Properties

Label 126.3.r.a.11.16
Level $126$
Weight $3$
Character 126.11
Analytic conductor $3.433$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,3,Mod(11,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.11"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.16
Character \(\chi\) \(=\) 126.11
Dual form 126.3.r.a.23.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} +(2.25313 + 1.98076i) q^{3} -2.00000 q^{4} +(2.56482 + 1.48080i) q^{5} +(-2.80121 + 3.18641i) q^{6} +(6.84216 - 1.47812i) q^{7} -2.82843i q^{8} +(1.15321 + 8.92581i) q^{9} +(-2.09417 + 3.62721i) q^{10} +(-9.06593 + 5.23422i) q^{11} +(-4.50626 - 3.96151i) q^{12} +(-1.61224 - 2.79249i) q^{13} +(2.09038 + 9.67628i) q^{14} +(2.84578 + 8.41673i) q^{15} +4.00000 q^{16} +(-4.26829 - 2.46430i) q^{17} +(-12.6230 + 1.63089i) q^{18} +(-10.3079 - 17.8539i) q^{19} +(-5.12965 - 2.96160i) q^{20} +(18.3441 + 10.2222i) q^{21} +(-7.40230 - 12.8212i) q^{22} +(12.7844 + 7.38107i) q^{23} +(5.60242 - 6.37282i) q^{24} +(-8.11446 - 14.0547i) q^{25} +(3.94917 - 2.28006i) q^{26} +(-15.0815 + 22.3953i) q^{27} +(-13.6843 + 2.95625i) q^{28} +(26.9302 + 15.5482i) q^{29} +(-11.9031 + 4.02454i) q^{30} +26.4957 q^{31} +5.65685i q^{32} +(-30.7944 - 6.16401i) q^{33} +(3.48504 - 6.03627i) q^{34} +(19.7377 + 6.34075i) q^{35} +(-2.30642 - 17.8516i) q^{36} +(-25.0484 - 43.3851i) q^{37} +(25.2492 - 14.5776i) q^{38} +(1.89864 - 9.48530i) q^{39} +(4.18834 - 7.25441i) q^{40} +(42.6147 - 24.6036i) q^{41} +(-14.4564 + 25.9425i) q^{42} +(26.9323 - 46.6481i) q^{43} +(18.1319 - 10.4684i) q^{44} +(-10.2596 + 24.6008i) q^{45} +(-10.4384 + 18.0799i) q^{46} +19.4878i q^{47} +(9.01253 + 7.92302i) q^{48} +(44.6303 - 20.2271i) q^{49} +(19.8763 - 11.4756i) q^{50} +(-4.73584 - 14.0068i) q^{51} +(3.22449 + 5.58497i) q^{52} +(-86.9554 - 50.2038i) q^{53} +(-31.6717 - 21.3285i) q^{54} -31.0033 q^{55} +(-4.18077 - 19.3526i) q^{56} +(12.1390 - 60.6447i) q^{57} +(-21.9884 + 38.0851i) q^{58} +27.8673i q^{59} +(-5.69156 - 16.8335i) q^{60} -40.6748 q^{61} +37.4706i q^{62} +(21.0839 + 59.3672i) q^{63} -8.00000 q^{64} -9.54964i q^{65} +(8.71723 - 43.5499i) q^{66} +76.1185 q^{67} +(8.53657 + 4.92859i) q^{68} +(14.1848 + 41.9533i) q^{69} +(-8.96718 + 27.9134i) q^{70} -2.51699i q^{71} +(25.2460 - 3.26177i) q^{72} +(-69.1461 + 119.765i) q^{73} +(61.3558 - 35.4238i) q^{74} +(9.55589 - 47.7397i) q^{75} +(20.6159 + 35.7078i) q^{76} +(-54.2937 + 49.2139i) q^{77} +(13.4142 + 2.68508i) q^{78} -32.6856 q^{79} +(10.2593 + 5.92320i) q^{80} +(-78.3402 + 20.5867i) q^{81} +(34.7948 + 60.2663i) q^{82} +(7.18301 + 4.14711i) q^{83} +(-36.6882 - 20.4445i) q^{84} +(-7.29826 - 12.6410i) q^{85} +(65.9704 + 38.0880i) q^{86} +(29.8802 + 88.3742i) q^{87} +(14.8046 + 25.6423i) q^{88} +(-107.053 + 61.8071i) q^{89} +(-34.7908 - 14.5092i) q^{90} +(-15.1589 - 16.7235i) q^{91} +(-25.5688 - 14.7621i) q^{92} +(59.6984 + 52.4816i) q^{93} -27.5599 q^{94} -61.0561i q^{95} +(-11.2048 + 12.7456i) q^{96} +(44.1237 - 76.4246i) q^{97} +(28.6055 + 63.1168i) q^{98} +(-57.1745 - 74.8846i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 64 q^{4} + 8 q^{6} + 2 q^{7} - 20 q^{9} - 36 q^{11} + 10 q^{13} + 36 q^{14} + 10 q^{15} + 128 q^{16} - 54 q^{17} + 28 q^{19} + 28 q^{21} - 126 q^{23} - 16 q^{24} + 80 q^{25} - 72 q^{26} - 126 q^{27}+ \cdots + 394 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 2.25313 + 1.98076i 0.751044 + 0.660252i
\(4\) −2.00000 −0.500000
\(5\) 2.56482 + 1.48080i 0.512965 + 0.296160i 0.734051 0.679094i \(-0.237627\pi\)
−0.221087 + 0.975254i \(0.570960\pi\)
\(6\) −2.80121 + 3.18641i −0.466869 + 0.531068i
\(7\) 6.84216 1.47812i 0.977451 0.211161i
\(8\) 2.82843i 0.353553i
\(9\) 1.15321 + 8.92581i 0.128134 + 0.991757i
\(10\) −2.09417 + 3.62721i −0.209417 + 0.362721i
\(11\) −9.06593 + 5.23422i −0.824175 + 0.475838i −0.851854 0.523779i \(-0.824522\pi\)
0.0276789 + 0.999617i \(0.491188\pi\)
\(12\) −4.50626 3.96151i −0.375522 0.330126i
\(13\) −1.61224 2.79249i −0.124019 0.214807i 0.797330 0.603543i \(-0.206245\pi\)
−0.921349 + 0.388737i \(0.872912\pi\)
\(14\) 2.09038 + 9.67628i 0.149313 + 0.691163i
\(15\) 2.84578 + 8.41673i 0.189719 + 0.561115i
\(16\) 4.00000 0.250000
\(17\) −4.26829 2.46430i −0.251076 0.144959i 0.369181 0.929357i \(-0.379638\pi\)
−0.620257 + 0.784399i \(0.712972\pi\)
\(18\) −12.6230 + 1.63089i −0.701278 + 0.0906048i
\(19\) −10.3079 17.8539i −0.542524 0.939678i −0.998758 0.0498189i \(-0.984136\pi\)
0.456235 0.889859i \(-0.349198\pi\)
\(20\) −5.12965 2.96160i −0.256482 0.148080i
\(21\) 18.3441 + 10.2222i 0.873528 + 0.486773i
\(22\) −7.40230 12.8212i −0.336468 0.582780i
\(23\) 12.7844 + 7.38107i 0.555843 + 0.320916i 0.751475 0.659761i \(-0.229343\pi\)
−0.195632 + 0.980677i \(0.562676\pi\)
\(24\) 5.60242 6.37282i 0.233434 0.265534i
\(25\) −8.11446 14.0547i −0.324578 0.562186i
\(26\) 3.94917 2.28006i 0.151891 0.0876945i
\(27\) −15.0815 + 22.3953i −0.558575 + 0.829454i
\(28\) −13.6843 + 2.95625i −0.488726 + 0.105580i
\(29\) 26.9302 + 15.5482i 0.928628 + 0.536144i 0.886377 0.462963i \(-0.153214\pi\)
0.0422505 + 0.999107i \(0.486547\pi\)
\(30\) −11.9031 + 4.02454i −0.396768 + 0.134151i
\(31\) 26.4957 0.854701 0.427350 0.904086i \(-0.359447\pi\)
0.427350 + 0.904086i \(0.359447\pi\)
\(32\) 5.65685i 0.176777i
\(33\) −30.7944 6.16401i −0.933165 0.186788i
\(34\) 3.48504 6.03627i 0.102501 0.177537i
\(35\) 19.7377 + 6.34075i 0.563935 + 0.181164i
\(36\) −2.30642 17.8516i −0.0640672 0.495878i
\(37\) −25.0484 43.3851i −0.676983 1.17257i −0.975885 0.218286i \(-0.929954\pi\)
0.298902 0.954284i \(-0.403380\pi\)
\(38\) 25.2492 14.5776i 0.664453 0.383622i
\(39\) 1.89864 9.48530i 0.0486830 0.243213i
\(40\) 4.18834 7.25441i 0.104708 0.181360i
\(41\) 42.6147 24.6036i 1.03938 0.600088i 0.119725 0.992807i \(-0.461799\pi\)
0.919659 + 0.392719i \(0.128465\pi\)
\(42\) −14.4564 + 25.9425i −0.344201 + 0.617678i
\(43\) 26.9323 46.6481i 0.626332 1.08484i −0.361949 0.932198i \(-0.617889\pi\)
0.988282 0.152642i \(-0.0487781\pi\)
\(44\) 18.1319 10.4684i 0.412088 0.237919i
\(45\) −10.2596 + 24.6008i −0.227990 + 0.546684i
\(46\) −10.4384 + 18.0799i −0.226922 + 0.393041i
\(47\) 19.4878i 0.414634i 0.978274 + 0.207317i \(0.0664732\pi\)
−0.978274 + 0.207317i \(0.933527\pi\)
\(48\) 9.01253 + 7.92302i 0.187761 + 0.165063i
\(49\) 44.6303 20.2271i 0.910822 0.412798i
\(50\) 19.8763 11.4756i 0.397526 0.229511i
\(51\) −4.73584 14.0068i −0.0928597 0.274643i
\(52\) 3.22449 + 5.58497i 0.0620093 + 0.107403i
\(53\) −86.9554 50.2038i −1.64067 0.947241i −0.980596 0.196039i \(-0.937192\pi\)
−0.660073 0.751202i \(-0.729475\pi\)
\(54\) −31.6717 21.3285i −0.586513 0.394972i
\(55\) −31.0033 −0.563697
\(56\) −4.18077 19.3526i −0.0746565 0.345581i
\(57\) 12.1390 60.6447i 0.212965 1.06394i
\(58\) −21.9884 + 38.0851i −0.379111 + 0.656639i
\(59\) 27.8673i 0.472327i 0.971713 + 0.236164i \(0.0758902\pi\)
−0.971713 + 0.236164i \(0.924110\pi\)
\(60\) −5.69156 16.8335i −0.0948593 0.280558i
\(61\) −40.6748 −0.666799 −0.333400 0.942786i \(-0.608196\pi\)
−0.333400 + 0.942786i \(0.608196\pi\)
\(62\) 37.4706i 0.604365i
\(63\) 21.0839 + 59.3672i 0.334665 + 0.942337i
\(64\) −8.00000 −0.125000
\(65\) 9.54964i 0.146918i
\(66\) 8.71723 43.5499i 0.132079 0.659847i
\(67\) 76.1185 1.13610 0.568049 0.822995i \(-0.307698\pi\)
0.568049 + 0.822995i \(0.307698\pi\)
\(68\) 8.53657 + 4.92859i 0.125538 + 0.0724793i
\(69\) 14.1848 + 41.9533i 0.205577 + 0.608019i
\(70\) −8.96718 + 27.9134i −0.128103 + 0.398762i
\(71\) 2.51699i 0.0354506i −0.999843 0.0177253i \(-0.994358\pi\)
