Properties

Label 126.3.r.a.11.8
Level $126$
Weight $3$
Character 126.11
Analytic conductor $3.433$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,3,Mod(11,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.11"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.8
Character \(\chi\) \(=\) 126.11
Dual form 126.3.r.a.23.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} +(2.81732 - 1.03088i) q^{3} -2.00000 q^{4} +(6.63902 + 3.83304i) q^{5} +(-1.45789 - 3.98429i) q^{6} +(2.93662 + 6.35423i) q^{7} +2.82843i q^{8} +(6.87456 - 5.80865i) q^{9} +(5.42073 - 9.38899i) q^{10} +(-8.62843 + 4.98162i) q^{11} +(-5.63464 + 2.06177i) q^{12} +(-5.46176 - 9.46004i) q^{13} +(8.98624 - 4.15301i) q^{14} +(22.6556 + 3.95484i) q^{15} +4.00000 q^{16} +(-24.5539 - 14.1762i) q^{17} +(-8.21467 - 9.72210i) q^{18} +(-5.29575 - 9.17250i) q^{19} +(-13.2780 - 7.66608i) q^{20} +(14.8239 + 14.8746i) q^{21} +(7.04508 + 12.2024i) q^{22} +(-0.643871 - 0.371739i) q^{23} +(2.91578 + 7.96858i) q^{24} +(16.8844 + 29.2446i) q^{25} +(-13.3785 + 7.72409i) q^{26} +(13.3798 - 23.4517i) q^{27} +(-5.87324 - 12.7085i) q^{28} +(-39.7806 - 22.9673i) q^{29} +(5.59299 - 32.0399i) q^{30} +47.6494 q^{31} -5.65685i q^{32} +(-19.1735 + 22.9297i) q^{33} +(-20.0482 + 34.7245i) q^{34} +(-4.85975 + 53.4420i) q^{35} +(-13.7491 + 11.6173i) q^{36} +(12.6993 + 21.9958i) q^{37} +(-12.9719 + 7.48932i) q^{38} +(-25.1397 - 21.0215i) q^{39} +(-10.8415 + 18.7780i) q^{40} +(-32.2267 + 18.6061i) q^{41} +(21.0358 - 20.9641i) q^{42} +(11.0473 - 19.1345i) q^{43} +(17.2569 - 9.96325i) q^{44} +(67.9051 - 12.2133i) q^{45} +(-0.525718 + 0.910571i) q^{46} +29.8032i q^{47} +(11.2693 - 4.12353i) q^{48} +(-31.7525 + 37.3199i) q^{49} +(41.3581 - 23.8781i) q^{50} +(-83.7902 - 14.6267i) q^{51} +(10.9235 + 18.9201i) q^{52} +(26.8405 + 15.4964i) q^{53} +(-33.1657 - 18.9219i) q^{54} -76.3790 q^{55} +(-17.9725 + 8.30601i) q^{56} +(-24.3756 - 20.3826i) q^{57} +(-32.4807 + 56.2583i) q^{58} +58.4538i q^{59} +(-45.3113 - 7.90968i) q^{60} -25.6194 q^{61} -67.3864i q^{62} +(57.0975 + 26.6248i) q^{63} -8.00000 q^{64} -83.7405i q^{65} +(32.4275 + 27.1155i) q^{66} +1.60882 q^{67} +(49.1078 + 28.3524i) q^{68} +(-2.19721 - 0.383552i) q^{69} +(75.5784 + 6.87272i) q^{70} -98.6493i q^{71} +(16.4293 + 19.4442i) q^{72} +(43.7317 - 75.7455i) q^{73} +(31.1067 - 17.9595i) q^{74} +(77.7164 + 64.9855i) q^{75} +(10.5915 + 18.3450i) q^{76} +(-56.9928 - 40.1979i) q^{77} +(-29.7289 + 35.5529i) q^{78} +107.397 q^{79} +(26.5561 + 15.3322i) q^{80} +(13.5192 - 79.8638i) q^{81} +(26.3130 + 45.5755i) q^{82} +(135.329 + 78.1320i) q^{83} +(-29.6477 - 29.7492i) q^{84} +(-108.676 - 188.232i) q^{85} +(-27.0602 - 15.6232i) q^{86} +(-135.751 - 23.6972i) q^{87} +(-14.0902 - 24.4049i) q^{88} +(-54.2036 + 31.2945i) q^{89} +(-17.2722 - 96.0323i) q^{90} +(44.0722 - 62.4858i) q^{91} +(1.28774 + 0.743478i) q^{92} +(134.244 - 49.1209i) q^{93} +42.1481 q^{94} -81.1952i q^{95} +(-5.83155 - 15.9372i) q^{96} +(30.3830 - 52.6249i) q^{97} +(52.7783 + 44.9049i) q^{98} +(-30.3801 + 84.3660i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 64 q^{4} + 8 q^{6} + 2 q^{7} - 20 q^{9} - 36 q^{11} + 10 q^{13} + 36 q^{14} + 10 q^{15} + 128 q^{16} - 54 q^{17} + 28 q^{19} + 28 q^{21} - 126 q^{23} - 16 q^{24} + 80 q^{25} - 72 q^{26} - 126 q^{27}+ \cdots + 394 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 2.81732 1.03088i 0.939106 0.343628i
\(4\) −2.00000 −0.500000
\(5\) 6.63902 + 3.83304i 1.32780 + 0.766608i 0.984960 0.172785i \(-0.0552765\pi\)
0.342844 + 0.939392i \(0.388610\pi\)
\(6\) −1.45789 3.98429i −0.242981 0.664048i
\(7\) 2.93662 + 6.35423i 0.419517 + 0.907747i
\(8\) 2.82843i 0.353553i
\(9\) 6.87456 5.80865i 0.763840 0.645405i
\(10\) 5.42073 9.38899i 0.542073 0.938899i
\(11\) −8.62843 + 4.98162i −0.784402 + 0.452875i −0.837988 0.545688i \(-0.816268\pi\)
0.0535859 + 0.998563i \(0.482935\pi\)
\(12\) −5.63464 + 2.06177i −0.469553 + 0.171814i
\(13\) −5.46176 9.46004i −0.420135 0.727695i 0.575817 0.817578i \(-0.304684\pi\)
−0.995952 + 0.0898831i \(0.971351\pi\)
\(14\) 8.98624 4.15301i 0.641874 0.296643i
\(15\) 22.6556 + 3.95484i 1.51038 + 0.263656i
\(16\) 4.00000 0.250000
\(17\) −24.5539 14.1762i −1.44435 0.833895i −0.446212 0.894927i \(-0.647227\pi\)
−0.998136 + 0.0610326i \(0.980561\pi\)
\(18\) −8.21467 9.72210i −0.456371 0.540117i
\(19\) −5.29575 9.17250i −0.278723 0.482763i 0.692344 0.721567i \(-0.256578\pi\)
−0.971068 + 0.238804i \(0.923245\pi\)
\(20\) −13.2780 7.66608i −0.663902 0.383304i
\(21\) 14.8239 + 14.8746i 0.705898 + 0.708313i
\(22\) 7.04508 + 12.2024i 0.320231 + 0.554656i
\(23\) −0.643871 0.371739i −0.0279944 0.0161626i 0.485938 0.873994i \(-0.338478\pi\)
−0.513932 + 0.857831i \(0.671812\pi\)
\(24\) 2.91578 + 7.96858i 0.121491 + 0.332024i
\(25\) 16.8844 + 29.2446i 0.675375 + 1.16978i
\(26\) −13.3785 + 7.72409i −0.514558 + 0.297080i
\(27\) 13.3798 23.4517i 0.495548 0.868581i
\(28\) −5.87324 12.7085i −0.209759 0.453874i
\(29\) −39.7806 22.9673i −1.37175 0.791977i −0.380597 0.924741i \(-0.624282\pi\)
−0.991148 + 0.132763i \(0.957615\pi\)
\(30\) 5.59299 32.0399i 0.186433 1.06800i
\(31\) 47.6494 1.53708 0.768539 0.639803i \(-0.220984\pi\)
0.768539 + 0.639803i \(0.220984\pi\)
\(32\) 5.65685i 0.176777i
\(33\) −19.1735 + 22.9297i −0.581017 + 0.694840i
\(34\) −20.0482 + 34.7245i −0.589653 + 1.02131i
\(35\) −4.85975 + 53.4420i −0.138850 + 1.52692i
\(36\) −13.7491 + 11.6173i −0.381920 + 0.322703i
\(37\) 12.6993 + 21.9958i 0.343223 + 0.594480i 0.985029 0.172387i \(-0.0551479\pi\)
−0.641806 + 0.766867i \(0.721815\pi\)
\(38\) −12.9719 + 7.48932i −0.341365 + 0.197087i
\(39\) −25.1397 21.0215i −0.644608 0.539013i
\(40\) −10.8415 + 18.7780i −0.271037 + 0.469449i
\(41\) −32.2267 + 18.6061i −0.786017 + 0.453807i −0.838559 0.544811i \(-0.816601\pi\)
0.0525412 + 0.998619i \(0.483268\pi\)
\(42\) 21.0358 20.9641i 0.500853 0.499145i
\(43\) 11.0473 19.1345i 0.256914 0.444988i −0.708500 0.705711i \(-0.750628\pi\)
0.965414 + 0.260723i \(0.0839610\pi\)
\(44\) 17.2569 9.96325i 0.392201 0.226437i
\(45\) 67.9051 12.2133i 1.50900 0.271406i
\(46\) −0.525718 + 0.910571i −0.0114287 + 0.0197950i
\(47\) 29.8032i 0.634112i 0.948407 + 0.317056i \(0.102694\pi\)
−0.948407 + 0.317056i \(0.897306\pi\)
\(48\) 11.2693 4.12353i 0.234777 0.0859069i
\(49\) −31.7525 + 37.3199i −0.648011 + 0.761631i
\(50\) 41.3581 23.8781i 0.827162 0.477562i
\(51\) −83.7902 14.6267i −1.64295 0.286798i
\(52\) 10.9235 + 18.9201i 0.210068 + 0.363848i
\(53\) 26.8405 + 15.4964i 0.506425 + 0.292385i 0.731363 0.681988i \(-0.238885\pi\)
−0.224938 + 0.974373i \(0.572218\pi\)
\(54\) −33.1657 18.9219i −0.614179 0.350405i
\(55\) −76.3790 −1.38871
\(56\) −17.9725 + 8.30601i −0.320937 + 0.148322i
\(57\) −24.3756 20.3826i −0.427642 0.357589i
\(58\) −32.4807 + 56.2583i −0.560013 + 0.969970i
\(59\) 58.4538i 0.990742i 0.868681 + 0.495371i \(0.164968\pi\)
−0.868681 + 0.495371i \(0.835032\pi\)
\(60\) −45.3113 7.90968i −0.755188 0.131828i
\(61\) −25.6194 −0.419991 −0.209995 0.977702i \(-0.567345\pi\)
−0.209995 + 0.977702i \(0.567345\pi\)
\(62\) 67.3864i 1.08688i
\(63\) 57.0975 + 26.6248i 0.906309 + 0.422615i
\(64\) −8.00000 −0.125000
\(65\) 83.7405i 1.28832i
\(66\) 32.4275 + 27.1155i 0.491326 + 0.410841i
\(67\) 1.60882 0.0240122 0.0120061 0.999928i \(-0.496178\pi\)
0.0120061 + 0.999928i \(0.496178\pi\)
\(68\) 49.1078 + 28.3524i 0.722174 + 0.416947i
\(69\) −2.19721 0.383552i −0.0318436 0.00555872i
\(70\) 75.5784 + 6.87272i 1.07969 + 0.0981817i
