Properties

Label 126.16.a.n.1.4
Level $126$
Weight $16$
Character 126.1
Self dual yes
Analytic conductor $179.794$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,16,Mod(1,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 16, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.1"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 126.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-512,0,65536,-291312] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(179.793816426\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 201842416x^{2} + 1462712685511x - 2792107035723495 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{8}\cdot 5^{2}\cdot 7^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-17211.5\) of defining polynomial
Character \(\chi\) \(=\) 126.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-128.000 q^{2} +16384.0 q^{4} +182011. q^{5} +823543. q^{7} -2.09715e6 q^{8} -2.32974e7 q^{10} -1.07710e8 q^{11} -9.14826e7 q^{13} -1.05414e8 q^{14} +2.68435e8 q^{16} +1.71768e9 q^{17} +5.58597e9 q^{19} +2.98207e9 q^{20} +1.37869e10 q^{22} +7.44596e9 q^{23} +2.61047e9 q^{25} +1.17098e10 q^{26} +1.34929e10 q^{28} -1.05345e11 q^{29} -4.89081e10 q^{31} -3.43597e10 q^{32} -2.19863e11 q^{34} +1.49894e11 q^{35} -6.73470e11 q^{37} -7.15005e11 q^{38} -3.81705e11 q^{40} +4.82615e11 q^{41} -1.35876e11 q^{43} -1.76473e12 q^{44} -9.53083e11 q^{46} -9.81674e11 q^{47} +6.78223e11 q^{49} -3.34140e11 q^{50} -1.49885e12 q^{52} +5.44704e12 q^{53} -1.96045e13 q^{55} -1.72709e12 q^{56} +1.34841e13 q^{58} -7.80779e12 q^{59} +2.96698e11 q^{61} +6.26024e12 q^{62} +4.39805e12 q^{64} -1.66509e13 q^{65} -1.32958e13 q^{67} +2.81425e13 q^{68} -1.91864e13 q^{70} -1.39178e14 q^{71} +3.62188e13 q^{73} +8.62041e13 q^{74} +9.15206e13 q^{76} -8.87041e13 q^{77} +2.75120e14 q^{79} +4.88582e13 q^{80} -6.17747e13 q^{82} -7.63360e13 q^{83} +3.12637e14 q^{85} +1.73921e13 q^{86} +2.25885e14 q^{88} -4.96006e13 q^{89} -7.53399e13 q^{91} +1.21995e14 q^{92} +1.25654e14 q^{94} +1.01671e15 q^{95} +4.07266e14 q^{97} -8.68126e13 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 512 q^{2} + 65536 q^{4} - 291312 q^{5} + 3294172 q^{7} - 8388608 q^{8} + 37287936 q^{10} - 121144752 q^{11} + 170165240 q^{13} - 421654016 q^{14} + 1073741824 q^{16} - 345685200 q^{17} + 4738793696 q^{19}+ \cdots - 347250213298688 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −128.000 −0.707107
\(3\) 0 0
\(4\) 16384.0 0.500000
\(5\) 182011. 1.04189 0.520946 0.853589i \(-0.325579\pi\)
0.520946 + 0.853589i \(0.325579\pi\)
\(6\) 0 0
\(7\) 823543. 0.377964
\(8\) −2.09715e6 −0.353553
\(9\) 0 0
\(10\) −2.32974e7 −0.736729
\(11\) −1.07710e8 −1.66653 −0.833263 0.552877i \(-0.813530\pi\)
−0.833263 + 0.552877i \(0.813530\pi\)
\(12\) 0 0
\(13\) −9.14826e7 −0.404356 −0.202178 0.979349i \(-0.564802\pi\)
−0.202178 + 0.979349i \(0.564802\pi\)
\(14\) −1.05414e8 −0.267261
\(15\) 0 0
\(16\) 2.68435e8 0.250000
\(17\) 1.71768e9 1.01526 0.507628 0.861576i \(-0.330522\pi\)
0.507628 + 0.861576i \(0.330522\pi\)
\(18\) 0 0
\(19\) 5.58597e9 1.43366 0.716831 0.697247i \(-0.245592\pi\)
0.716831 + 0.697247i \(0.245592\pi\)
\(20\) 2.98207e9 0.520946
\(21\) 0 0
\(22\) 1.37869e10 1.17841
\(23\) 7.44596e9 0.455997 0.227998 0.973661i \(-0.426782\pi\)
0.227998 + 0.973661i \(0.426782\pi\)
\(24\) 0 0
\(25\) 2.61047e9 0.0855400
\(26\) 1.17098e10 0.285923
\(27\) 0 0
\(28\) 1.34929e10 0.188982
\(29\) −1.05345e11 −1.13404 −0.567020 0.823704i \(-0.691904\pi\)
−0.567020 + 0.823704i \(0.691904\pi\)
\(30\) 0 0
\(31\) −4.89081e10 −0.319277 −0.159639 0.987176i \(-0.551033\pi\)
−0.159639 + 0.987176i \(0.551033\pi\)
\(32\) −3.43597e10 −0.176777
\(33\) 0 0
\(34\) −2.19863e11 −0.717895
\(35\) 1.49894e11 0.393798
\(36\) 0 0
\(37\) −6.73470e11 −1.16629 −0.583143 0.812369i \(-0.698177\pi\)
−0.583143 + 0.812369i \(0.698177\pi\)
\(38\) −7.15005e11 −1.01375
\(39\) 0 0
\(40\) −3.81705e11 −0.368365
\(41\) 4.82615e11 0.387010 0.193505 0.981099i \(-0.438014\pi\)
0.193505 + 0.981099i \(0.438014\pi\)
\(42\) 0 0
\(43\) −1.35876e11 −0.0762306 −0.0381153 0.999273i \(-0.512135\pi\)
−0.0381153 + 0.999273i \(0.512135\pi\)
\(44\) −1.76473e12 −0.833263
\(45\) 0 0
\(46\) −9.53083e11 −0.322439
\(47\) −9.81674e11 −0.282640 −0.141320 0.989964i \(-0.545135\pi\)
−0.141320 + 0.989964i \(0.545135\pi\)
\(48\) 0 0
\(49\) 6.78223e11 0.142857
\(50\) −3.34140e11 −0.0604859
\(51\) 0 0
\(52\) −1.49885e12 −0.202178
\(53\) 5.44704e12 0.636930 0.318465 0.947935i \(-0.396833\pi\)
0.318465 + 0.947935i \(0.396833\pi\)
\(54\) 0 0
\(55\) −1.96045e13 −1.73634
\(56\) −1.72709e12 −0.133631
\(57\) 0 0
\(58\) 1.34841e13 0.801888
\(59\) −7.80779e12 −0.408449 −0.204225 0.978924i \(-0.565467\pi\)
−0.204225 + 0.978924i \(0.565467\pi\)
\(60\) 0 0
\(61\) 2.96698e11 0.0120876 0.00604380 0.999982i \(-0.498076\pi\)
