Properties

Label 126.3.o.a.13.15
Level $126$
Weight $3$
Character 126.13
Analytic conductor $3.433$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,3,Mod(13,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.13"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 13.15
Character \(\chi\) \(=\) 126.13
Dual form 126.3.o.a.97.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 1.22474i) q^{2} +(2.44188 + 1.74276i) q^{3} +(-1.00000 + 1.73205i) q^{4} +(-2.71575 - 1.56794i) q^{5} +(-0.407766 + 4.22300i) q^{6} +(4.10149 + 5.67255i) q^{7} -2.82843 q^{8} +(2.92557 + 8.51123i) q^{9} -4.43480i q^{10} +(3.92650 + 6.80090i) q^{11} +(-5.46043 + 2.48670i) q^{12} +(-2.50339 - 1.44533i) q^{13} +(-4.04723 + 9.03437i) q^{14} +(-3.89899 - 8.56162i) q^{15} +(-2.00000 - 3.46410i) q^{16} -32.9734i q^{17} +(-8.35539 + 9.60143i) q^{18} +10.7355i q^{19} +(5.43150 - 3.13588i) q^{20} +(0.129453 + 20.9996i) q^{21} +(-5.55291 + 9.61792i) q^{22} +(14.1547 - 24.5167i) q^{23} +(-6.90668 - 4.92927i) q^{24} +(-7.58314 - 13.1344i) q^{25} -4.08801i q^{26} +(-7.68914 + 25.8820i) q^{27} +(-13.9266 + 1.43144i) q^{28} +(0.0795224 + 0.137737i) q^{29} +(7.72879 - 10.8293i) q^{30} +(37.8990 + 21.8810i) q^{31} +(2.82843 - 4.89898i) q^{32} +(-2.26429 + 23.4499i) q^{33} +(40.3840 - 23.3157i) q^{34} +(-2.24440 - 21.8361i) q^{35} +(-17.6675 - 3.44399i) q^{36} +47.5168 q^{37} +(-13.1483 + 7.59116i) q^{38} +(-3.59411 - 7.89213i) q^{39} +(7.68130 + 4.43480i) q^{40} +(-50.7432 - 29.2966i) q^{41} +(-25.6276 + 15.0075i) q^{42} +(-27.2812 - 47.2525i) q^{43} -15.7060 q^{44} +(5.39997 - 27.7015i) q^{45} +40.0356 q^{46} +(13.0561 - 7.53793i) q^{47} +(1.15334 - 11.9444i) q^{48} +(-15.3556 + 46.5318i) q^{49} +(10.7242 - 18.5748i) q^{50} +(57.4647 - 80.5170i) q^{51} +(5.00677 - 2.89066i) q^{52} +15.3779 q^{53} +(-37.1359 + 8.88409i) q^{54} -24.6260i q^{55} +(-11.6008 - 16.0444i) q^{56} +(-18.7094 + 26.2149i) q^{57} +(-0.112462 + 0.194789i) q^{58} +(-21.7837 - 12.5768i) q^{59} +(18.7281 + 1.80836i) q^{60} +(7.06108 - 4.07672i) q^{61} +61.8889i q^{62} +(-36.2812 + 51.5041i) q^{63} +8.00000 q^{64} +(4.53238 + 7.85031i) q^{65} +(-30.3213 + 13.8084i) q^{66} +(-6.86107 + 11.8837i) q^{67} +(57.1115 + 32.9734i) q^{68} +(77.2909 - 35.1986i) q^{69} +(25.1566 - 18.1893i) q^{70} -68.9659 q^{71} +(-8.27476 - 24.0734i) q^{72} +120.030i q^{73} +(33.5994 + 58.1959i) q^{74} +(4.37296 - 45.2882i) q^{75} +(-18.5945 - 10.7355i) q^{76} +(-22.4739 + 50.1671i) q^{77} +(7.12443 - 9.98244i) q^{78} +(-9.05179 - 15.6782i) q^{79} +12.5435i q^{80} +(-63.8821 + 49.8004i) q^{81} -82.8633i q^{82} +(-69.1319 + 39.9133i) q^{83} +(-36.5018 - 20.7754i) q^{84} +(-51.7002 + 89.5473i) q^{85} +(38.5815 - 66.8251i) q^{86} +(-0.0458581 + 0.474926i) q^{87} +(-11.1058 - 19.2358i) q^{88} +0.921292i q^{89} +(37.7456 - 12.9743i) q^{90} +(-2.06890 - 20.1286i) q^{91} +(28.3094 + 49.0334i) q^{92} +(54.4116 + 119.480i) q^{93} +(18.4641 + 10.6602i) q^{94} +(16.8326 - 29.1550i) q^{95} +(15.4444 - 7.03346i) q^{96} +(-66.2984 + 38.2774i) q^{97} +(-67.8476 + 14.0962i) q^{98} +(-46.3968 + 53.3159i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{4} - 2 q^{7} + 24 q^{9} - 12 q^{11} - 12 q^{14} + 48 q^{15} - 64 q^{16} - 54 q^{21} + 12 q^{23} + 80 q^{25} + 8 q^{28} - 48 q^{29} - 168 q^{30} + 348 q^{35} - 72 q^{36} - 88 q^{37} + 252 q^{39}+ \cdots - 684 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 1.22474i 0.353553 + 0.612372i
\(3\) 2.44188 + 1.74276i 0.813961 + 0.580920i
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) −2.71575 1.56794i −0.543150 0.313588i 0.203205 0.979136i \(-0.434864\pi\)
−0.746354 + 0.665549i \(0.768198\pi\)
\(6\) −0.407766 + 4.22300i −0.0679610 + 0.703833i
\(7\) 4.10149 + 5.67255i 0.585927 + 0.810364i
\(8\) −2.82843 −0.353553
\(9\) 2.92557 + 8.51123i 0.325063 + 0.945692i
\(10\) 4.43480i 0.443480i
\(11\) 3.92650 + 6.80090i 0.356955 + 0.618264i 0.987450 0.157929i \(-0.0504817\pi\)
−0.630496 + 0.776193i \(0.717148\pi\)
\(12\) −5.46043 + 2.48670i −0.455036 + 0.207225i
\(13\) −2.50339 1.44533i −0.192568 0.111179i 0.400616 0.916246i \(-0.368796\pi\)
−0.593184 + 0.805067i \(0.702129\pi\)
\(14\) −4.04723 + 9.03437i −0.289088 + 0.645312i
\(15\) −3.89899 8.56162i −0.259933 0.570774i
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 32.9734i 1.93961i −0.243882 0.969805i \(-0.578421\pi\)
0.243882 0.969805i \(-0.421579\pi\)
\(18\) −8.35539 + 9.60143i −0.464189 + 0.533413i
\(19\) 10.7355i 0.565027i 0.959263 + 0.282514i \(0.0911682\pi\)
−0.959263 + 0.282514i \(0.908832\pi\)
\(20\) 5.43150 3.13588i 0.271575 0.156794i
\(21\) 0.129453 + 20.9996i 0.00616443 + 0.999981i
\(22\) −5.55291 + 9.61792i −0.252405 + 0.437178i
\(23\) 14.1547 24.5167i 0.615422 1.06594i −0.374888 0.927070i \(-0.622319\pi\)
0.990310 0.138873i \(-0.0443479\pi\)
\(24\) −6.90668 4.92927i −0.287778 0.205386i
\(25\) −7.58314 13.1344i −0.303326 0.525376i
\(26\) 4.08801i 0.157231i
\(27\) −7.68914 + 25.8820i −0.284783 + 0.958592i
\(28\) −13.9266 + 1.43144i −0.497380 + 0.0511227i
\(29\) 0.0795224 + 0.137737i 0.00274215 + 0.00474955i 0.867393 0.497623i \(-0.165794\pi\)
−0.864651 + 0.502373i \(0.832460\pi\)
\(30\) 7.72879 10.8293i 0.257626 0.360975i
\(31\) 37.8990 + 21.8810i 1.22255 + 0.705839i 0.965461 0.260548i \(-0.0839033\pi\)
0.257089 + 0.966388i \(0.417237\pi\)
\(32\) 2.82843 4.89898i 0.0883883 0.153093i
\(33\) −2.26429 + 23.4499i −0.0686148 + 0.710604i
\(34\) 40.3840 23.3157i 1.18776 0.685756i
\(35\) −2.24440 21.8361i −0.0641258 0.623888i
\(36\) −17.6675 3.44399i −0.490763 0.0956665i
\(37\) 47.5168 1.28424 0.642118 0.766606i \(-0.278056\pi\)
0.642118 + 0.766606i \(0.278056\pi\)
\(38\) −13.1483 + 7.59116i −0.346007 + 0.199767i
\(39\) −3.59411 7.89213i −0.0921566 0.202362i
\(40\) 7.68130 + 4.43480i 0.192032 + 0.110870i
\(41\) −50.7432 29.2966i −1.23764 0.714551i −0.269028 0.963132i \(-0.586702\pi\)
−0.968611 + 0.248581i \(0.920036\pi\)
\(42\) −25.6276 + 15.0075i −0.610181 + 0.357322i
\(43\) −27.2812 47.2525i −0.634448 1.09890i −0.986632 0.162965i \(-0.947894\pi\)
0.352184 0.935931i \(-0.385439\pi\)
\(44\) −15.7060 −0.356955
\(45\) 5.39997 27.7015i 0.119999 0.615588i
\(46\) 40.0356 0.870339
\(47\) 13.0561 7.53793i 0.277789 0.160381i −0.354633 0.935006i \(-0.615394\pi\)
0.632422 + 0.774624i \(0.282061\pi\)
\(48\) 1.15334 11.9444i 0.0240279 0.248843i
\(49\) −15.3556 + 46.5318i −0.313380 + 0.949628i
\(50\) 10.7242 18.5748i 0.214484 0.371497i
\(51\) 57.4647 80.5170i 1.12676 1.57877i
\(52\) 5.00677 2.89066i 0.0962841 0.0555897i
\(53\) 15.3779 0.290150 0.145075 0.989421i \(-0.453658\pi\)
0.145075 + 0.989421i \(0.453658\pi\)
\(54\) −37.1359 + 8.88409i −0.687701 + 0.164520i
\(55\) 24.6260i 0.447746i
\(56\) −11.6008 16.0444i −0.207156 0.286507i
\(57\) −18.7094 + 26.2149i −0.328236 + 0.459910i
\(58\) −0.112462 + 0.194789i −0.00193899 + 0.00335844i
\(59\) −21.7837 12.5768i −0.369216 0.213167i 0.303900 0.952704i \(-0.401711\pi\)
−0.673116 + 0.739537i \(0.735044\pi\)
\(60\) 18.7281 + 1.80836i 0.312136 + 0.0301393i
\(61\) 7.06108 4.07672i 0.115755 0.0668314i −0.441004 0.897505i \(-0.645378\pi\)
0.556760 + 0.830674i \(0.312044\pi\)
\(62\) 61.8889i 0.998208i
\(63\) −36.2812 + 51.5041i −0.575892 + 0.817526i
\(64\) 8.00000 0.125000
\(65\) 4.53238 + 7.85031i 0.0697289 + 0.120774i
\(66\) −30.3213 + 13.8084i −0.459413 + 0.209219i
\(67\) −6.86107 + 11.8837i −0.102404 + 0.177369i −0.912675 0.408687i \(-0.865987\pi\)
0.810271 + 0.586056i \(0.199320\pi\)
\(68\) 57.1115 + 32.9734i 0.839876 + 0.484902i
\(69\) 77.2909 35.1986i 1.12016 0.510124i
\(70\) 25.1566 18.1893i 0.359380 0.259847i