\(71\) 98.6493i 1.38943i −0.719287 0.694713i \(-0.755531\pi\)
0.719287 0.694713i \(-0.244469\pi\)
\(72\) 16.4293 + 19.4442i 0.228185 + 0.270058i
\(73\) 43.7317 75.7455i 0.599064 1.03761i −0.393895 0.919155i \(-0.628873\pi\)
0.992959 0.118455i \(-0.0377940\pi\)
\(74\) 31.1067 17.9595i 0.420361 0.242695i
\(75\) 77.7164 + 64.9855i 1.03622 + 0.866473i
\(76\) 10.5915 + 18.3450i 0.139362 + 0.241382i
\(77\) −56.9928 40.1979i −0.740166 0.522050i
\(78\) −29.7289 + 35.5529i −0.381140 + 0.455806i
\(79\) 107.397 1.35945 0.679727 0.733465i \(-0.262098\pi\)
0.679727 + 0.733465i \(0.262098\pi\)
\(80\) 26.5561 + 15.3322i 0.331951 + 0.191652i
\(81\) 13.5192 79.8638i 0.166904 0.985973i
\(82\) 26.3130 + 45.5755i 0.320890 + 0.555798i
\(83\) 135.329 + 78.1320i 1.63047 + 0.941350i 0.983949 + 0.178450i \(0.0571084\pi\)
0.646517 + 0.762900i \(0.276225\pi\)
\(84\) −29.6477 29.7492i −0.352949 0.354157i
\(85\) −108.676 188.232i −1.27854 2.21450i
\(86\) −27.0602 15.6232i −0.314654 0.181666i
\(87\) −135.751 23.6972i −1.56036 0.272381i
\(88\) −14.0902 24.4049i −0.160115 0.277328i
\(89\) −54.2036 + 31.2945i −0.609029 + 0.351623i −0.772586 0.634911i \(-0.781037\pi\)
0.163556 + 0.986534i \(0.447704\pi\)
\(90\) −17.2722 96.0323i −0.191913 1.06703i
\(91\) 44.0722 62.4858i 0.484310 0.686657i
\(92\) 1.28774 + 0.743478i 0.0139972 + 0.00808128i
\(93\) 134.244 49.1209i 1.44348 0.528182i
\(94\) 42.1481 0.448385
\(95\) 81.1952i 0.854686i
\(96\) −5.83155 15.9372i −0.0607453 0.166012i
\(97\) 30.3830 52.6249i 0.313227 0.542525i −0.665832 0.746102i \(-0.731923\pi\)
0.979059 + 0.203577i \(0.0652566\pi\)
\(98\) 52.7783 + 44.9049i 0.538555 + 0.458213i
\(99\) −30.3801 + 84.3660i −0.306870 + 0.852182i
\(100\) −33.7687 58.4892i −0.337687 0.584892i
\(101\) −14.6186 + 8.44005i −0.144739 + 0.0835648i −0.570620 0.821214i \(-0.693297\pi\)
0.425882 + 0.904779i \(0.359964\pi\)
\(102\) −20.6853 + 118.497i −0.202797 + 1.16174i
\(103\) −78.6740 + 136.267i −0.763825 + 1.32298i 0.177040 + 0.984204i \(0.443348\pi\)
−0.940865 + 0.338781i \(0.889986\pi\)
\(104\) 26.7570 15.4482i 0.257279 0.148540i
\(105\) 41.4010 + 155.573i 0.394295 + 1.48165i
\(106\) 21.9152 37.9583i 0.206747 0.358097i
\(107\) −71.7631 + 41.4325i −0.670683 + 0.387219i −0.796336 0.604855i \(-0.793231\pi\)
0.125652 + 0.992074i \(0.459898\pi\)
\(108\) −26.7596 + 46.9034i −0.247774 + 0.434290i
\(109\) 0.587347 1.01731i 0.00538850 0.00933316i −0.863319 0.504659i \(-0.831618\pi\)
0.868707 + 0.495326i \(0.164951\pi\)
\(110\) 108.016i 0.981966i
\(111\) 58.4529 + 48.8776i 0.526603 + 0.440339i
\(112\) 11.7465 + 25.4169i 0.104879 + 0.226937i
\(113\) −34.0786 + 19.6753i −0.301580 + 0.174118i −0.643153 0.765738i \(-0.722374\pi\)
0.341572 + 0.939856i \(0.389041\pi\)
\(114\) −28.8253 + 34.4723i −0.252853 + 0.302388i
\(115\) −2.84978 4.93596i −0.0247807 0.0429214i
\(116\) 79.5612 + 45.9347i 0.685873 + 0.395989i
\(117\) −92.4972 33.3082i −0.790575 0.284686i
\(118\) 82.6662 0.700561
\(119\) 17.9734 197.651i 0.151037 1.66094i
\(120\) −11.1860 + 64.0798i −0.0932165 + 0.533998i
\(121\) −10.8669 + 18.8219i −0.0898087 + 0.155553i
\(122\) 36.2314i 0.296978i
\(123\) −71.6122 + 85.6413i −0.582213 + 0.696271i
\(124\) −95.2988 −0.768539
\(125\) 67.2217i 0.537774i
\(126\) 37.6531 80.7480i 0.298834 0.640857i
\(127\) −86.8989 −0.684243 −0.342122 0.939656i \(-0.611146\pi\)
−0.342122 + 0.939656i \(0.611146\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 11.3983 65.2964i 0.0883593 0.506174i
\(130\) −118.427 −0.910976
\(131\) 78.7600 + 45.4721i 0.601221 + 0.347115i 0.769522 0.638620i \(-0.220495\pi\)
−0.168301 + 0.985736i \(0.553828\pi\)
\(132\) 38.3471 45.8594i 0.290508 0.347420i
\(133\) 42.7326 60.5865i 0.321298 0.455538i
\(134\) 2.27521i 0.0169792i
\(135\) 178.720 104.411i 1.32385 0.773414i
\(136\) 40.0964 69.4490i 0.294826 0.510654i
\(137\) −58.5106 + 33.7811i −0.427085 + 0.246578i −0.698104 0.715996i \(-0.745973\pi\)
0.271019 + 0.962574i \(0.412639\pi\)
\(138\) −0.542424 + 3.10732i −0.00393061 + 0.0225168i
\(139\) 41.8849 + 72.5467i 0.301330 + 0.521919i 0.976437 0.215801i \(-0.0692361\pi\)
−0.675108 + 0.737719i \(0.735903\pi\)
\(140\) 9.71949 106.884i 0.0694249 0.763458i
\(141\) 30.7236 + 83.9652i 0.217898 + 0.595498i
\(142\) −139.511 −0.982473
\(143\) 94.2527 + 54.4168i 0.659110 + 0.380537i
\(144\) 27.4982 23.2346i 0.190960 0.161351i
\(145\) −176.069 304.961i −1.21427 2.10318i
\(146\) −107.120 61.8460i −0.733701 0.423602i
\(147\) −50.9845 + 137.875i −0.346833 + 0.937927i
\(148\) −25.3985 43.9915i −0.171612 0.297240i
\(149\) 87.0552 + 50.2613i 0.584263 + 0.337324i 0.762826 0.646604i \(-0.223811\pi\)
−0.178563 + 0.983929i \(0.557145\pi\)
\(150\) 91.9033 109.908i 0.612689 0.732717i
\(151\) 39.1366 + 67.7866i 0.259183 + 0.448918i 0.966023 0.258455i \(-0.0832134\pi\)
−0.706840 + 0.707373i \(0.749880\pi\)
\(152\) 25.9437 14.9786i 0.170683 0.0985436i
\(153\) −251.142 + 45.1698i −1.64145 + 0.295228i
\(154\) −56.8484 + 80.6000i −0.369145 + 0.523377i
\(155\) 316.345 + 182.642i 2.04094 + 1.17834i
\(156\) 50.2794 + 42.0430i 0.322304 + 0.269507i
\(157\) −238.344 −1.51812 −0.759058 0.651023i \(-0.774340\pi\)
−0.759058 + 0.651023i \(0.774340\pi\)
\(158\) 151.882i 0.961279i
\(159\) 91.5933 + 15.9888i 0.576059 + 0.100559i
\(160\) 21.6829 37.5560i 0.135518 0.234725i
\(161\) 0.471312 5.18296i 0.00292740 0.0321923i
\(162\) −112.945 19.1190i −0.697188 0.118019i
\(163\) 40.6681 + 70.4391i 0.249497 + 0.432142i 0.963386 0.268117i \(-0.0864013\pi\)
−0.713889 + 0.700259i \(0.753068\pi\)
\(164\) 64.4534 37.2122i 0.393009 0.226904i
\(165\) −215.184 + 78.7378i −1.30415 + 0.477199i
\(166\) 110.495 191.384i 0.665635 1.15291i
\(167\) −166.402 + 96.0720i −0.996417 + 0.575281i −0.907186 0.420730i \(-0.861774\pi\)
−0.0892305 + 0.996011i \(0.528441\pi\)
\(168\) −42.0717 + 41.9282i −0.250427 + 0.249573i
\(169\) 24.8384 43.0214i 0.146973 0.254565i
\(170\) −266.201 + 153.691i −1.56589 + 0.904064i
\(171\) −89.6858 32.2958i −0.524478 0.188864i
\(172\) −22.0946 + 38.2690i −0.128457 + 0.222494i
\(173\) 62.4034i 0.360713i 0.983601 + 0.180357i \(0.0577252\pi\)
−0.983601 + 0.180357i \(0.942275\pi\)
\(174\) −33.5129 + 191.981i −0.192603 + 1.10334i
\(175\) −136.244 + 193.167i −0.778536 + 1.10381i
\(176\) −34.5137 + 19.9265i −0.196101 + 0.113219i
\(177\) 60.2590 + 164.683i 0.340446 + 0.930412i
\(178\) 44.2571 + 76.6555i 0.248635 + 0.430649i
\(179\) −105.048 60.6496i −0.586861 0.338824i 0.176994 0.984212i \(-0.443363\pi\)
−0.763855 + 0.645387i \(0.776696\pi\)
\(180\) −135.810 + 24.4265i −0.754501 + 0.135703i
\(181\) 227.780 1.25845 0.629227 0.777222i \(-0.283372\pi\)
0.629227 + 0.777222i \(0.283372\pi\)
\(182\) −88.3683 62.3275i −0.485540 0.342459i
\(183\) −72.1781 + 26.4106i −0.394416 + 0.144320i
\(184\) 1.05144 1.82114i 0.00571433 0.00989751i
\(185\) 194.707i 1.05247i
\(186\) −69.4675 189.849i −0.373481 1.02069i
\(187\) 282.482 1.51060
\(188\) 59.6065i 0.317056i
\(189\) 188.309 + 16.1496i 0.996343 + 0.0854479i
\(190\) −114.827 −0.604354
\(191\) 150.487i 0.787889i −0.919134 0.393945i \(-0.871110\pi\)
0.919134 0.393945i \(-0.128890\pi\)
\(192\) −22.5385 + 8.24706i −0.117388 + 0.0429534i
\(193\) 377.717 1.95708 0.978540 0.206055i \(-0.0660625\pi\)
0.978540 + 0.206055i \(0.0660625\pi\)
\(194\) −74.4229 42.9681i −0.383623 0.221485i
\(195\) −86.3266 235.924i −0.442701 1.20986i
\(196\) 63.5051 74.6399i 0.324005 0.380816i
\(197\) 316.391i 1.60604i −0.595949 0.803022i \(-0.703224\pi\)
0.595949 0.803022i \(-0.296776\pi\)
\(198\) 119.311 + 42.9640i 0.602583 + 0.216990i
