978\pi\)
−0.907014 + 0.421100i \(0.861644\pi\)
\(74\) −14.2214 8.21071i −0.192181 0.110956i
\(75\) 44.2816 + 28.5429i 0.590422 + 0.380573i
\(76\) 35.4837 61.4596i 0.466891 0.808679i
\(77\) −3.08222 + 20.1473i −0.0400288 + 0.261653i
\(78\) 48.1530 74.7047i 0.617346 0.957752i
\(79\) 103.529 1.31049 0.655247 0.755415i \(-0.272565\pi\)
0.655247 + 0.755415i \(0.272565\pi\)
\(80\) 9.44805 5.45483i 0.118101 0.0681854i
\(81\) 79.4519 + 15.7603i 0.980888 + 0.194572i
\(82\) −21.5604 + 37.3436i −0.262931 + 0.455410i
\(83\) 35.2944 20.3772i 0.425234 0.245509i −0.272080 0.962275i \(-0.587712\pi\)
0.697314 + 0.716766i \(0.254378\pi\)
\(84\) 39.8303 13.3248i 0.474170 0.158629i
\(85\) 38.9964 67.5437i 0.458781 0.794631i
\(86\) 30.9872 17.8905i 0.360316 0.208029i
\(87\) −28.7475 55.9484i −0.330431 0.643085i
\(88\) −4.11772 + 7.13210i −0.0467923 + 0.0810466i
\(89\) 15.5031 + 8.95074i 0.174193 + 0.100570i 0.584561 0.811350i \(-0.301267\pi\)
−0.410369 + 0.911920i \(0.634600\pi\)
\(90\) −14.3352 31.6163i −0.159280 0.351292i
\(91\) −144.957 22.1761i −1.59293 0.243693i
\(92\) −27.2372 + 15.7254i −0.296056 + 0.170928i
\(93\) −1.82997 + 37.3505i −0.0196771 + 0.401619i
\(94\) −119.652 −1.27290
\(95\) 96.7788i 1.01872i
\(96\) 16.9502 + 0.830466i 0.176565 + 0.00865069i
\(97\) −2.62198 4.54141i −0.0270307 0.0468186i 0.852194 0.523227i \(-0.175272\pi\)
−0.879224 + 0.476408i \(0.841939\pi\)
\(98\) −46.9088 51.0055i −0.478661 0.520465i
\(99\) 21.3047 + 15.2582i 0.215199 + 0.154123i
\(100\) 17.5612 30.4169i 0.175612 0.304169i
\(101\) 155.079 + 89.5347i 1.53543 + 0.886482i 0.999097 + 0.0424762i \(0.0135247\pi\)
0.536334 + 0.844006i \(0.319809\pi\)
\(102\) 107.910 55.4467i 1.05794 0.543595i
\(103\) −76.1322 131.865i −0.739148 1.28024i −0.952880 0.303349i \(-0.901895\pi\)
0.213732 0.976892i \(-0.431438\pi\)
\(104\) −51.3144 29.6264i −0.493407 0.284869i
\(105\) −37.9542 + 42.8951i −0.361469 + 0.408525i
\(106\) 12.4030 + 21.4826i 0.117010 + 0.202666i
\(107\) −129.207 74.5978i −1.20754 0.697175i −0.245321 0.969442i \(-0.578893\pi\)
−0.962222 + 0.272267i \(0.912227\pi\)
\(108\) 7.90227 53.4187i 0.0731692 0.494617i
\(109\) −11.0071 19.0649i −0.100983 0.174907i 0.811107 0.584898i \(-0.198865\pi\)
−0.912090 + 0.409990i \(0.865532\pi\)
\(110\) 11.2307i 0.102098i
\(111\) 29.2796 + 18.8730i 0.263780 + 0.170027i
\(112\) −10.1720 26.0870i −0.0908212 0.232920i
\(113\) 13.7209 + 7.92175i 0.121424 + 0.0701040i 0.559482 0.828843i \(-0.311000\pi\)
−0.438058 + 0.898947i \(0.644334\pi\)
\(114\) −81.5621 + 126.536i −0.715457 + 1.10996i
\(115\) 21.4448 37.1436i 0.186477 0.322987i
\(116\) −36.3164 + 20.9673i −0.313072 + 0.180752i
\(117\) −109.780 + 153.284i −0.938294 + 1.31012i
\(118\) 61.0156 0.517082
\(119\) −156.224 125.150i −1.31281 1.05168i
\(120\) −20.5846 + 10.5768i −0.171538 + 0.0881400i
\(121\) −56.2611 97.4471i −0.464968 0.805348i
\(122\) 42.8434i 0.351176i
\(123\) 49.5582 76.8848i 0.402912 0.625079i
\(124\) 24.9302 0.201050
\(125\) 116.082i 0.928657i
\(126\) −85.7747 + 24.0976i −0.680752 + 0.191251i
\(127\) −86.5080 −0.681166 −0.340583 0.940215i \(-0.610624\pi\)
−0.340583 + 0.940215i \(0.610624\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) −67.5122 + 34.6892i −0.523350 + 0.268909i
\(130\) 80.8035 0.621565
\(131\) 87.6284 50.5923i 0.668919 0.386200i −0.126748 0.991935i \(-0.540454\pi\)
0.795667 + 0.605734i \(0.207121\pi\)
\(132\) 9.46490 14.6839i 0.0717038 0.111242i
\(133\) 245.529 + 37.5622i 1.84608 + 0.282422i
\(134\) 122.259i 0.912380i
\(135\) 27.0911 + 68.4760i 0.200675 + 0.507229i
\(136\) −40.4406 70.0452i −0.297357 0.515038i
\(137\) 35.2605 + 20.3576i 0.257376 + 0.148596i 0.623137 0.782113i \(-0.285858\pi\)
−0.365761 + 0.930709i \(0.619191\pi\)
\(138\) 59.3420 30.4912i 0.430014 0.220951i
\(139\) −22.3342 + 38.6840i −0.160678 + 0.278302i −0.935112 0.354352i \(-0.884701\pi\)
0.774434 + 0.632655i \(0.218035\pi\)
\(140\) 29.8007 + 23.8731i 0.212862 + 0.170522i
\(141\) 253.517 + 12.4209i 1.79799 + 0.0880915i
\(142\) 1.76534 0.0124319
\(143\) −52.8245 + 30.4983i −0.369402 + 0.213275i
\(144\) −35.8276 3.51915i −0.248803 0.0244385i
\(145\) 28.5932 49.5249i 0.197195 0.341551i
\(146\) 15.8828 9.16996i 0.108787 0.0628080i
\(147\) 94.0946 + 112.939i 0.640099 + 0.768292i
\(148\) 11.6117 20.1121i 0.0784574 0.135892i
\(149\) −54.3567 + 31.3829i −0.364810 + 0.210623i −0.671189 0.741286i \(-0.734216\pi\)
0.306379 + 0.951910i \(0.400883\pi\)
\(150\) −40.3658 + 62.6237i −0.269105 + 0.417491i
\(151\) −94.8677 + 164.316i −0.628263 + 1.08818i 0.359637 + 0.933092i \(0.382900\pi\)
−0.987900 + 0.155091i \(0.950433\pi\)
\(152\) 86.9170 + 50.1815i 0.571822 + 0.330142i
\(153\) −234.394 + 106.277i −1.53199 + 0.694622i
\(154\) −28.4925 4.35892i −0.185016 0.0283047i
\(155\) −29.4428 + 16.9988i −0.189953 + 0.109670i
\(156\) 105.648 + 68.0986i 0.677233 + 0.436529i
\(157\) −86.0225 −0.547914 −0.273957 0.961742i \(-0.588333\pi\)
−0.273957 + 0.961742i \(0.588333\pi\)
\(158\) 146.412i 0.926659i
\(159\) −24.0492 46.8045i −0.151253 0.294368i
\(160\) 7.71430 + 13.3616i 0.0482144 + 0.0835097i
\(161\) −85.9105 68.8222i −0.533606 0.427467i
\(162\) −22.2885 + 112.362i −0.137583 + 0.693593i
\(163\) 36.5758 63.3511i 0.224391 0.388657i −0.731745 0.681578i \(-0.761294\pi\)
0.956137 + 0.292921i \(0.0946273\pi\)
\(164\) −52.8119 30.4909i −0.322024 0.185920i
\(165\) −1.16584 + 23.7954i −0.00706571 + 0.144215i
\(166\) 28.8177 + 49.9138i 0.173601 + 0.300686i
\(167\) −72.8922 42.0843i −0.436480 0.252002i 0.265623 0.964077i \(-0.414422\pi\)
−0.702103 + 0.712075i \(0.747756\pi\)
\(168\) 18.8441 + 56.3285i 0.112167 + 0.335289i
\(169\) −134.930 233.706i −0.798405 1.38288i
\(170\) 95.5212 + 55.1492i 0.561889 + 0.324407i
\(171\) 185.948 259.634i 1.08741 1.51833i
\(172\) 25.3009 + 43.8225i 0.147099 + 0.254782i
\(173\) 236.832i 1.36897i 0.729026 + 0.684486i \(0.239973\pi\)
−0.729026 + 0.684486i \(0.760027\pi\)
\(174\) 79.1229 40.6551i 0.454729 0.233650i
\(175\) 121.515 + 18.5899i 0.694369 + 0.106228i
\(176\) −10.0863 5.82333i −0.0573086 0.0330871i
\(177\) −129.279 6.33393i −0.730388 0.0357849i
\(178\) −12.6583 + 21.9247i −0.0711138 + 0.123173i
\(179\) −166.309 + 96.0186i −0.929101 + 0.536417i −0.886527 0.462677i \(-0.846889\pi\)
−0.0425737 + 0.999093i \(0.513556\pi\)
\(180\) 44.7121 20.2731i 0.248401 0.112628i
\(181\) −45.1148 −0.249253 −0.124626 0.992204i \(-0.539773\pi\)
−0.124626 + 0.992204i \(0.539773\pi\)
\(182\) 31.3618 205.000i 0.172317 1.12637i
\(183\) 4.44750 90.7758i 0.0243033 0.496042i
\(184\) −22.2391 38.5192i −0.120864 0.209343i