0.00604380 + 0.999982i \(0.498076\pi\)
\(62\) 6.26024e12 0.225763
\(63\) 0 0
\(64\) 4.39805e12 0.125000
\(65\) −1.66509e13 −0.421295
\(66\) 0 0
\(67\) −1.32958e13 −0.268011 −0.134005 0.990981i \(-0.542784\pi\)
−0.134005 + 0.990981i \(0.542784\pi\)
\(68\) 2.81425e13 0.507628
\(69\) 0 0
\(70\) −1.91864e13 −0.278457
\(71\) −1.39178e14 −1.81607 −0.908034 0.418896i \(-0.862417\pi\)
−0.908034 + 0.418896i \(0.862417\pi\)
\(72\) 0 0
\(73\) 3.62188e13 0.383719 0.191859 0.981422i \(-0.438548\pi\)
0.191859 + 0.981422i \(0.438548\pi\)
\(74\) 8.62041e13 0.824689
\(75\) 0 0
\(76\) 9.15206e13 0.716831
\(77\) −8.87041e13 −0.629888
\(78\) 0 0
\(79\) 2.75120e14 1.61183 0.805914 0.592032i \(-0.201674\pi\)
0.805914 + 0.592032i \(0.201674\pi\)
\(80\) 4.88582e13 0.260473
\(81\) 0 0
\(82\) −6.17747e13 −0.273657
\(83\) −7.63360e13 −0.308776 −0.154388 0.988010i \(-0.549341\pi\)
−0.154388 + 0.988010i \(0.549341\pi\)
\(84\) 0 0
\(85\) 3.12637e14 1.05779
\(86\) 1.73921e13 0.0539031
\(87\) 0 0
\(88\) 2.25885e14 0.589206
\(89\) −4.96006e13 −0.118867 −0.0594336 0.998232i \(-0.518929\pi\)
−0.0594336 + 0.998232i \(0.518929\pi\)
\(90\) 0 0
\(91\) −7.53399e13 −0.152832
\(92\) 1.21995e14 0.227998
\(93\) 0 0
\(94\) 1.25654e14 0.199857
\(95\) 1.01671e15 1.49372
\(96\) 0 0
\(97\) 4.07266e14 0.511789 0.255894 0.966705i \(-0.417630\pi\)
0.255894 + 0.966705i \(0.417630\pi\)
\(98\) −8.68126e13 −0.101015
\(99\) 0 0
\(100\) 4.27700e13 0.0427700
\(101\) −5.65816e14 −0.525127 −0.262564 0.964915i \(-0.584568\pi\)
−0.262564 + 0.964915i \(0.584568\pi\)
\(102\) 0 0
\(103\) −1.78833e15 −1.43274 −0.716370 0.697721i \(-0.754198\pi\)
−0.716370 + 0.697721i \(0.754198\pi\)
\(104\) 1.91853e14 0.142961
\(105\) 0 0
\(106\) −6.97222e14 −0.450378
\(107\) 3.74822e14 0.225656 0.112828 0.993615i \(-0.464009\pi\)
0.112828 + 0.993615i \(0.464009\pi\)
\(108\) 0 0
\(109\) 1.18462e15 0.620695 0.310348 0.950623i \(-0.399555\pi\)
0.310348 + 0.950623i \(0.399555\pi\)
\(110\) 2.50937e15 1.22778
\(111\) 0 0
\(112\) 2.21068e14 0.0944911
\(113\) −2.91865e15 −1.16706 −0.583530 0.812092i \(-0.698329\pi\)
−0.583530 + 0.812092i \(0.698329\pi\)
\(114\) 0 0
\(115\) 1.35525e15 0.475100
\(116\) −1.72597e15 −0.567020
\(117\) 0 0
\(118\) 9.99397e14 0.288817
\(119\) 1.41458e15 0.383731
\(120\) 0 0
\(121\) 7.42426e15 1.77731
\(122\) −3.79773e13 −0.00854723
\(123\) 0 0
\(124\) −8.01310e14 −0.159639
\(125\) −5.07940e15 −0.952769
\(126\) 0 0
\(127\) 1.94991e15 0.324703 0.162352 0.986733i \(-0.448092\pi\)
0.162352 + 0.986733i \(0.448092\pi\)
\(128\) −5.62950e14 −0.0883883
\(129\) 0 0
\(130\) 2.13131e15 0.297901
\(131\) −1.15882e13 −0.00152926 −0.000764629 1.00000i \(-0.500243\pi\)
−0.000764629 1.00000i \(0.500243\pi\)
\(132\) 0 0
\(133\) 4.60029e15 0.541873
\(134\) 1.70186e15 0.189512
\(135\) 0 0
\(136\) −3.60224e15 −0.358947
\(137\) −7.56436e15 −0.713458 −0.356729 0.934208i \(-0.616108\pi\)
−0.356729 + 0.934208i \(0.616108\pi\)
\(138\) 0 0
\(139\) −6.89957e15 −0.583729 −0.291864 0.956460i \(-0.594276\pi\)
−0.291864 + 0.956460i \(0.594276\pi\)
\(140\) 2.45586e15 0.196899
\(141\) 0 0
\(142\) 1.78148e16 1.28415
\(143\) 9.85362e15 0.673869
\(144\) 0 0
\(145\) −1.91739e16 −1.18155
\(146\) −4.63601e15 −0.271330
\(147\) 0 0
\(148\) −1.10341e16 −0.583143
\(149\) −2.34549e16 −1.17852 −0.589261 0.807943i \(-0.700581\pi\)
−0.589261 + 0.807943i \(0.700581\pi\)
\(150\) 0 0
\(151\) 4.34974e16 1.97759 0.988794 0.149287i \(-0.0476977\pi\)
0.988794 + 0.149287i \(0.0476977\pi\)
\(152\) −1.17146e16 −0.506876
\(153\) 0 0
\(154\) 1.13541e16 0.445398
\(155\) −8.90182e15 −0.332653
\(156\) 0 0
\(157\) 4.92741e16 1.67252 0.836260 0.548334i \(-0.184738\pi\)
0.836260 + 0.548334i \(0.184738\pi\)
\(158\) −3.52153e16 −1.13973
\(159\) 0 0
\(160\) −6.25385e15 −0.184182
\(161\) 6.13207e15 0.172351
\(162\) 0 0
\(163\) −1.68432e16 −0.431536 −0.215768 0.976445i \(-0.569225\pi\)
−0.215768 + 0.976445i \(0.569225\pi\)
\(164\) 7.90717e15 0.193505
\(165\) 0 0
\(166\) 9.77101e15 0.218338
\(167\) 2.93793e16 0.627578 0.313789 0.949493i \(-0.398401\pi\)
0.313789 + 0.949493i \(0.398401\pi\)
\(168\) 0 0
\(169\) −4.28168e16 −0.836497
\(170\) −4.00175e16 −0.747969
\(171\) 0 0
\(172\) −2.22619e15 −0.0381153
\(173\) 1.72022e16 0.281993 0.140997 0.990010i \(-0.454969\pi\)
0.140997 + 0.990010i \(0.454969\pi\)
\(174\) 0 0
\(175\) 2.14984e15 0.0323311
\(176\) −2.89133e16 −0.416632
\(177\) 0 0
\(178\) 6.34888e15 0.0840518
\(179\) 1.00380e17 1.27424 0.637119 0.770765i \(-0.280126\pi\)
0.637119 + 0.770765i \(0.280126\pi\)
\(180\) 0 0
\(181\) −1.49173e17 −1.74221 −0.871103 0.491100i \(-0.836595\pi\)
−0.871103 + 0.491100i \(0.836595\pi\)
\(182\) 9.64350e15 0.108069
\(183\) 0 0
\(184\) −1.56153e16 −0.161219
\(185\) −1.22579e17 −1.21514
\(186\) 0 0
\(187\) −1.85012e17 −1.69195
\(188\) −1.60837e16 −0.141320