0.999843 0.0177253i \(-0.00564243\pi\)
\(72\) 25.2460 3.26177i 0.350639 0.0453024i
\(73\) −69.1461 + 119.765i −0.947207 + 1.64061i −0.195936 + 0.980617i \(0.562775\pi\)
−0.751271 + 0.659994i \(0.770559\pi\)
\(74\) 61.3558 35.4238i 0.829132 0.478700i
\(75\) 9.55589 47.7397i 0.127412 0.636530i
\(76\) 20.6159 + 35.7078i 0.271262 + 0.469839i
\(77\) −54.2937 + 49.2139i −0.705113 + 0.639142i
\(78\) 13.4142 + 2.68508i 0.171977 + 0.0344241i
\(79\) −32.6856 −0.413742 −0.206871 0.978368i \(-0.566328\pi\)
−0.206871 + 0.978368i \(0.566328\pi\)
\(80\) 10.2593 + 5.92320i 0.128241 + 0.0740401i
\(81\) −78.3402 + 20.5867i −0.967163 + 0.254156i
\(82\) 34.7948 + 60.2663i 0.424327 + 0.734955i
\(83\) 7.18301 + 4.14711i 0.0865422 + 0.0499652i 0.542647 0.839961i \(-0.317422\pi\)
−0.456104 + 0.889926i \(0.650756\pi\)
\(84\) −36.6882 20.4445i −0.436764 0.243387i
\(85\) −7.29826 12.6410i −0.0858619 0.148717i
\(86\) 65.9704 + 38.0880i 0.767097 + 0.442884i
\(87\) 29.8802 + 88.3742i 0.343451 + 1.01580i
\(88\) 14.8046 + 25.6423i 0.168234 + 0.291390i
\(89\) −107.053 + 61.8071i −1.20284 + 0.694461i −0.961186 0.275900i \(-0.911024\pi\)
−0.241656 + 0.970362i \(0.577691\pi\)
\(90\) −34.7908 14.5092i −0.386564 0.161214i
\(91\) −15.1589 16.7235i −0.166581 0.183775i
\(92\) −25.5688 14.7621i −0.277922 0.160458i
\(93\) 59.6984 + 52.4816i 0.641918 + 0.564318i
\(94\) −27.5599 −0.293191
\(95\) 61.0561i 0.642696i
\(96\) −11.2048 + 12.7456i −0.116717 + 0.132767i
\(97\) 44.1237 76.4246i 0.454884 0.787882i −0.543798 0.839216i \(-0.683014\pi\)
0.998682 + 0.0513343i \(0.0163474\pi\)
\(98\) 28.6055 + 63.1168i 0.291893 + 0.644049i
\(99\) −57.1745 74.8846i −0.577521 0.756410i
\(100\) 16.2289 + 28.1093i 0.162289 + 0.281093i
\(101\) −64.3812 + 37.1705i −0.637437 + 0.368025i −0.783627 0.621232i \(-0.786632\pi\)
0.146189 + 0.989257i \(0.453299\pi\)
\(102\) 19.8086 6.69749i 0.194202 0.0656617i
\(103\) −86.5789 + 149.959i −0.840572 + 1.45591i 0.0488407 + 0.998807i \(0.484447\pi\)
−0.889412 + 0.457106i \(0.848886\pi\)
\(104\) −7.89834 + 4.56011i −0.0759456 + 0.0438472i
\(105\) 31.9122 + 53.3822i 0.303926 + 0.508402i
\(106\) 70.9988 122.974i 0.669800 1.16013i
\(107\) 131.318 75.8164i 1.22727 0.708565i 0.260812 0.965390i \(-0.416010\pi\)
0.966458 + 0.256825i \(0.0826764\pi\)
\(108\) 30.1630 44.7905i 0.279287 0.414727i
\(109\) 44.1319 76.4387i 0.404880 0.701272i −0.589428 0.807821i \(-0.700647\pi\)
0.994307 + 0.106549i \(0.0339800\pi\)
\(110\) 43.8453i 0.398594i
\(111\) 29.4979 147.367i 0.265747 1.32763i
\(112\) 27.3686 5.91250i 0.244363 0.0527901i
\(113\) −192.861 + 111.349i −1.70674 + 0.985386i −0.768201 + 0.640208i \(0.778848\pi\)
−0.938537 + 0.345178i \(0.887819\pi\)
\(114\) 85.7646 + 17.1672i 0.752321 + 0.150589i
\(115\) 21.8598 + 37.8623i 0.190085 + 0.329237i
\(116\) −53.8604 31.0963i −0.464314 0.268072i
\(117\) 23.0660 17.6109i 0.197145 0.150521i
\(118\) −39.4103 −0.333986
\(119\) −32.8468 10.5520i −0.276024 0.0886727i
\(120\) 23.8061 8.04908i 0.198384 0.0670757i
\(121\) −5.70597 + 9.88303i −0.0471568 + 0.0816779i
\(122\) 57.5228i 0.471498i
\(123\) 144.750 + 28.9742i 1.17683 + 0.235562i
\(124\) −52.9914 −0.427350
\(125\) 122.104i 0.976829i
\(126\) −83.9580 + 29.8171i −0.666333 + 0.236644i
\(127\) 142.808 1.12447 0.562237 0.826976i \(-0.309941\pi\)
0.562237 + 0.826976i \(0.309941\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 153.081 51.7580i 1.18667 0.401225i
\(130\) 13.5052 0.103886
\(131\) −72.4912 41.8528i −0.553368 0.319487i 0.197112 0.980381i \(-0.436844\pi\)
−0.750479 + 0.660894i \(0.770177\pi\)
\(132\) 61.5889 + 12.3280i 0.466582 + 0.0933941i
\(133\) −96.9189 106.923i −0.728713 0.803930i
\(134\) 107.648i 0.803342i
\(135\) −71.8444 + 35.1071i −0.532180 + 0.260053i
\(136\) −6.97008 + 12.0725i −0.0512506 + 0.0887686i
\(137\) 5.21255 3.00947i 0.0380478 0.0219669i −0.480855 0.876800i \(-0.659674\pi\)
0.518903 + 0.854833i \(0.326340\pi\)
\(138\) −59.3309 + 20.0604i −0.429934 + 0.145365i
\(139\) 92.9625 + 161.016i 0.668795 + 1.15839i 0.978241 + 0.207470i \(0.0665228\pi\)
−0.309447 + 0.950917i \(0.600144\pi\)
\(140\) −39.4755 12.6815i −0.281968 0.0905822i
\(141\) −38.6006 + 43.9086i −0.273763 + 0.311409i
\(142\) 3.55956 0.0250674
\(143\) 29.2330 + 16.8777i 0.204426 + 0.118026i
\(144\) 4.61284 + 35.7032i 0.0320336 + 0.247939i
\(145\) 46.0475 + 79.7566i 0.317569 + 0.550045i
\(146\) −169.373 97.7874i −1.16009 0.669777i
\(147\) 140.623 + 42.8274i 0.956619 + 0.291343i
\(148\) 50.0968 + 86.7702i 0.338492 + 0.586285i
\(149\) −245.223 141.580i −1.64579 0.950200i −0.978718 0.205210i \(-0.934212\pi\)
−0.667076 0.744989i \(-0.732454\pi\)
\(150\) 67.5142 + 13.5141i 0.450095 + 0.0900938i
\(151\) 21.6207 + 37.4482i 0.143183 + 0.248001i 0.928694 0.370848i \(-0.120933\pi\)
−0.785510 + 0.618849i \(0.787599\pi\)
\(152\) −50.4984 + 29.1553i −0.332226 + 0.191811i
\(153\) 17.0736 40.9398i 0.111592 0.267580i
\(154\) −69.5990 76.7829i −0.451941 0.498590i
\(155\) 67.9568 + 39.2349i 0.438431 + 0.253128i
\(156\) −3.79728 + 18.9706i −0.0243415 + 0.121606i
\(157\) 115.241 0.734017 0.367009 0.930218i \(-0.380382\pi\)
0.367009 + 0.930218i \(0.380382\pi\)
\(158\) 46.2244i 0.292559i
\(159\) −96.4807 285.353i −0.606797 1.79467i
\(160\) −8.37668 + 14.5088i −0.0523542 + 0.0906802i
\(161\) 98.3830 + 31.6056i 0.611075 + 0.196308i
\(162\) −29.1140 110.790i −0.179716 0.683888i
\(163\) −45.0324 77.9983i −0.276272 0.478517i 0.694183 0.719798i \(-0.255766\pi\)
−0.970455 + 0.241281i \(0.922432\pi\)
\(164\) −85.2295 + 49.2072i −0.519692 + 0.300044i
\(165\) −69.8546 61.4100i −0.423361 0.372182i
\(166\) −5.86490 + 10.1583i −0.0353307 + 0.0611946i
\(167\) 164.936 95.2257i 0.987639 0.570214i 0.0830712 0.996544i \(-0.473527\pi\)
0.904568 + 0.426330i \(0.140194\pi\)
\(168\) 28.9129 51.8849i 0.172100 0.308839i
\(169\) 79.3013 137.354i 0.469239 0.812745i
\(170\) 17.8770 10.3213i 0.105159 0.0607136i
\(171\) 147.473 112.596i 0.862416 0.658457i
\(172\) −53.8646 + 93.2962i −0.313166 + 0.542420i
\(173\) 15.1191i 0.0873937i −0.999045 0.0436968i \(-0.986086\pi\)
0.999045 0.0436968i \(-0.0139136\pi\)
\(174\) −124.980 + 42.2570i −0.718276 + 0.242856i
\(175\) −76.2949 84.1700i −0.435971 0.480971i
\(176\) −36.2637 + 20.9369i −0.206044 + 0.118959i
\(177\) −55.1984 + 62.7888i −0.311855 + 0.354739i
\(178\) −87.4084 151.396i −0.491058 0.850538i
\(179\) 64.3594 + 37.1579i 0.359550 + 0.207586i 0.668883 0.743367i \(-0.266773\pi\)
−0.309333 + 0.950954i \(0.600106\pi\)
\(180\) 20.5191 49.2016i 0.113995 0.273342i
\(181\) −168.354 −0.930134 −0.465067 0.885276i \(-0.653970\pi\)
−0.465067 + 0.885276i \(0.653970\pi\)
\(182\) 23.6507 21.4379i 0.129949 0.117791i
\(183\) −91.6456 80.5668i −0.500796 0.440256i
\(184\) 20.8768 36.1597i 0.113461 0.196520i
\(185\) 148.367i 0.801982i
\(186\) −74.2201 + 84.4262i −0.399033 + 0.453904i
\(187\) 51.5946 0.275907
\(188\) 38.9756i 0.207317i
\(189\) −70.0872 + 175.524i −0.370832 + 0.928700i
\(190\) 86.3463 0.454454
\(191\) 94.8330i 0.496508i 0.968695 + 0.248254i \(0.0798567\pi\)
−0.968695 + 0.248254i \(0.920143\pi\)
\(192\) −18.0251 15.8460i −0.0938805 0.0825315i
\(193\) −80.7967 −0.418636 −0.209318 0.977848i \(-0.567124\pi\)
−0.209318 + 0.977848i \(0.567124\pi\)
\(194\) 108.081 + 62.4004i 0.557117 + 0.321652i
\(195\) 18.9155 21.5166i 0.0970026 0.110342i
\(196\) −89.2606 + 40.4542i −0.455411 + 0.206399i
\(197\) 299.930i 1.52249i 0.648467 + 0.761243i \(0.275410\pi\)
−0.648467 + 0.761243i \(0.724590\pi\)
\(198\) 105.903 80.8570i 0.534863 0.408369i