\(71\) −68.9659 −0.971351 −0.485675 0.874139i \(-0.661426\pi\)
−0.485675 + 0.874139i \(0.661426\pi\)
\(72\) −8.27476 24.0734i −0.114927 0.334353i
\(73\) 120.030i 1.64424i 0.569311 + 0.822122i \(0.307210\pi\)
−0.569311 + 0.822122i \(0.692790\pi\)
\(74\) 33.5994 + 58.1959i 0.454046 + 0.786431i
\(75\) 4.37296 45.2882i 0.0583061 0.603843i
\(76\) −18.5945 10.7355i −0.244664 0.141257i
\(77\) −22.4739 + 50.1671i −0.291869 + 0.651520i
\(78\) 7.12443 9.98244i 0.0913388 0.127980i
\(79\) −9.05179 15.6782i −0.114580 0.198458i 0.803032 0.595936i \(-0.203219\pi\)
−0.917612 + 0.397478i \(0.869885\pi\)
\(80\) 12.5435i 0.156794i
\(81\) −63.8821 + 49.8004i −0.788668 + 0.614820i
\(82\) 82.8633i 1.01053i
\(83\) −69.1319 + 39.9133i −0.832914 + 0.480883i −0.854849 0.518876i \(-0.826351\pi\)
0.0219353 + 0.999759i \(0.493017\pi\)
\(84\) −36.5018 20.7754i −0.434546 0.247326i
\(85\) −51.7002 + 89.5473i −0.608237 + 1.05350i
\(86\) 38.5815 66.8251i 0.448622 0.777036i
\(87\) −0.0458581 + 0.474926i −0.000527104 + 0.00545891i
\(88\) −11.1058 19.2358i −0.126203 0.218589i
\(89\) 0.921292i 0.0103516i 0.999987 + 0.00517580i \(0.00164751\pi\)
−0.999987 + 0.00517580i \(0.998352\pi\)
\(90\) 37.7456 12.9743i 0.419395 0.144159i
\(91\) −2.06890 20.1286i −0.0227352 0.221193i
\(92\) 28.3094 + 49.0334i 0.307711 + 0.532971i
\(93\) 54.4116 + 119.480i 0.585071 + 1.28473i
\(94\) 18.4641 + 10.6602i 0.196426 + 0.113407i
\(95\) 16.8326 29.1550i 0.177185 0.306894i
\(96\) 15.4444 7.03346i 0.160880 0.0732652i
\(97\) −66.2984 + 38.2774i −0.683489 + 0.394613i −0.801168 0.598439i \(-0.795788\pi\)
0.117679 + 0.993052i \(0.462455\pi\)
\(98\) −67.8476 + 14.0962i −0.692322 + 0.143839i
\(99\) −46.3968 + 53.3159i −0.468654 + 0.538544i
\(100\) 30.3326 0.303326
\(101\) −11.1783 + 6.45380i −0.110676 + 0.0638990i −0.554316 0.832306i \(-0.687020\pi\)
0.443640 + 0.896205i \(0.353687\pi\)
\(102\) 139.247 + 13.4454i 1.36516 + 0.131818i
\(103\) −135.255 78.0896i −1.31316 0.758151i −0.330539 0.943792i \(-0.607230\pi\)
−0.982618 + 0.185641i \(0.940564\pi\)
\(104\) 7.08065 + 4.08801i 0.0680831 + 0.0393078i
\(105\) 32.5745 57.2326i 0.310233 0.545072i
\(106\) 10.8738 + 18.8340i 0.102583 + 0.177680i
\(107\) 141.343 1.32097 0.660483 0.750841i \(-0.270352\pi\)
0.660483 + 0.750841i \(0.270352\pi\)
\(108\) −37.1398 39.2000i −0.343887 0.362963i
\(109\) 18.8235 0.172693 0.0863464 0.996265i \(-0.472481\pi\)
0.0863464 + 0.996265i \(0.472481\pi\)
\(110\) 30.1606 17.4132i 0.274187 0.158302i
\(111\) 116.030 + 82.8103i 1.04532 + 0.746039i
\(112\) 11.4473 25.5531i 0.102208 0.228152i
\(113\) −64.9119 + 112.431i −0.574442 + 0.994963i 0.421660 + 0.906754i \(0.361448\pi\)
−0.996102 + 0.0882087i \(0.971886\pi\)
\(114\) −45.3361 4.37758i −0.397685 0.0383998i
\(115\) −76.8813 + 44.3874i −0.668533 + 0.385978i
\(116\) −0.318090 −0.00274215
\(117\) 4.97771 25.5353i 0.0425445 0.218251i
\(118\) 35.5727i 0.301464i
\(119\) 187.043 135.240i 1.57179 1.13647i
\(120\) 11.0280 + 24.2159i 0.0919002 + 0.201799i
\(121\) 29.6652 51.3816i 0.245167 0.424641i
\(122\) 9.98588 + 5.76535i 0.0818514 + 0.0472570i
\(123\) −72.8519 159.972i −0.592292 1.30059i
\(124\) −75.7981 + 43.7620i −0.611275 + 0.352920i
\(125\) 125.956i 1.00765i
\(126\) −88.7341 8.01625i −0.704239 0.0636210i
\(127\) 74.1282 0.583686 0.291843 0.956466i \(-0.405731\pi\)
0.291843 + 0.956466i \(0.405731\pi\)
\(128\) 5.65685 + 9.79796i 0.0441942 + 0.0765466i
\(129\) 15.7322 162.930i 0.121955 1.26302i
\(130\) −6.40975 + 11.1020i −0.0493058 + 0.0854001i
\(131\) 140.094 + 80.8832i 1.06942 + 0.617429i 0.928023 0.372524i \(-0.121508\pi\)
0.141396 + 0.989953i \(0.454841\pi\)
\(132\) −38.3522 27.3718i −0.290547 0.207362i
\(133\) −60.8977 + 44.0316i −0.457878 + 0.331065i
\(134\) −19.4060 −0.144821
\(135\) 61.4631 58.2329i 0.455282 0.431354i
\(136\) 93.2628i 0.685756i
\(137\) −91.1018 157.793i −0.664977 1.15177i −0.979292 0.202455i \(-0.935108\pi\)
0.314315 0.949319i \(-0.398225\pi\)
\(138\) 97.7621 + 69.7724i 0.708421 + 0.505597i
\(139\) −209.411 120.903i −1.50655 0.869808i −0.999971 0.00761466i \(-0.997576\pi\)
−0.506580 0.862193i \(-0.669091\pi\)
\(140\) 40.0656 + 17.9487i 0.286183 + 0.128205i
\(141\) 45.0182 + 4.34689i 0.319278 + 0.0308290i
\(142\) −48.7663 84.4656i −0.343424 0.594828i
\(143\) 22.7004i 0.158744i
\(144\) 23.6326 27.1569i 0.164115 0.188590i
\(145\) 0.498745i 0.00343962i
\(146\) −147.006 + 84.8739i −1.00689 + 0.581328i
\(147\) −118.590 + 86.8639i −0.806737 + 0.590911i
\(148\) −47.5168 + 82.3014i −0.321059 + 0.556091i
\(149\) −26.4982 + 45.8963i −0.177841 + 0.308029i −0.941141 0.338015i \(-0.890244\pi\)
0.763300 + 0.646044i \(0.223578\pi\)
\(150\) 58.5587 26.6678i 0.390391 0.177786i
\(151\) −79.7500 138.131i −0.528146 0.914775i −0.999462 0.0328107i \(-0.989554\pi\)
0.471316 0.881964i \(-0.343779\pi\)
\(152\) 30.3646i 0.199767i
\(153\) 280.644 96.4659i 1.83427 0.630496i
\(154\) −77.3333 + 7.94864i −0.502164 + 0.0516145i
\(155\) −68.6162 118.847i −0.442685 0.766753i
\(156\) 17.2637 + 1.66695i 0.110665 + 0.0106856i
\(157\) 173.153 + 99.9698i 1.10288 + 0.636751i 0.936977 0.349391i \(-0.113611\pi\)
0.165907 + 0.986141i \(0.446945\pi\)
\(158\) 12.8012 22.1723i 0.0810201 0.140331i
\(159\) 37.5511 + 26.8000i 0.236170 + 0.168554i
\(160\) −15.3626 + 8.86960i −0.0960162 + 0.0554350i
\(161\) 197.127 20.2616i 1.22439 0.125848i
\(162\) −106.164 43.0250i −0.655335 0.265587i
\(163\) 117.271 0.719451 0.359726 0.933058i \(-0.382870\pi\)
0.359726 + 0.933058i \(0.382870\pi\)
\(164\) 101.486 58.5932i 0.618819 0.357276i
\(165\) 42.9173 60.1339i 0.260105 0.364448i
\(166\) −97.7672 56.4459i −0.588959 0.340036i
\(167\) 109.057 + 62.9642i 0.653037 + 0.377031i 0.789619 0.613598i \(-0.210278\pi\)
−0.136582 + 0.990629i \(0.543612\pi\)
\(168\) −0.366148 59.3958i −0.00217945 0.353547i
\(169\) −80.3220 139.122i −0.475278 0.823206i
\(170\) −146.230 −0.860178
\(171\) −91.3724 + 31.4075i −0.534342 + 0.183670i
\(172\) 109.125 0.634448
\(173\) −241.131 + 139.217i −1.39382 + 0.804724i −0.993736 0.111753i \(-0.964353\pi\)
−0.400087 + 0.916477i \(0.631020\pi\)
\(174\) −0.614089 + 0.279659i −0.00352925 + 0.00160723i
\(175\) 43.4033 96.8863i 0.248019 0.553636i
\(176\) 15.7060 27.2036i 0.0892387 0.154566i
\(177\) −31.2749 68.6750i −0.176694 0.387994i
\(178\) −1.12835 + 0.651452i −0.00633903 + 0.00365984i
\(179\) −140.932 −0.787331 −0.393666 0.919254i \(-0.628793\pi\)
−0.393666 + 0.919254i \(0.628793\pi\)
\(180\) 42.5804 + 37.0545i 0.236558 + 0.205858i
\(181\) 270.055i 1.49202i −0.665936 0.746009i \(-0.731967\pi\)
0.665936 0.746009i \(-0.268033\pi\)
\(182\) 23.1895 16.7669i 0.127415 0.0921260i
\(183\) 24.3471 + 2.35091i 0.133044 + 0.0128465i
\(184\) −40.0356 + 69.3437i −0.217585 + 0.376868i
\(185\) −129.044 74.5033i −0.697533 0.402721i
\(186\) −107.857 + 151.125i −0.579879 + 0.812502i
\(187\) 224.249 129.470i 1.19919 0.692353i
\(188\) 30.1517i 0.160381i
\(189\) −178.354 + 62.5376i −0.943670 + 0.330887i
\(190\) 47.6098 0.250578
\(191\) 43.7715 + 75.8145i 0.229170 + 0.396935i 0.957562 0.288226i \(-0.0930654\pi\)
−0.728392 + 0.685161i \(0.759732\pi\)
\(192\) 19.5351 + 13.9421i 0.101745 + 0.0726150i
\(193\) −93.1992 + 161.426i −0.482898 + 0.836403i −0.999807 0.0196368i \(-0.993749\pi\)
0.516910 + 0.856040i \(0.327082\pi\)
\(194\) −93.7602 54.1325i −0.483300 0.279033i
\(195\) −2.61368 + 27.0684i −0.0134035 + 0.138812i
\(196\) −65.2398 73.1285i −0.332856 0.373104i
\(197\) 365.315 1.85439 0.927196 0.374575i \(-0.122212\pi\)
0.927196 + 0.374575i \(0.122212\pi\)
\(198\) −98.1058 19.1242i −0.495484 0.0965868i