\(185\) 31.6699i 0.171189i
\(186\) −52.8217 2.58796i −0.283987 0.0139138i
\(187\) −83.2615 −0.445249
\(188\) 169.214i 0.900075i
\(189\) 184.239 42.1534i 0.974811 0.223034i
\(190\) −136.866 −0.720347
\(191\) 87.2707i 0.456915i −0.973554 0.228457i \(-0.926632\pi\)
0.973554 0.228457i \(-0.0733681\pi\)
\(192\) −1.17446 + 23.9712i −0.00611696 + 0.124850i
\(193\) −158.035 −0.818832 −0.409416 0.912348i \(-0.634268\pi\)
−0.409416 + 0.912348i \(0.634268\pi\)
\(194\) 6.42252 3.70804i 0.0331058 0.0191136i
\(195\) −171.205 8.38807i −0.877973 0.0430157i
\(196\) 72.1327 66.3391i 0.368024 0.338465i
\(197\) 72.5385i 0.368216i 0.982906 + 0.184108i \(0.0589396\pi\)
−0.982906 + 0.184108i \(0.941060\pi\)
\(198\) −21.5783 + 30.1294i −0.108982 + 0.152169i
\(199\) 156.303 + 270.725i 0.785442 + 1.36043i 0.928735 + 0.370745i \(0.120898\pi\)
−0.143292 + 0.989680i \(0.545769\pi\)
\(200\) 43.0160 + 24.8353i 0.215080 + 0.124176i
\(201\) 12.6915 259.040i 0.0631417 1.28875i
\(202\) −126.621 + 219.314i −0.626837 + 1.08571i
\(203\) −114.548 91.7632i −0.564275 0.452036i
\(204\) 78.4134 + 152.608i 0.384379 + 0.748080i
\(205\) 83.1615 0.405666
\(206\) 186.485 107.667i 0.905267 0.522656i
\(207\) −128.898 + 58.4439i −0.622694 + 0.282338i
\(208\) 41.8980 72.5695i 0.201433 0.348892i
\(209\) 89.4749 51.6583i 0.428109 0.247169i
\(210\) −60.6628 53.6753i −0.288871 0.255597i
\(211\) 91.2819 158.105i 0.432616 0.749312i −0.564482 0.825445i \(-0.690924\pi\)
0.997098 + 0.0761331i \(0.0242574\pi\)
\(212\) −30.3810 + 17.5405i −0.143307 + 0.0827382i
\(213\) −3.74035 0.183256i −0.0175604 0.000860359i
\(214\) 105.497 182.726i 0.492977 0.853862i
\(215\) −59.7611 34.5031i −0.277959 0.160480i
\(216\) 75.5454 + 11.1755i 0.349747 + 0.0517384i
\(217\) 31.6987 + 81.2943i 0.146077 + 0.374628i
\(218\) 26.9619 15.5664i 0.123678 0.0714057i
\(219\) −34.6042 + 17.7804i −0.158010 + 0.0811888i
\(220\) 15.8827 0.0721939
\(221\) 599.054i 2.71065i
\(222\) −26.6904 + 41.4076i −0.120227 + 0.186521i
\(223\) 125.388 + 217.179i 0.562279 + 0.973896i 0.997297 + 0.0734742i \(0.0234087\pi\)
−0.435018 + 0.900422i \(0.643258\pi\)
\(224\) 36.8926 14.3853i 0.164699 0.0642203i
\(225\) 92.0271 128.495i 0.409009 0.571091i
\(226\) −11.2030 + 19.4042i −0.0495710 + 0.0858595i
\(227\) 351.333 + 202.842i 1.54772 + 0.893578i 0.998315 + 0.0580230i \(0.0184797\pi\)
0.549407 + 0.835555i \(0.314854\pi\)
\(228\) −178.949 115.346i −0.784862 0.505905i
\(229\) −54.8376 94.9815i −0.239465 0.414766i 0.721096 0.692836i \(-0.243639\pi\)
−0.960561 + 0.278069i \(0.910306\pi\)
\(230\) 52.5289 + 30.3276i 0.228387 + 0.131859i
\(231\) 59.9169 + 12.1933i 0.259380 + 0.0527850i
\(232\) −29.6522 51.3591i −0.127811 0.221375i
\(233\) −59.9074 34.5876i −0.257113 0.148445i 0.365904 0.930653i \(-0.380760\pi\)
−0.623017 + 0.782208i \(0.714093\pi\)
\(234\) −216.776 155.253i −0.926394 0.663474i
\(235\) 115.379 + 199.843i 0.490976 + 0.850395i
\(236\) 86.2891i 0.365632i
\(237\) 15.1988 310.215i 0.0641299 1.30892i
\(238\) 176.988 220.934i 0.743648 0.928294i
\(239\) −206.558 119.256i −0.864260 0.498981i 0.00117636 0.999999i \(-0.499626\pi\)
−0.865437 + 0.501018i \(0.832959\pi\)
\(240\) −14.9579 29.1110i −0.0623244 0.121296i
\(241\) −140.911 + 244.065i −0.584693 + 1.01272i 0.410220 + 0.911987i \(0.365452\pi\)
−0.994914 + 0.100732i \(0.967881\pi\)
\(242\) 137.811 79.5652i 0.569467 0.328782i
\(243\) 58.8884 235.757i 0.242339 0.970192i
\(244\) −60.5898 −0.248319
\(245\) −39.9556 + 127.531i −0.163084 + 0.520534i
\(246\) 108.731 + 70.0859i 0.441998 + 0.284902i
\(247\) 371.674 + 643.758i 1.50475 + 2.60631i
\(248\) 35.2567i 0.142164i
\(249\) −55.8770 108.748i −0.224405 0.436738i
\(250\) −164.165 −0.656660
\(251\) 222.540i 0.886615i 0.896370 + 0.443308i \(0.146195\pi\)
−0.896370 + 0.443308i \(0.853805\pi\)
\(252\) −34.0792 121.304i −0.135235 0.481364i
\(253\) −45.7871 −0.180977
\(254\) 122.341i 0.481657i
\(255\) −196.663 126.765i −0.771229 0.497117i
\(256\) 16.0000 0.0625000
\(257\) 291.865 168.508i 1.13566 0.655674i 0.190309 0.981724i \(-0.439051\pi\)
0.945353 + 0.326050i \(0.105718\pi\)
\(258\) −49.0580 95.4767i −0.190147 0.370065i
\(259\) 80.3471 + 12.2919i 0.310220 + 0.0474589i
\(260\) 114.273i 0.439513i
\(261\) −171.864 + 77.9255i −0.658484 + 0.298565i
\(262\) 71.5483 + 123.925i 0.273085 + 0.472997i
\(263\) −141.259 81.5557i −0.537105 0.310098i 0.206800 0.978383i \(-0.433695\pi\)
−0.743905 + 0.668285i \(0.767029\pi\)
\(264\) 20.7661 + 13.3854i 0.0786596 + 0.0507023i
\(265\) 23.9201 41.4309i 0.0902646 0.156343i
\(266\) −53.1209 + 347.231i −0.199703 + 1.30538i
\(267\) 29.0960 45.1396i 0.108974 0.169062i
\(268\) −172.900 −0.645150
\(269\) 430.483 248.539i 1.60031 0.923938i 0.608882 0.793261i \(-0.291618\pi\)
0.991425 0.130677i \(-0.0417152\pi\)
\(270\) −96.8396 + 38.3126i −0.358665 + 0.141899i
\(271\) −86.2128 + 149.325i −0.318129 + 0.551015i −0.980098 0.198516i \(-0.936388\pi\)
0.661969 + 0.749531i \(0.269721\pi\)
\(272\) 99.0588 57.1916i 0.364187 0.210263i
\(273\) −87.7293 + 431.093i −0.321353 + 1.57910i
\(274\) −28.7901 + 49.8659i −0.105073 + 0.181992i
\(275\) 44.2819 25.5662i 0.161025 0.0929679i
\(276\) 43.1210 + 83.9222i 0.156236 + 0.304066i
\(277\) −44.6018 + 77.2526i −0.161017 + 0.278890i −0.935234 0.354031i \(-0.884811\pi\)
0.774216 + 0.632921i \(0.218144\pi\)
\(278\) −54.7075 31.5854i −0.196790 0.113616i
\(279\) 111.649 + 10.9666i 0.400175 + 0.0393070i
\(280\) −33.7616 + 42.1445i −0.120577 + 0.150516i
\(281\) −406.825 + 234.881i −1.44778 + 0.835874i −0.998349 0.0574426i \(-0.981705\pi\)
−0.449428 + 0.893317i \(0.648372\pi\)
\(282\) −17.5658 + 358.527i −0.0622901 + 1.27137i
\(283\) −47.4160 −0.167548 −0.0837738 0.996485i \(-0.526697\pi\)
−0.0837738 + 0.996485i \(0.526697\pi\)
\(284\) 2.49656i 0.00879071i
\(285\) 289.989 + 14.2078i 1.01750 + 0.0498520i
\(286\) −43.1311 74.7052i −0.150808 0.261207i
\(287\) 32.2770 210.982i 0.112463 0.735129i
\(288\) 4.97683 50.6679i 0.0172806 0.175930i
\(289\) 264.360 457.886i 0.914742 1.58438i
\(290\) 70.0388 + 40.4369i 0.241513 + 0.139438i
\(291\) −13.9928 + 7.18981i −0.0480853 + 0.0247073i
\(292\) 12.9683 + 22.4617i 0.0444119 + 0.0769238i
\(293\) 80.5230 + 46.4900i 0.274823 + 0.158669i 0.631077 0.775720i \(-0.282613\pi\)
−0.356255 + 0.934389i \(0.615946\pi\)
\(294\) −159.720 + 133.070i −0.543265 + 0.452618i
\(295\) −58.8366 101.908i −0.199446 0.345451i
\(296\) 28.4427 + 16.4214i 0.0960903 + 0.0554778i
\(297\) 48.8474 61.5975i 0.164469 0.207399i
\(298\) −44.3821 76.8720i −0.148933 0.257960i
\(299\) 329.431i 1.10178i
\(300\) −88.5632 57.0859i −0.295211 0.190286i