\(199\) −166.251 + 287.955i −0.835432 + 1.44701i 0.0582464 + 0.998302i \(0.481449\pi\)
−0.893678 + 0.448708i \(0.851884\pi\)
\(200\) −39.7526 + 22.9511i −0.198763 + 0.114756i
\(201\) 171.505 + 150.772i 0.853259 + 0.750111i
\(202\) −52.5670 91.0487i −0.260233 0.450736i
\(203\) 207.243 + 66.5768i 1.02090 + 0.327965i
\(204\) 9.47169 + 28.0136i 0.0464298 + 0.137322i
\(205\) 145.732 0.710889
\(206\) −212.074 122.441i −1.02949 0.594374i
\(207\) −51.1390 + 122.623i −0.247048 + 0.592382i
\(208\) −6.44897 11.1699i −0.0310047 0.0537017i
\(209\) 186.902 + 107.908i 0.894269 + 0.516306i
\(210\) −75.4938 + 45.1307i −0.359494 + 0.214908i
\(211\) 31.4009 + 54.3880i 0.148820 + 0.257763i 0.930791 0.365551i \(-0.119119\pi\)
−0.781972 + 0.623314i \(0.785786\pi\)
\(212\) 173.911 + 100.408i 0.820334 + 0.473620i
\(213\) 4.98555 5.67112i 0.0234063 0.0266250i
\(214\) 107.221 + 185.712i 0.501031 + 0.867811i
\(215\) 138.153 79.7627i 0.642573 0.370989i
\(216\) 63.3434 + 42.6570i 0.293256 + 0.197486i
\(217\) 181.288 39.1640i 0.835428 0.180479i
\(218\) 108.101 + 62.4119i 0.495874 + 0.286293i
\(219\) −393.020 + 132.884i −1.79461 + 0.606776i
\(220\) 62.0067 0.281848
\(221\) 15.8922i 0.0719103i
\(222\) 208.408 + 41.7164i 0.938777 + 0.187912i
\(223\) −184.727 + 319.956i −0.828370 + 1.43478i 0.0709457 + 0.997480i \(0.477398\pi\)
−0.899316 + 0.437299i \(0.855935\pi\)
\(224\) 8.36153 + 38.7051i 0.0373283 + 0.172791i
\(225\) 116.091 88.6361i 0.515962 0.393938i
\(226\) −157.471 272.747i −0.696773 1.20685i
\(227\) −164.291 + 94.8532i −0.723747 + 0.417855i −0.816130 0.577868i \(-0.803885\pi\)
0.0923833 + 0.995724i \(0.470551\pi\)
\(228\) −24.2781 + 121.289i −0.106483 + 0.531971i
\(229\) 82.2100 142.392i 0.358996 0.621799i −0.628798 0.777569i \(-0.716453\pi\)
0.987793 + 0.155770i \(0.0497859\pi\)
\(230\) −53.5454 + 30.9144i −0.232806 + 0.134411i
\(231\) −219.812 + 3.34285i −0.951566 + 0.0144712i
\(232\) 43.9768 76.1701i 0.189555 0.328320i
\(233\) 327.491 189.077i 1.40554 0.811490i 0.410588 0.911821i \(-0.365324\pi\)
0.994954 + 0.100331i \(0.0319903\pi\)
\(234\) 24.9056 + 32.6202i 0.106434 + 0.139402i
\(235\) −28.8576 + 49.9828i −0.122798 + 0.212693i
\(236\) 55.7346i 0.236164i
\(237\) −73.6450 64.7422i −0.310738 0.273174i
\(238\) 14.9229 46.4524i 0.0627011 0.195178i
\(239\) −99.8780 + 57.6646i −0.417899 + 0.241274i −0.694178 0.719803i \(-0.744232\pi\)
0.276279 + 0.961078i \(0.410899\pi\)
\(240\) 11.3831 + 33.6669i 0.0474297 + 0.140279i
\(241\) 136.139 + 235.800i 0.564892 + 0.978422i 0.997060 + 0.0766289i \(0.0244157\pi\)
−0.432167 + 0.901793i \(0.642251\pi\)
\(242\) −13.9767 8.06946i −0.0577550 0.0333449i
\(243\) −217.288 108.788i −0.894189 0.447689i
\(244\) 81.3495 0.333400
\(245\) 144.421 + 14.2096i 0.589474 + 0.0579984i
\(246\) −40.9757 + 204.708i −0.166568 + 0.832146i
\(247\) −33.2378 + 57.5696i −0.134566 + 0.233075i
\(248\) 74.9412i 0.302182i
\(249\) 7.96985 + 23.5718i 0.0320074 + 0.0946657i
\(250\) 172.681 0.690722
\(251\) 188.801i 0.752195i −0.926580 0.376097i \(-0.877266\pi\)
0.926580 0.376097i \(-0.122734\pi\)
\(252\) −42.1678 118.734i −0.167333 0.471169i
\(253\) −154.537 −0.610816
\(254\) 201.961i 0.795123i
\(255\) 8.59471 42.9378i 0.0337048 0.168384i
\(256\) 16.0000 0.0625000
\(257\) 264.143 + 152.503i 1.02779 + 0.593396i 0.916351 0.400375i \(-0.131120\pi\)
0.111441 + 0.993771i \(0.464454\pi\)
\(258\) 73.1969 + 216.489i 0.283709 + 0.839103i
\(259\) −235.514 259.823i −0.909319 1.00318i
\(260\) 19.0993i 0.0734588i
\(261\) −107.724 + 258.304i −0.412735 + 0.989672i
\(262\) 59.1888 102.518i 0.225911 0.391290i
\(263\) −16.6362 + 9.60493i −0.0632556 + 0.0365206i −0.531294 0.847187i \(-0.678294\pi\)
0.468039 + 0.883708i \(0.344961\pi\)
\(264\) −17.4345 + 87.0998i −0.0660396 + 0.329924i
\(265\) −148.684 257.527i −0.561070 0.971802i
\(266\) 151.212 137.064i 0.568465 0.515278i
\(267\) −363.629 72.7863i −1.36191 0.272608i
\(268\) −152.237 −0.568049
\(269\) −88.4256 51.0525i −0.328720 0.189786i 0.326553 0.945179i \(-0.394113\pi\)
−0.655273 + 0.755393i \(0.727446\pi\)
\(270\) −49.6490 101.603i −0.183885 0.376308i
\(271\) −3.15801 5.46983i −0.0116532 0.0201839i 0.860140 0.510058i \(-0.170376\pi\)
−0.871793 + 0.489874i \(0.837043\pi\)
\(272\) −17.0731 9.85718i −0.0627689 0.0362396i
\(273\) −1.02967 67.7064i −0.00377167 0.248009i
\(274\) 4.25603 + 7.37166i 0.0155330 + 0.0269039i
\(275\) 147.130 + 84.9456i 0.535019 + 0.308893i
\(276\) −28.3697 83.9066i −0.102789 0.304009i
\(277\) 9.21161 + 15.9550i 0.0332549 + 0.0575992i 0.882174 0.470924i \(-0.156079\pi\)
−0.848919 + 0.528523i \(0.822746\pi\)
\(278\) −227.711 + 131.469i −0.819103 + 0.472909i
\(279\) 30.5551 + 236.496i 0.109517 + 0.847655i
\(280\) 17.9344 55.8267i 0.0640513 0.199381i
\(281\) 143.559 + 82.8838i 0.510886 + 0.294960i 0.733198 0.680015i \(-0.238027\pi\)
−0.222312 + 0.974976i \(0.571360\pi\)
\(282\) −62.0961 54.5895i −0.220199 0.193580i
\(283\) −299.240 −1.05739 −0.528693 0.848813i \(-0.677318\pi\)
−0.528693 + 0.848813i \(0.677318\pi\)
\(284\) 5.03398i 0.0177253i
\(285\) 120.937 137.567i 0.424341 0.482693i
\(286\) −23.8686 + 41.3416i −0.0834567 + 0.144551i
\(287\) 255.210 231.332i 0.889232 0.806034i
\(288\) −50.4920 + 6.52354i −0.175319 + 0.0226512i
\(289\) −132.354 229.245i −0.457974 0.793234i
\(290\) −112.793 + 65.1210i −0.388941 + 0.224555i
\(291\) 250.795 84.7963i 0.861839 0.291396i
\(292\) 138.292 239.529i 0.473604 0.820305i
\(293\) −299.230 + 172.760i −1.02126 + 0.589626i −0.914469 0.404656i \(-0.867391\pi\)
−0.106792 + 0.994281i \(0.534058\pi\)
\(294\) −60.5670 + 198.871i −0.206010 + 0.676432i
\(295\) −41.2660 + 71.4747i −0.139885 + 0.242287i
\(296\) −122.712 + 70.8475i −0.414566 + 0.239350i
\(297\) 19.5063 281.974i 0.0656779 0.949407i
\(298\) 200.224 346.798i 0.671893 1.16375i
\(299\) 47.6003i 0.159198i
\(300\) −19.1118 + 95.4795i −0.0637059 + 0.318265i
\(301\) 115.323 358.983i 0.383134 1.19263i
\(302\) −52.9597 + 30.5763i −0.175363 + 0.101246i
\(303\) −218.685 43.7734i −0.721733 0.144467i
\(304\) −41.2318 71.4156i −0.135631 0.234920i
\(305\) −104.324 60.2312i −0.342044 0.197479i
\(306\) 57.8976 + 24.1457i 0.189208 + 0.0789076i
\(307\) 153.935 0.501417 0.250708 0.968063i \(-0.419337\pi\)
0.250708 + 0.968063i \(0.419337\pi\)
\(308\) 108.587 98.4278i 0.352557 0.319571i
\(309\) −492.106 + 166.386i −1.59258 + 0.538466i
\(310\) −55.4865 + 96.1054i −0.178989 + 0.310018i
\(311\) 503.595i 1.61928i −0.586928 0.809639i \(-0.699663\pi\)
0.586928 0.809639i \(-0.300337\pi\)
\(312\) −26.8285 5.37016i −0.0859887 0.0172121i
\(313\) 450.244 1.43848 0.719240 0.694762i \(-0.244490\pi\)
0.719240 + 0.694762i \(0.244490\pi\)
\(314\) 162.975i 0.519029i
\(315\) −33.8346 + 183.488i −0.107411 + 0.582500i
\(316\) 65.3712 0.206871
\(317\) 338.490i 1.06779i −0.845550 0.533896i \(-0.820727\pi\)
0.845550 0.533896i \(-0.179273\pi\)
\(318\) 403.550 136.444i 1.26903 0.429070i
\(319\) −325.530 −1.02047
\(320\) −20.5186 11.8464i −0.0641206 0.0370200i
\(321\) 446.050 + 89.2843i 1.38957 + 0.278144i
\(322\) −44.6970 + 139.135i −0.138811 + 0.432095i
\(323\) 101.607i 0.314574i
\(324\) 156.680 41.1734i 0.483582 0.127078i
\(325\) −26.1649 + 45.3190i −0.0805075 + 0.139443i
\(326\) 110.306 63.6854i 0.338363 0.195354i
\(327\) 250.841 84.8120i 0.767099 0.259364i
\(328\) −69.5896 120.533i −0.212163 0.367478i
\(329\) 28.8054 + 133.339i 0.0875544 + 0.405285i
\(330\) 86.8469 98.7893i 0.263172 0.299362i
\(331\) −19.9228 −0.0601896 −0.0300948 0.999547i \(-0.509581\pi\)
−0.0300948 + 0.999547i \(0.509581\pi\)
\(332\) −14.3660 8.29422i −0.0432711 0.0249826i