\(199\) 88.1657i 0.443044i 0.975155 + 0.221522i \(0.0711024\pi\)
−0.975155 + 0.221522i \(0.928898\pi\)
\(200\) 21.4484 + 37.1497i 0.107242 + 0.185748i
\(201\) −37.4644 + 17.0614i −0.186390 + 0.0848828i
\(202\) −15.8085 9.12705i −0.0782600 0.0451834i
\(203\) −0.455159 + 1.01602i −0.00224216 + 0.00500503i
\(204\) 81.9949 + 180.049i 0.401936 + 0.882592i
\(205\) 91.8705 + 159.124i 0.448149 + 0.776216i
\(206\) 220.871i 1.07219i
\(207\) 250.078 + 48.7487i 1.20811 + 0.235501i
\(208\) 11.5626i 0.0555897i
\(209\) −73.0112 + 42.1530i −0.349336 + 0.201689i
\(210\) 93.1290 0.574098i 0.443471 0.00273380i
\(211\) −64.6561 + 111.988i −0.306427 + 0.530747i −0.977578 0.210574i \(-0.932467\pi\)
0.671151 + 0.741320i \(0.265800\pi\)
\(212\) −15.3779 + 26.6353i −0.0725374 + 0.125638i
\(213\) −168.407 120.191i −0.790641 0.564277i
\(214\) 99.9448 + 173.110i 0.467032 + 0.808923i
\(215\) 171.101i 0.795819i
\(216\) 21.7482 73.2053i 0.100686 0.338913i
\(217\) 31.3213 + 304.729i 0.144338 + 1.40428i
\(218\) 13.3102 + 23.0540i 0.0610561 + 0.105752i
\(219\) −209.183 + 293.099i −0.955175 + 1.33835i
\(220\) 42.6535 + 24.6260i 0.193880 + 0.111937i
\(221\) −47.6574 + 82.5451i −0.215644 + 0.373507i
\(222\) −19.3757 + 200.663i −0.0872780 + 0.903888i
\(223\) 162.872 94.0345i 0.730370 0.421679i −0.0881876 0.996104i \(-0.528108\pi\)
0.818557 + 0.574425i \(0.194774\pi\)
\(224\) 39.3905 4.04871i 0.175850 0.0180746i
\(225\) 89.6048 102.967i 0.398243 0.457633i
\(226\) −183.599 −0.812384
\(227\) 151.042 87.2040i 0.665382 0.384158i −0.128943 0.991652i \(-0.541158\pi\)
0.794325 + 0.607494i \(0.207825\pi\)
\(228\) −26.6960 58.6206i −0.117088 0.257108i
\(229\) 305.017 + 176.102i 1.33195 + 0.769004i 0.985599 0.169100i \(-0.0540860\pi\)
0.346355 + 0.938104i \(0.387419\pi\)
\(230\) −108.727 62.7733i −0.472724 0.272927i
\(231\) −142.308 + 83.3353i −0.616051 + 0.360759i
\(232\) −0.224923 0.389579i −0.000969497 0.00167922i
\(233\) −210.886 −0.905091 −0.452546 0.891741i \(-0.649484\pi\)
−0.452546 + 0.891741i \(0.649484\pi\)
\(234\) 34.7940 11.9598i 0.148692 0.0511101i
\(235\) −47.2760 −0.201175
\(236\) 43.5675 25.1537i 0.184608 0.106583i
\(237\) 5.21988 54.0593i 0.0220248 0.228098i
\(238\) 297.894 + 133.451i 1.25165 + 0.560718i
\(239\) −127.803 + 221.362i −0.534742 + 0.926200i 0.464434 + 0.885608i \(0.346258\pi\)
−0.999176 + 0.0405923i \(0.987076\pi\)
\(240\) −21.8603 + 30.6297i −0.0910847 + 0.127624i
\(241\) 246.362 142.237i 1.02225 0.590197i 0.107495 0.994206i \(-0.465717\pi\)
0.914755 + 0.404009i \(0.132384\pi\)
\(242\) 83.9058 0.346718
\(243\) −242.783 + 10.2755i −0.999106 + 0.0422861i
\(244\) 16.3069i 0.0668314i
\(245\) 114.661 102.292i 0.468004 0.417518i
\(246\) 144.411 202.342i 0.587036 0.822530i
\(247\) 15.5164 26.8751i 0.0628193 0.108806i
\(248\) −107.195 61.8889i −0.432237 0.249552i
\(249\) −238.371 23.0167i −0.957314 0.0924367i
\(250\) −154.265 + 89.0647i −0.617058 + 0.356259i
\(251\) 252.178i 1.00469i 0.864666 + 0.502347i \(0.167530\pi\)
−0.864666 + 0.502347i \(0.832470\pi\)
\(252\) −52.9266 114.345i −0.210026 0.453750i
\(253\) 222.314 0.878711
\(254\) 52.4165 + 90.7881i 0.206364 + 0.357433i
\(255\) −282.305 + 128.563i −1.10708 + 0.504168i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −140.650 81.2044i −0.547277 0.315970i 0.200746 0.979643i \(-0.435663\pi\)
−0.748023 + 0.663673i \(0.768997\pi\)
\(258\) 210.672 95.9407i 0.816557 0.371863i
\(259\) 194.889 + 269.541i 0.752469 + 1.04070i
\(260\) −18.1295 −0.0697289
\(261\) −0.939661 + 1.07979i −0.00360024 + 0.00413713i
\(262\) 228.772i 0.873177i
\(263\) 81.1707 + 140.592i 0.308634 + 0.534570i 0.978064 0.208306i \(-0.0667948\pi\)
−0.669430 + 0.742875i \(0.733462\pi\)
\(264\) 6.40438 66.3264i 0.0242590 0.251237i
\(265\) −41.7626 24.1116i −0.157595 0.0909873i
\(266\) −96.9887 43.4492i −0.364619 0.163343i
\(267\) −1.60559 + 2.24969i −0.00601345 + 0.00842579i
\(268\) −13.7221 23.7674i −0.0512020 0.0886845i
\(269\) 235.258i 0.874566i −0.899324 0.437283i \(-0.855941\pi\)
0.899324 0.437283i \(-0.144059\pi\)
\(270\) 114.781 + 34.0998i 0.425116 + 0.126295i
\(271\) 485.944i 1.79315i −0.442892 0.896575i \(-0.646048\pi\)
0.442892 0.896575i \(-0.353952\pi\)
\(272\) −114.223 + 65.9467i −0.419938 + 0.242451i
\(273\) 30.0273 52.7572i 0.109990 0.193250i
\(274\) 128.837 223.153i 0.470210 0.814427i
\(275\) 59.5504 103.144i 0.216547 0.375070i
\(276\) −16.3252 + 169.070i −0.0591491 + 0.612573i
\(277\) −38.0297 65.8694i −0.137291 0.237796i 0.789179 0.614163i \(-0.210506\pi\)
−0.926470 + 0.376367i \(0.877173\pi\)
\(278\) 341.966i 1.23009i
\(279\) −75.3581 + 386.582i −0.270101 + 1.38560i
\(280\) 6.34813 + 61.7618i 0.0226719 + 0.220578i
\(281\) −257.770 446.471i −0.917331 1.58886i −0.803452 0.595370i \(-0.797006\pi\)
−0.113879 0.993495i \(-0.536328\pi\)
\(282\) 26.5089 + 58.2095i 0.0940030 + 0.206417i
\(283\) 229.497 + 132.500i 0.810945 + 0.468199i 0.847284 0.531140i \(-0.178236\pi\)
−0.0363388 + 0.999340i \(0.511570\pi\)
\(284\) 68.9659 119.452i 0.242838 0.420607i
\(285\) 91.9134 41.8577i 0.322503 0.146869i
\(286\) 27.8022 16.0516i 0.0972104 0.0561244i
\(287\) −41.9362 408.003i −0.146119 1.42161i
\(288\) 49.9711 + 9.74108i 0.173511 + 0.0338232i
\(289\) −798.243 −2.76209
\(290\) 0.610835 0.352666i 0.00210633 0.00121609i
\(291\) −228.601 22.0734i −0.785572 0.0758536i
\(292\) −207.898 120.030i −0.711979 0.411061i
\(293\) −266.276 153.735i −0.908793 0.524692i −0.0287506 0.999587i \(-0.509153\pi\)
−0.880043 + 0.474895i \(0.842486\pi\)
\(294\) −190.242 83.8208i −0.647082 0.285105i
\(295\) 39.4394 + 68.3111i 0.133693 + 0.231563i
\(296\) −134.398 −0.454046
\(297\) −206.212 + 49.3326i −0.694317 + 0.166103i
\(298\) −74.9483 −0.251504
\(299\) −70.8694 + 40.9165i −0.237022 + 0.136844i
\(300\) 74.0685 + 52.8624i 0.246895 + 0.176208i
\(301\) 156.148 348.560i 0.518765 1.15801i
\(302\) 112.784 195.347i 0.373455 0.646844i
\(303\) −38.5435 3.72170i −0.127206 0.0122829i
\(304\) 37.1889 21.4710i 0.122332 0.0706284i
\(305\) −25.5682 −0.0838300
\(306\) 316.591 + 275.505i 1.03461 + 0.900345i
\(307\) 353.190i 1.15046i −0.817993 0.575228i \(-0.804913\pi\)
0.817993 0.575228i \(-0.195087\pi\)
\(308\) −64.4180 89.0931i −0.209149 0.289263i
\(309\) −194.185 426.403i −0.628432 1.37994i
\(310\) 97.0379 168.075i 0.313026 0.542176i
\(311\) 322.707 + 186.315i 1.03764 + 0.599084i 0.919165 0.393872i \(-0.128865\pi\)
0.118479 + 0.992957i \(0.462198\pi\)
\(312\) 10.1657 + 22.3223i 0.0325823 + 0.0715459i
\(313\) 81.1943 46.8776i 0.259407 0.149769i −0.364657 0.931142i \(-0.618814\pi\)
0.624064 + 0.781373i \(0.285480\pi\)
\(314\) 282.757i 0.900501i
\(315\) 179.286 82.9857i 0.569161 0.263447i
\(316\) 36.2072 0.114580
\(317\) 67.8015 + 117.436i 0.213885 + 0.370459i 0.952927 0.303200i \(-0.0980550\pi\)
−0.739042 + 0.673659i \(0.764722\pi\)
\(318\) −6.27060 + 64.9410i −0.0197189 + 0.204217i
\(319\) −0.624489 + 1.08165i −0.00195765 + 0.00339074i
\(320\) −21.7260 12.5435i −0.0678937 0.0391984i
\(321\) 345.144 + 246.328i 1.07521 + 0.767376i
\(322\) 164.205 + 227.104i 0.509955 + 0.705291i
\(323\) 353.986 1.09593
\(324\) −22.3748 160.447i −0.0690579 0.495208i
\(325\) 43.8406i 0.134894i
\(326\) 82.9228 + 143.627i 0.254364 + 0.440572i
\(327\) 45.9648 + 32.8049i 0.140565 + 0.100321i
\(328\) 143.523 + 82.8633i 0.437571 + 0.252632i
\(329\) 96.3086 + 43.1445i 0.292731 + 0.131138i
\(330\) 103.996 + 10.0417i 0.315139 + 0.0304293i
\(331\) 167.475 + 290.076i 0.505967 + 0.876361i 0.999976 + 0.00690439i \(0.00219775\pi\)
−0.494009 + 0.869457i \(0.664469\pi\)
\(332\) 159.653i 0.480883i
\(333\) 139.014 + 404.426i 0.417458 + 1.21449i