\(301\) −110.730 + 138.223i −0.367872 + 0.459214i
\(302\) −232.378 134.163i −0.769462 0.444249i
\(303\) 291.049 451.534i 0.960557 1.49021i
\(304\) −70.9674 + 122.919i −0.233445 + 0.404339i
\(305\) 71.5569 41.3134i 0.234613 0.135454i
\(306\) −150.299 331.483i −0.491172 1.08328i
\(307\) 202.315 0.659008 0.329504 0.944154i \(-0.393119\pi\)
0.329504 + 0.944154i \(0.393119\pi\)
\(308\) 6.16444 40.2945i 0.0200144 0.130826i
\(309\) −406.297 + 208.764i −1.31488 + 0.675613i
\(310\) −24.0399 41.6383i −0.0775481 0.134317i
\(311\) 297.017i 0.955037i 0.878622 + 0.477519i \(0.158464\pi\)
−0.878622 + 0.477519i \(0.841536\pi\)
\(312\) −96.3059 + 149.409i −0.308673 + 0.478876i
\(313\) −378.321 −1.20869 −0.604347 0.796721i \(-0.706566\pi\)
−0.604347 + 0.796721i \(0.706566\pi\)
\(314\) 121.654i 0.387434i
\(315\) 122.959 + 120.023i 0.390347 + 0.381027i
\(316\) −207.058 −0.655247
\(317\) 258.230i 0.814607i 0.913293 + 0.407304i \(0.133531\pi\)
−0.913293 + 0.407304i \(0.866469\pi\)
\(318\) 66.1916 34.0106i 0.208150 0.106952i
\(319\) −61.0497 −0.191378
\(320\) −18.8961 + 10.9097i −0.0590503 + 0.0340927i
\(321\) −242.494 + 376.205i −0.755432 + 1.17198i
\(322\) 97.3293 121.496i 0.302265 0.377316i
\(323\) 1014.69i 3.14144i
\(324\) −158.904 31.5206i −0.490444 0.0972859i
\(325\) 183.945 + 318.602i 0.565984 + 0.980313i
\(326\) 89.5920 + 51.7260i 0.274822 + 0.158669i
\(327\) −58.7421 + 30.1830i −0.179640 + 0.0923026i
\(328\) 43.1207 74.6873i 0.131466 0.227705i
\(329\) 551.785 215.155i 1.67716 0.653967i
\(330\) −33.6518 1.64875i −0.101975 0.00499621i
\(331\) −381.770 −1.15338 −0.576692 0.816961i \(-0.695657\pi\)
−0.576692 + 0.816961i \(0.695657\pi\)
\(332\) −70.5888 + 40.7544i −0.212617 + 0.122754i
\(333\) 60.8496 84.9629i 0.182731 0.255144i
\(334\) 59.5162 103.085i 0.178192 0.308638i
\(335\) 204.196 117.893i 0.609541 0.351919i
\(336\) −79.6605 + 26.6496i −0.237085 + 0.0793143i
\(337\) −121.433 + 210.329i −0.360337 + 0.624122i −0.988016 0.154350i \(-0.950672\pi\)
0.627679 + 0.778472i \(0.284005\pi\)
\(338\) 330.511 190.820i 0.977842 0.564558i
\(339\) 25.7511 39.9503i 0.0759619 0.117848i
\(340\) −77.9927 + 135.087i −0.229390 + 0.397316i
\(341\) 31.4318 + 18.1471i 0.0921752 + 0.0532174i
\(342\) 367.179 + 262.970i 1.07362 + 0.768917i
\(343\) 308.040 + 150.866i 0.898075 + 0.439842i
\(344\) −61.9744 + 35.7809i −0.180158 + 0.104014i
\(345\) −108.149 69.7104i −0.313475 0.202059i
\(346\) −334.931 −0.968009
\(347\) 242.378i 0.698495i 0.937031 + 0.349247i \(0.113563\pi\)
−0.937031 + 0.349247i \(0.886437\pi\)
\(348\) 57.4949 + 111.897i 0.165215 + 0.321542i
\(349\) −2.46388 4.26756i −0.00705982 0.0122280i 0.862474 0.506102i \(-0.168914\pi\)
−0.869534 + 0.493874i \(0.835581\pi\)
\(350\) −26.2900 + 171.848i −0.0751144 + 0.490993i
\(351\) 443.185 + 351.450i 1.26263 + 1.00128i
\(352\) 8.23544 14.2642i 0.0233961 0.0405233i
\(353\) −530.683 306.390i −1.50335 0.867960i −0.999992 0.00388263i \(-0.998764\pi\)
−0.503359 0.864078i \(-0.667903\pi\)
\(354\) 8.95753 182.828i 0.0253037 0.516462i
\(355\) −1.70229 2.94845i −0.00479518 0.00830550i
\(356\) −31.0063 17.9015i −0.0870963 0.0502850i
\(357\) −397.934 + 449.737i −1.11466 + 1.25977i
\(358\) −135.791 235.196i −0.379304 0.656973i
\(359\) −461.352 266.362i −1.28510 0.741955i −0.307327 0.951604i \(-0.599435\pi\)
−0.977777 + 0.209649i \(0.932768\pi\)
\(360\) 28.6704 + 63.2325i 0.0796401 + 0.175646i
\(361\) −449.046 777.771i −1.24390 2.15449i
\(362\) 63.8019i 0.176248i
\(363\) −300.251 + 154.275i −0.827136 + 0.425000i
\(364\) 289.913 + 44.3522i 0.796465 + 0.121847i
\(365\) −30.6313 17.6850i −0.0839212 0.0484520i
\(366\) 128.376 + 6.28972i 0.350755 + 0.0171850i
\(367\) 185.198 320.773i 0.504628 0.874041i −0.495358 0.868689i \(-0.664963\pi\)
0.999986 0.00535178i \(-0.00170353\pi\)
\(368\) 54.4743 31.4508i 0.148028 0.0854641i
\(369\) −223.102 159.784i −0.604614 0.433018i
\(370\) −44.7881 −0.121049
\(371\) −95.8268 76.7660i −0.258293 0.206917i
\(372\) 3.65993 74.7011i 0.00983853 0.200809i
\(373\) 209.212 + 362.366i 0.560891 + 0.971492i 0.997419 + 0.0718011i \(0.0228747\pi\)
−0.436528 + 0.899691i \(0.643792\pi\)
\(374\) 117.750i 0.314838i
\(375\) 347.829 + 17.0417i 0.927544 + 0.0454445i
\(376\) 239.305 0.636449
\(377\) 439.243i 1.16510i
\(378\) 59.6139 + 260.554i 0.157709 + 0.689295i
\(379\) 241.600 0.637468 0.318734 0.947844i \(-0.396742\pi\)
0.318734 + 0.947844i \(0.396742\pi\)
\(380\) 193.558i 0.509362i
\(381\) −12.7000 + 259.213i −0.0333333 + 0.680350i
\(382\) 123.419 0.323087
\(383\) −145.452 + 83.9766i −0.379770 + 0.219260i −0.677718 0.735322i \(-0.737031\pi\)
0.297948 + 0.954582i \(0.403698\pi\)
\(384\) −33.9005 1.66093i −0.0882825 0.00432534i
\(385\) 20.1948 + 51.7913i 0.0524539 + 0.134523i
\(386\) 223.495i 0.579002i
\(387\) 94.0317 + 207.387i 0.242976 + 0.535883i
\(388\) 5.24396 + 9.08281i 0.0135154 + 0.0234093i
\(389\) 436.463 + 251.992i 1.12201 + 0.647795i 0.941914 0.335854i \(-0.109025\pi\)
0.180099 + 0.983648i \(0.442358\pi\)
\(390\) 11.8625 242.120i 0.0304167 0.620820i
\(391\) 224.840 389.435i 0.575039 0.995997i
\(392\) 93.8176 + 102.011i 0.239331 + 0.260232i
\(393\) −138.730 269.997i −0.353004 0.687016i
\(394\) −102.585 −0.260368
\(395\) 244.537 141.183i 0.619080 0.357426i
\(396\) −42.6094 30.5164i −0.107599 0.0770616i
\(397\) 170.757 295.760i 0.430118 0.744986i −0.566765 0.823879i \(-0.691805\pi\)
0.996883 + 0.0788933i \(0.0251386\pi\)
\(398\) −382.863 + 221.046i −0.961966 + 0.555391i
\(399\) 148.597 730.191i 0.372423 1.83005i
\(400\) −35.1224 + 60.8338i −0.0878060 + 0.152084i
\(401\) −589.296 + 340.230i −1.46957 + 0.848455i −0.999417 0.0341316i \(-0.989133\pi\)
−0.470150 + 0.882587i \(0.655800\pi\)
\(402\) 366.337 + 17.9485i 0.911287 + 0.0446479i
\(403\) −130.566 + 226.147i −0.323985 + 0.561158i
\(404\) −310.157 179.069i −0.767716 0.443241i
\(405\) 209.159 71.1232i 0.516442 0.175613i
\(406\) 129.773 161.995i 0.319638 0.399002i
\(407\) 29.2798 16.9047i 0.0719405 0.0415349i
\(408\) −215.821 + 110.893i −0.528972 + 0.271797i
\(409\) −257.554 −0.629717 −0.314858 0.949139i \(-0.601957\pi\)
−0.314858 + 0.949139i \(0.601957\pi\)
\(410\) 117.608i 0.286849i
\(411\) 66.1763 102.666i 0.161013 0.249796i
\(412\) 152.264 + 263.730i 0.369574 + 0.640121i
\(413\) −281.378 + 109.716i −0.681303 + 0.265657i
\(414\) −82.6521 182.289i −0.199643 0.440311i
\(415\) 55.5772 96.2625i 0.133921 0.231958i
\(416\) 102.629 + 59.2527i 0.246704 + 0.142434i
\(417\) 112.634 + 72.6015i 0.270106 + 0.174104i
\(418\) 73.0559 + 126.537i 0.174775 + 0.302719i