\(333\) 358.361 273.609i 1.07616 0.821649i
\(334\) 134.669 + 233.254i 0.403202 + 0.698366i
\(335\) 195.231 + 112.716i 0.582778 + 0.336467i
\(336\) 73.3764 + 40.8890i 0.218382 + 0.121693i
\(337\) −35.6414 61.7327i −0.105761 0.183183i 0.808288 0.588787i \(-0.200394\pi\)
−0.914049 + 0.405604i \(0.867061\pi\)
\(338\) 194.248 + 112.149i 0.574698 + 0.331802i
\(339\) −655.097 131.128i −1.93244 0.386809i
\(340\) 14.5965 + 25.2819i 0.0429310 + 0.0743586i
\(341\) −240.208 + 138.684i −0.704423 + 0.406699i
\(342\) 159.235 + 208.559i 0.465599 + 0.609821i
\(343\) 275.469 204.366i 0.803118 0.595820i
\(344\) −131.941 76.1760i −0.383549 0.221442i
\(345\) −25.7429 + 128.608i −0.0746172 + 0.372776i
\(346\) 21.3816 0.0617967
\(347\) 240.637i 0.693479i 0.937961 + 0.346740i \(0.112711\pi\)
−0.937961 + 0.346740i \(0.887289\pi\)
\(348\) −59.7604 176.748i −0.171725 0.507898i
\(349\) −190.956 + 330.745i −0.547151 + 0.947693i 0.451318 + 0.892363i \(0.350954\pi\)
−0.998468 + 0.0553292i \(0.982379\pi\)
\(350\) 119.034 107.897i 0.340098 0.308278i
\(351\) 86.8535 + 6.00834i 0.247446 + 0.0171178i
\(352\) −29.6092 51.2846i −0.0841170 0.145695i
\(353\) 61.9024 35.7393i 0.175361 0.101245i −0.409750 0.912198i \(-0.634384\pi\)
0.585111 + 0.810953i \(0.301051\pi\)
\(354\) −88.7967 78.0623i −0.250838 0.220515i
\(355\) 3.72716 6.45564i 0.0104991 0.0181849i
\(356\) 214.106 123.614i 0.601421 0.347231i
\(357\) −53.1072 88.8367i −0.148760 0.248842i
\(358\) −52.5492 + 91.0180i −0.146786 + 0.254240i
\(359\) −215.975 + 124.693i −0.601603 + 0.347335i −0.769672 0.638440i \(-0.779580\pi\)
0.168069 + 0.985775i \(0.446247\pi\)
\(360\) 69.5816 + 29.0184i 0.193282 + 0.0806068i
\(361\) −32.0076 + 55.4388i −0.0886637 + 0.153570i
\(362\) 238.089i 0.657704i
\(363\) −32.4322 + 10.9656i −0.0893448 + 0.0302084i
\(364\) 30.3177 + 33.4471i 0.0832905 + 0.0918876i
\(365\) −354.695 + 204.783i −0.971767 + 0.561050i
\(366\) 113.939 129.606i 0.311308 0.354116i
\(367\) −37.3613 64.7117i −0.101802 0.176326i 0.810625 0.585565i \(-0.199127\pi\)
−0.912427 + 0.409239i \(0.865794\pi\)
\(368\) 51.1376 + 29.5243i 0.138961 + 0.0802291i
\(369\) 268.751 + 351.998i 0.728323 + 0.953924i
\(370\) 209.822 0.567087
\(371\) −669.170 214.971i −1.80369 0.579437i
\(372\) −119.397 104.963i −0.320959 0.282159i
\(373\) −65.4399 + 113.345i −0.175442 + 0.303874i −0.940314 0.340308i \(-0.889469\pi\)
0.764872 + 0.644182i \(0.222802\pi\)
\(374\) 72.9658i 0.195096i
\(375\) 241.858 275.116i 0.644953 0.733642i
\(376\) 55.1198 0.146595
\(377\) 100.270i 0.265967i
\(378\) −248.229 99.1183i −0.656690 0.262218i
\(379\) 712.886 1.88097 0.940483 0.339839i \(-0.110373\pi\)
0.940483 + 0.339839i \(0.110373\pi\)
\(380\) 122.112i 0.321348i
\(381\) 321.766 + 282.868i 0.844529 + 0.742436i
\(382\) −134.114 −0.351084
\(383\) 262.429 + 151.514i 0.685194 + 0.395597i 0.801809 0.597580i \(-0.203871\pi\)
−0.116615 + 0.993177i \(0.537204\pi\)
\(384\) 22.4097 25.4913i 0.0583586 0.0663835i
\(385\) −212.130 + 45.8268i −0.550986 + 0.119031i
\(386\) 114.264i 0.296020i
\(387\) 447.431 + 186.597i 1.15615 + 0.482164i
\(388\) −88.2475 + 152.849i −0.227442 + 0.393941i
\(389\) −124.187 + 71.6992i −0.319246 + 0.184317i −0.651056 0.759029i \(-0.725674\pi\)
0.331811 + 0.943346i \(0.392341\pi\)
\(390\) 30.4291 + 26.7506i 0.0780233 + 0.0685912i
\(391\) −36.3783 63.0091i −0.0930391 0.161148i
\(392\) −57.2109 126.234i −0.145946 0.322024i
\(393\) −80.4320 237.887i −0.204662 0.605311i
\(394\) −424.164 −1.07656
\(395\) −83.8327 48.4009i −0.212235 0.122534i
\(396\) 114.349 + 149.769i 0.288760 + 0.378205i
\(397\) 42.3608 + 73.3711i 0.106702 + 0.184814i 0.914432 0.404739i \(-0.132637\pi\)
−0.807730 + 0.589552i \(0.799304\pi\)
\(398\) −407.230 235.114i −1.02319 0.590740i
\(399\) −6.58322 432.884i −0.0164993 1.08492i
\(400\) −32.4578 56.2186i −0.0811446 0.140547i
\(401\) −422.345 243.841i −1.05323 0.608082i −0.129677 0.991556i \(-0.541394\pi\)
−0.923552 + 0.383474i \(0.874727\pi\)
\(402\) −213.224 + 242.545i −0.530408 + 0.603345i
\(403\) −42.7175 73.9889i −0.105999 0.183595i
\(404\) 128.762 74.3410i 0.318719 0.184012i
\(405\) −231.414 63.2051i −0.571391 0.156062i
\(406\) −94.1539 + 293.086i −0.231906 + 0.721886i
\(407\) 454.174 + 262.217i 1.11591 + 0.644269i
\(408\) −39.6173 + 13.3950i −0.0971011 + 0.0328309i
\(409\) 505.001 1.23472 0.617361 0.786680i \(-0.288202\pi\)
0.617361 + 0.786680i \(0.288202\pi\)
\(410\) 206.097i 0.502675i
\(411\) 17.7056 + 3.54406i 0.0430793 + 0.00862303i
\(412\) 173.158 299.918i 0.420286 0.727956i
\(413\) 41.1914 + 190.673i 0.0997370 + 0.461677i
\(414\) −173.415 72.3214i −0.418877 0.174689i
\(415\) 12.2821 + 21.2732i 0.0295954 + 0.0512607i
\(416\) 15.7967 9.12022i 0.0379728 0.0219236i
\(417\) −109.476 + 546.926i −0.262533 + 1.31157i
\(418\) −152.605 + 264.320i −0.365084 + 0.632344i
\(419\) −146.816 + 84.7643i −0.350396 + 0.202301i −0.664860 0.746968i \(-0.731509\pi\)
0.314463 + 0.949270i \(0.398175\pi\)
\(420\) −63.8245 106.764i −0.151963 0.254201i
\(421\) −116.481 + 201.751i −0.276677 + 0.479219i −0.970557 0.240872i \(-0.922567\pi\)
0.693880 + 0.720091i \(0.255900\pi\)
\(422\) −76.9162 + 44.4076i −0.182266 + 0.105231i
\(423\) −173.944 + 22.4735i −0.411216 + 0.0531289i
\(424\) −141.998 + 245.947i −0.334900 + 0.580064i
\(425\) 79.9857i 0.188202i
\(426\) 8.02017 + 7.05063i 0.0188267 + 0.0165508i
\(427\) −278.303 + 60.1224i −0.651764 + 0.140802i
\(428\) −262.636 + 151.633i −0.613635 + 0.354282i
\(429\) 32.4352 + 95.9309i 0.0756065 + 0.223615i
\(430\) 112.802 + 195.378i 0.262329 + 0.454367i
\(431\) 88.5091 + 51.1007i 0.205357 + 0.118563i 0.599152 0.800635i \(-0.295505\pi\)
−0.393795 + 0.919198i \(0.628838\pi\)
\(432\) −60.3261 + 89.5810i −0.139644 + 0.207364i
\(433\) 230.096 0.531400 0.265700 0.964056i \(-0.414397\pi\)
0.265700 + 0.964056i \(0.414397\pi\)
\(434\) 55.3862 + 256.380i 0.127618 + 0.590737i
\(435\) −54.2273 + 270.911i −0.124660 + 0.622784i
\(436\) −88.2638 + 152.877i −0.202440 + 0.350636i
\(437\) 304.335i 0.696418i
\(438\) −187.926 555.814i −0.429055 1.26898i
\(439\) −195.422 −0.445152 −0.222576 0.974915i \(-0.571447\pi\)
−0.222576 + 0.974915i \(0.571447\pi\)
\(440\) 87.6907i 0.199297i
\(441\) 232.012 + 375.035i 0.526103 + 0.850421i
\(442\) −22.4749 −0.0508483
\(443\) 297.116i 0.670691i −0.942095 0.335346i \(-0.891147\pi\)
0.942095 0.335346i \(-0.108853\pi\)
\(444\) −58.9959 + 294.734i −0.132874 + 0.663816i
\(445\) −366.096 −0.822687
\(446\) −452.486 261.243i −1.01454 0.585746i
\(447\) −272.086 804.726i −0.608693 1.80028i
\(448\) −54.7373 + 11.8250i −0.122181 + 0.0263951i
\(449\) 324.700i 0.723162i −0.932341 0.361581i \(-0.882237\pi\)
0.932341 0.361581i \(-0.117763\pi\)
\(450\) 125.350 + 164.178i 0.278556 + 0.364840i
\(451\) −257.561 + 446.109i −0.571089 + 0.989156i
\(452\) 385.723 222.697i 0.853369 0.492693i
\(453\) −25.4614 + 127.201i −0.0562061 + 0.280797i
\(454\) −134.143 232.342i −0.295468 0.511766i
\(455\) −14.1156 65.3402i −0.0310232 0.143605i
\(456\) −171.529 34.3344i −0.376160 0.0752947i
\(457\) 602.773 1.31898 0.659489 0.751714i \(-0.270773\pi\)
0.659489 + 0.751714i \(0.270773\pi\)
\(458\) 201.373 + 116.263i 0.439678 + 0.253848i
\(459\) 119.561 58.4240i 0.260481 0.127286i
\(460\) −43.7196 75.7246i −0.0950426 0.164619i
\(461\) 212.964 + 122.955i 0.461961 + 0.266713i 0.712868 0.701298i \(-0.247396\pi\)
−0.250908 + 0.968011i \(0.580729\pi\)
\(462\) −4.72751 310.861i −0.0102327 0.672858i
\(463\) 422.033 + 730.982i 0.911518 + 1.57879i 0.811921 + 0.583767i \(0.198422\pi\)