\(334\) 178.090i 0.533202i
\(335\) 37.2659 21.5155i 0.111241 0.0642252i
\(336\) 72.4858 42.4476i 0.215732 0.126332i
\(337\) 274.990 476.297i 0.815995 1.41335i −0.0926154 0.995702i \(-0.529523\pi\)
0.908611 0.417644i \(-0.137144\pi\)
\(338\) 113.593 196.748i 0.336073 0.582095i
\(339\) −354.447 + 161.417i −1.04557 + 0.476155i
\(340\) −103.400 179.095i −0.304119 0.526749i
\(341\) 343.663i 1.00781i
\(342\) −103.076 89.6995i −0.301393 0.262279i
\(343\) −326.934 + 103.744i −0.953162 + 0.302461i
\(344\) 77.1630 + 133.650i 0.224311 + 0.388518i
\(345\) −265.092 25.5968i −0.768382 0.0741937i
\(346\) −341.011 196.883i −0.985582 0.569026i
\(347\) −51.7856 + 89.6953i −0.149238 + 0.258488i −0.930946 0.365157i \(-0.881015\pi\)
0.781708 + 0.623645i \(0.214349\pi\)
\(348\) −0.776737 0.554354i −0.00223200 0.00159297i
\(349\) −449.229 + 259.363i −1.28719 + 0.743159i −0.978152 0.207891i \(-0.933340\pi\)
−0.309038 + 0.951050i \(0.600007\pi\)
\(350\) 149.352 15.3510i 0.426719 0.0438600i
\(351\) 56.6569 53.6793i 0.161416 0.152932i
\(352\) 44.4233 0.126203
\(353\) 139.032 80.2699i 0.393857 0.227393i −0.289973 0.957035i \(-0.593646\pi\)
0.683830 + 0.729641i \(0.260313\pi\)
\(354\) 61.9947 86.8643i 0.175126 0.245379i
\(355\) 187.294 + 108.134i 0.527589 + 0.304604i
\(356\) −1.59572 0.921292i −0.00448237 0.00258790i
\(357\) 692.427 4.26850i 1.93957 0.0119566i
\(358\) −99.6542 172.606i −0.278364 0.482140i
\(359\) −447.910 −1.24766 −0.623830 0.781560i \(-0.714424\pi\)
−0.623830 + 0.781560i \(0.714424\pi\)
\(360\) −15.2734 + 78.3516i −0.0424261 + 0.217643i
\(361\) 245.749 0.680744
\(362\) 330.749 190.958i 0.913671 0.527508i
\(363\) 161.985 73.7685i 0.446239 0.203219i
\(364\) 36.9326 + 16.5451i 0.101463 + 0.0454537i
\(365\) 188.199 325.971i 0.515615 0.893071i
\(366\) 14.3367 + 31.4813i 0.0391713 + 0.0860144i
\(367\) −366.184 + 211.416i −0.997776 + 0.576066i −0.907589 0.419859i \(-0.862080\pi\)
−0.0901863 + 0.995925i \(0.528746\pi\)
\(368\) −113.238 −0.307711
\(369\) 100.897 517.596i 0.273434 1.40270i
\(370\) 210.727i 0.569533i
\(371\) 63.0724 + 87.2320i 0.170006 + 0.235127i
\(372\) −261.357 25.2362i −0.702572 0.0678392i
\(373\) −42.5654 + 73.7254i −0.114116 + 0.197655i −0.917426 0.397906i \(-0.869737\pi\)
0.803310 + 0.595561i \(0.203070\pi\)
\(374\) 317.135 + 183.098i 0.847955 + 0.489567i
\(375\) −219.512 + 307.571i −0.585365 + 0.820189i
\(376\) −36.9282 + 21.3205i −0.0982132 + 0.0567034i
\(377\) 0.459745i 0.00121948i
\(378\) −202.708 174.217i −0.536264 0.460892i
\(379\) −385.337 −1.01672 −0.508360 0.861145i \(-0.669748\pi\)
−0.508360 + 0.861145i \(0.669748\pi\)
\(380\) 33.6652 + 58.3099i 0.0885927 + 0.153447i
\(381\) 181.012 + 129.188i 0.475098 + 0.339075i
\(382\) −61.9023 + 107.218i −0.162048 + 0.280675i
\(383\) −186.245 107.529i −0.486280 0.280754i 0.236750 0.971571i \(-0.423918\pi\)
−0.723030 + 0.690817i \(0.757251\pi\)
\(384\) −3.26213 + 33.7840i −0.00849513 + 0.0879792i
\(385\) 139.692 101.003i 0.362837 0.262346i
\(386\) −263.607 −0.682920
\(387\) 322.364 370.437i 0.832981 0.957203i
\(388\) 153.110i 0.394613i
\(389\) 3.36450 + 5.82748i 0.00864909 + 0.0149807i 0.870318 0.492491i \(-0.163914\pi\)
−0.861668 + 0.507472i \(0.830580\pi\)
\(390\) −35.0000 + 15.9391i −0.0897436 + 0.0408696i
\(391\) −808.398 466.729i −2.06751 1.19368i
\(392\) 43.4322 131.612i 0.110796 0.335744i
\(393\) 201.132 + 441.657i 0.511788 + 1.12381i
\(394\) 258.317 + 447.418i 0.655627 + 1.13558i
\(395\) 56.7706i 0.143723i
\(396\) −45.9490 133.677i −0.116033 0.337569i
\(397\) 601.337i 1.51470i 0.653007 + 0.757352i \(0.273507\pi\)
−0.653007 + 0.757352i \(0.726493\pi\)
\(398\) −107.980 + 62.3426i −0.271308 + 0.156640i
\(399\) −225.442 + 1.38974i −0.565016 + 0.00348307i
\(400\) −30.3326 + 52.5376i −0.0758314 + 0.131344i
\(401\) −174.618 + 302.448i −0.435457 + 0.754233i −0.997333 0.0729881i \(-0.976746\pi\)
0.561876 + 0.827222i \(0.310080\pi\)
\(402\) −47.3872 33.8201i −0.117879 0.0841295i
\(403\) −63.2506 109.553i −0.156949 0.271844i
\(404\) 25.8152i 0.0638990i
\(405\) 251.572 35.0822i 0.621164 0.0866228i
\(406\) −1.56621 + 0.160982i −0.00385766 + 0.000396507i
\(407\) 186.575 + 323.157i 0.458414 + 0.793997i
\(408\) −162.535 + 227.737i −0.398369 + 0.558178i
\(409\) 49.2615 + 28.4412i 0.120444 + 0.0695383i 0.559012 0.829160i \(-0.311181\pi\)
−0.438568 + 0.898698i \(0.644514\pi\)
\(410\) −129.924 + 225.036i −0.316889 + 0.548868i
\(411\) 52.5356 544.081i 0.127824 1.32380i
\(412\) 270.510 156.179i 0.656578 0.379076i
\(413\) −18.0030 175.153i −0.0435907 0.424100i
\(414\) 117.127 + 340.752i 0.282915 + 0.823073i
\(415\) 250.326 0.603196
\(416\) −14.1613 + 8.17603i −0.0340416 + 0.0196539i
\(417\) −300.650 660.184i −0.720984 1.58317i
\(418\) −103.253 59.6134i −0.247018 0.142616i
\(419\) 345.034 + 199.205i 0.823470 + 0.475430i 0.851612 0.524173i \(-0.175626\pi\)
−0.0281418 + 0.999604i \(0.508959\pi\)
\(420\) 66.5553 + 113.653i 0.158465 + 0.270603i
\(421\) 240.359 + 416.313i 0.570923 + 0.988868i 0.996471 + 0.0839320i \(0.0267478\pi\)
−0.425549 + 0.904936i \(0.639919\pi\)
\(422\) −182.875 −0.433353
\(423\) 102.354 + 89.0705i 0.241971 + 0.210569i
\(424\) −43.4953 −0.102583
\(425\) −433.085 + 250.042i −1.01902 + 0.588333i
\(426\) 28.1220 291.243i 0.0660140 0.683669i
\(427\) 52.0863 + 23.3337i 0.121982 + 0.0546457i
\(428\) −141.343 + 244.814i −0.330241 + 0.571995i
\(429\) 39.5613 55.4316i 0.0922175 0.129211i
\(430\) −209.555 + 120.987i −0.487338 + 0.281365i
\(431\) 149.122 0.345991 0.172995 0.984923i \(-0.444655\pi\)
0.172995 + 0.984923i \(0.444655\pi\)
\(432\) 105.036 25.1280i 0.243139 0.0581667i
\(433\) 114.348i 0.264083i 0.991244 + 0.132042i \(0.0421532\pi\)
−0.991244 + 0.132042i \(0.957847\pi\)
\(434\) −351.068 + 253.836i −0.808912 + 0.584877i
\(435\) 0.869193 1.21788i 0.00199814 0.00279971i
\(436\) −18.8235 + 32.6033i −0.0431732 + 0.0747782i
\(437\) 263.199 + 151.958i 0.602287 + 0.347730i
\(438\) −506.886 48.9441i −1.15727 0.111745i
\(439\) −151.734 + 87.6039i −0.345637 + 0.199553i −0.662762 0.748830i \(-0.730616\pi\)
0.317125 + 0.948384i \(0.397282\pi\)
\(440\) 69.6529i 0.158302i
\(441\) −440.966 + 5.43692i −0.999924 + 0.0123286i
\(442\) −134.796 −0.304967
\(443\) −6.04017 10.4619i −0.0136347 0.0236160i 0.859128 0.511762i \(-0.171007\pi\)
−0.872762 + 0.488146i \(0.837674\pi\)
\(444\) −259.462 + 118.160i −0.584374 + 0.266126i
\(445\) 1.44453 2.50200i 0.00324613 0.00562246i
\(446\) 230.336 + 132.985i 0.516449 + 0.298172i
\(447\) −144.692 + 65.8932i −0.323695 + 0.147412i
\(448\) 32.8119 + 45.3804i 0.0732408 + 0.101295i
\(449\) −63.2131 −0.140786 −0.0703932 0.997519i \(-0.522425\pi\)
−0.0703932 + 0.997519i \(0.522425\pi\)
\(450\) 189.469 + 36.9340i 0.421042 + 0.0820756i
\(451\) 460.132i 1.02025i
\(452\) −129.824 224.862i −0.287221 0.497481i
\(453\) 45.9893 476.285i 0.101522 1.05140i
\(454\) 213.605 + 123.325i 0.470496 + 0.271641i
\(455\) −25.9418 + 57.9081i −0.0570149 + 0.127270i
\(456\) 52.9183 74.1468i 0.116049 0.162603i
\(457\) −26.8766 46.5516i −0.0588109 0.101864i 0.835121 0.550066i \(-0.185398\pi\)
−0.893932 + 0.448203i \(0.852064\pi\)
\(458\) 498.091i 1.08754i
\(459\) 853.416 + 253.537i 1.85929 + 0.552368i
\(460\) 177.550i 0.385978i
\(461\) −185.734 + 107.234i −0.402895 + 0.232611i −0.687732 0.725964i \(-0.741394\pi\)
0.284837 + 0.958576i \(0.408060\pi\)
\(462\) −202.691 115.364i −0.438726 0.249705i
\(463\) −171.552 + 297.136i −0.370522 + 0.641763i −0.989646 0.143530i \(-0.954154\pi\)
0.619124 + 0.785293i \(0.287488\pi\)
\(464\) 0.318090 0.550947i 0.000685538 0.00118739i
\(465\) 39.5688 409.791i 0.0850941 0.881271i