\(189\) 0 0
\(190\) −1.30139e17 −1.05622
\(191\) −1.96712e17 −1.53490 −0.767450 0.641108i \(-0.778475\pi\)
−0.767450 + 0.641108i \(0.778475\pi\)
\(192\) 0 0
\(193\) 1.62414e16 0.117205 0.0586023 0.998281i \(-0.481336\pi\)
0.0586023 + 0.998281i \(0.481336\pi\)
\(194\) −5.21301e16 −0.361889
\(195\) 0 0
\(196\) 1.11120e16 0.0714286
\(197\) −1.32502e17 −0.819831 −0.409915 0.912124i \(-0.634442\pi\)
−0.409915 + 0.912124i \(0.634442\pi\)
\(198\) 0 0
\(199\) −1.01048e17 −0.579600 −0.289800 0.957087i \(-0.593589\pi\)
−0.289800 + 0.957087i \(0.593589\pi\)
\(200\) −5.47456e15 −0.0302429
\(201\) 0 0
\(202\) 7.24244e16 0.371321
\(203\) −8.67560e16 −0.428627
\(204\) 0 0
\(205\) 8.78413e16 0.403223
\(206\) 2.28906e17 1.01310
\(207\) 0 0
\(208\) −2.45572e16 −0.101089
\(209\) −6.01667e17 −2.38924
\(210\) 0 0
\(211\) 3.94434e17 1.45833 0.729165 0.684338i \(-0.239909\pi\)
0.729165 + 0.684338i \(0.239909\pi\)
\(212\) 8.92444e16 0.318465
\(213\) 0 0
\(214\) −4.79772e16 −0.159563
\(215\) −2.47309e16 −0.0794240
\(216\) 0 0
\(217\) −4.02779e16 −0.120675
\(218\) −1.51631e17 −0.438898
\(219\) 0 0
\(220\) −3.21200e17 −0.868171
\(221\) −1.57138e17 −0.410525
\(222\) 0 0
\(223\) −4.39611e17 −1.07345 −0.536725 0.843757i \(-0.680339\pi\)
−0.536725 + 0.843757i \(0.680339\pi\)
\(224\) −2.82967e16 −0.0668153
\(225\) 0 0
\(226\) 3.73587e17 0.825236
\(227\) −8.61734e17 −1.84153 −0.920766 0.390114i \(-0.872435\pi\)
−0.920766 + 0.390114i \(0.872435\pi\)
\(228\) 0 0
\(229\) 8.53953e17 1.70871 0.854354 0.519691i \(-0.173953\pi\)
0.854354 + 0.519691i \(0.173953\pi\)
\(230\) −1.73472e17 −0.335946
\(231\) 0 0
\(232\) 2.20924e17 0.400944
\(233\) −4.47950e17 −0.787155 −0.393578 0.919291i \(-0.628763\pi\)
−0.393578 + 0.919291i \(0.628763\pi\)
\(234\) 0 0
\(235\) −1.78676e17 −0.294480
\(236\) −1.27923e17 −0.204225
\(237\) 0 0
\(238\) −1.81067e17 −0.271339
\(239\) 1.86410e17 0.270698 0.135349 0.990798i \(-0.456784\pi\)
0.135349 + 0.990798i \(0.456784\pi\)
\(240\) 0 0
\(241\) −7.85126e17 −1.07105 −0.535527 0.844518i \(-0.679887\pi\)
−0.535527 + 0.844518i \(0.679887\pi\)
\(242\) −9.50306e17 −1.25675
\(243\) 0 0
\(244\) 4.86109e15 0.00604380
\(245\) 1.23444e17 0.148842
\(246\) 0 0
\(247\) −5.11020e17 −0.579709
\(248\) 1.02568e17 0.112882
\(249\) 0 0
\(250\) 6.50164e17 0.673709
\(251\) −3.54416e17 −0.356418 −0.178209 0.983993i \(-0.557030\pi\)
−0.178209 + 0.983993i \(0.557030\pi\)
\(252\) 0 0
\(253\) −8.02007e17 −0.759931
\(254\) −2.49588e17 −0.229600
\(255\) 0 0
\(256\) 7.20576e16 0.0625000
\(257\) −1.97949e18 −1.66746 −0.833730 0.552172i \(-0.813799\pi\)
−0.833730 + 0.552172i \(0.813799\pi\)
\(258\) 0 0
\(259\) −5.54631e17 −0.440815
\(260\) −2.72808e17 −0.210648
\(261\) 0 0
\(262\) 1.48329e15 0.00108135
\(263\) −1.27171e18 −0.900991 −0.450496 0.892779i \(-0.648753\pi\)
−0.450496 + 0.892779i \(0.648753\pi\)
\(264\) 0 0
\(265\) 9.91423e17 0.663613
\(266\) −5.88837e17 −0.383162
\(267\) 0 0
\(268\) −2.17838e17 −0.134005
\(269\) −1.86054e18 −1.11300 −0.556501 0.830847i \(-0.687856\pi\)
−0.556501 + 0.830847i \(0.687856\pi\)
\(270\) 0 0
\(271\) 2.95868e18 1.67428 0.837141 0.546986i \(-0.184225\pi\)
0.837141 + 0.546986i \(0.184225\pi\)
\(272\) 4.61087e17 0.253814
\(273\) 0 0
\(274\) 9.68238e17 0.504491
\(275\) −2.81175e17 −0.142555
\(276\) 0 0
\(277\) 1.22524e18 0.588331 0.294165 0.955755i \(-0.404958\pi\)
0.294165 + 0.955755i \(0.404958\pi\)
\(278\) 8.83145e17 0.412759
\(279\) 0 0
\(280\) −3.14350e17 −0.139229
\(281\) −6.54984e17 −0.282445 −0.141222 0.989978i \(-0.545103\pi\)
−0.141222 + 0.989978i \(0.545103\pi\)
\(282\) 0 0
\(283\) −1.23781e18 −0.506123 −0.253062 0.967450i \(-0.581438\pi\)
−0.253062 + 0.967450i \(0.581438\pi\)
\(284\) −2.28029e18 −0.908034
\(285\) 0 0
\(286\) −1.26126e18 −0.476497
\(287\) 3.97454e17 0.146276
\(288\) 0 0
\(289\) 8.80055e16 0.0307451
\(290\) 2.45426e18 0.835481
\(291\) 0 0
\(292\) 5.93410e17 0.191859
\(293\) 5.36204e18 1.68975 0.844876 0.534962i \(-0.179674\pi\)
0.844876 + 0.534962i \(0.179674\pi\)
\(294\) 0 0
\(295\) −1.42110e18 −0.425560
\(296\) 1.41237e18 0.412344
\(297\) 0 0
\(298\) 3.00223e18 0.833340
\(299\) −6.81176e17 −0.184385
\(300\) 0 0
\(301\) −1.11900e17 −0.0288124
\(302\) −5.56766e18 −1.39837
\(303\) 0 0
\(304\) 1.49947e18 0.358416
\(305\) 5.40023e16 0.0125940
\(306\) 0 0
\(307\) −3.92173e18 −0.870844 −0.435422 0.900226i \(-0.643401\pi\)
−0.435422 + 0.900226i \(0.643401\pi\)
\(308\) −1.45333e18 −0.314944
\(309\) 0 0
\(310\) 1.13943e18 0.235221
\(311\) −6.88321e18 −1.38704 −0.693518 0.720439i \(-0.743940\pi\)
−0.693518 + 0.720439i \(0.743940\pi\)
\(312\) 0 0
\(313\) 4.26355e18 0.818822 0.409411 0.912350i \(-0.365734\pi\)
0.409411 + 0.912350i \(0.365734\pi\)
\(314\) −6.30708e18 −1.18265
\(315\) 0 0
\(316\) 4.50756e18 0.805914
\(317\) −5.61923e18 −0.981143 −0.490572 0.871401i \(-0.663212\pi\)