0.0995964 + 0.995028i \(0.468245\pi\)
\(464\) 107.721 + 62.1927i 0.232157 + 0.134036i
\(465\) 75.4010 + 223.007i 0.162153 + 0.479586i
\(466\) 267.395 + 463.142i 0.573810 + 0.993868i
\(467\) −611.287 + 352.927i −1.30897 + 0.755732i −0.981924 0.189278i \(-0.939385\pi\)
−0.327042 + 0.945010i \(0.606052\pi\)
\(468\) −46.1319 + 35.2218i −0.0985724 + 0.0752603i
\(469\) 520.815 112.513i 1.11048 0.239899i
\(470\) −70.6863 40.8108i −0.150396 0.0868314i
\(471\) 259.653 + 228.264i 0.551279 + 0.484636i
\(472\) 78.8207 0.166993
\(473\) 563.878i 1.19213i
\(474\) 91.5593 104.150i 0.193163 0.219725i
\(475\) −167.287 + 289.749i −0.352183 + 0.609998i
\(476\) 65.6937 + 21.1041i 0.138012 + 0.0443363i
\(477\) 347.831 834.043i 0.729206 1.74852i
\(478\) −81.5500 141.249i −0.170607 0.295500i
\(479\) 287.728 166.120i 0.600685 0.346806i −0.168626 0.985680i \(-0.553933\pi\)
0.769311 + 0.638874i \(0.220600\pi\)
\(480\) −47.6122 + 16.0982i −0.0991921 + 0.0335378i
\(481\) −80.7682 + 139.895i −0.167917 + 0.290841i
\(482\) −333.471 + 192.530i −0.691849 + 0.399439i
\(483\) 159.067 + 266.084i 0.329331 + 0.550899i
\(484\) 11.4119 19.7661i 0.0235784 0.0408390i
\(485\) 226.339 130.677i 0.466679 0.269437i
\(486\) 153.850 307.292i 0.316564 0.632287i
\(487\) 217.311 376.393i 0.446223 0.772881i −0.551913 0.833901i \(-0.686102\pi\)
0.998137 + 0.0610203i \(0.0194354\pi\)
\(488\) 115.046i 0.235749i
\(489\) 53.0318 264.939i 0.108450 0.541797i
\(490\) −20.0954 + 204.242i −0.0410111 + 0.416821i
\(491\) 712.780 411.523i 1.45169 0.838133i 0.453112 0.891454i \(-0.350314\pi\)
0.998577 + 0.0533201i \(0.0169804\pi\)
\(492\) −289.501 57.9483i −0.588416 0.117781i
\(493\) −76.6306 132.728i −0.155437 0.269225i
\(494\) −81.4157 47.0054i −0.164809 0.0951526i
\(495\) −35.7534 276.730i −0.0722290 0.559050i
\(496\) 105.983 0.213675
\(497\) −3.72043 17.2217i −0.00748577 0.0346512i
\(498\) −33.3355 + 11.2711i −0.0669388 + 0.0226327i
\(499\) −48.0240 + 83.1801i −0.0962405 + 0.166693i −0.910126 0.414332i \(-0.864015\pi\)
0.813885 + 0.581026i \(0.197348\pi\)
\(500\) 244.207i 0.488415i
\(501\) 560.241 + 112.141i 1.11825 + 0.223835i
\(502\) 267.005 0.531882
\(503\) 165.477i 0.328980i 0.986379 + 0.164490i \(0.0525978\pi\)
−0.986379 + 0.164490i \(0.947402\pi\)
\(504\) 167.916 59.6343i 0.333166 0.118322i
\(505\) −220.168 −0.435977
\(506\) 218.548i 0.431912i
\(507\) 450.741 152.400i 0.889036 0.300592i
\(508\) −285.616 −0.562237
\(509\) −543.179 313.604i −1.06715 0.616119i −0.139748 0.990187i \(-0.544629\pi\)
−0.927401 + 0.374068i \(0.877963\pi\)
\(510\) 60.7233 + 12.1548i 0.119065 + 0.0238329i
\(511\) −296.082 + 921.655i −0.579417 + 1.80363i
\(512\) 22.6274i 0.0441942i
\(513\) 555.302 + 38.4146i 1.08246 + 0.0748823i
\(514\) −215.671 + 373.554i −0.419594 + 0.726759i
\(515\) −444.119 + 256.412i −0.862367 + 0.497888i
\(516\) −306.161 + 103.516i −0.593335 + 0.200613i
\(517\) −102.003 176.675i −0.197299 0.341731i
\(518\) 367.445 333.067i 0.709354 0.642986i
\(519\) 29.9473 34.0654i 0.0577019 0.0656365i
\(520\) −27.0105 −0.0519432
\(521\) −413.754 238.881i −0.794153 0.458505i 0.0472693 0.998882i \(-0.484948\pi\)
−0.841423 + 0.540377i \(0.818281\pi\)
\(522\) −365.297 152.344i −0.699803 0.291848i
\(523\) −285.017 493.664i −0.544965 0.943908i −0.998609 0.0527246i \(-0.983209\pi\)
0.453644 0.891183i \(-0.350124\pi\)
\(524\) 144.982 + 83.7056i 0.276684 + 0.159743i
\(525\) −5.18233 340.768i −0.00987111 0.649081i
\(526\) −13.5834 23.5272i −0.0258240 0.0447285i
\(527\) −113.091 65.2933i −0.214594 0.123896i
\(528\) −123.178 24.6560i −0.233291 0.0466971i
\(529\) −155.540 269.402i −0.294026 0.509267i
\(530\) 364.199 210.270i 0.687168 0.396736i
\(531\) −248.738 + 32.1369i −0.468434 + 0.0605214i
\(532\) 193.838 + 213.845i 0.364357 + 0.401965i
\(533\) −137.411 79.3340i −0.257806 0.148844i
\(534\) 102.935 514.249i 0.192763 0.963014i
\(535\) 449.076 0.839395
\(536\) 215.296i 0.401671i
\(537\) 71.4095 + 211.202i 0.132979 + 0.393300i
\(538\) 72.1992 125.053i 0.134199 0.232440i
\(539\) −298.742 + 416.982i −0.554252 + 0.773622i
\(540\) 143.689 70.2143i 0.266090 0.130026i
\(541\) −21.3831 37.0366i −0.0395252 0.0684596i 0.845586 0.533839i \(-0.179251\pi\)
−0.885111 + 0.465379i \(0.845918\pi\)
\(542\) 7.73550 4.46610i 0.0142721 0.00824003i
\(543\) −379.324 333.469i −0.698571 0.614123i
\(544\) 13.9402 24.1451i 0.0256253 0.0443843i
\(545\) 226.381 130.701i 0.415378 0.239819i
\(546\) 95.7513 1.45617i 0.175369 0.00266697i
\(547\) 339.046 587.244i 0.619828 1.07357i −0.369689 0.929156i \(-0.620536\pi\)
0.989517 0.144418i \(-0.0461309\pi\)
\(548\) −10.4251 + 6.01894i −0.0190239 + 0.0109835i
\(549\) −46.9066 363.055i −0.0854400 0.661303i
\(550\) −120.131 + 208.073i −0.218420 + 0.378315i
\(551\) 641.079i 1.16348i
\(552\) 118.662 40.1207i 0.214967 0.0726825i
\(553\) −223.640 + 48.3134i −0.404412 + 0.0873659i
\(554\) −22.5637 + 13.0272i −0.0407288 + 0.0235148i
\(555\) 293.878 334.290i 0.529510 0.602324i
\(556\) −185.925 322.031i −0.334397 0.579193i
\(557\) 19.6576 + 11.3493i 0.0352918 + 0.0203758i 0.517542 0.855658i \(-0.326847\pi\)
−0.482250 + 0.876033i \(0.660180\pi\)
\(558\) −334.456 + 43.2115i −0.599383 + 0.0774399i
\(559\) −173.686 −0.310708
\(560\) 78.9509 + 25.3630i 0.140984 + 0.0452911i
\(561\) 116.250 + 102.196i 0.207218 + 0.182168i
\(562\) −117.215 + 203.023i −0.208568 + 0.361251i
\(563\) 330.783i 0.587536i 0.955877 + 0.293768i \(0.0949093\pi\)
−0.955877 + 0.293768i \(0.905091\pi\)
\(564\) 77.2012 87.8172i 0.136882 0.155704i
\(565\) −659.541 −1.16733
\(566\) 423.189i 0.747685i
\(567\) −505.587 + 256.654i −0.891687 + 0.452652i
\(568\) −7.11913 −0.0125337
\(569\) 145.968i 0.256535i −0.991740 0.128267i \(-0.959058\pi\)
0.991740 0.128267i \(-0.0409416\pi\)
\(570\) 194.550 + 171.031i 0.341315 + 0.300054i
\(571\) 417.093 0.730461 0.365230 0.930917i \(-0.380990\pi\)
0.365230 + 0.930917i \(0.380990\pi\)
\(572\) −58.4659 33.7553i −0.102213 0.0590128i
\(573\) −187.841 + 213.671i −0.327820 + 0.372899i
\(574\) 327.153 + 360.921i 0.569952 + 0.628782i
\(575\) 239.574i 0.416650i
\(576\) −9.22568 71.4065i −0.0160168 0.123970i
\(577\) 416.092 720.693i 0.721131 1.24903i −0.239416 0.970917i \(-0.576956\pi\)
0.960547 0.278118i \(-0.0897106\pi\)
\(578\) 324.201 187.178i 0.560901 0.323837i
\(579\) −182.046 160.039i −0.314414 0.276405i
\(580\) −92.0949 159.513i −0.158784 0.275023i
\(581\) 55.2772 + 17.7578i 0.0951415 + 0.0305642i
\(582\) 119.920 + 354.678i 0.206048 + 0.609412i
\(583\) 1051.11 1.80293
\(584\) 338.745 + 195.575i 0.580043 + 0.334888i
\(585\) 85.2383 11.0127i 0.145707 0.0188252i
\(586\) −244.320 423.175i −0.416928 0.722141i
\(587\) −110.455 63.7713i −0.188169 0.108639i 0.402956 0.915219i \(-0.367983\pi\)
−0.591125 + 0.806580i \(0.701316\pi\)
\(588\) −281.246 85.6547i −0.478309 0.145671i
\(589\) −273.116 473.052i −0.463695 0.803144i
\(590\) −101.081 58.3589i −0.171323 0.0989134i
\(591\) −594.087 + 675.781i −1.00522 + 1.14345i
\(592\) −100.194 173.540i −0.169246 0.293142i
\(593\) −634.357 + 366.246i −1.06974 + 0.617616i −0.928111 0.372304i \(-0.878568\pi\)
−0.141631 + 0.989920i \(0.545235\pi\)
\(594\) 398.771 + 27.5861i 0.671332 + 0.0464413i
\(595\) −68.6208 75.7038i −0.115329 0.127233i
\(596\) 490.447 + 283.160i 0.822897 + 0.475100i
\(597\) −944.954 + 319.498i −1.58284 + 0.535173i
\(598\) 67.3170 0.112570
\(599\) 374.842i 0.625779i −0.949790 0.312889i \(-0.898703\pi\)
0.949790 0.312889i \(-0.101297\pi\)
\(600\) −135.028 27.0281i −0.225047 0.0450469i
\(601\) −12.0771 + 20.9181i −0.0200949 + 0.0348054i −0.875898 0.482496i \(-0.839730\pi\)