\(199\) 43.8716 75.9878i 0.220460 0.381848i −0.734488 0.678622i \(-0.762577\pi\)
0.954948 + 0.296774i \(0.0959107\pi\)
\(200\) −82.7162 + 47.7562i −0.413581 + 0.238781i
\(201\) 4.53256 1.65850i 0.0225500 0.00825127i
\(202\) 11.9360 + 20.6738i 0.0590892 + 0.102346i
\(203\) 29.1193 320.222i 0.143445 1.57745i
\(204\) 167.580 + 29.2534i 0.821473 + 0.143399i
\(205\) −285.272 −1.39157
\(206\) 192.711 + 111.262i 0.935491 + 0.540106i
\(207\) −6.58563 + 1.18448i −0.0318146 + 0.00572211i
\(208\) −21.8470 37.8402i −0.105034 0.181924i
\(209\) 91.3879 + 52.7628i 0.437263 + 0.252454i
\(210\) 220.013 58.5499i 1.04768 0.278809i
\(211\) −48.5679 84.1221i −0.230180 0.398683i 0.727681 0.685915i \(-0.240598\pi\)
−0.957861 + 0.287233i \(0.907265\pi\)
\(212\) −53.6811 30.9928i −0.253213 0.146192i
\(213\) −101.696 277.926i −0.477445 1.30482i
\(214\) 58.5943 + 101.488i 0.273805 + 0.474245i
\(215\) 146.686 84.6894i 0.682262 0.393904i
\(216\) 66.3314 + 37.8438i 0.307090 + 0.175203i
\(217\) 139.928 + 302.775i 0.644830 + 1.39528i
\(218\) −1.43870 0.830634i −0.00659954 0.00381025i
\(219\) 45.1214 258.481i 0.206034 1.18028i
\(220\) 152.758 0.694355
\(221\) 309.708i 1.40139i
\(222\) 69.1234 82.6649i 0.311367 0.372364i
\(223\) −140.617 + 243.556i −0.630569 + 1.09218i 0.356867 + 0.934155i \(0.383845\pi\)
−0.987436 + 0.158022i \(0.949488\pi\)
\(224\) 35.9450 16.6120i 0.160469 0.0741608i
\(225\) 285.944 + 102.968i 1.27086 + 0.457637i
\(226\) 27.8250 + 48.1944i 0.123120 + 0.213250i
\(227\) −110.285 + 63.6730i −0.485836 + 0.280498i −0.722846 0.691010i \(-0.757166\pi\)
0.237009 + 0.971507i \(0.423833\pi\)
\(228\) 48.7511 + 40.7651i 0.213821 + 0.178794i
\(229\) 60.5220 104.827i 0.264288 0.457761i −0.703089 0.711102i \(-0.748196\pi\)
0.967377 + 0.253341i \(0.0815296\pi\)
\(230\) −6.98050 + 4.03020i −0.0303500 + 0.0175226i
\(231\) −202.006 54.4973i −0.874485 0.235919i
\(232\) 64.9615 112.517i 0.280006 0.484985i
\(233\) 230.397 133.020i 0.988830 0.570901i 0.0839058 0.996474i \(-0.473261\pi\)
0.904924 + 0.425572i \(0.139927\pi\)
\(234\) −47.1049 + 130.811i −0.201303 + 0.559021i
\(235\) −114.237 + 197.864i −0.486115 + 0.841975i
\(236\) 116.908i 0.495371i
\(237\) 302.571 110.714i 1.27667 0.467146i
\(238\) −279.521 25.4182i −1.17446 0.106799i
\(239\) 96.5968 55.7702i 0.404171 0.233348i −0.284111 0.958791i \(-0.591699\pi\)
0.688282 + 0.725443i \(0.258365\pi\)
\(240\) 90.6225 + 15.8194i 0.377594 + 0.0659140i
\(241\) 160.550 + 278.081i 0.666183 + 1.15386i 0.978963 + 0.204037i \(0.0654062\pi\)
−0.312781 + 0.949825i \(0.601260\pi\)
\(242\) 26.6182 + 15.3681i 0.109993 + 0.0635043i
\(243\) −44.2423 238.939i −0.182067 0.983286i
\(244\) 51.2389 0.209995
\(245\) −353.854 + 126.059i −1.44430 + 0.514526i
\(246\) 121.115 + 101.275i 0.492338 + 0.411687i
\(247\) −57.8481 + 100.196i −0.234203 + 0.405652i
\(248\) 134.773i 0.543439i
\(249\) 461.809 + 80.6148i 1.85465 + 0.323754i
\(250\) 95.0659 0.380264
\(251\) 323.335i 1.28819i −0.764947 0.644093i \(-0.777235\pi\)
0.764947 0.644093i \(-0.222765\pi\)
\(252\) −114.195 53.2495i −0.453155 0.211308i
\(253\) 7.40745 0.0292785
\(254\) 122.894i 0.483833i
\(255\) −500.220 418.278i −1.96165 1.64031i
\(256\) 16.0000 0.0625000
\(257\) 204.239 + 117.917i 0.794703 + 0.458822i 0.841616 0.540077i \(-0.181605\pi\)
−0.0469126 + 0.998899i \(0.514938\pi\)
\(258\) −92.3430 16.1197i −0.357919 0.0624794i
\(259\) −102.473 + 145.287i −0.395650 + 0.560955i
\(260\) 167.481i 0.644158i
\(261\) −406.884 + 73.1811i −1.55894 + 0.280388i
\(262\) 64.3073 111.383i 0.245448 0.425128i
\(263\) 145.689 84.1133i 0.553949 0.319823i −0.196764 0.980451i \(-0.563043\pi\)
0.750713 + 0.660628i \(0.229710\pi\)
\(264\) −64.8550 54.2310i −0.245663 0.205420i
\(265\) 118.797 + 205.762i 0.448289 + 0.776459i
\(266\) −85.6823 60.4330i −0.322114 0.227192i
\(267\) −120.448 + 144.044i −0.451116 + 0.539491i
\(268\) −3.21764 −0.0120061
\(269\) −290.003 167.433i −1.07808 0.622428i −0.147700 0.989032i \(-0.547187\pi\)
−0.930377 + 0.366604i \(0.880520\pi\)
\(270\) −147.659 252.748i −0.546886 0.936104i
\(271\) −3.54968 6.14822i −0.0130984 0.0226872i 0.859402 0.511301i \(-0.170836\pi\)
−0.872500 + 0.488614i \(0.837503\pi\)
\(272\) −98.2157 56.7048i −0.361087 0.208474i
\(273\) 59.7498 221.476i 0.218864 0.811266i
\(274\) 47.7737 + 82.7466i 0.174357 + 0.301995i
\(275\) −291.371 168.223i −1.05953 0.611720i
\(276\) 4.39442 + 0.767103i 0.0159218 + 0.00277936i
\(277\) −261.435 452.819i −0.943810 1.63473i −0.758116 0.652120i \(-0.773880\pi\)
−0.185694 0.982608i \(-0.559453\pi\)
\(278\) 102.597 59.2341i 0.369052 0.213072i
\(279\) 327.569 276.779i 1.17408 0.992038i
\(280\) −151.157 13.7454i −0.539846 0.0490908i
\(281\) 270.951 + 156.433i 0.964237 + 0.556703i 0.897475 0.441066i \(-0.145400\pi\)
0.0667628 + 0.997769i \(0.478733\pi\)
\(282\) 118.745 43.4498i 0.421081 0.154077i
\(283\) 202.707 0.716280 0.358140 0.933668i \(-0.383411\pi\)
0.358140 + 0.933668i \(0.383411\pi\)
\(284\) 197.299i 0.694713i
\(285\) −83.7027 228.753i −0.293694 0.802641i
\(286\) 76.9570 133.293i 0.269080 0.466061i
\(287\) −212.865 150.137i −0.741690 0.523125i
\(288\) −32.8587 38.8884i −0.114093 0.135029i
\(289\) 257.430 + 445.882i 0.890761 + 1.54284i
\(290\) −431.280 + 249.000i −1.48717 + 0.858620i
\(291\) 31.3485 179.582i 0.107727 0.617122i
\(292\) −87.4634 + 151.491i −0.299532 + 0.518805i
\(293\) −268.759 + 155.168i −0.917267 + 0.529584i −0.882762 0.469820i \(-0.844319\pi\)
−0.0345046 + 0.999405i \(0.510985\pi\)
\(294\) 194.985 + 72.1030i 0.663214 + 0.245248i
\(295\) −224.056 + 388.076i −0.759511 + 1.31551i
\(296\) −62.2134 + 35.9189i −0.210180 + 0.121348i
\(297\) 1.38089 + 269.004i 0.00464948 + 0.905738i
\(298\) 71.0803 123.115i 0.238524 0.413136i
\(299\) 8.12139i 0.0271618i
\(300\) −155.433 129.971i −0.518109 0.433237i
\(301\) 154.027 + 14.0064i 0.511716 + 0.0465329i
\(302\) 95.8647 55.3475i 0.317433 0.183270i
\(303\) −32.4845 + 38.8483i −0.107210 + 0.128212i
\(304\) −21.1830 36.6900i −0.0696809 0.120691i
\(305\) −170.088 98.2003i −0.557665 0.321968i
\(306\) 63.8798 + 355.168i 0.208757 + 1.16068i
\(307\) −517.470 −1.68557 −0.842786 0.538249i \(-0.819086\pi\)
−0.842786 + 0.538249i \(0.819086\pi\)
\(308\) 113.986 + 80.3958i 0.370083 + 0.261025i
\(309\) −81.1740 + 465.012i −0.262699 + 1.50489i
\(310\) 258.295 447.380i 0.833209 1.44316i
\(311\) 41.7071i 0.134106i 0.997749 + 0.0670532i \(0.0213597\pi\)
−0.997749 + 0.0670532i \(0.978640\pi\)
\(312\) 59.4578 71.1058i 0.190570 0.227903i
\(313\) −236.404 −0.755283 −0.377642 0.925952i \(-0.623265\pi\)
−0.377642 + 0.925952i \(0.623265\pi\)
\(314\) 337.070i 1.07347i
\(315\) 277.017 + 395.619i 0.879420 + 1.25593i
\(316\) −214.794 −0.679727
\(317\) 363.141i 1.14555i −0.819711 0.572777i \(-0.805866\pi\)
0.819711 0.572777i \(-0.194134\pi\)
\(318\) 22.6116 129.533i 0.0711057 0.407335i
\(319\) 457.659 1.43467
\(320\) −53.1121 30.6643i −0.165975 0.0958260i
\(321\) −159.468 + 190.708i −0.496784 + 0.594105i
\(322\) −7.32981 0.666536i −0.0227634 0.00206999i
\(323\) 300.294i 0.929704i
\(324\) −27.0384 + 159.728i −0.0834519 + 0.492987i
\(325\) 184.437 319.454i 0.567497 0.982934i
\(326\) 99.6160 57.5133i 0.305571 0.176421i
\(327\) 0.606011 3.47159i 0.00185324 0.0106165i
\(328\) −52.6260 91.1509i −0.160445 0.277899i
\(329\) −189.377 + 87.5208i −0.575613 + 0.266021i
\(330\) 111.352 + 304.316i 0.337431 + 0.922170i
\(331\) −54.3080 −0.164073 −0.0820363 0.996629i \(-0.526142\pi\)
−0.0820363 + 0.996629i \(0.526142\pi\)
\(332\) −270.657 156.264i −0.815233 0.470675i
