Properties

Label 12482.2.a.bd
Level $12482$
Weight $2$
Character orbit 12482.a
Self dual yes
Analytic conductor $99.669$
Dimension $6$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [12482,2,Mod(1,12482)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(12482, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("12482.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 12482 = 2 \cdot 79^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 12482.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,6,0,6,-8,0,0,6,6,-8,-16,0,-8,0,0,6,0,6,-12,-8,20,-16,-8,0, 22,-8,0,0,0,0,0,6,0,0,0,6,0,-12,0,-8,0,20,0,-16,-44,-8,0,0,-14,22,44,-8, 0,0,16,0,0,0,0,0,0,0,0,6,52,0,4,0,0,0,0,6,-20,0,0,-12,0,0,0,-8,10,0,-8, 20,0,0,-48,-16,16,-44,0,-8,0,0,16,0,-60,-14,-56,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(99.6692718030\)
Dimension: \(6\)
Coefficient field: 6.6.15323648.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 14x^{3} + 3x^{2} - 12x + 4 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: not computed

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 6 q + 6 q^{2} + 6 q^{4} - 8 q^{5} + 6 q^{8} + 6 q^{9} - 8 q^{10} - 16 q^{11} - 8 q^{13} + 6 q^{16} + 6 q^{18} - 12 q^{19} - 8 q^{20} + 20 q^{21} - 16 q^{22} - 8 q^{23} + 22 q^{25} - 8 q^{26} + 6 q^{32}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(79\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.