−0.490572 + 0.871401i \(0.663212\pi\)
\(318\) 0 0
\(319\) 1.13467e19 1.88991
\(320\) 8.00493e17 0.130237
\(321\) 0 0
\(322\) −7.84905e17 −0.121870
\(323\) 9.59492e18 1.45553
\(324\) 0 0
\(325\) −2.38813e17 −0.0345886
\(326\) 2.15593e18 0.305142
\(327\) 0 0
\(328\) −1.01212e18 −0.136829
\(329\) −8.08451e17 −0.106828
\(330\) 0 0
\(331\) −5.31918e17 −0.0671638 −0.0335819 0.999436i \(-0.510691\pi\)
−0.0335819 + 0.999436i \(0.510691\pi\)
\(332\) −1.25069e18 −0.154388
\(333\) 0 0
\(334\) −3.76055e18 −0.443765
\(335\) −2.41998e18 −0.279238
\(336\) 0 0
\(337\) −1.42988e19 −1.57789 −0.788943 0.614466i \(-0.789371\pi\)
−0.788943 + 0.614466i \(0.789371\pi\)
\(338\) 5.48055e18 0.591492
\(339\) 0 0
\(340\) 5.12225e18 0.528894
\(341\) 5.26791e18 0.532084
\(342\) 0 0
\(343\) 5.58546e17 0.0539949
\(344\) 2.84952e17 0.0269516
\(345\) 0 0
\(346\) −2.20188e18 −0.199399
\(347\) 5.48427e18 0.486013 0.243007 0.970025i \(-0.421866\pi\)
0.243007 + 0.970025i \(0.421866\pi\)
\(348\) 0 0
\(349\) −2.13307e19 −1.81057 −0.905284 0.424808i \(-0.860342\pi\)
−0.905284 + 0.424808i \(0.860342\pi\)
\(350\) −2.75179e17 −0.0228615
\(351\) 0 0
\(352\) 3.70090e18 0.294603
\(353\) −1.04779e19 −0.816514 −0.408257 0.912867i \(-0.633863\pi\)
−0.408257 + 0.912867i \(0.633863\pi\)
\(354\) 0 0
\(355\) −2.53319e19 −1.89215
\(356\) −8.12657e17 −0.0594336
\(357\) 0 0
\(358\) −1.28487e19 −0.901023
\(359\) −7.77860e17 −0.0534187 −0.0267093 0.999643i \(-0.508503\pi\)
−0.0267093 + 0.999643i \(0.508503\pi\)
\(360\) 0 0
\(361\) 1.60220e19 1.05539
\(362\) 1.90941e19 1.23193
\(363\) 0 0
\(364\) −1.23437e18 −0.0764160
\(365\) 6.59223e18 0.399794
\(366\) 0 0
\(367\) −3.42327e19 −1.99272 −0.996358 0.0852668i \(-0.972826\pi\)
−0.996358 + 0.0852668i \(0.972826\pi\)
\(368\) 1.99876e18 0.113999
\(369\) 0 0
\(370\) 1.56901e19 0.859237
\(371\) 4.48588e18 0.240737
\(372\) 0 0
\(373\) 1.52798e19 0.787594 0.393797 0.919197i \(-0.371161\pi\)
0.393797 + 0.919197i \(0.371161\pi\)
\(374\) 2.36815e19 1.19639
\(375\) 0 0
\(376\) 2.05872e18 0.0999283
\(377\) 9.63723e18 0.458556
\(378\) 0 0
\(379\) −2.04517e19 −0.935265 −0.467633 0.883923i \(-0.654893\pi\)
−0.467633 + 0.883923i \(0.654893\pi\)
\(380\) 1.66578e19 0.746861
\(381\) 0 0
\(382\) 2.51791e19 1.08534
\(383\) 3.67683e19 1.55411 0.777057 0.629430i \(-0.216712\pi\)
0.777057 + 0.629430i \(0.216712\pi\)
\(384\) 0 0
\(385\) −1.61451e19 −0.656275
\(386\) −2.07890e18 −0.0828761
\(387\) 0 0
\(388\) 6.67265e18 0.255894
\(389\) −9.40953e18 −0.353953 −0.176977 0.984215i \(-0.556632\pi\)
−0.176977 + 0.984215i \(0.556632\pi\)
\(390\) 0 0
\(391\) 1.27898e19 0.462954
\(392\) −1.42234e18 −0.0505076
\(393\) 0 0
\(394\) 1.69602e19 0.579708
\(395\) 5.00749e19 1.67935
\(396\) 0 0
\(397\) −2.55384e19 −0.824640 −0.412320 0.911039i \(-0.635281\pi\)
−0.412320 + 0.911039i \(0.635281\pi\)
\(398\) 1.29341e19 0.409839
\(399\) 0 0
\(400\) 7.00743e17 0.0213850
\(401\) −4.47453e19 −1.34019 −0.670093 0.742277i \(-0.733746\pi\)
−0.670093 + 0.742277i \(0.733746\pi\)
\(402\) 0 0
\(403\) 4.47424e18 0.129102
\(404\) −9.27032e18 −0.262564
\(405\) 0 0
\(406\) 1.11048e19 0.303085
\(407\) 7.25396e19 1.94365
\(408\) 0 0
\(409\) 1.48506e19 0.383547 0.191774 0.981439i \(-0.438576\pi\)
0.191774 + 0.981439i \(0.438576\pi\)
\(410\) −1.12437e19 −0.285121
\(411\) 0 0
\(412\) −2.92999e19 −0.716370
\(413\) −6.43005e18 −0.154379
\(414\) 0 0
\(415\) −1.38940e19 −0.321711
\(416\) 3.14332e18 0.0714806
\(417\) 0 0
\(418\) 7.70134e19 1.68944
\(419\) 5.02854e19 1.08352 0.541760 0.840533i \(-0.317758\pi\)
0.541760 + 0.840533i \(0.317758\pi\)
\(420\) 0 0
\(421\) 2.06177e19 0.428672 0.214336 0.976760i \(-0.431241\pi\)
0.214336 + 0.976760i \(0.431241\pi\)
\(422\) −5.04876e19 −1.03120
\(423\) 0 0
\(424\) −1.14233e19 −0.225189
\(425\) 4.48396e18 0.0868450
\(426\) 0 0
\(427\) 2.44343e17 0.00456868
\(428\) 6.14108e18 0.112828
\(429\) 0 0
\(430\) 3.16556e18 0.0561613
\(431\) 4.66277e19 0.812952 0.406476 0.913662i \(-0.366758\pi\)
0.406476 + 0.913662i \(0.366758\pi\)
\(432\) 0 0
\(433\) −7.04988e19 −1.18720 −0.593598 0.804761i \(-0.702293\pi\)
−0.593598 + 0.804761i \(0.702293\pi\)
\(434\) 5.15557e18 0.0853305
\(435\) 0 0
\(436\) 1.94087e19 0.310348
\(437\) 4.15929e19 0.653746
\(438\) 0 0
\(439\) 7.86521e19 1.19461 0.597305 0.802014i \(-0.296238\pi\)
0.597305 + 0.802014i \(0.296238\pi\)
\(440\) 4.11136e19 0.613889
\(441\) 0 0
\(442\) 2.01137e19 0.290285
\(443\) 7.84965e19 1.11384 0.556920 0.830566i \(-0.311983\pi\)
0.556920 + 0.830566i \(0.311983\pi\)
\(444\) 0 0
\(445\) −9.02786e18 −0.123847
\(446\) 5.62702e19 0.759044
\(447\) 0 0
\(448\) 3.62198e18 0.0472456
\(449\) −3.72442e19 −0.477762 −0.238881 0.971049i \(-0.576781\pi\)
−0.238881 + 0.971049i \(0.576781\pi\)
\(450\) 0 0
\(451\) −5.19826e19 −0.644962
\(452\) −4.78191e19 −0.583530