\(333\) 215.068 + 77.4457i 0.645848 + 0.232570i
\(334\) 135.866 + 235.327i 0.406785 + 0.704573i
\(335\) 10.6810 + 6.16667i 0.0318835 + 0.0184080i
\(336\) 59.2954 + 59.4983i 0.176475 + 0.177078i
\(337\) −88.0335 152.479i −0.261227 0.452459i 0.705341 0.708868i \(-0.250794\pi\)
−0.966568 + 0.256409i \(0.917460\pi\)
\(338\) −60.8415 35.1268i −0.180004 0.103926i
\(339\) −75.7273 + 90.5625i −0.223384 + 0.267146i
\(340\) 217.352 + 376.464i 0.639270 + 1.10725i
\(341\) −411.139 + 237.371i −1.20569 + 0.696104i
\(342\) −45.6732 + 126.835i −0.133547 + 0.370862i
\(343\) −330.385 92.1685i −0.963220 0.268713i
\(344\) 54.1205 + 31.2465i 0.157327 + 0.0908328i
\(345\) −13.1171 10.9684i −0.0380207 0.0317924i
\(346\) 88.2517 0.255063
\(347\) 173.047i 0.498695i −0.968414 0.249348i \(-0.919784\pi\)
0.968414 0.249348i \(-0.0802161\pi\)
\(348\) 271.503 + 47.3944i 0.780180 + 0.136191i
\(349\) 59.2604 102.642i 0.169801 0.294103i −0.768549 0.639791i \(-0.779021\pi\)
0.938350 + 0.345688i \(0.112354\pi\)
\(350\) 273.180 + 192.678i 0.780514 + 0.550508i
\(351\) −294.931 + 1.51399i −0.840259 + 0.00431335i
\(352\) 28.1803 + 48.8097i 0.0800577 + 0.138664i
\(353\) −329.840 + 190.433i −0.934391 + 0.539471i −0.888198 0.459462i \(-0.848042\pi\)
−0.0461931 + 0.998933i \(0.514709\pi\)
\(354\) 232.897 85.2191i 0.657901 0.240732i
\(355\) 378.126 654.934i 1.06514 1.84488i
\(356\) 108.407 62.5890i 0.304515 0.175812i
\(357\) −153.119 575.375i −0.428904 1.61170i
\(358\) −85.7715 + 148.561i −0.239585 + 0.414974i
\(359\) 168.395 97.2227i 0.469066 0.270815i −0.246783 0.969071i \(-0.579373\pi\)
0.715849 + 0.698255i \(0.246040\pi\)
\(360\) 34.5443 + 192.065i 0.0959564 + 0.533513i
\(361\) 124.410 215.485i 0.344626 0.596911i
\(362\) 322.130i 0.889861i
\(363\) −11.2122 + 64.2298i −0.0308875 + 0.176942i
\(364\) −88.1444 + 124.972i −0.242155 + 0.343329i
\(365\) 580.671 335.251i 1.59088 0.918495i
\(366\) 37.3503 + 102.075i 0.102050 + 0.278894i
\(367\) −138.936 240.644i −0.378571 0.655705i 0.612283 0.790638i \(-0.290251\pi\)
−0.990855 + 0.134934i \(0.956918\pi\)
\(368\) −2.57548 1.48696i −0.00699859 0.00404064i
\(369\) −113.468 + 315.102i −0.307502 + 0.853936i
\(370\) 275.357 0.744209
\(371\) −19.6472 + 216.058i −0.0529575 + 0.582367i
\(372\) −268.487 + 98.2419i −0.721739 + 0.264091i
\(373\) −172.015 + 297.938i −0.461165 + 0.798761i −0.999019 0.0442764i \(-0.985902\pi\)
0.537854 + 0.843038i \(0.319235\pi\)
\(374\) 399.490i 1.06816i
\(375\) 69.2977 + 189.385i 0.184794 + 0.505027i
\(376\) −84.2963 −0.224192
\(377\) 501.768i 1.33095i
\(378\) 22.8390 266.309i 0.0604208 0.704521i
\(379\) 0.490343 0.00129378 0.000646891 1.00000i \(-0.499794\pi\)
0.000646891 1.00000i \(0.499794\pi\)
\(380\) 162.390i 0.427343i
\(381\) −244.822 + 89.5826i −0.642577 + 0.235125i
\(382\) −212.821 −0.557122
\(383\) 433.397 + 250.222i 1.13158 + 0.653320i 0.944333 0.328992i \(-0.106709\pi\)
0.187251 + 0.982312i \(0.440042\pi\)
\(384\) 11.6631 + 31.8743i 0.0303727 + 0.0830060i
\(385\) −224.296 485.330i −0.582587 1.26060i
\(386\) 534.172i 1.38387i
\(387\) −35.2001 195.711i −0.0909564 0.505713i
\(388\) −60.7660 + 105.250i −0.156613 + 0.271262i
\(389\) 235.361 135.885i 0.605040 0.349320i −0.165982 0.986129i \(-0.553079\pi\)
0.771022 + 0.636809i \(0.219746\pi\)
\(390\) −333.646 + 122.084i −0.855503 + 0.313037i
\(391\) 10.5397 + 18.2553i 0.0269557 + 0.0466887i
\(392\) −105.557 89.8097i −0.269277 0.229106i
\(393\) 268.768 + 46.9171i 0.683889 + 0.119382i
\(394\) −447.444 −1.13564
\(395\) 713.009 + 411.656i 1.80509 + 1.04217i
\(396\) 60.7603 168.732i 0.153435 0.426091i
\(397\) 228.047 + 394.988i 0.574424 + 0.994932i 0.996104 + 0.0881874i \(0.0281074\pi\)
−0.421679 + 0.906745i \(0.638559\pi\)
\(398\) −107.463 62.0438i −0.270008 0.155889i
\(399\) 57.9337 214.744i 0.145197 0.538205i
\(400\) 67.5375 + 116.978i 0.168844 + 0.292446i
\(401\) 105.114 + 60.6873i 0.262129 + 0.151340i 0.625305 0.780380i \(-0.284975\pi\)
−0.363177 + 0.931720i \(0.618308\pi\)
\(402\) −2.34548 6.41000i −0.00583453 0.0159453i
\(403\) −260.249 450.765i −0.645780 1.11852i
\(404\) 29.2372 16.8801i 0.0723693 0.0417824i
\(405\) 395.875 478.398i 0.977470 1.18123i
\(406\) −452.862 41.1809i −1.11542 0.101431i
\(407\) −219.149 126.526i −0.538450 0.310874i
\(408\) 41.3705 236.994i 0.101398 0.580869i
\(409\) −182.969 −0.447357 −0.223678 0.974663i \(-0.571807\pi\)
−0.223678 + 0.974663i \(0.571807\pi\)
\(410\) 403.435i 0.983988i
\(411\) −130.019 + 155.490i −0.316347 + 0.378321i
\(412\) 157.348 272.535i 0.381913 0.661492i
\(413\) −371.429 + 171.657i −0.899344 + 0.415633i
\(414\) 1.67510 + 9.31349i 0.00404614 + 0.0224963i
\(415\) 598.966 + 1037.44i 1.44329 + 2.49986i
\(416\) −53.5141 + 30.8964i −0.128640 + 0.0742701i
\(417\) 192.790 + 161.209i 0.462326 + 0.386592i
\(418\) 74.6179 129.242i 0.178512 0.309191i
\(419\) 45.2341 26.1159i 0.107957 0.0623292i −0.445049 0.895506i \(-0.646814\pi\)
0.553006 + 0.833177i \(0.313480\pi\)
\(420\) −82.8020 311.146i −0.197148 0.740824i
\(421\) 227.122 393.386i 0.539481 0.934409i −0.459450 0.888203i \(-0.651954\pi\)
0.998932 0.0462059i \(-0.0147130\pi\)
\(422\) −118.967 + 68.6854i −0.281911 + 0.162762i
\(423\) 173.117 + 204.884i 0.409259 + 0.484360i
\(424\) −43.8304 + 75.9165i −0.103374 + 0.179048i
\(425\) 957.425i 2.25277i
\(426\) −393.047 + 143.820i −0.922646 + 0.337605i
\(427\) −75.2346 162.792i −0.176193 0.381246i
\(428\) 143.526 82.8649i 0.335342 0.193610i
\(429\) 321.637 + 56.1460i 0.749737 + 0.130877i
\(430\) −119.769 207.446i −0.278532 0.482432i
\(431\) 304.768 + 175.958i 0.707118 + 0.408255i 0.809993 0.586439i \(-0.199471\pi\)
−0.102875 + 0.994694i \(0.532804\pi\)
\(432\) 53.5192 93.8067i 0.123887 0.217145i
\(433\) −400.013 −0.923817 −0.461908 0.886928i \(-0.652835\pi\)
−0.461908 + 0.886928i \(0.652835\pi\)
\(434\) 428.189 197.888i 0.986611 0.455964i
\(435\) −810.423 677.666i −1.86304 1.55785i
\(436\) −1.17469 + 2.03463i −0.00269425 + 0.00466658i
\(437\) 7.87454i 0.0180195i
\(438\) −365.548 63.8112i −0.834585 0.145688i
\(439\) 194.883 0.443925 0.221963 0.975055i \(-0.428754\pi\)
0.221963 + 0.975055i \(0.428754\pi\)
\(440\) 216.032i 0.490983i
\(441\) −1.50638 + 440.997i −0.00341584 + 0.999994i
\(442\) 437.993 0.990935
\(443\) 299.032i 0.675015i 0.941323 + 0.337508i \(0.109584\pi\)
−0.941323 + 0.337508i \(0.890416\pi\)
\(444\) −116.906 97.7552i −0.263301 0.220169i
\(445\) −479.812 −1.07823
\(446\) 344.440 + 198.862i 0.772286 + 0.445879i
\(447\) 297.076 + 51.8585i 0.664599 + 0.116015i
\(448\) −23.4930 50.8339i −0.0524396 0.113468i
\(449\) 176.698i 0.393537i 0.980450 + 0.196769i \(0.0630448\pi\)
−0.980450 + 0.196769i \(0.936955\pi\)
\(450\) 145.619 404.386i 0.323598 0.898636i
\(451\) 185.377 321.083i 0.411036 0.711935i
\(452\) 68.1572 39.3506i 0.150790 0.0870588i
\(453\) 180.140 + 150.631i 0.397661 + 0.332519i
\(454\) 90.0472 + 155.966i 0.198342 + 0.343538i
\(455\) 532.106 245.914i 1.16946 0.540470i
\(456\) 57.6506 68.9445i 0.126427 0.151194i
\(457\) −46.0458 −0.100757 −0.0503784 0.998730i \(-0.516043\pi\)
−0.0503784 + 0.998730i \(0.516043\pi\)
\(458\) −148.248 85.5911i −0.323686 0.186880i
\(459\) −660.982 + 386.156i −1.44005 + 0.841298i
\(460\) 5.69956 + 9.87192i 0.0123903 + 0.0214607i
\(461\) −105.387 60.8451i −0.228605 0.131985i 0.381323 0.924442i \(-0.375468\pi\)
−0.609928 + 0.792457i \(0.708802\pi\)
\(462\) −77.0709 + 285.680i −0.166820 + 0.618355i
\(463\) −212.622 368.272i −0.459227 0.795404i 0.539693 0.841862i \(-0.318540\pi\)