\(466\) −149.119 258.282i −0.319998 0.554253i
\(467\) 440.960i 0.944241i 0.881534 + 0.472120i \(0.156511\pi\)
−0.881534 + 0.472120i \(0.843489\pi\)
\(468\) 39.2508 + 34.1570i 0.0838691 + 0.0729850i
\(469\) −95.5515 + 9.82118i −0.203735 + 0.0209407i
\(470\) −33.4292 57.9011i −0.0711260 0.123194i
\(471\) 248.595 + 545.878i 0.527803 + 1.15898i
\(472\) 61.6137 + 35.5727i 0.130538 + 0.0753659i
\(473\) 214.240 371.074i 0.452938 0.784511i
\(474\) 69.8999 31.8327i 0.147468 0.0671576i
\(475\) 141.004 81.4089i 0.296851 0.171387i
\(476\) 47.1993 + 459.208i 0.0991582 + 0.964722i
\(477\) 44.9892 + 130.885i 0.0943170 + 0.274392i
\(478\) −361.482 −0.756239
\(479\) 310.764 179.420i 0.648776 0.374571i −0.139211 0.990263i \(-0.544457\pi\)
0.787987 + 0.615692i \(0.211123\pi\)
\(480\) −52.9712 5.11482i −0.110357 0.0106559i
\(481\) −118.953 68.6774i −0.247303 0.142781i
\(482\) 348.409 + 201.154i 0.722840 + 0.417332i
\(483\) 516.673 + 294.070i 1.06972 + 0.608840i
\(484\) 59.3304 + 102.763i 0.122583 + 0.212321i
\(485\) 240.066 0.494982
\(486\) −184.258 290.081i −0.379132 0.596874i
\(487\) 414.530 0.851191 0.425595 0.904914i \(-0.360065\pi\)
0.425595 + 0.904914i \(0.360065\pi\)
\(488\) −19.9718 + 11.5307i −0.0409257 + 0.0236285i
\(489\) 286.361 + 204.375i 0.585605 + 0.417944i
\(490\) 206.359 + 68.0990i 0.421141 + 0.138978i
\(491\) −196.276 + 339.960i −0.399747 + 0.692382i −0.993694 0.112122i \(-0.964235\pi\)
0.593947 + 0.804504i \(0.297569\pi\)
\(492\) 349.932 + 33.7888i 0.711243 + 0.0686765i
\(493\) 4.54165 2.62212i 0.00921226 0.00531870i
\(494\) 43.8869 0.0888399
\(495\) 209.598 72.0452i 0.423430 0.145546i
\(496\) 175.048i 0.352920i
\(497\) −282.863 391.212i −0.569140 0.787148i
\(498\) −140.364 308.219i −0.281856 0.618914i
\(499\) 481.752 834.418i 0.965434 1.67218i 0.256991 0.966414i \(-0.417269\pi\)
0.708444 0.705767i \(-0.249398\pi\)
\(500\) −218.163 125.956i −0.436326 0.251913i
\(501\) 156.573 + 343.811i 0.312521 + 0.686250i
\(502\) −308.854 + 178.317i −0.615247 + 0.355213i
\(503\) 475.660i 0.945647i −0.881157 0.472823i \(-0.843235\pi\)
0.881157 0.472823i \(-0.156765\pi\)
\(504\) 102.619 145.676i 0.203608 0.289039i
\(505\) 40.4766 0.0801518
\(506\) 157.200 + 272.278i 0.310671 + 0.538099i
\(507\) 46.3192 479.701i 0.0913593 0.946156i
\(508\) −74.1282 + 128.394i −0.145922 + 0.252744i
\(509\) −100.863 58.2331i −0.198158 0.114407i 0.397638 0.917542i \(-0.369830\pi\)
−0.595796 + 0.803136i \(0.703163\pi\)
\(510\) −357.077 254.844i −0.700151 0.499695i
\(511\) −680.875 + 492.301i −1.33244 + 0.963407i
\(512\) −22.6274 −0.0441942
\(513\) −277.856 82.5469i −0.541631 0.160910i
\(514\) 229.681i 0.446850i
\(515\) 244.879 + 424.143i 0.475493 + 0.823579i
\(516\) 266.470 + 190.179i 0.516415 + 0.368563i
\(517\) 102.529 + 59.1954i 0.198316 + 0.114498i
\(518\) −192.311 + 429.284i −0.371258 + 0.828734i
\(519\) −831.436 80.2822i −1.60200 0.154686i
\(520\) −12.8195 22.2040i −0.0246529 0.0427001i
\(521\) 536.626i 1.02999i 0.857192 + 0.514997i \(0.172207\pi\)
−0.857192 + 0.514997i \(0.827793\pi\)
\(522\) −1.98691 0.387317i −0.00380634 0.000741987i
\(523\) 734.057i 1.40355i 0.712398 + 0.701776i \(0.247609\pi\)
−0.712398 + 0.701776i \(0.752391\pi\)
\(524\) −280.188 + 161.766i −0.534709 + 0.308715i
\(525\) 274.835 160.943i 0.523496 0.306559i
\(526\) −114.793 + 198.827i −0.218237 + 0.377998i
\(527\) 721.491 1249.66i 1.36905 2.37127i
\(528\) 85.7616 39.0562i 0.162427 0.0739700i
\(529\) −136.212 235.926i −0.257489 0.445985i
\(530\) 68.1980i 0.128675i
\(531\) 43.3146 222.201i 0.0815717 0.418457i
\(532\) −15.3672 149.510i −0.0288857 0.281033i
\(533\) 84.6865 + 146.681i 0.158887 + 0.275200i
\(534\) −3.89062 0.375672i −0.00728580 0.000703505i
\(535\) −383.853 221.618i −0.717482 0.414238i
\(536\) 19.4060 33.6122i 0.0362053 0.0627094i
\(537\) −344.140 245.611i −0.640857 0.457377i
\(538\) 288.131 166.353i 0.535560 0.309206i
\(539\) −376.752 + 78.2751i −0.698983 + 0.145223i
\(540\) 39.3992 + 164.690i 0.0729614 + 0.304982i
\(541\) −384.174 −0.710118 −0.355059 0.934844i \(-0.615539\pi\)
−0.355059 + 0.934844i \(0.615539\pi\)
\(542\) 595.157 343.614i 1.09808 0.633974i
\(543\) 470.642 659.443i 0.866744 1.21444i
\(544\) −161.536 93.2628i −0.296941 0.171439i
\(545\) −51.1199 29.5141i −0.0937980 0.0541543i
\(546\) 85.8466 0.529205i 0.157228 0.000969241i
\(547\) −160.326 277.692i −0.293100 0.507663i 0.681441 0.731873i \(-0.261353\pi\)
−0.974541 + 0.224209i \(0.928020\pi\)
\(548\) 364.407 0.664977
\(549\) 55.3556 + 48.1718i 0.100830 + 0.0877445i
\(550\) 168.434 0.306244
\(551\) −1.47868 + 0.853714i −0.00268362 + 0.00154939i
\(552\) −218.612 + 99.5566i −0.396035 + 0.180356i
\(553\) 51.8093 115.651i 0.0936878 0.209133i
\(554\) 53.7822 93.1534i 0.0970797 0.168147i
\(555\) −185.268 406.820i −0.333815 0.733009i
\(556\) 418.821 241.807i 0.753275 0.434904i
\(557\) −172.215 −0.309183 −0.154591 0.987979i \(-0.549406\pi\)
−0.154591 + 0.987979i \(0.549406\pi\)
\(558\) −526.750 + 181.060i −0.943997 + 0.324481i
\(559\) 157.722i 0.282150i
\(560\) −71.1536 + 51.4470i −0.127060 + 0.0918697i
\(561\) 773.223 + 74.6612i 1.37829 + 0.133086i
\(562\) 364.542 631.405i 0.648651 1.12350i
\(563\) −518.332 299.259i −0.920660 0.531543i −0.0368145 0.999322i \(-0.511721\pi\)
−0.883846 + 0.467779i \(0.845054\pi\)
\(564\) −52.5472 + 73.6269i −0.0931689 + 0.130544i
\(565\) 352.569 203.556i 0.624016 0.360276i
\(566\) 374.768i 0.662134i
\(567\) −544.507 158.118i −0.960329 0.278868i
\(568\) 195.065 0.343424
\(569\) −55.3811 95.9229i −0.0973306 0.168582i 0.813248 0.581917i \(-0.197697\pi\)
−0.910579 + 0.413335i \(0.864364\pi\)
\(570\) 116.258 + 82.9726i 0.203961 + 0.145566i
\(571\) −230.516 + 399.266i −0.403706 + 0.699239i −0.994170 0.107825i \(-0.965611\pi\)
0.590464 + 0.807064i \(0.298945\pi\)
\(572\) 39.3182 + 22.7004i 0.0687381 + 0.0396860i
\(573\) −25.2417 + 261.413i −0.0440518 + 0.456219i
\(574\) 470.046 339.863i 0.818895 0.592095i
\(575\) −429.349 −0.746694
\(576\) 23.4046 + 68.0898i 0.0406329 + 0.118212i
\(577\) 125.230i 0.217037i −0.994094 0.108519i \(-0.965389\pi\)
0.994094 0.108519i \(-0.0346107\pi\)
\(578\) −564.443 977.644i −0.976545 1.69142i
\(579\) −508.908 + 231.759i −0.878943 + 0.400274i
\(580\) 0.863851 + 0.498745i 0.00148940 + 0.000859905i
\(581\) −509.954 228.450i −0.877717 0.393201i
\(582\) −134.611 295.587i −0.231291 0.507881i
\(583\) 60.3814 + 104.584i 0.103570 + 0.179389i
\(584\) 339.496i 0.581328i
\(585\) −53.5560 + 61.5427i −0.0915487 + 0.105201i
\(586\) 434.828i 0.742027i
\(587\) 336.969 194.549i 0.574053 0.331430i −0.184713 0.982792i \(-0.559136\pi\)
0.758766 + 0.651363i \(0.225802\pi\)
\(588\) −31.8624 292.268i −0.0541878 0.497055i
\(589\) −234.904 + 406.866i −0.398818 + 0.690774i
\(590\) −55.7758 + 96.6065i −0.0945352 + 0.163740i
\(591\) 892.057 + 636.657i 1.50940 + 1.07725i
\(592\) −95.0335 164.603i −0.160530 0.278045i
\(593\) 232.608i 0.392256i −0.980578 0.196128i \(-0.937163\pi\)
0.980578 0.196128i \(-0.0628368\pi\)
\(594\) −206.234 217.674i −0.347195 0.366454i
\(595\) −720.009 + 74.0055i −1.21010 + 0.124379i
\(596\) −52.9965 91.7926i −0.0889203 0.154014i
\(597\) −153.652 + 215.290i −0.257373 + 0.360620i
\(598\) −100.225 57.8647i −0.167600 0.0967637i
\(599\) 213.695 370.130i 0.356752 0.617913i −0.630664 0.776056i \(-0.717217\pi\)
0.987416 + 0.158143i \(0.0505507\pi\)
\(600\) −12.3686 + 128.094i −0.0206143 + 0.213491i
\(601\) −521.460 + 301.065i −0.867655 + 0.500941i −0.866568 0.499059i \(-0.833679\pi\)
−0.00108646 + 0.999999i \(0.500346\pi\)
\(602\) 537.310 55.2270i 0.892542 0.0917392i
\(603\) −121.218 23.6295i −0.201024 0.0391865i