\(419\) 187.674 + 108.354i 0.447909 + 0.258600i 0.706947 0.707267i \(-0.250072\pi\)
−0.259038 + 0.965867i \(0.583405\pi\)
\(420\) 75.9084 85.7902i 0.180734 0.204262i
\(421\) −395.045 684.238i −0.938349 1.62527i −0.768550 0.639790i \(-0.779021\pi\)
−0.169799 0.985479i \(-0.554312\pi\)
\(422\) 223.594 + 129.092i 0.529844 + 0.305905i
\(423\) 74.4361 757.816i 0.175972 1.79153i
\(424\) −24.8060 42.9653i −0.0585048 0.101333i
\(425\) 502.177i 1.18159i
\(426\) 0.259164 5.28966i 0.000608365 0.0124170i
\(427\) −77.0397 197.576i −0.180421 0.462706i
\(428\) 258.414 + 149.196i 0.603771 + 0.348588i
\(429\) 83.6301 + 162.761i 0.194942 + 0.379397i
\(430\) 48.7948 84.5150i 0.113476 0.196547i
\(431\) 478.460 276.239i 1.11012 0.640925i 0.171256 0.985227i \(-0.445218\pi\)
0.938859 + 0.344301i \(0.111884\pi\)
\(432\) −15.8045 + 106.837i −0.0365846 + 0.247309i
\(433\) −351.734 −0.812319 −0.406160 0.913802i \(-0.633132\pi\)
−0.406160 + 0.913802i \(0.633132\pi\)
\(434\) −114.968 + 44.8288i −0.264902 + 0.103292i
\(435\) −144.199 92.9475i −0.331492 0.213672i
\(436\) 22.0143 + 38.1298i 0.0504914 + 0.0874537i
\(437\) 557.995i 1.27688i
\(438\) −25.1452 48.9377i −0.0574092 0.111730i
\(439\) 47.2343 0.107595 0.0537976 0.998552i \(-0.482867\pi\)
0.0537976 + 0.998552i \(0.482867\pi\)
\(440\) 22.4615i 0.0510488i
\(441\) 352.225 265.365i 0.798696 0.601735i
\(442\) 847.190 1.91672
\(443\) 512.244i 1.15631i −0.815928 0.578154i \(-0.803773\pi\)
0.815928 0.578154i \(-0.196227\pi\)
\(444\) −58.5592 37.7460i −0.131890 0.0850134i
\(445\) 48.8248 0.109719
\(446\) −307.137 + 177.326i −0.688648 + 0.397591i
\(447\) 86.0559 + 167.482i 0.192519 + 0.374680i
\(448\) 20.3440 + 52.1740i 0.0454106 + 0.116460i
\(449\) 560.296i 1.24787i −0.781475 0.623937i \(-0.785532\pi\)
0.781475 0.623937i \(-0.214468\pi\)
\(450\) 181.720 + 130.146i 0.403822 + 0.289213i
\(451\) −44.3897 76.8853i −0.0984251 0.170477i
\(452\) −27.4417 15.8435i −0.0607118 0.0350520i
\(453\) 478.429 + 308.385i 1.05614 + 0.680761i
\(454\) −286.862 + 496.860i −0.631855 + 1.09440i
\(455\) −372.631 + 145.298i −0.818969 + 0.319337i
\(456\) 163.124 253.071i 0.357729 0.554981i
\(457\) 669.482 1.46495 0.732475 0.680794i \(-0.238365\pi\)
0.732475 + 0.680794i \(0.238365\pi\)
\(458\) 134.324 77.5520i 0.293284 0.169328i
\(459\) 284.039 + 717.942i 0.618821 + 1.56414i
\(460\) −42.8897 + 74.2871i −0.0932385 + 0.161494i
\(461\) 80.8290 46.6667i 0.175334 0.101229i −0.409765 0.912191i \(-0.634389\pi\)
0.585099 + 0.810962i \(0.301056\pi\)
\(462\) −17.2440 + 84.7353i −0.0373246 + 0.183410i
\(463\) −208.033 + 360.324i −0.449316 + 0.778238i −0.998342 0.0575676i \(-0.981666\pi\)
0.549026 + 0.835805i \(0.314999\pi\)
\(464\) 72.6327 41.9345i 0.156536 0.0903761i
\(465\) 46.6129 + 90.7180i 0.100243 + 0.195092i
\(466\) 48.9142 84.7219i 0.104966 0.181807i
\(467\) −646.848 373.458i −1.38511 0.799696i −0.392354 0.919814i \(-0.628339\pi\)
−0.992760 + 0.120119i \(0.961672\pi\)
\(468\) 219.561 306.568i 0.469147 0.655060i
\(469\) −219.842 563.806i −0.468746 1.20214i
\(470\) −282.620 + 163.171i −0.601320 + 0.347172i
\(471\) −12.6287 + 257.758i −0.0268126 + 0.547258i
\(472\) −122.031 −0.258541
\(473\) 73.6679i 0.155746i
\(474\) 438.710 + 21.4943i 0.925549 + 0.0453467i
\(475\) −311.568 539.652i −0.655933 1.13611i
\(476\) 312.448 + 250.299i 0.656403 + 0.525839i
\(477\) −143.776 + 65.1898i −0.301417 + 0.136666i
\(478\) 168.654 292.117i 0.352833 0.611124i
\(479\) −9.52571 5.49967i −0.0198867 0.0114816i 0.490024 0.871709i \(-0.336988\pi\)
−0.509910 + 0.860228i \(0.670321\pi\)
\(480\) 41.1692 21.1536i 0.0857691 0.0440700i
\(481\) 121.627 + 210.664i 0.252862 + 0.437970i
\(482\) −345.160 199.278i −0.716100 0.413441i
\(483\) −218.831 + 247.319i −0.453067 + 0.512048i
\(484\) 112.522 + 194.894i 0.232484 + 0.402674i
\(485\) −12.3863 7.15124i −0.0255388 0.0147448i
\(486\) 333.410 + 83.2808i 0.686029 + 0.171360i
\(487\) −207.376 359.187i −0.425824 0.737549i 0.570673 0.821178i \(-0.306683\pi\)
−0.996497 + 0.0836282i \(0.973349\pi\)
\(488\) 85.6869i 0.175588i
\(489\) −184.456 118.896i −0.377211 0.243142i
\(490\) −180.356 56.5058i −0.368073 0.115318i
\(491\) 49.0458 + 28.3166i 0.0998896 + 0.0576713i 0.549113 0.835748i \(-0.314966\pi\)
−0.449223 + 0.893420i \(0.648299\pi\)
\(492\) −99.1164 + 153.770i −0.201456 + 0.312540i
\(493\) 299.788 519.248i 0.608089 1.05324i
\(494\) −910.412 + 525.627i −1.84294 + 1.06402i
\(495\) 71.1296 + 6.98668i 0.143696 + 0.0141145i
\(496\) −49.8605 −0.100525
\(497\) −8.14097 + 3.17437i −0.0163802 + 0.00638706i
\(498\) 153.793 79.0220i 0.308821 0.158679i
\(499\) 223.211 + 386.613i 0.447317 + 0.774775i 0.998210 0.0598003i \(-0.0190464\pi\)
−0.550894 + 0.834575i \(0.685713\pi\)
\(500\) 232.164i 0.464328i
\(501\) −136.803 + 212.236i −0.273059 + 0.423625i
\(502\) −314.720 −0.626932
\(503\) 198.013i 0.393663i 0.980437 + 0.196832i \(0.0630652\pi\)
−0.980437 + 0.196832i \(0.936935\pi\)
\(504\) 171.549 48.1952i 0.340376 0.0956255i
\(505\) 488.397 0.967122
\(506\) 64.7527i 0.127970i
\(507\) −720.088 + 369.997i −1.42029 + 0.729776i
\(508\) 173.016 0.340583
\(509\) 592.816 342.262i 1.16467 0.672421i 0.212249 0.977216i \(-0.431921\pi\)
0.952418 + 0.304794i \(0.0985878\pi\)
\(510\) 179.272 278.124i 0.351515 0.545341i
\(511\) −56.7557 + 70.8480i −0.111068 + 0.138646i
\(512\) 22.6274i 0.0441942i
\(513\) −750.672 595.290i −1.46330 1.16041i
\(514\) 238.307 + 412.759i 0.463632 + 0.803034i
\(515\) −359.650 207.644i −0.698350 0.403193i
\(516\) 135.024 69.3784i 0.261675 0.134454i
\(517\) 123.174 213.343i 0.238247 0.412656i
\(518\) −17.3833 + 113.628i −0.0335585 + 0.219359i
\(519\) 709.645 + 34.7686i 1.36733 + 0.0669916i
\(520\) −161.607 −0.310783
\(521\) −818.004 + 472.275i −1.57006 + 0.906477i −0.573905 + 0.818922i \(0.694572\pi\)
−0.996160 + 0.0875552i \(0.972095\pi\)
\(522\) −110.203 243.053i −0.211117 0.465618i
\(523\) −129.056 + 223.531i −0.246761 + 0.427402i −0.962625 0.270837i \(-0.912700\pi\)
0.715864 + 0.698239i \(0.246033\pi\)
\(524\) −175.257 + 101.185i −0.334459 + 0.193100i
\(525\) 73.5420 361.378i 0.140080 0.688339i
\(526\) 115.337 199.770i 0.219272 0.379791i
\(527\) −308.695 + 178.225i −0.585759 + 0.338188i
\(528\) −18.9298 + 29.3678i −0.0358519 + 0.0556208i
\(529\) −140.856 + 243.970i −0.266269 + 0.461191i
\(530\) 58.5921 + 33.8282i 0.110551 + 0.0638267i
\(531\) −37.9580 + 386.441i −0.0714841 + 0.727762i
\(532\) −491.059 75.1244i −0.923042 0.141211i
\(533\) 553.178 319.378i 1.03786 0.599207i
\(534\) 63.8371 + 41.1480i 0.119545 + 0.0770561i
\(535\) −406.918 −0.760595
\(536\) 244.518i 0.456190i