−0.998920 + 0.0464574i \(0.985207\pi\)
\(464\) −159.122 91.8694i −0.342936 0.197994i
\(465\) 1079.53 + 188.446i 2.32156 + 0.405260i
\(466\) −188.119 325.831i −0.403688 0.699209i
\(467\) −140.848 + 81.3184i −0.301601 + 0.174129i −0.643162 0.765730i \(-0.722378\pi\)
0.341561 + 0.939860i \(0.389044\pi\)
\(468\) 184.994 + 66.6164i 0.395287 + 0.142343i
\(469\) 4.72449 + 10.2228i 0.0100735 + 0.0217970i
\(470\) 279.822 + 161.555i 0.595367 + 0.343735i
\(471\) −671.492 + 245.705i −1.42567 + 0.521667i
\(472\) −165.332 −0.350280
\(473\) 220.134i 0.465399i
\(474\) −156.573 427.900i −0.330322 0.902743i
\(475\) 178.831 309.744i 0.376485 0.652092i
\(476\) −35.9468 + 395.303i −0.0755185 + 0.830468i
\(477\) 274.530 49.3764i 0.575535 0.103514i
\(478\) −78.8709 136.608i −0.165002 0.285792i
\(479\) 664.047 383.388i 1.38632 0.800392i 0.393421 0.919359i \(-0.371292\pi\)
0.992898 + 0.118967i \(0.0379583\pi\)
\(480\) 22.3720 128.160i 0.0466082 0.266999i
\(481\) 138.721 240.271i 0.288400 0.499524i
\(482\) 393.266 227.052i 0.815904 0.471062i
\(483\) −4.01519 15.0879i −0.00831302 0.0312379i
\(484\) 21.7337 37.6439i 0.0449043 0.0777766i
\(485\) 403.427 232.919i 0.831808 0.480244i
\(486\) −337.910 + 62.5681i −0.695288 + 0.128741i
\(487\) −76.0499 + 131.722i −0.156160 + 0.270477i −0.933481 0.358627i \(-0.883245\pi\)
0.777321 + 0.629104i \(0.216578\pi\)
\(488\) 72.4627i 0.148489i
\(489\) 187.189 + 156.525i 0.382800 + 0.320093i
\(490\) 178.274 + 500.426i 0.363825 + 1.02128i
\(491\) −350.834 + 202.554i −0.714529 + 0.412533i −0.812736 0.582633i \(-0.802023\pi\)
0.0982070 + 0.995166i \(0.468689\pi\)
\(492\) 143.224 171.283i 0.291106 0.348135i
\(493\) 651.180 + 1127.88i 1.32085 + 2.28778i
\(494\) 141.698 + 81.8096i 0.286839 + 0.165607i
\(495\) −525.072 + 443.659i −1.06075 + 0.896281i
\(496\) 190.598 0.384269
\(497\) 626.840 289.695i 1.26125 0.582888i
\(498\) 114.007 653.096i 0.228929 1.31144i
\(499\) 182.907 316.804i 0.366547 0.634878i −0.622476 0.782639i \(-0.713873\pi\)
0.989023 + 0.147761i \(0.0472066\pi\)
\(500\) 134.443i 0.268887i
\(501\) −369.767 + 442.206i −0.738058 + 0.882646i
\(502\) −457.264 −0.910885
\(503\) 239.788i 0.476717i 0.971177 + 0.238358i \(0.0766093\pi\)
−0.971177 + 0.238358i \(0.923391\pi\)
\(504\) −75.3062 + 161.496i −0.149417 + 0.320429i
\(505\) −129.404 −0.256246
\(506\) 10.4757i 0.0207030i
\(507\) 25.6277 146.811i 0.0505478 0.289567i
\(508\) 173.798 0.342122
\(509\) −296.395 171.124i −0.582308 0.336196i 0.179742 0.983714i \(-0.442474\pi\)
−0.762050 + 0.647518i \(0.775807\pi\)
\(510\) −591.534 + 707.418i −1.15987 + 1.38709i
\(511\) 609.728 + 55.4456i 1.19321 + 0.108504i
\(512\) 22.6274i 0.0441942i
\(513\) −285.966 + 1.46797i −0.557440 + 0.00286154i
\(514\) 166.760 288.837i 0.324436 0.561940i
\(515\) −1044.64 + 603.121i −2.02842 + 1.17111i
\(516\) −22.7967 + 130.593i −0.0441796 + 0.253087i
\(517\) −148.469 257.155i −0.287173 0.497399i
\(518\) 205.467 + 144.919i 0.396655 + 0.279767i
\(519\) 64.3305 + 175.810i 0.123951 + 0.338748i
\(520\) 236.854 0.455488
\(521\) 203.560 + 117.525i 0.390710 + 0.225577i 0.682468 0.730916i \(-0.260907\pi\)
−0.291758 + 0.956492i \(0.594240\pi\)
\(522\) 103.494 + 575.420i 0.198264 + 1.10234i
\(523\) −18.2473 31.6052i −0.0348896 0.0604306i 0.848053 0.529911i \(-0.177775\pi\)
−0.882943 + 0.469480i \(0.844441\pi\)
\(524\) −157.520 90.9442i −0.300611 0.173558i
\(525\) −184.709 + 684.665i −0.351827 + 1.30412i
\(526\) −118.954 206.035i −0.226149 0.391701i
\(527\) −1169.98 675.488i −2.22007 1.28176i
\(528\) −76.6942 + 91.7188i −0.145254 + 0.173710i
\(529\) −264.224 457.649i −0.499478 0.865120i
\(530\) 290.991 168.004i 0.549040 0.316988i
\(531\) 339.538 + 401.844i 0.639430 + 0.756769i
\(532\) −85.4652 + 121.173i −0.160649 + 0.227769i
\(533\) 352.029 + 203.244i 0.660467 + 0.381321i
\(534\) 203.709 + 170.339i 0.381478 + 0.318987i
\(535\) −635.249 −1.18738
\(536\) 4.55043i 0.00848961i
\(537\) −358.477 62.5768i −0.667554 0.116530i
\(538\) −236.786 + 410.126i −0.440123 + 0.762316i
\(539\) 88.0605 480.191i 0.163378 0.890893i
\(540\) −357.440 + 208.822i −0.661925 + 0.386707i
\(541\) −437.424 757.641i −0.808548 1.40045i −0.913870 0.406008i \(-0.866921\pi\)
0.105322 0.994438i \(-0.466413\pi\)
\(542\) −8.69489 + 5.02000i −0.0160422 + 0.00926199i
\(543\) 641.729 234.815i 1.18182 0.432439i
\(544\) −80.1927 + 138.898i −0.147413 + 0.255327i
\(545\) 7.79881 4.50265i 0.0143097 0.00826174i
\(546\) −313.214 84.4990i −0.573652 0.154760i
\(547\) −508.530 + 880.800i −0.929671 + 1.61024i −0.145801 + 0.989314i \(0.546576\pi\)
−0.783871 + 0.620924i \(0.786758\pi\)
\(548\) 117.021 67.5623i 0.213543 0.123289i
\(549\) −176.122 + 148.814i −0.320806 + 0.271064i
\(550\) −237.903 + 412.061i −0.432552 + 0.749201i
\(551\) 486.517i 0.882971i
\(552\) 1.08485 6.21464i 0.00196530 0.0112584i
\(553\) 315.384 + 682.424i 0.570314 + 1.23404i
\(554\) −640.383 + 369.726i −1.15593 + 0.667375i
\(555\) 200.720 + 548.552i 0.361658 + 0.988381i
\(556\) −83.7697 145.093i −0.150665 0.260959i
\(557\) −506.945 292.685i −0.910134 0.525466i −0.0296598 0.999560i \(-0.509442\pi\)
−0.880474 + 0.474094i \(0.842776\pi\)
\(558\) −391.424 463.252i −0.701477 0.830201i
\(559\) −241.351 −0.431754
\(560\) −19.4390 + 213.768i −0.0347125 + 0.381729i
\(561\) 795.842 291.206i 1.41861 0.519084i
\(562\) 221.230 383.182i 0.393648 0.681819i
\(563\) 847.497i 1.50532i −0.658407 0.752662i \(-0.728770\pi\)
0.658407 0.752662i \(-0.271230\pi\)
\(564\) −61.4473 167.930i −0.108949 0.297749i
\(565\) −301.664 −0.533919
\(566\) 286.671i 0.506486i
\(567\) 547.174 148.626i 0.965034 0.262126i
\(568\) 279.022 0.491236
\(569\) 493.737i 0.867727i 0.900979 + 0.433864i \(0.142850\pi\)
−0.900979 + 0.433864i \(0.857150\pi\)
\(570\) −323.505 + 118.373i −0.567553 + 0.207673i
\(571\) 7.73344 0.0135437 0.00677184 0.999977i \(-0.497844\pi\)
0.00677184 + 0.999977i \(0.497844\pi\)
\(572\) −188.505 108.834i −0.329555 0.190269i
\(573\) −155.134 423.969i −0.270740 0.739912i
\(574\) −212.326 + 301.037i −0.369905 + 0.524454i
\(575\) 25.1063i 0.0436631i
\(576\) −54.9965 + 46.4692i −0.0954800 + 0.0806757i
\(577\) −445.351 + 771.370i −0.771839 + 1.33686i 0.164716 + 0.986341i \(0.447329\pi\)
−0.936554 + 0.350523i \(0.886004\pi\)
\(578\) 630.572 364.061i 1.09095 0.629863i
\(579\) 1064.15 389.382i 1.83791 0.672507i
\(580\) 352.139 + 609.922i 0.607136 + 1.05159i
\(581\) −99.0603 + 1089.35i −0.170500 + 1.87496i
\(582\) −253.968 44.3335i −0.436371 0.0761743i
\(583\) −308.789 −0.529655
\(584\) 214.241 + 123.692i 0.366851 + 0.211801i
\(585\) −486.419 575.679i −0.831486 0.984067i
\(586\) 219.441 + 380.083i 0.374473 + 0.648605i
\(587\) 187.116 + 108.031i 0.318766 + 0.184040i 0.650843 0.759213i \(-0.274416\pi\)
−0.332076 + 0.943253i \(0.607749\pi\)
\(588\) 101.969 275.750i 0.173417 0.468963i
\(589\) −252.339 437.064i −0.428419 0.742044i
\(590\) 548.822 + 316.863i 0.930207 + 0.537055i
\(591\) −326.162 891.373i −0.551881 1.50825i
\(592\) 50.7970 + 87.9831i 0.0858058 + 0.148620i
\(593\) −896.355 + 517.511i −1.51156 + 0.872699i −0.511650 + 0.859194i \(0.670966\pi\)
−0.999909 + 0.0135054i \(0.995701\pi\)
\(594\) 380.429 1.95288i 0.640453 0.00328768i
\(595\) 876.931 1243.32i 1.47383 2.08961i
\(596\) −174.110 100.523i −0.292131 0.168662i
\(597\) 45.2657 259.308i 0.0758219 0.434352i
\(598\) 11.4854 0.0192063
\(599\) 398.933i 0.665999i 0.942927 + 0.332999i \(0.108061\pi\)
−0.942927 + 0.332999i \(0.891939\pi\)
\(600\) −183.807 + 219.815i −0.306344 + 0.366358i
\(601\) 459.343 795.605i 0.764297 1.32380i −0.176320 0.984333i \(-0.556419\pi\)