\(453\) 0 0
\(454\) 1.10302e20 1.30216
\(455\) −1.37127e19 −0.159235
\(456\) 0 0
\(457\) −1.52565e20 −1.71429 −0.857144 0.515076i \(-0.827764\pi\)
−0.857144 + 0.515076i \(0.827764\pi\)
\(458\) −1.09306e20 −1.20824
\(459\) 0 0
\(460\) 2.22044e19 0.237550
\(461\) −7.19267e19 −0.757065 −0.378533 0.925588i \(-0.623571\pi\)
−0.378533 + 0.925588i \(0.623571\pi\)
\(462\) 0 0
\(463\) 1.12558e20 1.14688 0.573439 0.819248i \(-0.305609\pi\)
0.573439 + 0.819248i \(0.305609\pi\)
\(464\) −2.82783e19 −0.283510
\(465\) 0 0
\(466\) 5.73376e19 0.556603
\(467\) 9.05226e19 0.864730 0.432365 0.901699i \(-0.357679\pi\)
0.432365 + 0.901699i \(0.357679\pi\)
\(468\) 0 0
\(469\) −1.09496e19 −0.101298
\(470\) 2.28705e19 0.208229
\(471\) 0 0
\(472\) 1.63741e19 0.144409
\(473\) 1.46352e19 0.127040
\(474\) 0 0
\(475\) 1.45820e19 0.122635
\(476\) 2.31765e19 0.191865
\(477\) 0 0
\(478\) −2.38605e19 −0.191412
\(479\) −1.25973e20 −0.994862 −0.497431 0.867504i \(-0.665723\pi\)
−0.497431 + 0.867504i \(0.665723\pi\)
\(480\) 0 0
\(481\) 6.16108e19 0.471594
\(482\) 1.00496e20 0.757350
\(483\) 0 0
\(484\) 1.21639e20 0.888655
\(485\) 7.41270e19 0.533229
\(486\) 0 0
\(487\) −2.16573e20 −1.51055 −0.755277 0.655406i \(-0.772498\pi\)
−0.755277 + 0.655406i \(0.772498\pi\)
\(488\) −6.22220e17 −0.00427361
\(489\) 0 0
\(490\) −1.58009e19 −0.105247
\(491\) 1.03189e19 0.0676897 0.0338448 0.999427i \(-0.489225\pi\)
0.0338448 + 0.999427i \(0.489225\pi\)
\(492\) 0 0
\(493\) −1.80949e20 −1.15134
\(494\) 6.54105e19 0.409916
\(495\) 0 0
\(496\) −1.31287e19 −0.0798193
\(497\) −1.14619e20 −0.686409
\(498\) 0 0
\(499\) −1.32540e19 −0.0770184 −0.0385092 0.999258i \(-0.512261\pi\)
−0.0385092 + 0.999258i \(0.512261\pi\)
\(500\) −8.32210e19 −0.476385
\(501\) 0 0
\(502\) 4.53652e19 0.252026
\(503\) −2.57109e20 −1.40720 −0.703601 0.710595i \(-0.748426\pi\)
−0.703601 + 0.710595i \(0.748426\pi\)
\(504\) 0 0
\(505\) −1.02985e20 −0.547126
\(506\) 1.02657e20 0.537352
\(507\) 0 0
\(508\) 3.19473e19 0.162352
\(509\) 1.28098e20 0.641445 0.320722 0.947173i \(-0.396074\pi\)
0.320722 + 0.947173i \(0.396074\pi\)
\(510\) 0 0
\(511\) 2.98278e19 0.145032
\(512\) −9.22337e18 −0.0441942
\(513\) 0 0
\(514\) 2.53375e20 1.17907
\(515\) −3.25495e20 −1.49276
\(516\) 0 0
\(517\) 1.05736e20 0.471027
\(518\) 7.09928e19 0.311703
\(519\) 0 0
\(520\) 3.49194e19 0.148950
\(521\) 1.58752e20 0.667479 0.333739 0.942665i \(-0.391689\pi\)
0.333739 + 0.942665i \(0.391689\pi\)
\(522\) 0 0
\(523\) −3.26199e20 −1.33266 −0.666332 0.745655i \(-0.732137\pi\)
−0.666332 + 0.745655i \(0.732137\pi\)
\(524\) −1.89861e17 −0.000764629 0
\(525\) 0 0
\(526\) 1.62779e20 0.637097
\(527\) −8.40085e19 −0.324148
\(528\) 0 0
\(529\) −2.11193e20 −0.792067
\(530\) −1.26902e20 −0.469245
\(531\) 0 0
\(532\) 7.53711e19 0.270937
\(533\) −4.41509e19 −0.156490
\(534\) 0 0
\(535\) 6.82217e19 0.235109
\(536\) 2.78832e19 0.0947561
\(537\) 0 0
\(538\) 2.38149e20 0.787011
\(539\) −7.30516e19 −0.238075
\(540\) 0 0
\(541\) 1.98570e20 0.629410 0.314705 0.949189i \(-0.398094\pi\)
0.314705 + 0.949189i \(0.398094\pi\)
\(542\) −3.78711e20 −1.18390
\(543\) 0 0
\(544\) −5.90191e19 −0.179474
\(545\) 2.15613e20 0.646698
\(546\) 0 0
\(547\) −2.10634e20 −0.614644 −0.307322 0.951606i \(-0.599433\pi\)
−0.307322 + 0.951606i \(0.599433\pi\)
\(548\) −1.23935e20 −0.356729
\(549\) 0 0
\(550\) 3.59904e19 0.100801
\(551\) −5.88454e20 −1.62583
\(552\) 0 0
\(553\) 2.26573e20 0.609214
\(554\) −1.56830e20 −0.416013
\(555\) 0 0
\(556\) −1.13043e20 −0.291864
\(557\) −2.22267e20 −0.566190 −0.283095 0.959092i \(-0.591361\pi\)
−0.283095 + 0.959092i \(0.591361\pi\)
\(558\) 0 0
\(559\) 1.24303e19 0.0308243
\(560\) 4.02369e19 0.0984496
\(561\) 0 0
\(562\) 8.38380e19 0.199719
\(563\) −1.15730e20 −0.272041 −0.136021 0.990706i \(-0.543431\pi\)
−0.136021 + 0.990706i \(0.543431\pi\)
\(564\) 0 0
\(565\) −5.31226e20 −1.21595
\(566\) 1.58440e20 0.357883
\(567\) 0 0
\(568\) 2.91877e20 0.642077
\(569\) −7.79708e20 −1.69274 −0.846369 0.532596i \(-0.821216\pi\)
−0.846369 + 0.532596i \(0.821216\pi\)
\(570\) 0 0
\(571\) −7.31712e20 −1.54728 −0.773641 0.633625i \(-0.781566\pi\)
−0.773641 + 0.633625i \(0.781566\pi\)
\(572\) 1.61442e20 0.336935
\(573\) 0 0
\(574\) −5.08741e19 −0.103433
\(575\) 1.94375e19 0.0390060
\(576\) 0 0
\(577\) −5.47917e20 −1.07126 −0.535631 0.844452i \(-0.679926\pi\)
−0.535631 + 0.844452i \(0.679926\pi\)
\(578\) −1.12647e19 −0.0217401
\(579\) 0 0
\(580\) −3.14146e20 −0.590774
\(581\) −6.28660e19 −0.116706
\(582\) 0 0
\(583\) −5.86703e20 −1.06146
\(584\) −7.59564e19 −0.135665
\(585\) 0 0
\(586\) −6.86341e20 −1.19484
\(587\) −2.66561e20 −0.458153 −0.229077 0.973408i \(-0.573571\pi\)
−0.229077 + 0.973408i \(0.573571\pi\)
\(588\) 0 0
\(589\) −2.73199e20 −0.457736
\(590\) 1.81901e20 0.300916
\(591\) 0 0