\(537\) 263.295 + 512.426i 0.490308 + 0.954238i
\(538\) 351.488 + 608.794i 0.653323 + 1.13159i
\(539\) 139.233 31.1329i 0.258318 0.0577605i
\(540\) −54.1822 136.952i −0.100337 0.253615i
\(541\) −388.642 + 673.147i −0.718377 + 1.24426i 0.243266 + 0.969960i \(0.421781\pi\)
−0.961643 + 0.274305i \(0.911552\pi\)
\(542\) −211.177 121.923i −0.389626 0.224951i
\(543\) −6.62317 + 135.182i −0.0121974 + 0.248954i
\(544\) 80.8812 + 140.090i 0.148679 + 0.257519i
\(545\) −51.9979 30.0210i −0.0954091 0.0550845i
\(546\) −609.658 124.068i −1.11659 0.227231i
\(547\) 201.360 + 348.766i 0.368118 + 0.637598i 0.989271 0.146090i \(-0.0466691\pi\)
−0.621154 + 0.783689i \(0.713336\pi\)
\(548\) −70.5210 40.7153i −0.128688 0.0742980i
\(549\) −271.348 26.6530i −0.494259 0.0485483i
\(550\) 36.1560 + 62.6241i 0.0657382 + 0.113862i
\(551\) 743.996i 1.35026i
\(552\) −118.684 + 60.9824i −0.215007 + 0.110475i
\(553\) −263.274 675.190i −0.476083 1.22096i
\(554\) −109.252 63.0765i −0.197205 0.113857i
\(555\) 94.8960 + 4.64937i 0.170984 + 0.00837725i
\(556\) 44.6685 77.3681i 0.0803390 0.139151i
\(557\) 155.838 89.9733i 0.279782 0.161532i −0.353543 0.935418i \(-0.615023\pi\)
0.633325 + 0.773886i \(0.281690\pi\)
\(558\) −15.5092 + 157.895i −0.0277942 + 0.282966i
\(559\) −530.030 −0.948175
\(560\) −59.6014 47.7462i −0.106431 0.0852610i
\(561\) −12.2234 + 249.485i −0.0217885 + 0.444715i
\(562\) −332.171 575.338i −0.591052 1.02373i
\(563\) 9.40822i 0.0167109i −0.999965 0.00835544i \(-0.997340\pi\)
0.999965 0.00835544i \(-0.00265965\pi\)
\(564\) −507.034 24.8418i −0.898996 0.0440458i
\(565\) 43.2118 0.0764811
\(566\) 67.0563i 0.118474i
\(567\) −99.2610 558.244i −0.175064 0.984557i
\(568\) −3.53067 −0.00621597
\(569\) 33.0375i 0.0580624i 0.999579 + 0.0290312i \(0.00924221\pi\)
−0.999579 + 0.0290312i \(0.990758\pi\)
\(570\) −20.0929 + 410.106i −0.0352507 + 0.719484i
\(571\) −410.353 −0.718657 −0.359329 0.933211i \(-0.616994\pi\)
−0.359329 + 0.933211i \(0.616994\pi\)
\(572\) 105.649 60.9965i 0.184701 0.106637i
\(573\) −261.498 12.8120i −0.456367 0.0223594i
\(574\) 298.374 + 45.6465i 0.519815 + 0.0795236i
\(575\) 276.157i 0.480272i
\(576\) 71.6552 + 7.03830i 0.124401 + 0.0122193i
\(577\) 205.506 + 355.947i 0.356163 + 0.616892i 0.987316 0.158766i \(-0.0507516\pi\)
−0.631154 + 0.775658i \(0.717418\pi\)
\(578\) 647.548 + 373.862i 1.12033 + 0.646820i
\(579\) −23.2006 + 473.536i −0.0400701 + 0.817851i
\(580\) −57.1865 + 99.0499i −0.0985973 + 0.170776i
\(581\) −222.648 178.362i −0.383216 0.306991i
\(582\) −10.1679 19.7888i −0.0174707 0.0340014i
\(583\) −51.0721 −0.0876022
\(584\) −31.7657 + 18.3399i −0.0543933 + 0.0314040i
\(585\) −50.2681 + 511.767i −0.0859284 + 0.874816i
\(586\) −65.7468 + 113.877i −0.112196 + 0.194329i
\(587\) 474.540 273.976i 0.808416 0.466739i −0.0379895 0.999278i \(-0.512095\pi\)
0.846406 + 0.532539i \(0.178762\pi\)
\(588\) −188.189 225.878i −0.320050 0.384146i
\(589\) 221.154 383.050i 0.375474 0.650340i
\(590\) 144.120 83.2075i 0.244271 0.141030i
\(591\) 217.355 + 10.6492i 0.367775 + 0.0180189i
\(592\) −23.2234 + 40.2241i −0.0392287 + 0.0679461i
\(593\) 347.401 + 200.572i 0.585837 + 0.338233i 0.763450 0.645867i \(-0.223504\pi\)
−0.177613 + 0.984100i \(0.556837\pi\)
\(594\) 87.1120 + 69.0807i 0.146653 + 0.116297i
\(595\) −539.670 82.5612i −0.907009 0.138758i
\(596\) 108.713 62.7657i 0.182405 0.105312i
\(597\) 834.147 428.603i 1.39723 0.717928i
\(598\) 465.886 0.779074
\(599\) 245.708i 0.410197i −0.978741 0.205098i \(-0.934249\pi\)
0.978741 0.205098i \(-0.0657515\pi\)
\(600\) 80.7316 125.247i 0.134553 0.208746i
\(601\) 243.356 + 421.505i 0.404919 + 0.701340i 0.994312 0.106507i \(-0.0339665\pi\)
−0.589393 + 0.807846i \(0.700633\pi\)
\(602\) −195.477 156.595i −0.324713 0.260125i
\(603\) −774.324 76.0577i −1.28412 0.126132i
\(604\) 189.735 328.631i 0.314132 0.544092i
\(605\) −265.779 153.447i −0.439304 0.253632i
\(606\) 638.566 + 411.605i 1.05374 + 0.679217i
\(607\) 265.813 + 460.402i 0.437913 + 0.758487i 0.997528 0.0702653i \(-0.0223846\pi\)
−0.559616 + 0.828752i \(0.689051\pi\)
\(608\) −173.834 100.363i −0.285911 0.165071i
\(609\) −291.776 + 329.760i −0.479107 + 0.541478i
\(610\) 58.4259 + 101.197i 0.0957802 + 0.165896i
\(611\) 1534.97 + 886.216i 2.51223 + 1.45044i
\(612\) 468.788 212.554i 0.765993 0.347311i
\(613\) 417.393 + 722.946i 0.680902 + 1.17936i 0.974706 + 0.223492i \(0.0717456\pi\)
−0.293803 + 0.955866i \(0.594921\pi\)
\(614\) 286.117i 0.465989i
\(615\) 12.2087 249.186i 0.0198515 0.405180i
\(616\) 56.9851 + 8.71783i 0.0925082 + 0.0141523i
\(617\) 739.602 + 427.009i 1.19871 + 0.692073i 0.960267 0.279084i \(-0.0900308\pi\)
0.238439 + 0.971157i \(0.423364\pi\)
\(618\) −295.237 574.591i −0.477730 0.929759i
\(619\) 383.189 663.703i 0.619045 1.07222i −0.370615 0.928787i \(-0.620853\pi\)
0.989660 0.143431i \(-0.0458136\pi\)
\(620\) 58.8855 33.9976i 0.0949766 0.0548348i
\(621\) 156.198 + 394.810i 0.251527 + 0.635765i
\(622\) −420.045 −0.675313
\(623\) 18.9501 123.869i 0.0304174 0.198827i
\(624\) −211.297 136.197i −0.338617 0.218265i
\(625\) −61.2128 106.024i −0.0979405 0.169638i
\(626\) 535.027i 0.854676i
\(627\) −141.654 275.687i −0.225923 0.439692i
\(628\) 172.045 0.273957
\(629\) 332.046i 0.527895i
\(630\) −169.739 + 173.891i −0.269427 + 0.276017i
\(631\) 414.115 0.656283 0.328142 0.944629i \(-0.393578\pi\)
0.328142 + 0.944629i \(0.393578\pi\)
\(632\) 292.824i 0.463330i
\(633\) −460.346 296.729i −0.727244 0.468765i
\(634\) −365.193 −0.576014
\(635\) −204.333 + 117.972i −0.321784 + 0.185782i
\(636\) 48.0983 + 93.6090i 0.0756263 + 0.147184i
\(637\) 223.997 + 1001.76i 0.351643 + 1.57263i
\(638\) 86.3373i 0.135325i
\(639\) −1.09822 + 11.1807i −0.00171866 + 0.0174972i
\(640\) −15.4286 26.7231i −0.0241072 0.0417549i
\(641\) 443.256 + 255.914i 0.691507 + 0.399242i 0.804176 0.594391i \(-0.202607\pi\)
−0.112669 + 0.993633i \(0.535940\pi\)
\(642\) −532.035 342.938i −0.828715 0.534171i
\(643\) 474.057 821.091i 0.737258 1.27697i −0.216467 0.976290i \(-0.569453\pi\)
0.953725 0.300679i \(-0.0972132\pi\)
\(644\) 171.821 + 137.644i 0.266803 + 0.213733i
\(645\) −112.159 + 174.003i −0.173889 + 0.269773i
\(646\) −1434.98 −2.22133
\(647\) −118.963 + 68.6832i −0.183868 + 0.106156i −0.589109 0.808054i \(-0.700521\pi\)
0.405241 + 0.914210i \(0.367188\pi\)
\(648\) 44.5769 224.724i 0.0687915 0.346796i
\(649\) −62.8113 + 108.792i −0.0967817 + 0.167631i
\(650\) −450.571 + 260.137i −0.693186 + 0.400211i
\(651\) 248.244 83.0476i 0.381328 0.127569i
\(652\) −73.1516 + 126.702i −0.112196 + 0.194329i