0.940617 0.339469i \(-0.110247\pi\)
\(602\) 19.8080 217.827i 0.0329037 0.361838i
\(603\) 11.0599 9.34507i 0.0183415 0.0154976i
\(604\) −78.2732 135.573i −0.129591 0.224459i
\(605\) −144.290 + 83.3061i −0.238497 + 0.137696i
\(606\) 54.9399 + 45.9400i 0.0906598 + 0.0758087i
\(607\) −475.551 + 823.678i −0.783444 + 1.35697i 0.146480 + 0.989214i \(0.453206\pi\)
−0.929924 + 0.367752i \(0.880128\pi\)
\(608\) −51.8875 + 29.9573i −0.0853413 + 0.0492718i
\(609\) −248.073 932.185i −0.407344 1.53068i
\(610\) −138.876 + 240.541i −0.227666 + 0.394329i
\(611\) 281.940 162.778i 0.461440 0.266413i
\(612\) 502.284 90.3397i 0.820726 0.147614i
\(613\) 292.779 507.109i 0.477617 0.827257i −0.522054 0.852913i \(-0.674834\pi\)
0.999671 + 0.0256553i \(0.00816723\pi\)
\(614\) 731.814i 1.19188i
\(615\) −803.701 + 294.082i −1.30683 + 0.478181i
\(616\) 113.697 161.200i 0.184573 0.261688i
\(617\) −774.449 + 447.129i −1.25519 + 0.724682i −0.972135 0.234423i \(-0.924680\pi\)
−0.283051 + 0.959105i \(0.591347\pi\)
\(618\) 657.627 + 114.797i 1.06412 + 0.185756i
\(619\) 41.7252 + 72.2702i 0.0674074 + 0.116753i 0.897759 0.440486i \(-0.145194\pi\)
−0.830352 + 0.557239i \(0.811861\pi\)
\(620\) −632.690 365.284i −1.02047 0.589168i
\(621\) −17.3328 + 10.1261i −0.0279110 + 0.0163061i
\(622\) 58.9827 0.0948275
\(623\) −358.028 252.522i −0.574683 0.405333i
\(624\) −100.559 84.0860i −0.161152 0.134753i
\(625\) 164.446 284.828i 0.263113 0.455725i
\(626\) 334.325i 0.534066i
\(627\) 311.861 + 54.4395i 0.497386 + 0.0868253i
\(628\) 476.689 0.759058
\(629\) 720.110i 1.14485i
\(630\) 559.490 391.762i 0.888079 0.621844i
\(631\) 237.722 0.376738 0.188369 0.982098i \(-0.439680\pi\)
0.188369 + 0.982098i \(0.439680\pi\)
\(632\) 303.764i 0.480639i
\(633\) −223.551 186.931i −0.353161 0.295309i
\(634\) −513.558 −0.810029
\(635\) −576.923 333.087i −0.908541 0.524546i
\(636\) −183.187 31.9777i −0.288029 0.0502793i
\(637\) 526.473 + 96.5478i 0.826488 + 0.151566i
\(638\) 647.227i 1.01446i
\(639\) −573.019 678.170i −0.896743 1.06130i
\(640\) −43.3659 + 75.1119i −0.0677592 + 0.117362i
\(641\) −548.667 + 316.773i −0.855956 + 0.494186i −0.862656 0.505791i \(-0.831201\pi\)
0.00670030 + 0.999978i \(0.497867\pi\)
\(642\) 269.702 + 225.521i 0.420096 + 0.351279i
\(643\) 148.120 + 256.551i 0.230357 + 0.398990i 0.957913 0.287058i \(-0.0926772\pi\)
−0.727556 + 0.686048i \(0.759344\pi\)
\(644\) −0.942624 + 10.3659i −0.00146370 + 0.0160961i
\(645\) 325.957 389.814i 0.505360 0.604362i
\(646\) 424.680 0.657400
\(647\) 853.776 + 492.928i 1.31959 + 0.761867i 0.983663 0.180021i \(-0.0576165\pi\)
0.335929 + 0.941887i \(0.390950\pi\)
\(648\) 225.889 + 38.2381i 0.348594 + 0.0590094i
\(649\) −291.195 504.364i −0.448682 0.777141i
\(650\) −451.776 260.833i −0.695039 0.401281i
\(651\) 706.348 + 708.765i 1.08502 + 1.08873i
\(652\) −81.3361 140.878i −0.124749 0.216071i
\(653\) 477.521 + 275.697i 0.731272 + 0.422200i 0.818887 0.573954i \(-0.194591\pi\)
−0.0876152 + 0.996154i \(0.527925\pi\)
\(654\) −4.90956 0.857029i −0.00750698 0.00131044i
\(655\) 348.593 + 603.780i 0.532202 + 0.921802i
\(656\) −128.907 + 74.4244i −0.196504 + 0.113452i
\(657\) −139.343 774.739i −0.212090 1.17921i
\(658\) 123.773 + 267.819i 0.188105 + 0.407020i
\(659\) −342.424 197.699i −0.519612 0.299998i 0.217164 0.976135i \(-0.430319\pi\)
−0.736776 + 0.676137i \(0.763653\pi\)
\(660\) 430.368 157.476i 0.652073 0.238599i
\(661\) 133.642 0.202182 0.101091 0.994877i \(-0.467767\pi\)
0.101091 + 0.994877i \(0.467767\pi\)
\(662\) 76.8032i 0.116017i
\(663\) 319.273 + 872.546i 0.481558 + 1.31606i
\(664\) −220.991 + 382.767i −0.332817 + 0.576457i
\(665\) 515.933 238.439i 0.775839 0.358555i
\(666\) 109.525 304.151i 0.164452 0.456684i
\(667\) 17.0757 + 29.5760i 0.0256008 + 0.0443418i
\(668\) 332.803 192.144i 0.498208 0.287641i
\(669\) −145.085 + 831.133i −0.216869 + 1.24235i
\(670\) 8.72099 15.1052i 0.0130164 0.0225451i
\(671\) 221.055 127.626i 0.329442 0.190203i
\(672\) 84.1433 83.8564i 0.125213 0.124786i
\(673\) −158.325 + 274.227i −0.235253 + 0.407469i −0.959346 0.282232i \(-0.908925\pi\)
0.724093 + 0.689702i \(0.242258\pi\)
\(674\) −215.637 + 124.498i −0.319936 + 0.184715i
\(675\) 911.744 4.68031i 1.35073 0.00693379i
\(676\) −49.6769 + 86.0428i −0.0734865 + 0.127282i
\(677\) 307.871i 0.454758i −0.973806 0.227379i \(-0.926984\pi\)
0.973806 0.227379i \(-0.0730157\pi\)
\(678\) 128.075 + 107.095i 0.188901 + 0.157957i
\(679\) 423.614 + 38.5213i 0.623880 + 0.0567324i
\(680\) 532.401 307.382i 0.782943 0.452032i
\(681\) −245.068 + 293.078i −0.359865 + 0.430364i
\(682\) 335.694 + 581.439i 0.492220 + 0.852549i
\(683\) −760.049 438.815i −1.11281 0.642481i −0.173254 0.984877i \(-0.555428\pi\)
−0.939556 + 0.342396i \(0.888762\pi\)
\(684\) 179.372 + 64.5916i 0.262239 + 0.0944322i
\(685\) −517.938 −0.756113
\(686\) −130.346 + 467.234i −0.190009 + 0.681100i
\(687\) 62.4452 357.723i 0.0908955 0.520703i
\(688\) 44.1892 76.5379i 0.0642285 0.111247i
\(689\) 338.550i 0.491365i
\(690\) −15.5116 + 18.5504i −0.0224806 + 0.0268847i
\(691\) −592.012 −0.856746 −0.428373 0.903602i \(-0.640913\pi\)
−0.428373 + 0.903602i \(0.640913\pi\)
\(692\) 124.807i 0.180357i
\(693\) −625.296 + 54.7083i −0.902303 + 0.0789442i
\(694\) −244.726 −0.352631
\(695\) 642.185i 0.924007i
\(696\) 67.0257 383.963i 0.0963013 0.551670i
\(697\) 1055.06 1.51371
\(698\) −145.158 83.8069i −0.207963 0.120067i
\(699\) 511.975 612.272i 0.732439 0.875926i
\(700\) 272.488 386.335i 0.389268 0.551907i
\(701\) 47.5192i 0.0677877i 0.999425 + 0.0338938i \(0.0107908\pi\)
−0.999425 + 0.0338938i \(0.989209\pi\)
\(702\) 2.14110 + 417.095i 0.00305000 + 0.594153i
\(703\) 134.504 232.968i 0.191329 0.331391i
\(704\) 69.0274 39.8530i 0.0980503 0.0566094i
\(705\) −117.867 + 675.211i −0.167187 + 0.957747i
\(706\) 269.313 + 466.464i 0.381463 + 0.660714i
\(707\) −96.5592 68.1047i −0.136576 0.0963291i
\(708\) −120.518 329.366i −0.170223 0.465206i
\(709\) 502.058 0.708121 0.354061 0.935222i \(-0.384801\pi\)
0.354061 + 0.935222i \(0.384801\pi\)
\(710\) −926.217 534.751i −1.30453 0.753171i
\(711\) 738.306 623.831i 1.03841 0.877399i
\(712\) −88.5141 153.311i −0.124318 0.215324i
\(713\) −30.6800 17.7131i −0.0430295 0.0248431i
\(714\) −813.704 + 216.542i −1.13964 + 0.303281i
\(715\) 417.164 + 722.549i 0.583446 + 1.01056i
\(716\) 210.096 + 121.299i 0.293431 + 0.169412i
\(717\) 214.651 256.702i 0.299374 0.358023i
\(718\) −137.494 238.146i −0.191495 0.331680i
\(719\) −152.732 + 88.1797i −0.212423 + 0.122642i −0.602437 0.798167i \(-0.705803\pi\)
0.390014 + 0.920809i \(0.372470\pi\)
\(720\) 271.620 48.8530i 0.377251 0.0678514i
\(721\) −1096.91 99.7474i −1.52137 0.138346i
\(722\) −304.741 175.943i −0.422080 0.243688i
\(723\) 738.989 + 617.934i 1.02211 + 0.854680i
\(724\) −455.560 −0.629227
\(725\) 1551.16i 2.13953i
\(726\) 90.8347 + 15.8564i 0.125117 + 0.0218408i
\(727\) 448.280 776.443i 0.616616 1.06801i −0.373483 0.927637i \(-0.621837\pi\)
0.990099 0.140373i \(-0.0448300\pi\)
\(728\) 176.737 + 124.655i 0.242770 + 0.171229i
\(729\) −370.962 627.557i −0.508865 0.860847i
\(730\) −474.116 821.193i −0.649474 1.12492i
\(731\) −542.509 + 313.218i −0.742146 + 0.428478i
\(732\) 144.356 52.8213i 0.197208 0.0721602i
\(733\) −268.922 + 465.786i −0.366878 + 0.635452i −0.989076 0.147408i \(-0.952907\pi\)
0.622197 + 0.782860i \(0.286240\pi\)
\(734\) −340.322 + 196.485i −0.463653 + 0.267690i
\(735\) −866.968 + 719.930i −1.17955 + 0.979497i
\(736\) −2.10287 + 3.64228i −0.00285716 + 0.00494875i