\(592\) −1.80783e20 −0.291572
\(593\) −9.42224e20 −1.50053 −0.750264 0.661138i \(-0.770074\pi\)
−0.750264 + 0.661138i \(0.770074\pi\)
\(594\) 0 0
\(595\) 2.57470e20 0.399806
\(596\) −3.84286e20 −0.589261
\(597\) 0 0
\(598\) 8.71905e19 0.130380
\(599\) −7.18086e20 −1.06041 −0.530207 0.847868i \(-0.677886\pi\)
−0.530207 + 0.847868i \(0.677886\pi\)
\(600\) 0 0
\(601\) 1.57131e20 0.226310 0.113155 0.993577i \(-0.463904\pi\)
0.113155 + 0.993577i \(0.463904\pi\)
\(602\) 1.43232e19 0.0203735
\(603\) 0 0
\(604\) 7.12661e20 0.988794
\(605\) 1.35130e21 1.85177
\(606\) 0 0
\(607\) −1.33189e21 −1.78055 −0.890273 0.455428i \(-0.849486\pi\)
−0.890273 + 0.455428i \(0.849486\pi\)
\(608\) −1.91933e20 −0.253438
\(609\) 0 0
\(610\) −6.91229e18 −0.00890529
\(611\) 8.98061e19 0.114287
\(612\) 0 0
\(613\) 1.44420e21 1.79338 0.896692 0.442654i \(-0.145963\pi\)
0.896692 + 0.442654i \(0.145963\pi\)
\(614\) 5.01982e20 0.615780
\(615\) 0 0
\(616\) 1.86026e20 0.222699
\(617\) 1.10371e20 0.130531 0.0652657 0.997868i \(-0.479211\pi\)
0.0652657 + 0.997868i \(0.479211\pi\)
\(618\) 0 0
\(619\) 1.26529e21 1.46053 0.730265 0.683164i \(-0.239396\pi\)
0.730265 + 0.683164i \(0.239396\pi\)
\(620\) −1.45847e20 −0.166326
\(621\) 0 0
\(622\) 8.81050e20 0.980783
\(623\) −4.08482e19 −0.0449276
\(624\) 0 0
\(625\) −1.00417e21 −1.07822
\(626\) −5.45735e20 −0.578994
\(627\) 0 0
\(628\) 8.07306e20 0.836260
\(629\) −1.15681e21 −1.18408
\(630\) 0 0
\(631\) 9.83019e20 0.982521 0.491261 0.871013i \(-0.336536\pi\)
0.491261 + 0.871013i \(0.336536\pi\)
\(632\) −5.76968e20 −0.569867
\(633\) 0 0
\(634\) 7.19261e20 0.693773
\(635\) 3.54905e20 0.338306
\(636\) 0 0
\(637\) −6.20456e19 −0.0577651
\(638\) −1.45238e21 −1.33637
\(639\) 0 0
\(640\) −1.02463e20 −0.0920912
\(641\) 2.00102e21 1.77753 0.888763 0.458367i \(-0.151566\pi\)
0.888763 + 0.458367i \(0.151566\pi\)
\(642\) 0 0
\(643\) 1.47017e21 1.27580 0.637902 0.770118i \(-0.279803\pi\)
0.637902 + 0.770118i \(0.279803\pi\)
\(644\) 1.00468e20 0.0861753
\(645\) 0 0
\(646\) −1.22815e21 −1.02922
\(647\) −5.83262e20 −0.483149 −0.241575 0.970382i \(-0.577664\pi\)
−0.241575 + 0.970382i \(0.577664\pi\)
\(648\) 0 0
\(649\) 8.40979e20 0.680691
\(650\) 3.05680e19 0.0244578
\(651\) 0 0
\(652\) −2.75959e20 −0.215768
\(653\) 3.61890e20 0.279723 0.139861 0.990171i \(-0.455334\pi\)
0.139861 + 0.990171i \(0.455334\pi\)
\(654\) 0 0
\(655\) −2.10918e18 −0.00159332
\(656\) 1.29551e20 0.0967524
\(657\) 0 0
\(658\) 1.03482e20 0.0755387
\(659\) 2.22311e21 1.60443 0.802214 0.597036i \(-0.203655\pi\)
0.802214 + 0.597036i \(0.203655\pi\)
\(660\) 0 0
\(661\) −8.08136e20 −0.570129 −0.285065 0.958508i \(-0.592015\pi\)
−0.285065 + 0.958508i \(0.592015\pi\)
\(662\) 6.80855e19 0.0474920
\(663\) 0 0
\(664\) 1.60088e20 0.109169
\(665\) 8.37304e20 0.564574
\(666\) 0 0
\(667\) −7.84394e20 −0.517119
\(668\) 4.81351e20 0.313789
\(669\) 0 0
\(670\) 3.09757e20 0.197451
\(671\) −3.19574e19 −0.0201443
\(672\) 0 0
\(673\) 2.42668e21 1.49589 0.747945 0.663760i \(-0.231040\pi\)
0.747945 + 0.663760i \(0.231040\pi\)
\(674\) 1.83025e21 1.11573
\(675\) 0 0
\(676\) −7.01511e20 −0.418248
\(677\) −2.15809e20 −0.127249 −0.0636244 0.997974i \(-0.520266\pi\)
−0.0636244 + 0.997974i \(0.520266\pi\)
\(678\) 0 0
\(679\) 3.35401e20 0.193438
\(680\) −6.55647e20 −0.373984
\(681\) 0 0
\(682\) −6.74292e20 −0.376240
\(683\) 3.50561e21 1.93467 0.967337 0.253493i \(-0.0815795\pi\)
0.967337 + 0.253493i \(0.0815795\pi\)
\(684\) 0 0
\(685\) −1.37680e21 −0.743346
\(686\) −7.14939e19 −0.0381802
\(687\) 0 0
\(688\) −3.64739e19 −0.0190576
\(689\) −4.98310e20 −0.257546
\(690\) 0 0
\(691\) 2.68683e21 1.35880 0.679399 0.733769i \(-0.262240\pi\)
0.679399 + 0.733769i \(0.262240\pi\)
\(692\) 2.81841e20 0.140997
\(693\) 0 0
\(694\) −7.01987e20 −0.343663
\(695\) −1.25580e21 −0.608183
\(696\) 0 0
\(697\) 8.28979e20 0.392914
\(698\) 2.73033e21 1.28026
\(699\) 0 0
\(700\) 3.52229e19 0.0161655
\(701\) 1.21386e21 0.551165 0.275583 0.961277i \(-0.411129\pi\)
0.275583 + 0.961277i \(0.411129\pi\)
\(702\) 0 0
\(703\) −3.76198e21 −1.67206
\(704\) −4.73715e20 −0.208316
\(705\) 0 0
\(706\) 1.34117e21 0.577362
\(707\) −4.65973e20 −0.198479
\(708\) 0 0
\(709\) 9.43378e20 0.393404 0.196702 0.980463i \(-0.436977\pi\)
0.196702 + 0.980463i \(0.436977\pi\)
\(710\) 3.24248e21 1.33795
\(711\) 0 0
\(712\) 1.04020e20 0.0420259
\(713\) −3.64168e20 −0.145590
\(714\) 0 0
\(715\) 1.79347e21 0.702099
\(716\) 1.64463e21 0.637119
\(717\) 0 0
\(718\) 9.95661e19 0.0377727
\(719\) −4.15024e21 −1.55814 −0.779069 0.626938i \(-0.784308\pi\)
−0.779069 + 0.626938i \(0.784308\pi\)
\(720\) 0 0
\(721\) −1.47276e21 −0.541525
\(722\) −2.05081e21 −0.746272
\(723\) 0 0
\(724\) −2.44404e21 −0.871103
\(725\) −2.75000e20 −0.0970058
\(726\) 0 0
\(727\) 1.48472e21 0.513023 0.256512 0.966541i \(-0.417427\pi\)