\(604\) 319.000 0.528146
\(605\) −161.126 + 93.0263i −0.266325 + 0.153763i
\(606\) −22.6963 49.8376i −0.0374526 0.0822403i
\(607\) 747.808 + 431.747i 1.23197 + 0.711280i 0.967441 0.253097i \(-0.0814490\pi\)
0.264533 + 0.964377i \(0.414782\pi\)
\(608\) 52.5931 + 30.3646i 0.0865018 + 0.0499418i
\(609\) −2.88212 + 1.68777i −0.00473255 + 0.00277138i
\(610\) −18.0794 31.3145i −0.0296384 0.0513352i
\(611\) −43.5792 −0.0713244
\(612\) −113.560 + 582.555i −0.185556 + 0.951888i
\(613\) 949.122 1.54832 0.774161 0.632988i \(-0.218172\pi\)
0.774161 + 0.632988i \(0.218172\pi\)
\(614\) 432.567 249.743i 0.704507 0.406747i
\(615\) −52.9788 + 548.671i −0.0861444 + 0.892148i
\(616\) 63.5659 141.894i 0.103191 0.230347i
\(617\) −500.196 + 866.364i −0.810690 + 1.40416i 0.101692 + 0.994816i \(0.467574\pi\)
−0.912382 + 0.409340i \(0.865759\pi\)
\(618\) 384.925 539.340i 0.622855 0.872718i
\(619\) 344.819 199.081i 0.557059 0.321618i −0.194906 0.980822i \(-0.562440\pi\)
0.751964 + 0.659204i \(0.229107\pi\)
\(620\) 274.465 0.442685
\(621\) 525.703 + 554.864i 0.846543 + 0.893501i
\(622\) 526.979i 0.847233i
\(623\) −5.22607 + 3.77867i −0.00838856 + 0.00606528i
\(624\) −20.1509 + 28.2346i −0.0322932 + 0.0452478i
\(625\) 7.91335 13.7063i 0.0126614 0.0219301i
\(626\) 114.826 + 66.2949i 0.183428 + 0.105902i
\(627\) −251.747 24.3083i −0.401511 0.0387692i
\(628\) −346.306 + 199.940i −0.551442 + 0.318375i
\(629\) 1566.79i 2.49092i
\(630\) 228.410 + 160.900i 0.362556 + 0.255396i
\(631\) −17.6413 −0.0279577 −0.0139788 0.999902i \(-0.504450\pi\)
−0.0139788 + 0.999902i \(0.504450\pi\)
\(632\) 25.6023 + 44.3445i 0.0405100 + 0.0701654i
\(633\) −353.050 + 160.780i −0.557741 + 0.253997i
\(634\) −95.8857 + 166.079i −0.151239 + 0.261954i
\(635\) −201.313 116.228i −0.317029 0.183037i
\(636\) −83.9701 + 38.2403i −0.132028 + 0.0601263i
\(637\) 105.695 94.2931i 0.165926 0.148027i
\(638\) −1.76632 −0.00276853
\(639\) −201.765 586.985i −0.315751 0.918599i
\(640\) 35.4784i 0.0554350i
\(641\) 256.854 + 444.885i 0.400709 + 0.694048i 0.993812 0.111079i \(-0.0354305\pi\)
−0.593103 + 0.805127i \(0.702097\pi\)
\(642\) −57.6350 + 596.893i −0.0897742 + 0.929740i
\(643\) 800.066 + 461.918i 1.24427 + 0.718380i 0.969961 0.243261i \(-0.0782173\pi\)
0.274310 + 0.961641i \(0.411551\pi\)
\(644\) −162.033 + 361.696i −0.251605 + 0.561640i
\(645\) −298.188 + 417.809i −0.462308 + 0.647766i
\(646\) 250.306 + 433.543i 0.387471 + 0.671119i
\(647\) 753.800i 1.16507i −0.812806 0.582535i \(-0.802061\pi\)
0.812806 0.582535i \(-0.197939\pi\)
\(648\) 180.686 140.857i 0.278836 0.217372i
\(649\) 197.532i 0.304364i
\(650\) −53.6935 + 31.0000i −0.0826055 + 0.0476923i
\(651\) −454.587 + 798.697i −0.698290 + 1.22688i
\(652\) −117.271 + 203.119i −0.179863 + 0.311532i
\(653\) −419.466 + 726.536i −0.642367 + 1.11261i 0.342536 + 0.939505i \(0.388714\pi\)
−0.984903 + 0.173107i \(0.944619\pi\)
\(654\) −7.67559 + 79.4917i −0.0117364 + 0.121547i
\(655\) −253.640 439.317i −0.387236 0.670713i
\(656\) 234.373i 0.357276i
\(657\) −1021.60 + 351.156i −1.55495 + 0.534484i
\(658\) 15.2595 + 148.461i 0.0231907 + 0.225625i
\(659\) −406.108 703.400i −0.616249 1.06737i −0.990164 0.139912i \(-0.955318\pi\)
0.373915 0.927463i \(-0.378015\pi\)
\(660\) 61.2376 + 134.469i 0.0927843 + 0.203741i
\(661\) −479.930 277.088i −0.726067 0.419195i 0.0909149 0.995859i \(-0.471021\pi\)
−0.816981 + 0.576664i \(0.804354\pi\)
\(662\) −236.846 + 410.229i −0.357773 + 0.619681i
\(663\) −260.230 + 118.510i −0.392504 + 0.178748i
\(664\) 195.534 112.892i 0.294480 0.170018i
\(665\) 234.422 24.0948i 0.352514 0.0362328i
\(666\) −397.021 + 456.229i −0.596128 + 0.685028i
\(667\) 4.50247 0.00675033
\(668\) −218.114 + 125.928i −0.326518 + 0.188515i
\(669\) 561.595 + 54.2267i 0.839454 + 0.0810564i
\(670\) 52.7019 + 30.4274i 0.0786595 + 0.0454141i
\(671\) 55.4507 + 32.0145i 0.0826389 + 0.0477116i
\(672\) 103.243 + 58.7617i 0.153635 + 0.0874429i
\(673\) −30.4512 52.7431i −0.0452470 0.0783701i 0.842515 0.538673i \(-0.181074\pi\)
−0.887762 + 0.460303i \(0.847741\pi\)
\(674\) 777.791 1.15399
\(675\) 398.252 95.2746i 0.590003 0.141148i
\(676\) 321.288 0.475278
\(677\) 497.492 287.227i 0.734849 0.424265i −0.0853448 0.996351i \(-0.527199\pi\)
0.820193 + 0.572086i \(0.193866\pi\)
\(678\) −448.326 319.969i −0.661248 0.471930i
\(679\) −489.053 219.087i −0.720254 0.322661i
\(680\) 146.230 253.278i 0.215044 0.372468i
\(681\) 520.801 + 50.2878i 0.764760 + 0.0738440i
\(682\) −420.900 + 243.007i −0.617155 + 0.356315i
\(683\) −368.025 −0.538837 −0.269418 0.963023i \(-0.586831\pi\)
−0.269418 + 0.963023i \(0.586831\pi\)
\(684\) 36.9730 189.669i 0.0540542 0.277294i
\(685\) 571.368i 0.834114i
\(686\) −358.238 327.053i −0.522212 0.476754i
\(687\) 437.913 + 961.592i 0.637428 + 1.39970i
\(688\) −109.125 + 189.010i −0.158612 + 0.274724i
\(689\) −38.4969 22.2262i −0.0558736 0.0322586i
\(690\) −156.099 342.769i −0.226230 0.496767i
\(691\) 738.344 426.283i 1.06852 0.616908i 0.140740 0.990047i \(-0.455052\pi\)
0.927776 + 0.373139i \(0.121718\pi\)
\(692\) 556.869i 0.804724i
\(693\) −492.732 44.5135i −0.711014 0.0642331i
\(694\) −146.472 −0.211054
\(695\) 379.138 + 656.686i 0.545522 + 0.944871i
\(696\) 0.129706 1.34329i 0.000186359 0.00193002i
\(697\) −966.007 + 1673.17i −1.38595 + 2.40054i
\(698\) −635.306 366.794i −0.910181 0.525493i
\(699\) −514.959 367.524i −0.736708 0.525786i
\(700\) 124.409 + 172.063i 0.177727 + 0.245804i
\(701\) 1027.42 1.46565 0.732824 0.680418i \(-0.238202\pi\)
0.732824 + 0.680418i \(0.238202\pi\)
\(702\) 105.806 + 31.4333i 0.150721 + 0.0447768i
\(703\) 510.117i 0.725629i
\(704\) 31.4120 + 54.4072i 0.0446193 + 0.0772829i
\(705\) −115.442 82.3908i −0.163748 0.116866i
\(706\) 196.620 + 113.519i 0.278499 + 0.160791i
\(707\) −82.4572 36.9393i −0.116630 0.0522480i
\(708\) 150.224 + 14.5053i 0.212180 + 0.0204878i
\(709\) 80.9252 + 140.166i 0.114140 + 0.197696i 0.917436 0.397884i \(-0.130255\pi\)
−0.803296 + 0.595580i \(0.796922\pi\)
\(710\) 305.850i 0.430774i
\(711\) 106.959 122.909i 0.150434 0.172868i
\(712\) 2.60581i 0.00365984i
\(713\) 1072.90 619.439i 1.50477 0.868779i
\(714\) 494.848 + 845.029i 0.693064 + 1.18351i
\(715\) −35.5928 + 61.6485i −0.0497801 + 0.0862217i
\(716\) 140.932 244.102i 0.196833 0.340924i
\(717\) −697.861 + 317.809i −0.973307 + 0.443248i
\(718\) −316.720 548.576i −0.441115 0.764033i
\(719\) 307.062i 0.427068i −0.976936 0.213534i \(-0.931503\pi\)
0.976936 0.213534i \(-0.0684974\pi\)
\(720\) −106.761 + 36.6969i −0.148279 + 0.0509679i
\(721\) −111.780 1087.52i −0.155035 1.50836i
\(722\) 173.771 + 300.979i 0.240679 + 0.416869i
\(723\) 849.473 + 82.0238i 1.17493 + 0.113449i
\(724\) 467.750 + 270.055i 0.646063 + 0.373005i
\(725\) 1.20606 2.08896i 0.00166353 0.00288132i
\(726\) 204.888 + 146.228i 0.282215 + 0.201416i
\(727\) 277.114 159.992i 0.381175 0.220071i −0.297155 0.954829i \(-0.596038\pi\)
0.678329 + 0.734758i \(0.262704\pi\)
\(728\) 5.85173 + 56.9322i 0.00803809 + 0.0782036i
\(729\) −610.754 398.020i −0.837797 0.545981i
\(730\) 532.308 0.729189
\(731\) −1558.07 + 899.554i −2.13143 + 1.23058i
\(732\) −28.4190 + 39.8194i −0.0388237 + 0.0543981i
\(733\) −147.657 85.2496i −0.201441 0.116302i 0.395886 0.918300i \(-0.370437\pi\)
−0.597328 + 0.801997i \(0.703771\pi\)
\(734\) −517.862 298.988i −0.705534 0.407340i
\(735\) 458.259 49.9583i 0.623481 0.0679705i
\(736\) −80.0712 138.687i −0.108792 0.188434i
\(737\) −107.760 −0.146214
\(738\) 705.268 242.422i 0.955648 0.328486i
\(739\) 1106.86 1.49778 0.748888 0.662697i \(-0.230588\pi\)
0.748888 + 0.662697i \(0.230588\pi\)