0.855803 + 0.517302i \(0.173064\pi\)
\(602\) 507.679 + 163.092i 0.843320 + 0.270917i
\(603\) 87.7807 + 679.420i 0.145573 + 1.12673i
\(604\) −43.2414 74.8963i −0.0715917 0.124001i
\(605\) −29.2696 + 16.8988i −0.0483795 + 0.0279319i
\(606\) 61.9049 309.267i 0.102153 0.510342i
\(607\) 201.354 348.755i 0.331720 0.574556i −0.651129 0.758967i \(-0.725704\pi\)
0.982849 + 0.184411i \(0.0590378\pi\)
\(608\) 100.997 58.3106i 0.166113 0.0959055i
\(609\) 335.073 + 560.504i 0.550202 + 0.920368i
\(610\) 85.1798 147.536i 0.139639 0.241862i
\(611\) 54.4194 31.4191i 0.0890662 0.0514224i
\(612\) −34.1472 + 81.8795i −0.0557961 + 0.133790i
\(613\) 50.5577 87.5686i 0.0824759 0.142852i −0.821837 0.569723i \(-0.807051\pi\)
0.904313 + 0.426870i \(0.140384\pi\)
\(614\) 217.697i 0.354555i
\(615\) 328.354 + 288.660i 0.533909 + 0.469366i
\(616\) 139.198 + 153.566i 0.225971 + 0.249295i
\(617\) 129.541 74.7908i 0.209954 0.121217i −0.391336 0.920248i \(-0.627987\pi\)
0.601290 + 0.799031i \(0.294654\pi\)
\(618\) −235.305 695.943i −0.380753 1.12612i
\(619\) −490.963 850.373i −0.793155 1.37378i −0.924004 0.382382i \(-0.875104\pi\)
0.130849 0.991402i \(-0.458230\pi\)
\(620\) −135.914 78.4698i −0.219216 0.126564i
\(621\) −358.109 + 174.992i −0.576665 + 0.281791i
\(622\) 712.191 1.14500
\(623\) −641.115 + 581.131i −1.02908 + 0.932795i
\(624\) 7.59455 37.9412i 0.0121708 0.0608032i
\(625\) −22.0502 + 38.1921i −0.0352804 + 0.0611074i
\(626\) 636.742i 1.01716i
\(627\) 207.376 + 613.339i 0.330743 + 0.978212i
\(628\) −230.481 −0.367009
\(629\) 246.907i 0.392538i
\(630\) −259.491 47.8493i −0.411890 0.0759513i
\(631\) −1084.15 −1.71814 −0.859072 0.511855i \(-0.828959\pi\)
−0.859072 + 0.511855i \(0.828959\pi\)
\(632\) 92.4488i 0.146280i
\(633\) −36.9789 + 184.741i −0.0584185 + 0.291850i
\(634\) 478.697 0.755043
\(635\) 366.278 + 211.470i 0.576815 + 0.333024i
\(636\) 192.961 + 570.706i 0.303399 + 0.897337i
\(637\) −128.439 92.0185i −0.201631 0.144456i
\(638\) 460.369i 0.721581i
\(639\) 22.4662 2.90262i 0.0351584 0.00454244i
\(640\) 16.7534 29.0177i 0.0261771 0.0453401i
\(641\) −402.810 + 232.562i −0.628408 + 0.362812i −0.780135 0.625611i \(-0.784850\pi\)
0.151727 + 0.988422i \(0.451517\pi\)
\(642\) −126.267 + 630.811i −0.196678 + 0.982571i
\(643\) −477.440 826.950i −0.742519 1.28608i −0.951345 0.308128i \(-0.900297\pi\)
0.208825 0.977953i \(-0.433036\pi\)
\(644\) −196.766 63.2111i −0.305537 0.0981539i
\(645\) 469.268 + 93.9316i 0.727547 + 0.145630i
\(646\) −143.694 −0.222437
\(647\) 853.653 + 492.857i 1.31940 + 0.761757i 0.983632 0.180187i \(-0.0576702\pi\)
0.335770 + 0.941944i \(0.391004\pi\)
\(648\) 58.2279 + 221.580i 0.0898579 + 0.341944i
\(649\) −145.864 252.643i −0.224751 0.389281i
\(650\) −64.0908 37.0028i −0.0986012 0.0569274i
\(651\) 486.040 + 270.846i 0.746605 + 0.416045i
\(652\) 90.0647 + 155.997i 0.138136 + 0.239259i
\(653\) 848.101 + 489.651i 1.29878 + 0.749849i 0.980193 0.198046i \(-0.0634594\pi\)
0.318584 + 0.947895i \(0.396793\pi\)
\(654\) 119.942 + 354.743i 0.183398 + 0.542421i
\(655\) −123.951 214.690i −0.189239 0.327771i
\(656\) 170.459 98.4145i 0.259846 0.150022i
\(657\) −1148.74 479.071i −1.74846 0.729180i
\(658\) −188.569 + 40.7370i −0.286580 + 0.0619103i
\(659\) −752.133 434.244i −1.14132 0.658944i −0.194566 0.980889i \(-0.562330\pi\)
−0.946758 + 0.321945i \(0.895663\pi\)
\(660\) 139.709 + 122.820i 0.211681 + 0.186091i
\(661\) 715.343 1.08221 0.541107 0.840954i \(-0.318005\pi\)
0.541107 + 0.840954i \(0.318005\pi\)
\(662\) 28.1750i 0.0425605i
\(663\) −31.4785 + 35.8072i −0.0474789 + 0.0540078i
\(664\) 11.7298 20.3166i 0.0176654 0.0305973i
\(665\) −90.2485 417.755i −0.135712 0.628204i
\(666\) 386.942 + 506.799i 0.580994 + 0.760959i
\(667\) 229.524 + 397.548i 0.344114 + 0.596024i
\(668\) −329.871 + 190.451i −0.493819 + 0.285107i
\(669\) −1049.97 + 355.004i −1.56946 + 0.530649i
\(670\) −159.405 + 276.098i −0.237918 + 0.412086i
\(671\) 368.755 212.901i 0.549560 0.317288i
\(672\) −57.8257 + 103.770i −0.0860502 + 0.154419i
\(673\) 113.251 196.156i 0.168278 0.291465i −0.769537 0.638603i \(-0.779513\pi\)
0.937814 + 0.347137i \(0.112846\pi\)
\(674\) 87.3033 50.4046i 0.129530 0.0747842i
\(675\) 437.136 + 30.2401i 0.647609 + 0.0448002i
\(676\) −158.603 + 274.708i −0.234619 + 0.406373i
\(677\) 986.694i 1.45745i 0.684806 + 0.728725i \(0.259887\pi\)
−0.684806 + 0.728725i \(0.740113\pi\)
\(678\) 185.444 926.447i 0.273516 1.36644i
\(679\) 188.937 588.130i 0.278257 0.866170i
\(680\) −35.7540 + 20.6426i −0.0525795 + 0.0303568i
\(681\) −558.049 111.703i −0.819456 0.164027i
\(682\) −196.129 339.706i −0.287579 0.498102i
\(683\) 545.995 + 315.230i 0.799407 + 0.461538i 0.843264 0.537500i \(-0.180631\pi\)
−0.0438569 + 0.999038i \(0.513965\pi\)
\(684\) −294.946 + 225.192i −0.431208 + 0.329228i
\(685\) 17.8257 0.0260229
\(686\) 289.018 + 389.573i 0.421308 + 0.567890i
\(687\) 467.274 157.990i 0.680166 0.229971i
\(688\) 107.729 186.592i 0.156583 0.271210i
\(689\) 323.763i 0.469902i
\(690\) −181.879 36.4060i −0.263592 0.0527623i
\(691\) 512.489 0.741663 0.370831 0.928700i \(-0.379073\pi\)
0.370831 + 0.928700i \(0.379073\pi\)
\(692\) 30.2382i 0.0436968i
\(693\) −501.886 427.861i −0.724222 0.617405i
\(694\) −340.313 −0.490364
\(695\) 550.636i 0.792281i
\(696\) 249.960 84.5140i 0.359138 0.121428i
\(697\) −242.522 −0.347952
\(698\) −467.744 270.052i −0.670120 0.386894i
\(699\) 1112.40 + 222.664i 1.59141 + 0.318547i
\(700\) 152.590 + 168.340i 0.217986 + 0.240486i
\(701\) 1245.31i 1.77648i −0.459378 0.888241i \(-0.651928\pi\)
0.459378 0.888241i \(-0.348072\pi\)
\(702\) −8.49708 + 122.829i −0.0121041 + 0.174971i
\(703\) −516.395 + 894.422i −0.734559 + 1.27229i
\(704\) 72.5274 41.8737i 0.103022 0.0594797i
\(705\) −164.024 + 55.4580i −0.232658 + 0.0786638i
\(706\) 50.5431 + 87.5432i 0.0715908 + 0.123999i
\(707\) −385.564 + 349.490i −0.545352 + 0.494328i
\(708\) 110.397 125.578i 0.155928 0.177369i
\(709\) 898.046 1.26664 0.633319 0.773891i \(-0.281692\pi\)
0.633319 + 0.773891i \(0.281692\pi\)
\(710\) 9.12965 + 5.27101i 0.0128587 + 0.00742395i
\(711\) −37.6934 291.745i −0.0530146 0.410331i
\(712\) 174.817 + 302.792i 0.245529 + 0.425269i
\(713\) 338.732 + 195.567i 0.475079 + 0.274287i
\(714\) 125.634 75.1049i 0.175958 0.105189i
\(715\) 49.9849 + 86.5764i 0.0699089 + 0.121086i
\(716\) −128.719 74.3159i −0.179775 0.103793i
\(717\) −339.258 67.9080i −0.473163 0.0947113i
\(718\) −176.343 305.435i −0.245603 0.425397i
\(719\) 928.510 536.076i 1.29139 0.745585i 0.312490 0.949921i \(-0.398837\pi\)
0.978901 + 0.204336i \(0.0655034\pi\)
\(720\) −41.0383 + 98.4032i −0.0569976 + 0.136671i
\(721\) −370.728 + 1154.02i −0.514186 + 1.60058i
\(722\) −78.4022 45.2656i −0.108590 0.0626947i
\(723\) −160.323 + 800.946i −0.221746 + 1.10781i
\(724\) 336.708 0.465067
\(725\) 504.660i 0.696082i
\(726\) −15.5078 45.8660i −0.0213605 0.0631763i
\(727\) −369.111 + 639.319i −0.507718 + 0.879394i 0.492242 + 0.870458i \(0.336178\pi\)
−0.999960 + 0.00893533i \(0.997156\pi\)
\(728\) −47.3013 + 42.8757i −0.0649743 + 0.0588953i
\(729\) −274.096 675.509i −0.375988 0.926624i
\(730\) −289.607 501.615i −0.396722 0.687143i
\(731\) −229.909 + 132.738i −0.314514 + 0.181585i
\(732\) 183.291 + 161.134i 0.250398 + 0.220128i
\(733\) −460.261 + 797.195i −0.627913 + 1.08758i 0.360056 + 0.932931i \(0.382757\pi\)
−0.987970 + 0.154647i \(0.950576\pi\)
\(734\) 91.5162 52.8369i 0.124681 0.0719848i
\(735\) 297.254 + 318.079i 0.404427 + 0.432761i