\(653\) 126.996 73.3211i 0.194481 0.112283i −0.399598 0.916691i \(-0.630850\pi\)
0.594078 + 0.804407i \(0.297517\pi\)
\(654\) −42.6852 83.0739i −0.0652678 0.127024i
\(655\) 137.986 238.999i 0.210666 0.364884i
\(656\) 105.624 + 60.9819i 0.161012 + 0.0929602i
\(657\) 48.1970 + 106.298i 0.0733593 + 0.161794i
\(658\) 304.275 + 780.343i 0.462424 + 1.18593i
\(659\) 736.802 425.393i 1.11806 0.645513i 0.177155 0.984183i \(-0.443310\pi\)
0.940905 + 0.338670i \(0.109977\pi\)
\(660\) 2.33169 47.5909i 0.00353286 0.0721074i
\(661\) −280.785 −0.424788 −0.212394 0.977184i \(-0.568126\pi\)
−0.212394 + 0.977184i \(0.568126\pi\)
\(662\) 539.905i 0.815566i
\(663\) −1795.01 87.9453i −2.70740 0.132648i
\(664\) −57.6355 99.8276i −0.0868004 0.150343i
\(665\) 631.167 246.108i 0.949123 0.370087i
\(666\) 120.156 + 86.0543i 0.180414 + 0.129211i
\(667\) 164.859 285.544i 0.247165 0.428103i
\(668\) 145.784 + 84.1686i 0.218240 + 0.126001i
\(669\) 669.164 343.831i 1.00024 0.513947i
\(670\) 166.725 + 288.777i 0.248844 + 0.431010i
\(671\) −76.3909 44.1043i −0.113846 0.0657292i
\(672\) −37.6883 112.657i −0.0560837 0.167644i
\(673\) −182.652 316.362i −0.271400 0.470078i 0.697821 0.716272i \(-0.254153\pi\)
−0.969220 + 0.246194i \(0.920820\pi\)
\(674\) −297.450 171.733i −0.441321 0.254797i
\(675\) −371.514 294.615i −0.550391 0.436466i
\(676\) 269.861 + 467.413i 0.399202 + 0.691439i
\(677\) 942.705i 1.39247i −0.717812 0.696237i \(-0.754856\pi\)
0.717812 0.696237i \(-0.245144\pi\)
\(678\) 56.4983 + 36.4175i 0.0833308 + 0.0537132i
\(679\) −22.9502 + 28.6487i −0.0338000 + 0.0421925i
\(680\) −191.042 110.298i −0.280945 0.162203i
\(681\) 659.376 1022.96i 0.968246 1.50214i
\(682\) −25.6639 + 44.4512i −0.0376304 + 0.0651777i
\(683\) 730.079 421.511i 1.06893 0.617147i 0.141041 0.990004i \(-0.454955\pi\)
0.927889 + 0.372857i \(0.121622\pi\)
\(684\) −371.895 + 519.269i −0.543706 + 0.759165i
\(685\) 111.048 0.162113
\(686\) −213.356 + 435.634i −0.311015 + 0.635035i
\(687\) −292.654 + 150.372i −0.425988 + 0.218882i
\(688\) −50.6019 87.6450i −0.0735493 0.127391i
\(689\) 367.456i 0.533318i
\(690\) 98.5854 152.946i 0.142877 0.221660i
\(691\) −749.201 −1.08423 −0.542113 0.840305i \(-0.682376\pi\)
−0.542113 + 0.840305i \(0.682376\pi\)
\(692\) 473.664i 0.684486i
\(693\) 45.3324 177.745i 0.0654147 0.256487i
\(694\) −342.774 −0.493910
\(695\) 121.830i 0.175294i
\(696\) −158.246 + 81.3101i −0.227365 + 0.116825i
\(697\) 871.914 1.25095
\(698\) 6.03525 3.48445i 0.00864648 0.00499205i
\(699\) −112.433 + 174.429i −0.160849 + 0.249541i
\(700\) −243.029 37.1797i −0.347185 0.0531139i
\(701\) 849.790i 1.21225i −0.795368 0.606127i \(-0.792722\pi\)
0.795368 0.606127i \(-0.207278\pi\)
\(702\) −497.025 + 626.758i −0.708013 + 0.892817i
\(703\) −206.013 356.825i −0.293048 0.507575i
\(704\) 20.1726 + 11.6467i 0.0286543 + 0.0165436i
\(705\) 615.749 316.385i 0.873402 0.448773i
\(706\) 433.301 750.499i 0.613741 1.06303i
\(707\) 189.558 1239.07i 0.268117 1.75257i
\(708\) 258.557 + 12.6679i 0.365194 + 0.0178925i
\(709\) −875.721 −1.23515 −0.617575 0.786512i \(-0.711885\pi\)
−0.617575 + 0.786512i \(0.711885\pi\)
\(710\) 4.16974 2.40740i 0.00587288 0.00339071i
\(711\) −927.299 91.0835i −1.30422 0.128106i
\(712\) 25.3165 43.8495i 0.0355569 0.0615863i
\(713\) −169.757 + 98.0094i −0.238089 + 0.137461i
\(714\) −636.024 562.763i −0.890791 0.788184i
\(715\) −83.1815 + 144.075i −0.116338 + 0.201503i
\(716\) 332.618 192.037i 0.464550 0.268208i
\(717\) −387.665 + 601.425i −0.540676 + 0.838807i
\(718\) 376.693 652.451i 0.524641 0.908706i
\(719\) 32.2621 + 18.6266i 0.0448708 + 0.0259062i 0.522268 0.852782i \(-0.325086\pi\)
−0.477397 + 0.878688i \(0.658420\pi\)
\(720\) −89.4243 + 40.5461i −0.124200 + 0.0563140i
\(721\) −666.385 + 831.847i −0.924252 + 1.15374i
\(722\) 1099.93 635.048i 1.52346 0.879567i
\(723\) 710.632 + 458.057i 0.982893 + 0.633551i
\(724\) 90.2296 0.124626
\(725\) 368.210i 0.507876i
\(726\) −218.178 424.618i −0.300521 0.584874i
\(727\) 92.7399 + 160.630i 0.127565 + 0.220949i 0.922733 0.385440i \(-0.125950\pi\)
−0.795168 + 0.606390i \(0.792617\pi\)
\(728\) −62.7235 + 409.999i −0.0861587 + 0.563186i
\(729\) −697.777 211.064i −0.957170 0.289526i
\(730\) 25.0103 43.3191i 0.0342607 0.0593413i
\(731\) −626.570 361.751i −0.857142 0.494871i
\(732\) −8.89500 + 181.552i −0.0121516 + 0.248021i
\(733\) 315.666 + 546.749i 0.430649 + 0.745906i 0.996929 0.0783065i \(-0.0249513\pi\)
−0.566280 + 0.824213i \(0.691618\pi\)
\(734\) 453.641 + 261.910i 0.618040 + 0.356826i
\(735\) 376.268 + 138.446i 0.511930 + 0.188361i
\(736\) 44.4781 + 77.0384i 0.0604322 + 0.104672i
\(737\) −217.991 125.857i −0.295781 0.170769i
\(738\) 225.968 315.514i 0.306190 0.427526i
\(739\) 245.760 + 425.669i 0.332558 + 0.576007i 0.983013 0.183538i \(-0.0587550\pi\)
−0.650455 + 0.759545i \(0.725422\pi\)
\(740\) 63.3399i 0.0855944i
\(741\) 1983.53 1019.18i 2.67682 1.37541i
\(742\) 108.564 135.520i 0.146312 0.182641i
\(743\) −487.432 281.419i −0.656032 0.378760i 0.134731 0.990882i \(-0.456983\pi\)
−0.790764 + 0.612122i \(0.790316\pi\)
\(744\) 105.643 + 5.17593i 0.141994 + 0.00695689i
\(745\) −85.5942 + 148.253i −0.114891 + 0.198998i
\(746\) −512.464 + 295.871i −0.686948 + 0.396610i
\(747\) −334.056 + 151.465i −0.447196 + 0.202765i
\(748\) 166.523 0.222624
\(749\) −157.935 + 1032.36i −0.210861 + 1.37831i
\(750\) −24.1006 + 491.905i −0.0321341 + 0.655873i
\(751\) 32.3457 + 56.0244i 0.0430702 + 0.0745997i 0.886757 0.462236i \(-0.152953\pi\)
−0.843687 + 0.536836i \(0.819619\pi\)
\(752\) 338.428i 0.450037i
\(753\) 666.821 + 32.6705i 0.885553 + 0.0433871i
\(754\) 621.184 0.823851
\(755\) 517.488i 0.685414i
\(756\) −368.478 + 84.3068i −0.487405 + 0.111517i
\(757\) −629.889 −0.832086 −0.416043 0.909345i \(-0.636583\pi\)
−0.416043 + 0.909345i \(0.636583\pi\)
\(758\) 341.674i 0.450758i
\(759\) −6.72187 + 137.197i −0.00885622 + 0.180760i
\(760\) 273.732 0.360174
\(761\) 412.140 237.949i 0.541577 0.312680i −0.204141 0.978942i \(-0.565440\pi\)
0.745718 + 0.666262i \(0.232107\pi\)
\(762\) −366.583 17.9605i −0.481080 0.0235702i
\(763\) −96.3454 + 120.268i −0.126272 + 0.157625i
\(764\) 174.541i 0.228457i
\(765\) −408.710 + 570.673i −0.534262 + 0.745978i
\(766\) −118.761 205.700i −0.155040 0.268538i
\(767\) −782.745 451.918i −1.02053 0.589202i
\(768\) 2.34891 47.9425i 0.00305848 0.0624251i
\(769\) 424.359 735.011i 0.551832 0.955801i −0.446311 0.894878i \(-0.647262\pi\)
0.998142 0.0609226i \(-0.0194043\pi\)
\(770\) −73.2440 + 28.5597i −0.0951221 + 0.0370905i
\(771\) −462.071 899.284i −0.599314 1.16639i
\(772\) 316.069 0.409416