0.256512 + 0.966541i \(0.417427\pi\)
\(728\) 1.57999e20 0.0540343
\(729\) 0 0
\(730\) −8.43806e20 −0.282697
\(731\) −2.33392e20 −0.0773935
\(732\) 0 0
\(733\) 7.93240e20 0.257706 0.128853 0.991664i \(-0.458870\pi\)
0.128853 + 0.991664i \(0.458870\pi\)
\(734\) 4.38178e21 1.40906
\(735\) 0 0
\(736\) −2.55841e20 −0.0806096
\(737\) 1.43209e21 0.446647
\(738\) 0 0
\(739\) −7.75584e20 −0.237026 −0.118513 0.992953i \(-0.537813\pi\)
−0.118513 + 0.992953i \(0.537813\pi\)
\(740\) −2.00833e21 −0.607572
\(741\) 0 0
\(742\) −5.74192e20 −0.170227
\(743\) −9.10804e20 −0.267306 −0.133653 0.991028i \(-0.542671\pi\)
−0.133653 + 0.991028i \(0.542671\pi\)
\(744\) 0 0
\(745\) −4.26906e21 −1.22789
\(746\) −1.95582e21 −0.556913
\(747\) 0 0
\(748\) −3.03124e21 −0.845976
\(749\) 3.08682e20 0.0852899
\(750\) 0 0
\(751\) −9.40597e19 −0.0254744 −0.0127372 0.999919i \(-0.504054\pi\)
−0.0127372 + 0.999919i \(0.504054\pi\)
\(752\) −2.63516e20 −0.0706600
\(753\) 0 0
\(754\) −1.23356e21 −0.324248
\(755\) 7.91700e21 2.06043
\(756\) 0 0
\(757\) 6.21339e20 0.158529 0.0792646 0.996854i \(-0.474743\pi\)
0.0792646 + 0.996854i \(0.474743\pi\)
\(758\) 2.61781e21 0.661332
\(759\) 0 0
\(760\) −2.13219e21 −0.528110
\(761\) 2.60068e21 0.637827 0.318913 0.947784i \(-0.396682\pi\)
0.318913 + 0.947784i \(0.396682\pi\)
\(762\) 0 0
\(763\) 9.75581e20 0.234601
\(764\) −3.22293e21 −0.767450
\(765\) 0 0
\(766\) −4.70634e21 −1.09892
\(767\) 7.14277e20 0.165159
\(768\) 0 0
\(769\) 1.73183e21 0.392697 0.196348 0.980534i \(-0.437092\pi\)
0.196348 + 0.980534i \(0.437092\pi\)
\(770\) 2.06658e21 0.464057
\(771\) 0 0
\(772\) 2.66099e20 0.0586023
\(773\) 4.38561e21 0.956497 0.478249 0.878225i \(-0.341272\pi\)
0.478249 + 0.878225i \(0.341272\pi\)
\(774\) 0 0
\(775\) −1.27673e20 −0.0273110
\(776\) −8.54100e20 −0.180945
\(777\) 0 0
\(778\) 1.20442e21 0.250283
\(779\) 2.69588e21 0.554841
\(780\) 0 0
\(781\) 1.49909e22 3.02653
\(782\) −1.63709e21 −0.327358
\(783\) 0 0
\(784\) 1.82059e20 0.0357143
\(785\) 8.96843e21 1.74259
\(786\) 0 0
\(787\) −3.14503e21 −0.599535 −0.299767 0.954012i \(-0.596909\pi\)
−0.299767 + 0.954012i \(0.596909\pi\)
\(788\) −2.17091e21 −0.409915
\(789\) 0 0
\(790\) −6.40958e21 −1.18748
\(791\) −2.40363e21 −0.441107
\(792\) 0 0
\(793\) −2.71427e19 −0.00488769
\(794\) 3.26891e21 0.583108
\(795\) 0 0
\(796\) −1.65557e21 −0.289800
\(797\) −4.17857e21 −0.724587 −0.362294 0.932064i \(-0.618006\pi\)
−0.362294 + 0.932064i \(0.618006\pi\)
\(798\) 0 0
\(799\) −1.68620e21 −0.286952
\(800\) −8.96951e19 −0.0151215
\(801\) 0 0
\(802\) 5.72740e21 0.947655
\(803\) −3.90114e21 −0.639478
\(804\) 0 0
\(805\) 1.11610e21 0.179571
\(806\) −5.72703e20 −0.0912886
\(807\) 0 0
\(808\) 1.18660e21 0.185661
\(809\) 8.36645e21 1.29696 0.648481 0.761231i \(-0.275405\pi\)
0.648481 + 0.761231i \(0.275405\pi\)
\(810\) 0 0
\(811\) 3.04325e21 0.463106 0.231553 0.972822i \(-0.425619\pi\)
0.231553 + 0.972822i \(0.425619\pi\)
\(812\) −1.42141e21 −0.214313
\(813\) 0 0
\(814\) −9.28507e21 −1.37437
\(815\) −3.06565e21 −0.449614
\(816\) 0 0
\(817\) −7.58999e20 −0.109289
\(818\) −1.90087e21 −0.271209
\(819\) 0 0
\(820\) 1.43919e21 0.201611
\(821\) −1.85475e21 −0.257462 −0.128731 0.991680i \(-0.541090\pi\)
−0.128731 + 0.991680i \(0.541090\pi\)
\(822\) 0 0
\(823\) 7.38862e21 1.00708 0.503541 0.863972i \(-0.332030\pi\)
0.503541 + 0.863972i \(0.332030\pi\)
\(824\) 3.75039e21 0.506550
\(825\) 0 0
\(826\) 8.23046e20 0.109163
\(827\) 6.93728e21 0.911797 0.455899 0.890032i \(-0.349318\pi\)
0.455899 + 0.890032i \(0.349318\pi\)
\(828\) 0 0
\(829\) −1.14538e22 −1.47839 −0.739197 0.673490i \(-0.764795\pi\)
−0.739197 + 0.673490i \(0.764795\pi\)
\(830\) 1.77843e21 0.227484
\(831\) 0 0
\(832\) −4.02345e20 −0.0505445
\(833\) 1.16497e21 0.145037
\(834\) 0 0
\(835\) 5.34736e21 0.653869
\(836\) −9.85771e21 −1.19462
\(837\) 0 0
\(838\) −6.43653e21 −0.766164
\(839\) −5.76444e21 −0.680052 −0.340026 0.940416i \(-0.610436\pi\)
−0.340026 + 0.940416i \(0.610436\pi\)
\(840\) 0 0
\(841\) 2.46835e21 0.286047
\(842\) −2.63907e21 −0.303117
\(843\) 0 0
\(844\) 6.46241e21 0.729165
\(845\) −7.79314e21 −0.871539
\(846\) 0 0
\(847\) 6.11420e21 0.671760
\(848\) 1.46218e21 0.159233
\(849\) 0 0
\(850\) −5.73947e20 −0.0614087
\(851\) −5.01463e21 −0.531823
\(852\) 0 0
\(853\) −1.50972e22 −1.57318 −0.786589 0.617477i \(-0.788155\pi\)
−0.786589 + 0.617477i \(0.788155\pi\)
\(854\) −3.12759e19 −0.00323055
\(855\) 0 0
\(856\) −7.86058e20 −0.0797814
\(857\) 2.14000e21 0.215307 0.107654 0.994188i \(-0.465666\pi\)
0.107654 + 0.994188i \(0.465666\pi\)
\(858\) 0 0
\(859\) −6.48884e21 −0.641532 −0.320766 0.947158i \(-0.603940\pi\)
−0.320766 + 0.947158i \(0.603940\pi\)
\(860\) −4.05192e20 −0.0397120
\(861\) 0 0
\(862\) −5.96835e21 −0.574844
\(863\) 3.80444e21 0.363253 0.181627 0.983368i \(-0.441864\pi\)
