Properties

Label 12482.2
Level 12482
Weight 2
Dimension 1622141
Nonzero newspaces 8
Sturm bound 19471920

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 12482 = 2 \cdot 79^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(19471920\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(12482))\).

Total New Old
Modular forms 4877184 1622141 3255043
Cusp forms 4858777 1622141 3236636
Eisenstein series 18407 0 18407

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(12482))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
12482.2.a \(\chi_{12482}(1, \cdot)\) 12482.2.a.a 1 1
12482.2.a.b 1
12482.2.a.c 1
12482.2.a.d 1
12482.2.a.e 1
12482.2.a.f 1
12482.2.a.g 1
12482.2.a.h 1
12482.2.a.i 1
12482.2.a.j 2
12482.2.a.k 2
12482.2.a.l 2
12482.2.a.m 2
12482.2.a.n 2
12482.2.a.o 2
12482.2.a.p 2
12482.2.a.q 2
12482.2.a.r 2
12482.2.a.s 2
12482.2.a.t 2
12482.2.a.u 2
12482.2.a.v 2
12482.2.a.w 2
12482.2.a.x 4
12482.2.a.y 4
12482.2.a.z 4
12482.2.a.ba 4
12482.2.a.bb 4
12482.2.a.bc 6
12482.2.a.bd 6
12482.2.a.be 8
12482.2.a.bf 12
12482.2.a.bg 16
12482.2.a.bh 16
12482.2.a.bi 16
12482.2.a.bj 24
12482.2.a.bk 24
12482.2.a.bl 24
12482.2.a.bm 24
12482.2.a.bn 24
12482.2.a.bo 36
12482.2.a.bp 36
12482.2.a.bq 36
12482.2.a.br 36
12482.2.a.bs 48
12482.2.a.bt 64
12482.2.c \(\chi_{12482}(7955, \cdot)\) n/a 1028 2
12482.2.e \(\chi_{12482}(1127, \cdot)\) n/a 6144 12
12482.2.g \(\chi_{12482}(31, \cdot)\) n/a 12336 24
12482.2.i \(\chi_{12482}(159, \cdot)\) n/a 41184 78
12482.2.k \(\chi_{12482}(23, \cdot)\) n/a 82056 156
12482.2.m \(\chi_{12482}(21, \cdot)\) n/a 494208 936
12482.2.o \(\chi_{12482}(5, \cdot)\) n/a 984672 1872

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(12482))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(12482)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(79))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(158))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6241))\)\(^{\oplus 2}\)