\(773\) −45.6733 + 26.3695i −0.0590857 + 0.0341132i −0.529252 0.848465i \(-0.677527\pi\)
0.470166 + 0.882578i \(0.344194\pi\)
\(774\) −293.289 + 132.981i −0.378926 + 0.171810i
\(775\) 109.451 189.575i 0.141227 0.244613i
\(776\) −12.8450 + 7.41609i −0.0165529 + 0.00955681i
\(777\) 48.6269 238.948i 0.0625829 0.307526i
\(778\) −356.371 + 617.252i −0.458060 + 0.793383i
\(779\) −936.980 + 540.966i −1.20280 + 0.694436i
\(780\) 342.409 + 16.7761i 0.438986 + 0.0215079i
\(781\) −1.81729 + 3.14764i −0.00232687 + 0.00403026i
\(782\) 550.744 + 317.972i 0.704276 + 0.406614i
\(783\) 208.265 + 526.415i 0.265984 + 0.672305i
\(784\) −144.265 + 132.678i −0.184012 + 0.169232i
\(785\) −203.186 + 117.310i −0.258836 + 0.149439i
\(786\) 381.834 196.195i 0.485794 0.249611i
\(787\) −312.691 −0.397320 −0.198660 0.980068i \(-0.563659\pi\)
−0.198660 + 0.980068i \(0.563659\pi\)
\(788\) 145.077i 0.184108i
\(789\) −265.112 + 411.295i −0.336010 + 0.521287i
\(790\) 199.663 + 345.827i 0.252739 + 0.437756i
\(791\) 16.7715 109.629i 0.0212030 0.138595i
\(792\) 43.1567 60.2587i 0.0544908 0.0760843i
\(793\) 317.324 549.621i 0.400156 0.693091i
\(794\) 418.267 + 241.487i 0.526785 + 0.304139i
\(795\) −120.632 77.7568i −0.151738 0.0978072i
\(796\) −312.606 541.449i −0.392721 0.680213i
\(797\) 406.221 + 234.532i 0.509688 + 0.294269i 0.732705 0.680546i \(-0.238257\pi\)
−0.223017 + 0.974814i \(0.571591\pi\)
\(798\) 1032.65 + 210.148i 1.29404 + 0.263343i
\(799\) 1209.70 + 2095.27i 1.51402 + 2.62236i
\(800\) −86.0319 49.6706i −0.107540 0.0620882i
\(801\) −130.985 93.8103i −0.163527 0.117116i
\(802\) −481.159 833.391i −0.599948 1.03914i
\(803\) 37.7593i 0.0470228i
\(804\) −25.3830 + 518.079i −0.0315709 + 0.644377i
\(805\) −296.775 45.4020i −0.368665 0.0564000i
\(806\) −319.820 184.648i −0.396799 0.229092i
\(807\) −681.527 1326.39i −0.844519 1.64360i
\(808\) 253.242 438.629i 0.313419 0.542857i
\(809\) −476.849 + 275.309i −0.589430 + 0.340308i −0.764872 0.644182i \(-0.777198\pi\)
0.175442 + 0.984490i \(0.443865\pi\)
\(810\) 100.583 + 295.795i 0.124177 + 0.365180i
\(811\) −848.334 −1.04604 −0.523018 0.852322i \(-0.675194\pi\)
−0.523018 + 0.852322i \(0.675194\pi\)
\(812\) 229.095 + 183.526i 0.282137 + 0.226018i
\(813\) 434.782 + 280.251i 0.534787 + 0.344712i
\(814\) 23.9069 + 41.4079i 0.0293696 + 0.0508696i
\(815\) 199.515i 0.244803i
\(816\) −156.827 305.217i −0.192190 0.374040i
\(817\) 897.771 1.09886
\(818\) 364.237i 0.445277i
\(819\) 1278.85 + 326.160i 1.56148 + 0.398242i
\(820\) −166.323 −0.202833
\(821\) 1379.51i 1.68028i 0.542373 + 0.840138i \(0.317526\pi\)
−0.542373 + 0.840138i \(0.682474\pi\)
\(822\) 145.192 + 93.5874i 0.176632 + 0.113853i
\(823\) −103.993 −0.126359 −0.0631794 0.998002i \(-0.520124\pi\)
−0.0631794 + 0.998002i \(0.520124\pi\)
\(824\) −372.970 + 215.334i −0.452634 + 0.261328i
\(825\) −70.1057 136.440i −0.0849767 0.165382i
\(826\) −155.162 397.929i −0.187848 0.481754i
\(827\) 445.099i 0.538209i −0.963111 0.269104i \(-0.913272\pi\)
0.963111 0.269104i \(-0.0867277\pi\)
\(828\) 257.796 116.888i 0.311347 0.141169i
\(829\) 370.808 + 642.258i 0.447295 + 0.774738i 0.998209 0.0598243i \(-0.0190541\pi\)
−0.550914 + 0.834562i \(0.685721\pi\)
\(830\) 136.136 + 78.5980i 0.164019 + 0.0946964i
\(831\) 224.932 + 144.986i 0.270677 + 0.174472i
\(832\) −83.7960 + 145.139i −0.100716 + 0.174446i
\(833\) −418.918 + 1337.11i −0.502903 + 1.60517i
\(834\) −102.674 + 159.289i −0.123110 + 0.190994i
\(835\) −229.563 −0.274926
\(836\) −178.950 + 103.317i −0.214055 + 0.123585i
\(837\) 49.2513 332.935i 0.0588427 0.397772i
\(838\) −153.235 + 265.411i −0.182858 + 0.316720i
\(839\) 290.739 167.858i 0.346531 0.200069i −0.316626 0.948551i \(-0.602550\pi\)
0.663156 + 0.748481i \(0.269217\pi\)
\(840\) 121.326 + 107.351i 0.144435 + 0.127798i
\(841\) −200.687 + 347.600i −0.238629 + 0.413317i
\(842\) 967.659 558.678i 1.14924 0.663513i
\(843\) 644.073 + 1253.50i 0.764025 + 1.48695i
\(844\) −182.564 + 316.210i −0.216308 + 0.374656i
\(845\) −637.415 368.012i −0.754337 0.435517i
\(846\) 1071.71 + 105.269i 1.26680 + 0.124431i
\(847\) −492.454 + 614.728i −0.581409 + 0.725771i
\(848\) 60.7621 35.0810i 0.0716534 0.0413691i
\(849\) −6.96100 + 142.077i −0.00819905 + 0.167347i
\(850\) −710.185 −0.835512
\(851\) 182.599i 0.214569i
\(852\) 7.48071 + 0.366513i 0.00878018 + 0.000430179i
\(853\) 346.509 + 600.172i 0.406224 + 0.703601i 0.994463 0.105086i \(-0.0335119\pi\)
−0.588239 + 0.808687i \(0.700179\pi\)
\(854\) 279.414 108.951i 0.327183 0.127577i
\(855\) 85.1448 866.838i 0.0995845 1.01385i
\(856\) −210.994 + 365.453i −0.246489 + 0.426931i
\(857\) −735.467 424.622i −0.858188 0.495475i 0.00521719 0.999986i \(-0.498339\pi\)
−0.863405 + 0.504511i \(0.831673\pi\)
\(858\) −230.179 + 118.271i −0.268274 + 0.137845i
\(859\) −730.939 1266.02i −0.850919 1.47383i −0.880380 0.474268i \(-0.842713\pi\)
0.0294619 0.999566i \(-0.490621\pi\)
\(860\) 119.522 + 69.0062i 0.138979 + 0.0802398i
\(861\) −627.449 127.689i −0.728745 0.148303i
\(862\) 390.661 + 676.644i 0.453203 + 0.784970i
\(863\) 262.264 + 151.418i 0.303898 + 0.175455i 0.644193 0.764863i \(-0.277194\pi\)
−0.340295 + 0.940319i \(0.610527\pi\)
\(864\) −151.091 22.3510i −0.174874 0.0258692i
\(865\) 322.970 + 559.400i 0.373376 + 0.646706i
\(866\) 497.427i 0.574396i
\(867\) −1333.20 859.352i −1.53772 0.991179i
\(868\) −63.3974 162.589i −0.0730385 0.187314i
\(869\) −261.056 150.721i −0.300410 0.173442i
\(870\) 131.448 203.928i 0.151089 0.234400i
\(871\) 905.522 1568.41i 1.03963 1.80070i
\(872\) −53.9237 + 31.1329i −0.0618391 + 0.0357028i
\(873\) 19.4893 + 42.9837i 0.0223246 + 0.0492368i
\(874\) −789.124 −0.902888
\(875\) 757.058 295.196i 0.865209 0.337367i
\(876\) 69.2083 35.5607i 0.0790049 0.0405944i
\(877\) 155.891 + 270.011i 0.177754 + 0.307880i 0.941111 0.338098i \(-0.109783\pi\)
−0.763357 + 0.645977i \(0.776450\pi\)
\(878\) 66.7994i 0.0760813i
\(879\) 151.124 234.455i 0.171927 0.266729i
\(880\) −31.7653 −0.0360969
\(881\) 1088.82i 1.23589i 0.786220 + 0.617947i \(0.212035\pi\)
−0.786220 + 0.617947i \(0.787965\pi\)
\(882\) 375.283 + 498.121i 0.425491 + 0.564763i
\(883\) 877.900 0.994224 0.497112 0.867686i \(-0.334394\pi\)
0.497112 + 0.867686i \(0.334394\pi\)
\(884\) 1198.11i 1.35533i
\(885\) −313.995 + 161.338i −0.354797 + 0.182302i
\(886\) 724.422 0.817633
\(887\) −1311.60 + 757.255i −1.47870 + 0.853726i −0.999710 0.0240962i \(-0.992329\pi\)
−0.478987 + 0.877822i \(0.658996\pi\)
\(888\) 53.3808 82.8152i 0.0601136 0.0932604i
\(889\) 219.989 + 564.184i 0.247457 + 0.634627i
\(890\) 69.0487i 0.0775828i