\(740\) 258.087 149.007i 0.348766 0.201360i
\(741\) 84.7261 38.5846i 0.114340 0.0520710i
\(742\) −62.2381 + 138.930i −0.0838788 + 0.187237i
\(743\) 135.692 235.025i 0.182627 0.316319i −0.760147 0.649751i \(-0.774873\pi\)
0.942774 + 0.333432i \(0.108207\pi\)
\(744\) −153.899 337.940i −0.206854 0.454220i
\(745\) 143.925 83.0952i 0.193188 0.111537i
\(746\) −120.393 −0.161385
\(747\) −541.961 471.628i −0.725517 0.631363i
\(748\) 517.880i 0.692353i
\(749\) 579.718 + 801.777i 0.773989 + 1.07046i
\(750\) −531.914 51.3608i −0.709219 0.0684811i
\(751\) 345.456 598.348i 0.459995 0.796735i −0.538965 0.842328i \(-0.681184\pi\)
0.998960 + 0.0455932i \(0.0145178\pi\)
\(752\) −52.2243 30.1517i −0.0694472 0.0400954i
\(753\) −439.486 + 615.789i −0.583647 + 0.817781i
\(754\) 0.563070 0.325089i 0.000746777 0.000431152i
\(755\) 500.172i 0.662480i
\(756\) 70.0354 371.455i 0.0926394 0.491343i
\(757\) −26.8713 −0.0354972 −0.0177486 0.999842i \(-0.505650\pi\)
−0.0177486 + 0.999842i \(0.505650\pi\)
\(758\) −272.474 471.939i −0.359465 0.622611i
\(759\) 542.864 + 387.440i 0.715236 + 0.510461i
\(760\) −47.6098 + 82.4627i −0.0626445 + 0.108504i
\(761\) 15.8485 + 9.15015i 0.0208259 + 0.0120238i 0.510377 0.859951i \(-0.329506\pi\)
−0.489551 + 0.871975i \(0.662839\pi\)
\(762\) −30.2270 + 313.043i −0.0396679 + 0.410818i
\(763\) 77.2044 + 106.777i 0.101185 + 0.139944i
\(764\) −175.086 −0.229170
\(765\) −913.411 178.055i −1.19400 0.232752i
\(766\) 304.137i 0.397046i
\(767\) 36.3554 + 62.9694i 0.0473995 + 0.0820983i
\(768\) −43.6835 + 19.8936i −0.0568795 + 0.0259031i
\(769\) 569.190 + 328.622i 0.740169 + 0.427337i 0.822131 0.569298i \(-0.192785\pi\)
−0.0819614 + 0.996636i \(0.526118\pi\)
\(770\) 222.481 + 99.6673i 0.288936 + 0.129438i
\(771\) −201.931 443.411i −0.261908 0.575112i
\(772\) −186.398 322.852i −0.241449 0.418202i
\(773\) 1480.42i 1.91517i 0.288159 + 0.957583i \(0.406957\pi\)
−0.288159 + 0.957583i \(0.593043\pi\)
\(774\) 681.637 + 132.874i 0.880668 + 0.171672i
\(775\) 663.708i 0.856397i
\(776\) 187.520 108.265i 0.241650 0.139517i
\(777\) 6.15118 + 997.833i 0.00791658 + 1.28421i
\(778\) −4.75812 + 8.24130i −0.00611583 + 0.0105929i
\(779\) 314.514 544.754i 0.403741 0.699299i
\(780\) −44.2701 31.5954i −0.0567566 0.0405069i
\(781\) −270.795 469.030i −0.346728 0.600551i
\(782\) 1320.11i 1.68812i
\(783\) −4.17636 + 0.999120i −0.00533379 + 0.00127601i
\(784\) 191.902 39.8702i 0.244773 0.0508548i
\(785\) −313.493 542.986i −0.399354 0.691702i
\(786\) −398.695 + 558.635i −0.507246 + 0.710731i
\(787\) 695.382 + 401.479i 0.883585 + 0.510138i 0.871839 0.489793i \(-0.162928\pi\)
0.0117465 + 0.999931i \(0.496261\pi\)
\(788\) −365.315 + 632.745i −0.463598 + 0.802976i
\(789\) −46.8086 + 484.770i −0.0593265 + 0.614410i
\(790\) −69.5295 + 40.1429i −0.0880120 + 0.0508138i
\(791\) −904.005 + 92.9173i −1.14286 + 0.117468i
\(792\) 131.230 150.800i 0.165694 0.190404i
\(793\) −23.5688 −0.0297211
\(794\) −736.485 + 425.210i −0.927563 + 0.535529i
\(795\) −59.9584 131.660i −0.0754194 0.165610i
\(796\) −152.707 88.1657i −0.191844 0.110761i
\(797\) 172.823 + 99.7795i 0.216842 + 0.125194i 0.604487 0.796615i \(-0.293378\pi\)
−0.387645 + 0.921809i \(0.626711\pi\)
\(798\) −161.113 275.126i −0.201896 0.344769i
\(799\) −248.551 430.503i −0.311077 0.538802i
\(800\) −85.7935 −0.107242
\(801\) −7.84133 + 2.69530i −0.00978942 + 0.00336492i
\(802\) −493.895 −0.615829
\(803\) −816.311 + 471.297i −1.01658 + 0.586921i
\(804\) 7.91312 81.9517i 0.00984219 0.101930i
\(805\) −567.117 254.058i −0.704494 0.315600i
\(806\) 89.4499 154.932i 0.110980 0.192223i
\(807\) 409.999 574.473i 0.508053 0.711862i
\(808\) 31.6170 18.2541i 0.0391300 0.0225917i
\(809\) 449.356 0.555447 0.277723 0.960661i \(-0.410420\pi\)
0.277723 + 0.960661i \(0.410420\pi\)
\(810\) 220.855 + 283.304i 0.272660 + 0.349758i
\(811\) 523.569i 0.645585i 0.946470 + 0.322793i \(0.104622\pi\)
−0.946470 + 0.322793i \(0.895378\pi\)
\(812\) −1.30464 1.80438i −0.00160670 0.00222214i
\(813\) 846.883 1186.62i 1.04168 1.45955i
\(814\) −263.856 + 457.012i −0.324148 + 0.561440i
\(815\) −318.477 183.873i −0.390770 0.225611i
\(816\) −393.849 38.0294i −0.482658 0.0466047i
\(817\) 507.280 292.878i 0.620906 0.358480i
\(818\) 80.4437i 0.0983420i
\(819\) 165.266 76.4965i 0.201790 0.0934023i
\(820\) −367.482 −0.448149
\(821\) −694.072 1202.17i −0.845398 1.46427i −0.885275 0.465068i \(-0.846030\pi\)
0.0398766 0.999205i \(-0.487304\pi\)
\(822\) 703.508 320.380i 0.855849 0.389757i
\(823\) −143.562 + 248.656i −0.174437 + 0.302134i −0.939966 0.341267i \(-0.889144\pi\)
0.765529 + 0.643401i \(0.222477\pi\)
\(824\) 382.559 + 220.871i 0.464271 + 0.268047i
\(825\) 325.171 148.084i 0.394147 0.179496i
\(826\) 201.788 145.901i 0.244295 0.176636i
\(827\) −1246.27 −1.50698 −0.753490 0.657460i \(-0.771631\pi\)
−0.753490 + 0.657460i \(0.771631\pi\)
\(828\) −334.513 + 384.399i −0.404001 + 0.464250i
\(829\) 595.590i 0.718444i −0.933252 0.359222i \(-0.883042\pi\)
0.933252 0.359222i \(-0.116958\pi\)
\(830\) 177.007 + 306.586i 0.213262 + 0.369381i
\(831\) 21.9305 227.122i 0.0263905 0.273312i
\(832\) −20.0271 11.5626i −0.0240710 0.0138974i
\(833\) 1534.31 + 506.326i 1.84191 + 0.607834i
\(834\) 595.965 835.041i 0.714586 1.00125i
\(835\) −197.448 341.990i −0.236464 0.409568i
\(836\) 168.612i 0.201689i
\(837\) −857.735 + 812.656i −1.02477 + 0.970915i
\(838\) 563.438i 0.672360i
\(839\) 803.641 463.982i 0.957855 0.553018i 0.0623431 0.998055i \(-0.480143\pi\)
0.895512 + 0.445037i \(0.146809\pi\)
\(840\) −92.1346 + 161.878i −0.109684 + 0.192712i
\(841\) 420.487 728.305i 0.499985 0.865999i
\(842\) −339.918 + 588.756i −0.403704 + 0.699235i
\(843\) 148.648 1539.46i 0.176332 1.82617i
\(844\) −129.312 223.975i −0.153213 0.265373i
\(845\) 503.760i 0.596165i
\(846\) −36.7138 + 188.339i −0.0433969 + 0.222623i
\(847\) 413.136 42.4638i 0.487764 0.0501344i
\(848\) −30.7559 53.2707i −0.0362687 0.0628192i
\(849\) 329.489 + 723.510i 0.388091 + 0.852190i
\(850\) −612.475 353.612i −0.720558 0.416015i
\(851\) 672.586 1164.95i 0.790348 1.36892i
\(852\) 376.584 171.498i 0.442000 0.201288i
\(853\) −247.781 + 143.056i −0.290482 + 0.167710i −0.638159 0.769905i \(-0.720304\pi\)
0.347677 + 0.937614i \(0.386970\pi\)
\(854\) 8.25273 + 80.2919i 0.00966362 + 0.0940186i
\(855\) 297.390 + 57.9714i 0.347824 + 0.0678028i
\(856\) −399.779 −0.467032
\(857\) −552.193 + 318.809i −0.644333 + 0.372006i −0.786282 0.617868i \(-0.787997\pi\)
0.141949 + 0.989874i \(0.454663\pi\)
\(858\) 95.8637 + 9.25644i 0.111729 + 0.0107884i
\(859\) 453.550 + 261.857i 0.527997 + 0.304839i 0.740201 0.672386i \(-0.234731\pi\)
−0.212203 + 0.977226i \(0.568064\pi\)
\(860\) −296.356 171.101i −0.344600 0.198955i
\(861\) 608.648 1069.38i 0.706908 1.24202i
\(862\) 105.445 + 182.637i 0.122326 + 0.211875i
\(863\) 821.844 0.952310 0.476155 0.879361i \(-0.342030\pi\)
0.476155 + 0.879361i \(0.342030\pi\)
\(864\) 105.047 + 110.874i 0.121582 + 0.128327i
\(865\) 873.136 1.00941
\(866\) −140.047 + 80.8562i −0.161717 + 0.0933675i
\(867\) −1949.21 1391.15i −2.24823 1.60455i
\(868\) −559.127 250.479i −0.644156 0.288570i
\(869\) 71.0837 123.121i 0.0817995 0.141681i
\(870\) 2.10620 + 0.203371i 0.00242092 + 0.000233760i
\(871\) 34.3518 19.8330i 0.0394395 0.0227704i
\(872\) −53.2410 −0.0610561
\(873\) −519.749 452.298i −0.595359 0.518096i
\(874\) 429.803i 0.491765i
\(875\) −714.494 + 516.609i −0.816565 + 0.590410i
\(876\) −298.478 655.415i −0.340729 0.748190i
\(877\) −90.6785 + 157.060i −0.103396 + 0.179088i −0.913082 0.407776i \(-0.866304\pi\)
0.809686 + 0.586864i \(0.199638\pi\)