\(737\) −13.8816 + 8.01453i −0.0188353 + 0.0108745i
\(738\) 445.622 + 160.468i 0.603824 + 0.217437i
\(739\) −176.304 + 305.367i −0.238571 + 0.413217i −0.960304 0.278954i \(-0.910012\pi\)
0.721733 + 0.692171i \(0.243346\pi\)
\(740\) 389.414i 0.526235i
\(741\) −59.6864 + 341.918i −0.0805484 + 0.461428i
\(742\) 305.552 + 27.7854i 0.411796 + 0.0374466i
\(743\) 192.004 110.854i 0.258418 0.149198i −0.365195 0.930931i \(-0.618998\pi\)
0.623613 + 0.781734i \(0.285664\pi\)
\(744\) 138.935 + 379.698i 0.186741 + 0.510347i
\(745\) 385.307 + 667.372i 0.517191 + 0.895801i
\(746\) 421.348 + 243.265i 0.564810 + 0.326093i
\(747\) 1384.17 248.953i 1.85297 0.333271i
\(748\) −564.964 −0.755300
\(749\) −474.012 334.328i −0.632860 0.446366i
\(750\) 267.831 98.0018i 0.357108 0.130669i
\(751\) 535.616 927.714i 0.713203 1.23530i −0.250445 0.968131i \(-0.580577\pi\)
0.963648 0.267174i \(-0.0860898\pi\)
\(752\) 119.213i 0.158528i
\(753\) −333.320 910.937i −0.442656 1.20974i
\(754\) 709.607 0.941124
\(755\) 600.049i 0.794766i
\(756\) −376.618 32.2993i −0.498171 0.0427239i
\(757\) 724.845 0.957524 0.478762 0.877945i \(-0.341086\pi\)
0.478762 + 0.877945i \(0.341086\pi\)
\(758\) 0.693450i 0.000914842i
\(759\) 20.8692 7.63621i 0.0274956 0.0100609i
\(760\) 229.655 0.302177
\(761\) 814.116 + 470.030i 1.06980 + 0.617648i 0.928126 0.372266i \(-0.121419\pi\)
0.141671 + 0.989914i \(0.454752\pi\)
\(762\) 126.689 + 346.230i 0.166258 + 0.454371i
\(763\) 8.18907 + 0.744672i 0.0107327 + 0.000975979i
\(764\) 300.974i 0.393945i
\(765\) −1840.47 662.754i −2.40585 0.866345i
\(766\) 353.867 612.916i 0.461967 0.800151i
\(767\) 552.975 319.260i 0.720959 0.416246i
\(768\) 45.0771 16.4941i 0.0586941 0.0214767i
\(769\) 127.113 + 220.165i 0.165296 + 0.286301i 0.936760 0.349972i \(-0.113809\pi\)
−0.771464 + 0.636272i \(0.780475\pi\)
\(770\) −686.360 + 317.203i −0.891377 + 0.411951i
\(771\) 696.964 + 121.664i 0.903974 + 0.157801i
\(772\) −755.433 −0.978540
\(773\) 388.501 + 224.301i 0.502588 + 0.290169i 0.729782 0.683680i \(-0.239622\pi\)
−0.227194 + 0.973850i \(0.572955\pi\)
\(774\) −276.777 + 49.7805i −0.357593 + 0.0643159i
\(775\) 804.530 + 1393.49i 1.03810 + 1.79805i
\(776\) 148.846 + 85.9361i 0.191812 + 0.110742i
\(777\) −138.926 + 514.958i −0.178798 + 0.662752i
\(778\) −192.171 332.850i −0.247006 0.427828i
\(779\) 341.329 + 197.066i 0.438163 + 0.252974i
\(780\) 172.653 + 471.847i 0.221350 + 0.604932i
\(781\) 491.433 + 851.188i 0.629236 + 1.08987i
\(782\) 25.8169 14.9054i 0.0330139 0.0190606i
\(783\) −1070.88 + 625.624i −1.36766 + 0.799009i
\(784\) −127.010 + 149.280i −0.162003 + 0.190408i
\(785\) −1582.37 913.583i −2.01576 1.16380i
\(786\) 66.3508 380.096i 0.0844157 0.483583i
\(787\) −1175.28 −1.49336 −0.746681 0.665183i \(-0.768354\pi\)
−0.746681 + 0.665183i \(0.768354\pi\)
\(788\) 632.781i 0.803022i
\(789\) 323.740 387.162i 0.410317 0.490699i
\(790\) 582.170 1008.35i 0.736924 1.27639i
\(791\) −225.097 158.764i −0.284573 0.200714i
\(792\) −238.623 85.9280i −0.301292 0.108495i
\(793\) 139.927 + 242.361i 0.176453 + 0.305625i
\(794\) 558.598 322.506i 0.703523 0.406179i
\(795\) 546.804 + 457.231i 0.687804 + 0.575133i
\(796\) −87.7432 + 151.976i −0.110230 + 0.190924i
\(797\) 888.104 512.747i 1.11431 0.643347i 0.174367 0.984681i \(-0.444212\pi\)
0.939942 + 0.341334i \(0.110879\pi\)
\(798\) −303.694 81.9307i −0.380569 0.102670i
\(799\) 422.497 731.786i 0.528782 0.915878i
\(800\) 165.432 95.5124i 0.206790 0.119390i
\(801\) −190.848 + 529.986i −0.238262 + 0.661655i
\(802\) 85.8249 148.653i 0.107014 0.185353i
\(803\) 871.419i 1.08520i
\(804\) −9.06511 + 3.31701i −0.0112750 + 0.00412563i
\(805\) 22.9955 32.6032i 0.0285659 0.0405009i
\(806\) −637.478 + 368.048i −0.790916 + 0.456636i
\(807\) −989.634 172.754i −1.22631 0.214069i
\(808\) −23.8721 41.3476i −0.0295446 0.0511728i
\(809\) 305.477 + 176.367i 0.377598 + 0.218006i 0.676773 0.736192i \(-0.263378\pi\)
−0.299175 + 0.954198i \(0.596711\pi\)
\(810\) −676.557 559.852i −0.835255 0.691176i
\(811\) −1201.41 −1.48140 −0.740700 0.671836i \(-0.765506\pi\)
−0.740700 + 0.671836i \(0.765506\pi\)
\(812\) −58.2386 + 640.443i −0.0717225 + 0.788723i
\(813\) −16.3387 13.6622i −0.0200967 0.0168047i
\(814\) −178.935 + 309.924i −0.219821 + 0.380742i
\(815\) 623.529i 0.765066i
\(816\) −335.161 58.5067i −0.410736 0.0716994i
\(817\) −234.015 −0.286432
\(818\) 258.757i 0.316329i
\(819\) −59.9811 685.562i −0.0732370 0.837073i
\(820\) 570.543 0.695784
\(821\) 222.937i 0.271543i −0.990740 0.135772i \(-0.956649\pi\)
0.990740 0.135772i \(-0.0433513\pi\)
\(822\) 219.896 + 183.874i 0.267513 + 0.223691i
\(823\) −1231.00 −1.49575 −0.747875 0.663839i \(-0.768926\pi\)
−0.747875 + 0.663839i \(0.768926\pi\)
\(824\) −385.422 222.524i −0.467746 0.270053i
\(825\) −994.303 173.569i −1.20522 0.210386i
\(826\) 242.759 + 525.280i 0.293897 + 0.635932i
\(827\) 507.869i 0.614110i 0.951692 + 0.307055i \(0.0993436\pi\)
−0.951692 + 0.307055i \(0.900656\pi\)
\(828\) 13.1713 2.36895i 0.0159073 0.00286105i
\(829\) 347.420 601.749i 0.419083 0.725873i −0.576764 0.816911i \(-0.695685\pi\)
0.995847 + 0.0910372i \(0.0290182\pi\)
\(830\) 1467.16 847.066i 1.76766 1.02056i
\(831\) −1203.35 1006.23i −1.44808 1.21086i
\(832\) 43.6941 + 75.6803i 0.0525169 + 0.0909619i
\(833\) 1308.70 466.220i 1.57107 0.559688i
\(834\) 227.984 272.646i 0.273362 0.326914i
\(835\) −1472.99 −1.76406
\(836\) −182.776 105.526i −0.218631 0.126227i
\(837\) 637.539 1117.46i 0.761695 1.33508i
\(838\) −36.9335 63.9707i −0.0440734 0.0763373i
\(839\) 195.441 + 112.838i 0.232945 + 0.134491i 0.611930 0.790912i \(-0.290393\pi\)
−0.378985 + 0.925403i \(0.623727\pi\)
\(840\) −440.027 + 117.100i −0.523842 + 0.139404i
\(841\) 634.498 + 1098.98i 0.754457 + 1.30676i
\(842\) −556.332 321.199i −0.660727 0.381471i
\(843\) 924.619 + 161.404i 1.09682 + 0.191464i
\(844\) 97.1358 + 168.244i 0.115090 + 0.199341i
\(845\) 329.806 190.413i 0.390302 0.225341i
\(846\) 289.750 244.824i 0.342494 0.289390i
\(847\) −151.511 13.7776i −0.178879 0.0162664i
\(848\) 107.362 + 61.9856i 0.126606 + 0.0730962i
\(849\) 571.091 208.967i 0.672663 0.246133i
\(850\) −1354.00 −1.59295
\(851\) 18.8832i 0.0221895i
\(852\) 203.392 + 555.853i 0.238723 + 0.652409i
\(853\) −490.759 + 850.020i −0.575333 + 0.996507i 0.420672 + 0.907213i \(0.361794\pi\)
−0.996005 + 0.0892939i \(0.971539\pi\)
\(854\) −230.222 + 106.398i −0.269581 + 0.124588i
\(855\) −471.634 558.181i −0.551619 0.652844i
\(856\) −117.189 202.977i −0.136903 0.237122i
\(857\) 1359.93 785.155i 1.58685 0.916167i 0.593026 0.805183i \(-0.297933\pi\)
0.993822 0.110984i \(-0.0354001\pi\)
\(858\) 79.4025 454.864i 0.0925437 0.530144i
\(859\) −596.812 + 1033.71i −0.694775 + 1.20339i 0.275481 + 0.961306i \(0.411163\pi\)
−0.970256 + 0.242080i \(0.922170\pi\)
\(860\) −293.373 + 169.379i −0.341131 + 0.196952i
\(861\) −754.482 203.545i −0.876286 0.236405i
\(862\) 248.842 431.007i 0.288680 0.500008i
\(863\) 1018.88 588.251i 1.18063 0.681635i 0.224467 0.974482i \(-0.427936\pi\)
0.956159 + 0.292847i \(0.0946026\pi\)
\(864\) −132.663 75.6875i −0.153545 0.0876013i
\(865\) −239.194 + 414.297i −0.276525 + 0.478956i
\(866\) 565.703i 0.653237i
\(867\) 1184.91 + 990.810i 1.36668 + 1.14280i
\(868\) −279.856 605.551i −0.322415 0.697639i
\(869\) −926.666 + 535.011i −1.06636 + 0.615662i
\(870\) −958.364 + 1146.11i −1.10157 + 1.31737i
\(871\) −8.78698 15.2195i −0.0100884 0.0174736i
\(872\) 2.87740 + 1.66127i 0.00329977 + 0.00190512i