\(891\) −177.400 155.410i −0.199102 0.174422i
\(892\) −250.776 434.358i −0.281140 0.486948i
\(893\) −2599.96 1501.08i −2.91148 1.68095i
\(894\) −236.855 + 121.701i −0.264939 + 0.136131i
\(895\) −261.883 + 453.594i −0.292606 + 0.506809i
\(896\) −73.7851 + 28.7707i −0.0823495 + 0.0321102i
\(897\) −987.110 48.3628i −1.10046 0.0539162i
\(898\) 792.378 0.882380
\(899\) −226.344 + 130.680i −0.251773 + 0.145361i
\(900\) −184.054 + 256.991i −0.204505 + 0.285545i
\(901\) 250.793 434.385i 0.278349 0.482115i
\(902\) 108.732 62.7766i 0.120546 0.0695971i
\(903\) 397.917 + 352.083i 0.440662 + 0.389904i
\(904\) 22.4061 38.8085i 0.0247855 0.0429297i
\(905\) −106.562 + 61.5234i −0.117748 + 0.0679817i
\(906\) −436.122 + 676.601i −0.481371 + 0.746800i
\(907\) 183.872 318.475i 0.202725 0.351131i −0.746680 0.665183i \(-0.768353\pi\)
0.949406 + 0.314052i \(0.101687\pi\)
\(908\) −702.666 405.684i −0.773861 0.446789i
\(909\) −1310.25 938.389i −1.44142 1.03233i
\(910\) −205.483 526.980i −0.225805 0.579099i
\(911\) −742.768 + 428.837i −0.815333 + 0.470733i −0.848804 0.528707i \(-0.822677\pi\)
0.0334717 + 0.999440i \(0.489344\pi\)
\(912\) 357.897 + 230.693i 0.392431 + 0.252952i
\(913\) −118.663 −0.129971
\(914\) 946.791i 1.03588i
\(915\) −113.287 220.479i −0.123810 0.240960i
\(916\) 109.675 + 189.963i 0.119733 + 0.207383i
\(917\) −552.788 442.834i −0.602823 0.482916i
\(918\) −1015.32 + 401.692i −1.10602 + 0.437573i
\(919\) −52.7068 + 91.2909i −0.0573524 + 0.0993372i −0.893276 0.449508i \(-0.851599\pi\)
0.835924 + 0.548846i \(0.184933\pi\)
\(920\) −105.058 60.6552i −0.114193 0.0659295i
\(921\) 29.7013 606.219i 0.0322490 0.658218i
\(922\) 65.9966 + 114.310i 0.0715798 + 0.123980i
\(923\) −22.6468 13.0751i −0.0245360 0.0141659i
\(924\) −119.834 24.3867i −0.129690 0.0263925i
\(925\) −101.958 176.596i −0.110225 0.190914i
\(926\) −509.575 294.203i −0.550297 0.317714i
\(927\) 565.895 + 1248.08i 0.610459 + 1.34636i
\(928\) 59.3044 + 102.718i 0.0639056 + 0.110688i
\(929\) 515.060i 0.554424i −0.960809 0.277212i \(-0.910590\pi\)
0.960809 0.277212i \(-0.0894105\pi\)
\(930\) −128.295 + 65.9205i −0.137951 + 0.0708823i
\(931\) −379.409 1696.80i −0.407528 1.82256i
\(932\) 119.815 + 69.1752i 0.128557 + 0.0742223i
\(933\) 889.982 + 43.6041i 0.953893 + 0.0467354i
\(934\) 528.149 914.781i 0.565470 0.979423i
\(935\) −196.665 + 113.544i −0.210337 + 0.121438i
\(936\) 433.553 + 310.506i 0.463197 + 0.331737i
\(937\) 86.9061 0.0927493 0.0463746 0.998924i \(-0.485233\pi\)
0.0463746 + 0.998924i \(0.485233\pi\)
\(938\) 797.342 310.904i 0.850044 0.331454i
\(939\) −55.5403 + 1133.60i −0.0591483 + 1.20725i
\(940\) −230.759 399.686i −0.245488 0.425197i
\(941\) 677.244i 0.719707i 0.933009 + 0.359853i \(0.117173\pi\)
−0.933009 + 0.359853i \(0.882827\pi\)
\(942\) −364.525 17.8597i −0.386970 0.0189593i
\(943\) 479.482 0.508465
\(944\) 172.578i 0.182816i
\(945\) 377.690 350.815i 0.399672 0.371233i
\(946\) −104.182 −0.110129
\(947\) 947.519i 1.00055i −0.865867 0.500274i \(-0.833233\pi\)
0.865867 0.500274i \(-0.166767\pi\)
\(948\) −30.3976 + 620.430i −0.0320650 + 0.654462i
\(949\) −271.673 −0.286273
\(950\) 763.183 440.624i 0.803350 0.463815i
\(951\) 773.763 + 37.9101i 0.813631 + 0.0398634i
\(952\) −353.977 + 441.868i −0.371824 + 0.464147i
\(953\) 1873.88i 1.96630i −0.182805 0.983149i \(-0.558518\pi\)
0.182805 0.983149i \(-0.441482\pi\)
\(954\) −92.1923 203.330i −0.0966376 0.213134i
\(955\) −119.012 206.134i −0.124620 0.215848i
\(956\) 413.116 + 238.513i 0.432130 + 0.249490i
\(957\) −8.96252 + 182.930i −0.00936523 + 0.191149i
\(958\) 7.77771 13.4714i 0.00811870 0.0140620i
\(959\) 43.1002 281.729i 0.0449429 0.293774i
\(960\) 29.9157 + 58.2220i 0.0311622 + 0.0606479i
\(961\) −805.621 −0.838315
\(962\) −297.924 + 172.006i −0.309692 + 0.178801i
\(963\) 1091.66 + 781.839i 1.13361 + 0.811878i
\(964\) 281.822 488.130i 0.292347 0.506359i
\(965\) −373.280 + 215.513i −0.386818 + 0.223330i
\(966\) −349.762 309.474i −0.362073 0.320367i
\(967\) −801.055 + 1387.47i −0.828392 + 1.43482i 0.0709071 + 0.997483i \(0.477411\pi\)
−0.899299 + 0.437334i \(0.855923\pi\)
\(968\) −275.622 + 159.130i −0.284733 + 0.164391i
\(969\) 3040.41 + 148.963i 3.13768 + 0.153729i
\(970\) 10.1134 17.5169i 0.0104262 0.0180586i
\(971\) 1566.15 + 904.219i 1.61293 + 0.931225i 0.988687 + 0.149994i \(0.0479253\pi\)
0.624242 + 0.781231i \(0.285408\pi\)
\(972\) −117.777 + 471.513i −0.121170 + 0.485096i
\(973\) 309.083 + 47.2850i 0.317660 + 0.0485971i
\(974\) 507.966 293.275i 0.521526 0.301103i
\(975\) 981.665 504.400i 1.00684 0.517334i
\(976\) 121.180 0.124159
\(977\) 36.3348i 0.0371902i −0.999827 0.0185951i \(-0.994081\pi\)
0.999827 0.0185951i \(-0.00591934\pi\)
\(978\) 168.145 260.860i 0.171927 0.266728i
\(979\) −26.0616 45.1400i −0.0266206 0.0461082i
\(980\) 79.9112 255.062i 0.0815421 0.260267i
\(981\) 81.8167 + 180.446i 0.0834013 + 0.183941i
\(982\) −40.0457 + 69.3613i −0.0407798 + 0.0706326i
\(983\) 677.386 + 391.089i 0.689101 + 0.397853i 0.803275 0.595608i \(-0.203089\pi\)
−0.114174 + 0.993461i \(0.536422\pi\)
\(984\) −217.463 140.172i −0.220999 0.142451i
\(985\) 98.9214 + 171.337i 0.100428 + 0.173946i
\(986\) 734.328 + 423.964i 0.744754 + 0.429984i
\(987\) −563.686 1684.96i −0.571111 1.70715i
\(988\) −743.348 1287.52i −0.752377 1.30315i
\(989\) −344.563 198.934i −0.348395 0.201146i
\(990\) −9.88065 + 100.593i −0.00998046 + 0.101609i
\(991\) −716.282 1240.64i −0.722787 1.25190i −0.959878 0.280417i \(-0.909527\pi\)
0.237091 0.971488i \(-0.423806\pi\)
\(992\) 70.5133i 0.0710820i
\(993\) −56.0466 + 1143.94i −0.0564417 + 1.15200i
\(994\) −4.48924 11.5131i −0.00451634 0.0115826i
\(995\) 738.379 + 426.303i 0.742090 + 0.428446i
\(996\) 111.754 + 217.496i 0.112203 + 0.218369i
\(997\) 213.563 369.901i 0.214205 0.371014i −0.738821 0.673902i \(-0.764617\pi\)
0.953026 + 0.302887i \(0.0979505\pi\)
\(998\) −546.753 + 315.668i −0.547849 + 0.316301i
\(999\) −245.650 194.803i −0.245896 0.194998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.r.a.23.13 yes 32
3.2 odd 2 378.3.r.a.233.3 32
7.4 even 3 126.3.i.a.95.2 yes 32
9.2 odd 6 126.3.i.a.65.2 32
9.7 even 3 378.3.i.a.359.14 32
21.11 odd 6 378.3.i.a.179.11 32
63.11 odd 6 inner 126.3.r.a.11.5 yes 32
63.25 even 3 378.3.r.a.305.11 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.2 32 9.2 odd 6
126.3.i.a.95.2 yes 32 7.4 even 3
126.3.r.a.11.5 yes 32 63.11 odd 6 inner
126.3.r.a.23.13 yes 32 1.1 even 1 trivial
378.3.i.a.179.11 32 21.11 odd 6
378.3.i.a.359.14 32 9.7 even 3
378.3.r.a.233.3 32 3.2 odd 2
378.3.r.a.305.11 32 63.25 even 3