\(878\) −214.585 123.891i −0.244402 0.141106i
\(879\) −382.293 839.458i −0.434918 0.955015i
\(880\) −85.3071 + 49.2521i −0.0969399 + 0.0559683i
\(881\) 260.901i 0.296142i −0.988977 0.148071i \(-0.952694\pi\)
0.988977 0.148071i \(-0.0473063\pi\)
\(882\) −318.469 536.227i −0.361076 0.607967i
\(883\) 1306.75 1.47990 0.739949 0.672663i \(-0.234850\pi\)
0.739949 + 0.672663i \(0.234850\pi\)
\(884\) −95.3148 165.090i −0.107822 0.186754i
\(885\) −22.7435 + 235.541i −0.0256988 + 0.266148i
\(886\) 8.54209 14.7953i 0.00964118 0.0166990i
\(887\) 457.566 + 264.176i 0.515858 + 0.297831i 0.735238 0.677809i \(-0.237070\pi\)
−0.219380 + 0.975639i \(0.570404\pi\)
\(888\) −328.183 234.223i −0.369576 0.263765i
\(889\) 304.036 + 420.496i 0.341997 + 0.472998i
\(890\) 4.08574 0.00459072
\(891\) −589.521 238.914i −0.661639 0.268142i
\(892\) 376.138i 0.421679i
\(893\) 80.9236 + 140.164i 0.0906199 + 0.156958i
\(894\) −183.015 130.617i −0.204715 0.146104i
\(895\) 382.737 + 220.973i 0.427639 + 0.246897i
\(896\) −32.3779 + 72.2750i −0.0361360 + 0.0806640i
\(897\) −244.362 23.5953i −0.272422 0.0263046i
\(898\) −44.6984 77.4199i −0.0497755 0.0862137i
\(899\) 6.96012i 0.00774207i
\(900\) 88.7401 + 258.167i 0.0986001 + 0.286853i
\(901\) 507.062i 0.562777i
\(902\) 563.545 325.363i 0.624772 0.360713i
\(903\) 988.752 579.012i 1.09496 0.641210i
\(904\) 183.599 318.002i 0.203096 0.351772i
\(905\) −423.430 + 733.402i −0.467878 + 0.810389i
\(906\) 615.847 280.459i 0.679743 0.309557i
\(907\) −348.635 603.853i −0.384382 0.665769i 0.607301 0.794472i \(-0.292252\pi\)
−0.991683 + 0.128702i \(0.958919\pi\)
\(908\) 348.816i 0.384158i
\(909\) −87.6327 76.2601i −0.0964056 0.0838945i
\(910\) −89.2662 + 9.17515i −0.0980947 + 0.0100826i
\(911\) 560.877 + 971.468i 0.615672 + 1.06638i 0.990266 + 0.139186i \(0.0444487\pi\)
−0.374594 + 0.927189i \(0.622218\pi\)
\(912\) 128.230 + 12.3817i 0.140603 + 0.0135764i
\(913\) −542.893 313.439i −0.594625 0.343307i
\(914\) 38.0093 65.8340i 0.0415856 0.0720284i
\(915\) −62.4344 44.5592i −0.0682343 0.0486985i
\(916\) −610.035 + 352.204i −0.665977 + 0.384502i
\(917\) 115.779 + 1126.43i 0.126259 + 1.22839i
\(918\) 292.938 + 1224.49i 0.319105 + 1.33387i
\(919\) −1158.80 −1.26094 −0.630469 0.776214i \(-0.717138\pi\)
−0.630469 + 0.776214i \(0.717138\pi\)
\(920\) 217.453 125.547i 0.236362 0.136464i
\(921\) 615.525 862.448i 0.668323 0.936425i
\(922\) −262.668 151.652i −0.284890 0.164481i
\(923\) 172.648 + 99.6786i 0.187051 + 0.107994i
\(924\) −2.03319 329.820i −0.00220042 0.356948i
\(925\) −360.326 624.103i −0.389542 0.674706i
\(926\) −485.221 −0.523997
\(927\) 268.940 1379.64i 0.290119 1.48829i
\(928\) 0.899693 0.000969497
\(929\) 600.748 346.842i 0.646661 0.373350i −0.140515 0.990079i \(-0.544876\pi\)
0.787176 + 0.616729i \(0.211542\pi\)
\(930\) 529.869 241.304i 0.569751 0.259467i
\(931\) −499.543 164.850i −0.536566 0.177068i
\(932\) 210.886 365.266i 0.226273 0.391916i
\(933\) 463.311 + 1017.36i 0.496581 + 1.09042i
\(934\) −540.064 + 311.806i −0.578227 + 0.333839i
\(935\) −812.003 −0.868453
\(936\) −14.0791 + 72.2248i −0.0150418 + 0.0771632i
\(937\) 1241.64i 1.32512i 0.749007 + 0.662562i \(0.230531\pi\)
−0.749007 + 0.662562i \(0.769469\pi\)
\(938\) −79.5936 110.082i −0.0848546 0.117358i
\(939\) 279.963 + 27.0328i 0.298151 + 0.0287889i
\(940\) 47.2760 81.8845i 0.0502936 0.0871111i
\(941\) 651.336 + 376.049i 0.692175 + 0.399627i 0.804426 0.594053i \(-0.202473\pi\)
−0.112251 + 0.993680i \(0.535806\pi\)
\(942\) −492.778 + 690.460i −0.523119 + 0.732972i
\(943\) −1436.51 + 829.370i −1.52334 + 0.879501i
\(944\) 100.615i 0.106583i
\(945\) 582.419 + 109.811i 0.616316 + 0.116202i
\(946\) 605.961 0.640551
\(947\) 164.226 + 284.448i 0.173417 + 0.300367i 0.939612 0.342241i \(-0.111186\pi\)
−0.766195 + 0.642608i \(0.777852\pi\)
\(948\) 88.4136 + 63.1004i 0.0932633 + 0.0665616i
\(949\) 173.483 300.481i 0.182806 0.316629i
\(950\) 199.410 + 115.130i 0.209906 + 0.121189i
\(951\) −39.0990 + 404.925i −0.0411135 + 0.425789i
\(952\) −529.037 + 382.516i −0.555712 + 0.401803i
\(953\) 1487.60 1.56097 0.780483 0.625177i \(-0.214973\pi\)
0.780483 + 0.625177i \(0.214973\pi\)
\(954\) −128.489 + 147.650i −0.134684 + 0.154769i
\(955\) 274.524i 0.287460i
\(956\) −255.607 442.724i −0.267371 0.463100i
\(957\) −3.40998 + 1.55292i −0.00356320 + 0.00162270i
\(958\) 439.487 + 253.738i 0.458754 + 0.264862i
\(959\) 521.435 1163.97i 0.543728 1.21373i
\(960\) −31.1920 68.4929i −0.0324916 0.0713468i
\(961\) 477.058 + 826.289i 0.496419 + 0.859822i
\(962\) 194.249i 0.201922i
\(963\) 413.510 + 1203.01i 0.429398 + 1.24923i
\(964\) 568.950i 0.590197i
\(965\) 506.211 292.261i 0.524571 0.302861i
\(966\) 5.18272 + 840.731i 0.00536514 + 0.870322i
\(967\) −621.111 + 1075.80i −0.642307 + 1.11251i 0.342609 + 0.939478i \(0.388689\pi\)
−0.984916 + 0.173031i \(0.944644\pi\)
\(968\) −83.9058 + 145.329i −0.0866796 + 0.150133i
\(969\) 864.392 + 616.913i 0.892045 + 0.636649i
\(970\) 169.753 + 294.020i 0.175003 + 0.303114i
\(971\) 1010.61i 1.04079i 0.853924 + 0.520397i \(0.174216\pi\)
−0.853924 + 0.520397i \(0.825784\pi\)
\(972\) 224.985 430.787i 0.231466 0.443197i
\(973\) −173.065 1683.77i −0.177868 1.73050i
\(974\) 293.117 + 507.693i 0.300941 + 0.521246i
\(975\) −76.4037 + 107.054i −0.0783627 + 0.109799i
\(976\) −28.2443 16.3069i −0.0289389 0.0167079i
\(977\) −573.800 + 993.851i −0.587308 + 1.01725i 0.407275 + 0.913306i \(0.366479\pi\)
−0.994583 + 0.103942i \(0.966854\pi\)
\(978\) −47.8190 + 495.234i −0.0488947 + 0.506374i
\(979\) −6.26561 + 3.61745i −0.00640001 + 0.00369505i
\(980\) 62.5140 + 300.890i 0.0637897 + 0.307031i
\(981\) 55.0695 + 160.211i 0.0561361 + 0.163314i
\(982\) −555.152 −0.565328
\(983\) 380.121 219.463i 0.386695 0.223259i −0.294032 0.955796i \(-0.594997\pi\)
0.680727 + 0.732537i \(0.261664\pi\)
\(984\) 206.056 + 452.469i 0.209407 + 0.459826i
\(985\) −992.105 572.792i −1.00721 0.581515i
\(986\) 6.42286 + 3.70824i 0.00651405 + 0.00376089i
\(987\) 159.984 + 273.197i 0.162091 + 0.276795i
\(988\) 31.0327 + 53.7503i 0.0314097 + 0.0544031i
\(989\) −1544.63 −1.56181
\(990\) 236.445 + 205.760i 0.238833 + 0.207839i
\(991\) −126.283 −0.127430 −0.0637151 0.997968i \(-0.520295\pi\)
−0.0637151 + 0.997968i \(0.520295\pi\)
\(992\) 214.389 123.778i 0.216118 0.124776i
\(993\) −96.5777 + 1000.20i −0.0972585 + 1.00725i
\(994\) 279.121 623.064i 0.280806 0.626825i
\(995\) 138.238 239.436i 0.138933 0.240639i
\(996\) 278.237 389.854i 0.279355 0.391420i
\(997\) 714.603 412.576i 0.716753 0.413818i −0.0968032 0.995304i \(-0.530862\pi\)
0.813557 + 0.581486i \(0.197528\pi\)
\(998\) 1362.60 1.36533
\(999\) −365.363 + 1229.83i −0.365729 + 1.23106i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.o.a.13.15 yes 32
3.2 odd 2 378.3.o.a.307.6 32
7.6 odd 2 inner 126.3.o.a.13.10 32
9.2 odd 6 378.3.o.a.181.3 32
9.4 even 3 1134.3.c.e.811.6 16
9.5 odd 6 1134.3.c.d.811.11 16
9.7 even 3 inner 126.3.o.a.97.10 yes 32
21.20 even 2 378.3.o.a.307.3 32
63.13 odd 6 1134.3.c.e.811.3 16
63.20 even 6 378.3.o.a.181.6 32
63.34 odd 6 inner 126.3.o.a.97.15 yes 32
63.41 even 6 1134.3.c.d.811.14 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.o.a.13.10 32 7.6 odd 2 inner
126.3.o.a.13.15 yes 32 1.1 even 1 trivial
126.3.o.a.97.10 yes 32 9.7 even 3 inner
126.3.o.a.97.15 yes 32 63.34 odd 6 inner
378.3.o.a.181.3 32 9.2 odd 6
378.3.o.a.181.6 32 63.20 even 6
378.3.o.a.307.3 32 21.20 even 2
378.3.o.a.307.6 32 3.2 odd 2
1134.3.c.d.811.11 16 9.5 odd 6
1134.3.c.d.811.14 16 63.41 even 6
1134.3.c.e.811.3 16 63.13 odd 6
1134.3.c.e.811.6 16 9.4 even 3