0.181627 + 0.983368i \(0.441864\pi\)
\(864\) 0 0
\(865\) 3.13100e21 0.293807
\(866\) 9.02385e21 0.839475
\(867\) 0 0
\(868\) −6.59914e20 −0.0603377
\(869\) −2.96332e22 −2.68615
\(870\) 0 0
\(871\) 1.21633e21 0.108372
\(872\) −2.48432e21 −0.219449
\(873\) 0 0
\(874\) −5.32390e21 −0.462268
\(875\) −4.18311e21 −0.360113
\(876\) 0 0
\(877\) 9.12529e21 0.772235 0.386118 0.922450i \(-0.373816\pi\)
0.386118 + 0.922450i \(0.373816\pi\)
\(878\) −1.00675e22 −0.844717
\(879\) 0 0
\(880\) −5.26254e21 −0.434085
\(881\) −9.49048e21 −0.776192 −0.388096 0.921619i \(-0.626867\pi\)
−0.388096 + 0.921619i \(0.626867\pi\)
\(882\) 0 0
\(883\) 1.29030e22 1.03749 0.518747 0.854928i \(-0.326398\pi\)
0.518747 + 0.854928i \(0.326398\pi\)
\(884\) −2.57455e21 −0.205262
\(885\) 0 0
\(886\) −1.00476e22 −0.787603
\(887\) 1.12969e22 0.878079 0.439040 0.898468i \(-0.355319\pi\)
0.439040 + 0.898468i \(0.355319\pi\)
\(888\) 0 0
\(889\) 1.60583e21 0.122726
\(890\) 1.15557e21 0.0875729
\(891\) 0 0
\(892\) −7.20259e21 −0.536725
\(893\) −5.48361e21 −0.405210
\(894\) 0 0
\(895\) 1.82703e22 1.32762
\(896\) −4.63613e20 −0.0334077
\(897\) 0 0
\(898\) 4.76726e21 0.337829
\(899\) 5.15222e21 0.362073
\(900\) 0 0
\(901\) 9.35629e21 0.646647
\(902\) 6.65378e21 0.456057
\(903\) 0 0
\(904\) 6.12085e21 0.412618
\(905\) −2.71511e22 −1.81519
\(906\) 0 0
\(907\) 1.91938e22 1.26214 0.631068 0.775728i \(-0.282617\pi\)
0.631068 + 0.775728i \(0.282617\pi\)
\(908\) −1.41187e22 −0.920766
\(909\) 0 0
\(910\) 1.75523e21 0.112596
\(911\) 2.66478e21 0.169540 0.0847702 0.996401i \(-0.472984\pi\)
0.0847702 + 0.996401i \(0.472984\pi\)
\(912\) 0 0
\(913\) 8.22217e21 0.514583
\(914\) 1.95283e22 1.21219
\(915\) 0 0
\(916\) 1.39912e22 0.854354
\(917\) −9.54338e18 −0.000578006 0
\(918\) 0 0
\(919\) −2.10988e22 −1.25716 −0.628580 0.777745i \(-0.716364\pi\)
−0.628580 + 0.777745i \(0.716364\pi\)
\(920\) −2.84216e21 −0.167973
\(921\) 0 0
\(922\) 9.20662e21 0.535326
\(923\) 1.27323e22 0.734338
\(924\) 0 0
\(925\) −1.75807e21 −0.0997641
\(926\) −1.44074e22 −0.810965
\(927\) 0 0
\(928\) 3.61962e21 0.200472
\(929\) −2.26606e22 −1.24495 −0.622477 0.782638i \(-0.713873\pi\)
−0.622477 + 0.782638i \(0.713873\pi\)
\(930\) 0 0
\(931\) 3.78854e21 0.204809
\(932\) −7.33922e21 −0.393578
\(933\) 0 0
\(934\) −1.15869e22 −0.611456
\(935\) −3.36742e22 −1.76283
\(936\) 0 0
\(937\) 2.99548e22 1.54319 0.771595 0.636114i \(-0.219459\pi\)
0.771595 + 0.636114i \(0.219459\pi\)
\(938\) 1.40155e21 0.0716289
\(939\) 0 0
\(940\) −2.92742e21 −0.147240
\(941\) 7.54408e21 0.376430 0.188215 0.982128i \(-0.439730\pi\)
0.188215 + 0.982128i \(0.439730\pi\)
\(942\) 0 0
\(943\) 3.59353e21 0.176475
\(944\) −2.09589e21 −0.102112
\(945\) 0 0
\(946\) −1.87331e21 −0.0898310
\(947\) −2.10087e22 −0.999481 −0.499741 0.866175i \(-0.666571\pi\)
−0.499741 + 0.866175i \(0.666571\pi\)
\(948\) 0 0
\(949\) −3.31339e21 −0.155159
\(950\) −1.86650e21 −0.0867163
\(951\) 0 0
\(952\) −2.96660e21 −0.135669
\(953\) −1.33670e22 −0.606508 −0.303254 0.952910i \(-0.598073\pi\)
−0.303254 + 0.952910i \(0.598073\pi\)
\(954\) 0 0
\(955\) −3.58037e22 −1.59920
\(956\) 3.05414e21 0.135349
\(957\) 0 0
\(958\) 1.61246e22 0.703474
\(959\) −6.22958e21 −0.269662
\(960\) 0 0
\(961\) −2.10733e22 −0.898062
\(962\) −7.88618e21 −0.333468
\(963\) 0 0
\(964\) −1.28635e22 −0.535527
\(965\) 2.95612e21 0.122114
\(966\) 0 0
\(967\) 4.36244e22 1.77432 0.887159 0.461464i \(-0.152676\pi\)
0.887159 + 0.461464i \(0.152676\pi\)
\(968\) −1.55698e22 −0.628374
\(969\) 0 0
\(970\) −9.48826e21 −0.377050
\(971\) 4.14924e22 1.63616 0.818078 0.575108i \(-0.195040\pi\)
0.818078 + 0.575108i \(0.195040\pi\)
\(972\) 0 0
\(973\) −5.68210e21 −0.220629
\(974\) 2.77213e22 1.06812
\(975\) 0 0
\(976\) 7.96441e19 0.00302190
\(977\) −9.95035e21 −0.374653 −0.187326 0.982298i \(-0.559982\pi\)
−0.187326 + 0.982298i \(0.559982\pi\)
\(978\) 0 0
\(979\) 5.34250e21 0.198095
\(980\) 2.02251e21 0.0744209
\(981\) 0 0
\(982\) −1.32082e21 −0.0478638
\(983\) 3.10738e21 0.111749 0.0558744 0.998438i \(-0.482205\pi\)
0.0558744 + 0.998438i \(0.482205\pi\)
\(984\) 0 0
\(985\) −2.41168e22 −0.854176
\(986\) 2.31615e22 0.814121
\(987\) 0 0
\(988\) −8.37254e21 −0.289855
\(989\) −1.01173e21 −0.0347609
\(990\) 0 0
\(991\) −4.17077e22 −1.41144 −0.705721 0.708489i \(-0.749377\pi\)
−0.705721 + 0.708489i \(0.749377\pi\)
\(992\) 1.68047e21 0.0564408
\(993\) 0 0
\(994\) 1.46712e22 0.485365
\(995\) −1.83918e22 −0.603881
\(996\) 0 0
\(997\) −1.12037e22 −0.362367 −0.181184 0.983449i \(-0.557993\pi\)
−0.181184 + 0.983449i \(0.557993\pi\)
\(998\) 1.69652e21 0.0544602
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.16.a.n.1.4 4
3.2 odd 2 126.16.a.q.1.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.16.a.n.1.4 4 1.1 even 1 trivial
126.16.a.q.1.1 yes 4 3.2 odd 2