\(736\) −41.7537 + 72.3195i −0.0567305 + 0.0982601i
\(737\) −690.085 + 398.421i −0.936344 + 0.540598i
\(738\) −497.800 + 380.071i −0.674526 + 0.515002i
\(739\) 174.909 302.951i 0.236683 0.409948i −0.723077 0.690767i \(-0.757273\pi\)
0.959761 + 0.280820i \(0.0906063\pi\)
\(740\) 296.733i 0.400991i
\(741\) −188.921 + 63.8759i −0.254954 + 0.0862023i
\(742\) 304.015 946.350i 0.409724 1.27540i
\(743\) 780.241 450.472i 1.05012 0.606288i 0.127439 0.991846i \(-0.459324\pi\)
0.922684 + 0.385558i \(0.125991\pi\)
\(744\) 148.440 168.852i 0.199516 0.226952i
\(745\) −419.303 726.254i −0.562823 0.974837i
\(746\) −160.294 92.5459i −0.214872 0.124056i
\(747\) −28.7328 + 68.8966i −0.0384643 + 0.0922311i
\(748\) −103.189 −0.137954
\(749\) 786.432 712.852i 1.04998 0.951739i
\(750\) 389.072 + 342.038i 0.518763 + 0.456051i
\(751\) 124.709 216.001i 0.166057 0.287618i −0.770973 0.636867i \(-0.780230\pi\)
0.937030 + 0.349249i \(0.113563\pi\)
\(752\) 77.9512i 0.103659i
\(753\) 373.968 425.393i 0.496638 0.564931i
\(754\) 141.803 0.188067
\(755\) 128.064i 0.169621i
\(756\) 140.174 351.049i 0.185416 0.464350i
\(757\) −1393.33 −1.84060 −0.920299 0.391215i \(-0.872055\pi\)
−0.920299 + 0.391215i \(0.872055\pi\)
\(758\) 1008.17i 1.33004i
\(759\) −348.191 306.099i −0.458750 0.403293i
\(760\) −172.693 −0.227227
\(761\) 1225.68 + 707.645i 1.61061 + 0.929889i 0.989228 + 0.146384i \(0.0467637\pi\)
0.621387 + 0.783504i \(0.286570\pi\)
\(762\) −400.036 + 455.045i −0.524981 + 0.597172i
\(763\) 188.972 588.238i 0.247669 0.770954i
\(764\) 189.666i 0.248254i
\(765\) 104.414 79.7206i 0.136489 0.104210i
\(766\) −214.273 + 371.131i −0.279729 + 0.484505i
\(767\) 77.8191 44.9289i 0.101459 0.0585774i
\(768\) 36.0501 + 31.6921i 0.0469403 + 0.0412658i
\(769\) 599.927 + 1039.10i 0.780139 + 1.35124i 0.931860 + 0.362818i \(0.118185\pi\)
−0.151721 + 0.988423i \(0.548481\pi\)
\(770\) −64.8088 299.997i −0.0841673 0.389606i
\(771\) 293.077 + 866.811i 0.380126 + 1.12427i
\(772\) 161.593 0.209318
\(773\) 621.344 + 358.733i 0.803808 + 0.464079i 0.844801 0.535081i \(-0.179719\pi\)
−0.0409928 + 0.999159i \(0.513052\pi\)
\(774\) −263.889 + 632.763i −0.340941 + 0.817523i
\(775\) −214.998 372.388i −0.277417 0.480501i
\(776\) −216.161 124.801i −0.278558 0.160826i
\(777\) −15.9973 1051.91i −0.0205885 1.35381i
\(778\) −101.398 175.626i −0.130332 0.225741i
\(779\) −878.541 507.226i −1.12778 0.651124i
\(780\) −37.8310 + 43.0332i −0.0485013 + 0.0551708i
\(781\) 13.1745 + 22.8189i 0.0168687 + 0.0292175i
\(782\) 89.1083 51.4467i 0.113949 0.0657886i
\(783\) −754.354 + 368.619i −0.963415 + 0.470778i
\(784\) 178.521 80.9085i 0.227706 0.103200i
\(785\) 295.572 + 170.649i 0.376525 + 0.217387i
\(786\) 336.423 113.748i 0.428019 0.144718i
\(787\) 999.151 1.26957 0.634784 0.772689i \(-0.281089\pi\)
0.634784 + 0.772689i \(0.281089\pi\)
\(788\) 599.859i 0.761243i
\(789\) −56.5086 11.3111i −0.0716206 0.0143360i
\(790\) 68.4491 118.557i 0.0866445 0.150073i
\(791\) −1155.00 + 1046.94i −1.46018 + 1.32356i
\(792\) −211.806 + 161.714i −0.267431 + 0.204184i
\(793\) 65.5776 + 113.584i 0.0826956 + 0.143233i
\(794\) −103.762 + 59.9073i −0.130683 + 0.0754500i
\(795\) 175.095 874.749i 0.220246 1.10031i
\(796\) 332.502 575.910i 0.417716 0.723505i
\(797\) −655.287 + 378.330i −0.822192 + 0.474693i −0.851172 0.524887i \(-0.824107\pi\)
0.0289800 + 0.999580i \(0.490774\pi\)
\(798\) 612.190 9.31007i 0.767155 0.0116668i
\(799\) 48.0237 83.1795i 0.0601048 0.104105i
\(800\) 79.5051 45.9023i 0.0993814 0.0573779i
\(801\) −675.133 884.258i −0.842862 1.10394i
\(802\) 344.843 597.286i 0.429979 0.744745i
\(803\) 1447.70i 1.80287i
\(804\) −343.010 301.545i −0.426630 0.375055i
\(805\) 205.533 + 226.748i 0.255321 + 0.281675i
\(806\) 104.636 60.4117i 0.129822 0.0749525i
\(807\) −98.1119 290.178i −0.121576 0.359576i
\(808\) 105.134 + 182.097i 0.130116 + 0.225368i
\(809\) 125.257 + 72.3172i 0.154829 + 0.0893908i 0.575413 0.817863i \(-0.304841\pi\)
−0.420584 + 0.907254i \(0.638175\pi\)
\(810\) 89.3855 327.268i 0.110352 0.404035i
\(811\) 379.249 0.467631 0.233816 0.972281i \(-0.424879\pi\)
0.233816 + 0.972281i \(0.424879\pi\)
\(812\) −414.486 133.154i −0.510451 0.163982i
\(813\) 3.71899 18.5795i 0.00457440 0.0228530i
\(814\) −370.831 + 642.299i −0.455567 + 0.789065i
\(815\) 266.736i 0.327283i
\(816\) −18.9434 56.0273i −0.0232149 0.0686609i
\(817\) −1110.47 −1.35920
\(818\) 714.180i 0.873080i
\(819\) 131.790 154.591i 0.160916 0.188756i
\(820\) −291.465 −0.355445
\(821\) 190.491i 0.232023i −0.993248 0.116012i \(-0.962989\pi\)
0.993248 0.116012i \(-0.0370110\pi\)
\(822\) −5.01206 + 25.0395i −0.00609740 + 0.0304617i
\(823\) 276.753 0.336273 0.168136 0.985764i \(-0.446225\pi\)
0.168136 + 0.985764i \(0.446225\pi\)
\(824\) 424.148 + 244.882i 0.514743 + 0.297187i
\(825\) 163.247 + 482.823i 0.197875 + 0.585240i
\(826\) −269.652 + 58.2534i −0.326455 + 0.0705247i
\(827\) 583.798i 0.705923i 0.935638 + 0.352962i \(0.114825\pi\)
−0.935638 + 0.352962i \(0.885175\pi\)
\(828\) 102.278 245.246i 0.123524 0.296191i
\(829\) −74.7220 + 129.422i −0.0901351 + 0.156119i −0.907568 0.419906i \(-0.862063\pi\)
0.817433 + 0.576024i \(0.195397\pi\)
\(830\) −30.0849 + 17.3695i −0.0362468 + 0.0209271i
\(831\) −10.8479 + 54.1946i −0.0130541 + 0.0652162i
\(832\) 12.8979 + 22.3399i 0.0155023 + 0.0268508i
\(833\) −240.340 23.6471i −0.288524 0.0283879i
\(834\) −773.470 154.823i −0.927422 0.185639i
\(835\) 564.041 0.675498
\(836\) −373.804 215.816i −0.447134 0.258153i
\(837\) −399.596 + 593.379i −0.477414 + 0.708935i
\(838\) −119.875 207.629i −0.143049 0.247768i
\(839\) 1054.23 + 608.660i 1.25653 + 0.725459i 0.972398 0.233326i \(-0.0749610\pi\)
0.284133 + 0.958785i \(0.408294\pi\)
\(840\) 150.988 90.2615i 0.179747 0.107454i
\(841\) 62.9908 + 109.103i 0.0748998 + 0.129730i
\(842\) −285.319 164.729i −0.338859 0.195640i
\(843\) 159.285 + 471.103i 0.188950 + 0.558842i
\(844\) −62.8018 108.776i −0.0744098 0.128882i
\(845\) 406.788 234.859i 0.481406 0.277940i
\(846\) −31.7824 245.995i −0.0375678 0.290774i
\(847\) −24.4328 + 76.0554i −0.0288463 + 0.0897939i
\(848\) −347.822 200.815i −0.410167 0.236810i
\(849\) −674.228 592.722i −0.794143 0.698141i
\(850\) −113.117 −0.133079
\(851\) 739.536i 0.869020i
\(852\) −9.97109 + 11.3422i −0.0117032 + 0.0133125i
\(853\) −288.526 + 499.741i −0.338248 + 0.585863i −0.984103 0.177597i \(-0.943168\pi\)
0.645855 + 0.763460i \(0.276501\pi\)
\(854\) −85.0259 393.580i −0.0995619 0.460867i
\(855\) 544.975 70.4105i 0.637398 0.0823515i
\(856\) −214.441 371.423i −0.250515 0.433905i
\(857\) 1067.61 616.387i 1.24576 0.719238i 0.275496 0.961302i \(-0.411158\pi\)
0.970260 + 0.242064i \(0.0778245\pi\)
\(858\) −135.667 + 45.8703i −0.158120 + 0.0534619i
\(859\) −138.541 + 239.960i −0.161282 + 0.279348i −0.935329 0.353780i \(-0.884896\pi\)
0.774047 + 0.633128i \(0.218229\pi\)
\(860\) −276.306 + 159.525i −0.321286 + 0.185495i
\(861\) 1033.23 15.7132i 1.20004 0.0182500i
\(862\) −72.2673 + 125.171i −0.0838368 + 0.145210i
\(863\) −391.421 + 225.987i −0.453559 + 0.261862i −0.709332 0.704874i \(-0.751003\pi\)
0.255773 + 0.966737i \(0.417670\pi\)
\(864\) −126.687 85.3140i −0.146628 0.0987430i
\(865\) 22.3884 38.7778i 0.0258825 0.0448299i
\(866\) 325.405i 0.375757i
\(867\) 155.866 778.681i 0.179776 0.898132i
\(868\) −362.576 + 78.3279i −0.417714 + 0.0902395i
\(869\) 296.325 171.083i 0.340996 0.196874i
\(870\) −383.126 76.6889i −0.440375 0.0881482i
\(871\) −122.722 212.560i −0.140897 0.244041i
\(872\) −216.201 124.824i −0.247937 0.143147i