\(873\) −96.8098 538.258i −0.110893 0.616561i
\(874\) 11.1363 0.0127417
\(875\) −427.143 + 197.405i −0.488163 + 0.225605i
\(876\) −90.2427 + 516.963i −0.103017 + 0.590140i
\(877\) −358.637 + 621.178i −0.408937 + 0.708299i −0.994771 0.102132i \(-0.967434\pi\)
0.585834 + 0.810431i \(0.300767\pi\)
\(878\) 275.606i 0.313902i
\(879\) −597.220 + 714.217i −0.679431 + 0.812534i
\(880\) −305.516 −0.347177
\(881\) 255.203i 0.289675i 0.989455 + 0.144837i \(0.0462659\pi\)
−0.989455 + 0.144837i \(0.953734\pi\)
\(882\) 623.665 + 2.13035i 0.707103 + 0.00241536i
\(883\) 1220.34 1.38204 0.691019 0.722837i \(-0.257162\pi\)
0.691019 + 0.722837i \(0.257162\pi\)
\(884\) 619.416i 0.700697i
\(885\) −231.175 + 1324.31i −0.261215 + 1.49639i
\(886\) 422.895 0.477308
\(887\) 300.277 + 173.365i 0.338531 + 0.195451i 0.659622 0.751597i \(-0.270716\pi\)
−0.321091 + 0.947048i \(0.604050\pi\)
\(888\) −138.247 + 165.330i −0.155683 + 0.186182i
\(889\) −255.189 552.176i −0.287052 0.621120i
\(890\) 678.556i 0.762423i
\(891\) 281.202 + 756.447i 0.315603 + 0.848986i
\(892\) 281.234 487.111i 0.315284 0.546089i
\(893\) 273.370 157.830i 0.306126 0.176742i
\(894\) 73.3390 420.128i 0.0820346 0.469942i
\(895\) −464.944 805.307i −0.519491 0.899785i
\(896\) −71.8899 + 33.2241i −0.0802343 + 0.0370804i
\(897\) 8.37220 + 22.8805i 0.00933356 + 0.0255078i
\(898\) 249.889 0.278273
\(899\) −1895.52 1094.38i −2.10848 1.21733i
\(900\) −571.888 205.937i −0.635431 0.228818i
\(901\) −439.360 760.994i −0.487636 0.844611i
\(902\) −454.080 262.163i −0.503414 0.290646i
\(903\) 448.381 119.323i 0.496546 0.132141i
\(904\) −55.6501 96.3888i −0.0615598 0.106625i
\(905\) 1512.24 + 873.090i 1.67098 + 0.964740i
\(906\) 213.025 254.757i 0.235127 0.281189i
\(907\) 476.717 + 825.698i 0.525598 + 0.910362i 0.999555 + 0.0298142i \(0.00949155\pi\)
−0.473958 + 0.880547i \(0.657175\pi\)
\(908\) 220.570 127.346i 0.242918 0.140249i
\(909\) −51.4711 + 142.936i −0.0566239 + 0.157245i
\(910\) −347.775 752.512i −0.382170 0.826936i
\(911\) −94.3251 54.4586i −0.103540 0.0597790i 0.447336 0.894366i \(-0.352373\pi\)
−0.550876 + 0.834587i \(0.685706\pi\)
\(912\) −97.5023 81.5302i −0.106910 0.0893972i
\(913\) −1556.90 −1.70525
\(914\) 65.1186i 0.0712458i
\(915\) −580.425 101.321i −0.634344 0.110733i
\(916\) −121.044 + 209.654i −0.132144 + 0.228880i
\(917\) −57.6521 + 633.994i −0.0628704 + 0.691378i
\(918\) 546.107 + 934.770i 0.594887 + 1.01827i
\(919\) 240.077 + 415.825i 0.261237 + 0.452475i 0.966571 0.256400i \(-0.0825364\pi\)
−0.705334 + 0.708875i \(0.749203\pi\)
\(920\) 13.9610 8.06039i 0.0151750 0.00876130i
\(921\) −1457.88 + 533.451i −1.58293 + 0.579209i
\(922\) −86.0479 + 149.039i −0.0933275 + 0.161648i
\(923\) −933.226 + 538.798i −1.01108 + 0.583747i
\(924\) 404.012 + 108.995i 0.437243 + 0.117960i
\(925\) −428.838 + 742.769i −0.463609 + 0.802994i
\(926\) −520.815 + 300.693i −0.562436 + 0.324722i
\(927\) 250.680 + 1393.77i 0.270421 + 1.50353i
\(928\) −129.923 + 225.033i −0.140003 + 0.242493i
\(929\) 669.821i 0.721012i −0.932757 0.360506i \(-0.882604\pi\)
0.932757 0.360506i \(-0.117396\pi\)
\(930\) 266.503 1526.68i 0.286562 1.64159i
\(931\) 510.470 + 93.6132i 0.548303 + 0.100551i
\(932\) −460.795 + 266.040i −0.494415 + 0.285451i
\(933\) 42.9951 + 117.502i 0.0460826 + 0.125940i
\(934\) 115.002 + 199.189i 0.123128 + 0.213264i
\(935\) 1875.40 + 1082.76i 2.00578 + 1.15804i
\(936\) 94.2098 261.622i 0.100652 0.279510i
\(937\) 145.717 0.155515 0.0777573 0.996972i \(-0.475224\pi\)
0.0777573 + 0.996972i \(0.475224\pi\)
\(938\) 14.4572 6.68144i 0.0154128 0.00712307i
\(939\) −666.024 + 243.704i −0.709291 + 0.259536i
\(940\) 228.474 395.728i 0.243057 0.420988i
\(941\) 1468.00i 1.56004i −0.625754 0.780021i \(-0.715209\pi\)
0.625754 0.780021i \(-0.284791\pi\)
\(942\) 347.479 + 949.633i 0.368874 + 1.00810i
\(943\) 27.6664 0.0293388
\(944\) 233.815i 0.247686i
\(945\) 1188.28 + 829.012i 1.25744 + 0.877262i
\(946\) 311.316 0.329087
\(947\) 166.652i 0.175979i −0.996121 0.0879895i \(-0.971956\pi\)
0.996121 0.0879895i \(-0.0280442\pi\)
\(948\) −605.142 + 221.427i −0.638336 + 0.233573i
\(949\) −955.408 −1.00675
\(950\) −438.044 252.905i −0.461099 0.266215i
\(951\) −374.355 1023.08i −0.393644 1.07580i
\(952\) 559.043 + 50.8365i 0.587230 + 0.0533997i
\(953\) 1265.35i 1.32775i 0.747842 + 0.663876i \(0.231090\pi\)
−0.747842 + 0.663876i \(0.768910\pi\)
\(954\) −69.8287 388.244i −0.0731957 0.406965i
\(955\) 576.822 999.085i 0.604002 1.04616i
\(956\) −193.194 + 111.540i −0.202085 + 0.116674i
\(957\) 1289.37 471.792i 1.34730 0.492991i
\(958\) −542.192 939.104i −0.565962 0.980275i
\(959\) −386.477 272.588i −0.403000 0.284242i
\(960\) −181.245 31.6387i −0.188797 0.0329570i
\(961\) 1309.47 1.36261
\(962\) −339.795 196.180i −0.353217 0.203930i
\(963\) −252.673 + 701.677i −0.262382 + 0.728636i
\(964\) −321.100 556.162i −0.333091 0.576931i
\(965\) 2507.67 + 1447.80i 2.59862 + 1.50031i
\(966\) −21.3375 + 5.67833i −0.0220885 + 0.00587819i
\(967\) 839.074 + 1453.32i 0.867708 + 1.50291i 0.864333 + 0.502920i \(0.167741\pi\)
0.00337523 + 0.999994i \(0.498926\pi\)
\(968\) −53.2365 30.7361i −0.0549964 0.0317522i
\(969\) 309.568 + 846.025i 0.319472 + 0.873091i
\(970\) −329.397 570.532i −0.339584 0.588177i
\(971\) 1476.21 852.288i 1.52029 0.877742i 0.520581 0.853813i \(-0.325716\pi\)
0.999714 0.0239297i \(-0.00761780\pi\)
\(972\) 88.4847 + 477.877i 0.0910336 + 0.491643i
\(973\) −337.979 + 479.188i −0.347357 + 0.492485i
\(974\) 186.284 + 107.551i 0.191256 + 0.110422i
\(975\) 190.297 1090.13i 0.195177 1.11809i
\(976\) −102.478 −0.104998
\(977\) 1672.49i 1.71187i −0.517087 0.855933i \(-0.672984\pi\)
0.517087 0.855933i \(-0.327016\pi\)
\(978\) 221.360 264.726i 0.226340 0.270681i
\(979\) 311.795 540.044i 0.318483 0.551628i
\(980\) 707.709 252.118i 0.722152 0.257263i
\(981\) −1.87147 10.4053i −0.00190772 0.0106068i
\(982\) 286.454 + 496.154i 0.291705 + 0.505248i
\(983\) −719.402 + 415.347i −0.731844 + 0.422530i −0.819096 0.573656i \(-0.805525\pi\)
0.0872526 + 0.996186i \(0.472191\pi\)
\(984\) −242.230 202.550i −0.246169 0.205843i
\(985\) 1212.74 2100.52i 1.23121 2.13251i
\(986\) 1595.06 920.907i 1.61771 0.933983i
\(987\) −443.311 + 441.799i −0.449150 + 0.447618i
\(988\) 115.696 200.392i 0.117102 0.202826i
\(989\) −14.2261 + 8.21342i −0.0143843 + 0.00830477i
\(990\) 627.428 + 742.564i 0.633766 + 0.750065i
\(991\) 807.640 1398.87i 0.814974 1.41158i −0.0943719 0.995537i \(-0.530084\pi\)
0.909346 0.416040i \(-0.136582\pi\)
\(992\) 269.546i 0.271719i
\(993\) −153.003 + 55.9852i −0.154082 + 0.0563799i
\(994\) −409.691 886.486i −0.412164 0.891837i
\(995\) 582.529 336.323i 0.585456 0.338013i
\(996\) −923.618 161.230i −0.927327 0.161877i
\(997\) −191.233 331.225i −0.191808 0.332221i 0.754041 0.656827i \(-0.228102\pi\)
−0.945849 + 0.324606i \(0.894768\pi\)
\(998\) −448.029 258.669i −0.448926 0.259188i
\(999\) 685.751 3.52021i 0.686437 0.00352373i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.r.a.11.8 yes 32
3.2 odd 2 378.3.r.a.305.9 32
7.2 even 3 126.3.i.a.65.4 32
9.4 even 3 378.3.i.a.179.9 32
9.5 odd 6 126.3.i.a.95.4 yes 32
21.2 odd 6 378.3.i.a.359.16 32
63.23 odd 6 inner 126.3.r.a.23.16 yes 32
63.58 even 3 378.3.r.a.233.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.4 32 7.2 even 3
126.3.i.a.95.4 yes 32 9.5 odd 6
126.3.r.a.11.8 yes 32 1.1 even 1 trivial
126.3.r.a.23.16 yes 32 63.23 odd 6 inner
378.3.i.a.179.9 32 9.4 even 3
378.3.i.a.359.16 32 21.2 odd 6
378.3.r.a.233.1 32 63.58 even 3
378.3.r.a.305.9 32 3.2 odd 2