\(873\) 733.035 + 305.707i 0.839674 + 0.350179i
\(874\) 430.395 0.492442
\(875\) −180.484 835.453i −0.206268 0.954803i
\(876\) 786.040 265.768i 0.897305 0.303388i
\(877\) −747.574 + 1294.84i −0.852422 + 1.47644i 0.0265935 + 0.999646i \(0.491534\pi\)
−0.879016 + 0.476792i \(0.841799\pi\)
\(878\) 276.368i 0.314770i
\(879\) −1016.40 203.449i −1.15631 0.231455i
\(880\) −124.013 −0.140924
\(881\) 1486.39i 1.68716i −0.537004 0.843580i \(-0.680444\pi\)
0.537004 0.843580i \(-0.319556\pi\)
\(882\) −530.380 + 328.114i −0.601338 + 0.372011i
\(883\) 153.053 0.173333 0.0866665 0.996237i \(-0.472379\pi\)
0.0866665 + 0.996237i \(0.472379\pi\)
\(884\) 31.7843i 0.0359551i
\(885\) −234.552 + 79.3042i −0.265030 + 0.0896093i
\(886\) 420.186 0.474250
\(887\) −149.232 86.1590i −0.168243 0.0971352i 0.413514 0.910498i \(-0.364301\pi\)
−0.581757 + 0.813363i \(0.697635\pi\)
\(888\) −416.817 83.4327i −0.469389 0.0939558i
\(889\) 977.116 211.088i 1.09912 0.237444i
\(890\) 517.738i 0.581728i
\(891\) 602.472 596.687i 0.676175 0.669682i
\(892\) 369.453 639.912i 0.414185 0.717390i
\(893\) 347.933 200.879i 0.389623 0.224949i
\(894\) 1138.05 384.787i 1.27299 0.430411i
\(895\) 110.047 + 190.607i 0.122958 + 0.212969i
\(896\) −16.7231 77.4102i −0.0186641 0.0863953i
\(897\) 94.2847 107.250i 0.105111 0.119565i
\(898\) 459.195 0.511353
\(899\) 713.535 + 411.960i 0.793699 + 0.458242i
\(900\) −232.183 + 177.272i −0.257981 + 0.196969i
\(901\) 247.434 + 428.568i 0.274621 + 0.475658i
\(902\) −630.894 364.247i −0.699439 0.403821i
\(903\) 970.897 580.409i 1.07519 0.642756i
\(904\) 314.941 + 545.495i 0.348387 + 0.603423i
\(905\) −431.799 249.299i −0.477126 0.275469i
\(906\) −179.889 36.0078i −0.198553 0.0397437i
\(907\) 18.1686 + 31.4689i 0.0200315 + 0.0346956i 0.875867 0.482552i \(-0.160290\pi\)
−0.855836 + 0.517247i \(0.826957\pi\)
\(908\) 328.581 189.706i 0.361873 0.208928i
\(909\) −406.022 531.789i −0.446669 0.585026i
\(910\) 92.4050 19.9624i 0.101544 0.0219367i
\(911\) −1310.92 756.860i −1.43899 0.830801i −0.441210 0.897404i \(-0.645451\pi\)
−0.997780 + 0.0666029i \(0.978784\pi\)
\(912\) 48.5561 242.579i 0.0532414 0.265986i
\(913\) −86.8275 −0.0951013
\(914\) 852.449i 0.932658i
\(915\) −115.751 342.348i −0.126504 0.374151i
\(916\) −164.420 + 284.784i −0.179498 + 0.310899i
\(917\) −557.860 179.213i −0.608353 0.195434i
\(918\) 82.6241 + 169.084i 0.0900044 + 0.184188i
\(919\) 2.39355 + 4.14575i 0.00260452 + 0.00451115i 0.867325 0.497743i \(-0.165838\pi\)
−0.864720 + 0.502254i \(0.832504\pi\)
\(920\) 107.091 61.8289i 0.116403 0.0672053i
\(921\) 346.836 + 304.907i 0.376586 + 0.331061i
\(922\) −173.884 + 301.176i −0.188595 + 0.326656i
\(923\) −7.02867 + 4.05800i −0.00761502 + 0.00439654i
\(924\) 439.623 6.68571i 0.475783 0.00723562i
\(925\) −406.508 + 704.093i −0.439468 + 0.761181i
\(926\) −1033.76 + 596.844i −1.11638 + 0.644540i
\(927\) −1438.35 599.852i −1.55162 0.647090i
\(928\) −87.9537 + 152.340i −0.0947777 + 0.164160i
\(929\) 856.513i 0.921973i −0.887407 0.460986i \(-0.847496\pi\)
0.887407 0.460986i \(-0.152504\pi\)
\(930\) −315.380 + 106.633i −0.339118 + 0.114659i
\(931\) −821.180 588.324i −0.882040 0.631927i
\(932\) −654.982 + 378.154i −0.702771 + 0.405745i
\(933\) 997.500 1134.67i 1.06913 1.21615i
\(934\) −499.114 864.491i −0.534383 0.925579i
\(935\) 132.331 + 76.4014i 0.141531 + 0.0817127i
\(936\) −49.8111 65.2404i −0.0532170 0.0697012i
\(937\) 664.605 0.709290 0.354645 0.935001i \(-0.384602\pi\)
0.354645 + 0.935001i \(0.384602\pi\)
\(938\) 159.117 + 736.544i 0.169634 + 0.785228i
\(939\) 1014.46 + 891.824i 1.08036 + 0.949759i
\(940\) 57.7151 99.9655i 0.0613991 0.106346i
\(941\) 535.737i 0.569327i 0.958628 + 0.284663i \(0.0918819\pi\)
−0.958628 + 0.284663i \(0.908118\pi\)
\(942\) −322.814 + 367.204i −0.342690 + 0.389813i
\(943\) 726.405 0.770312
\(944\) 111.469i 0.118082i
\(945\) −439.678 + 346.404i −0.465268 + 0.366565i
\(946\) −797.444 −0.842964
\(947\) 679.955i 0.718009i 0.933336 + 0.359005i \(0.116884\pi\)
−0.933336 + 0.359005i \(0.883116\pi\)
\(948\) 147.290 + 129.484i 0.155369 + 0.136587i
\(949\) 445.921 0.469885
\(950\) −409.767 236.579i −0.431334 0.249031i
\(951\) 670.466 762.663i 0.705012 0.801959i
\(952\) −29.8457 + 92.9049i −0.0313505 + 0.0975891i
\(953\) 1272.32i 1.33507i 0.744579 + 0.667534i \(0.232650\pi\)
−0.744579 + 0.667534i \(0.767350\pi\)
\(954\) 1179.52 + 491.908i 1.23639 + 0.515627i
\(955\) −140.429 + 243.230i −0.147046 + 0.254691i
\(956\) 199.756 115.329i 0.208950 0.120637i
\(957\) −733.462 644.795i −0.766418 0.673767i
\(958\) 234.929 + 406.909i 0.245229 + 0.424749i
\(959\) 31.2167 28.2961i 0.0325513 0.0295058i
\(960\) −22.7662 67.3338i −0.0237148 0.0701394i
\(961\) −258.977 −0.269487
\(962\) −197.841 114.223i −0.205656 0.118735i
\(963\) 828.160 + 1084.69i 0.859979 + 1.12636i
\(964\) −272.278 471.600i −0.282446 0.489211i
\(965\) −207.229 119.644i −0.214745 0.123983i
\(966\) −376.300 + 224.955i −0.389544 + 0.232872i
\(967\) 745.822 + 1291.80i 0.771275 + 1.33589i 0.936865 + 0.349692i \(0.113714\pi\)
−0.165590 + 0.986195i \(0.552953\pi\)
\(968\) 27.9534 + 16.1389i 0.0288775 + 0.0166724i
\(969\) −201.259 + 228.935i −0.207698 + 0.236259i
\(970\) 184.805 + 320.092i 0.190521 + 0.329992i
\(971\) 390.142 225.249i 0.401795 0.231976i −0.285463 0.958390i \(-0.592148\pi\)
0.687258 + 0.726413i \(0.258814\pi\)
\(972\) 434.576 + 217.577i 0.447095 + 0.223844i
\(973\) 874.065 + 964.285i 0.898320 + 0.991043i
\(974\) 532.300 + 307.324i 0.546509 + 0.315527i
\(975\) −148.719 + 50.2834i −0.152532 + 0.0515727i
\(976\) −162.699 −0.166700
\(977\) 1297.96i 1.32852i 0.747502 + 0.664259i \(0.231253\pi\)
−0.747502 + 0.664259i \(0.768747\pi\)
\(978\) 374.680 + 74.9983i 0.383108 + 0.0766854i
\(979\) 647.023 1120.68i 0.660902 1.14472i
\(980\) −288.842 28.4192i −0.294737 0.0289992i
\(981\) 733.171 + 305.763i 0.747371 + 0.311685i
\(982\) 581.982 + 1008.02i 0.592650 + 1.02650i
\(983\) 376.130 217.159i 0.382634 0.220914i −0.296329 0.955086i \(-0.595763\pi\)
0.678964 + 0.734172i \(0.262429\pi\)
\(984\) 81.9513 409.416i 0.0832838 0.416073i
\(985\) −444.136 + 769.266i −0.450900 + 0.780981i
\(986\) 187.706 108.372i 0.190371 0.109911i
\(987\) −199.209 + 357.486i −0.201833 + 0.362195i
\(988\) 66.4757 115.139i 0.0672831 0.116538i
\(989\) 688.626 397.578i 0.696285 0.402000i
\(990\) 391.355 50.5629i 0.395308 0.0510736i
\(991\) −497.425 + 861.565i −0.501942 + 0.869389i 0.498055 + 0.867145i \(0.334048\pi\)
−0.999997 + 0.00224416i \(0.999286\pi\)
\(992\) 149.882i 0.151091i
\(993\) −44.8886 39.4621i −0.0452050 0.0397403i
\(994\) 24.3551 5.26148i 0.0245021 0.00529324i
\(995\) −852.808 + 492.369i −0.857094 + 0.494843i
\(996\) −15.9397 47.1435i −0.0160037 0.0473329i
\(997\) −818.276 1417.30i −0.820739 1.42156i −0.905133 0.425129i \(-0.860229\pi\)
0.0843943 0.996432i \(-0.473104\pi\)
\(998\) −117.634 67.9162i −0.117870 0.0680523i
\(999\) 1349.39 + 93.3477i 1.35074 + 0.0934412i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.r.a.11.16 yes 32
3.2 odd 2 378.3.r.a.305.3 32
7.2 even 3 126.3.i.a.65.10 32
9.4 even 3 378.3.i.a.179.3 32
9.5 odd 6 126.3.i.a.95.10 yes 32
21.2 odd 6 378.3.i.a.359.6 32
63.23 odd 6 inner 126.3.r.a.23.8 yes 32
63.58 even 3 378.3.r.a.233.11 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.10 32 7.2 even 3
126.3.i.a.95.10 yes 32 9.5 odd 6
126.3.r.a.11.16 yes 32 1.1 even 1 trivial
126.3.r.a.23.8 yes 32 63.23 odd 6 inner
378.3.i.a.179.3 32 9.4 even 3
378.3.i.a.359.6 32 21.2 odd 6
378.3.r.a.233.11 32 63.58 even 3
378.3.r.a.305.3 32 3.2 odd 2