Properties

Label 1248.2.q.n
Level $1248$
Weight $2$
Character orbit 1248.q
Analytic conductor $9.965$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1248,2,Mod(289,1248)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1248, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1248.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,4,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.96533017226\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.52637207184.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 8x^{6} - 4x^{5} + 56x^{4} - 16x^{3} + 68x^{2} + 16x + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{3} + (\beta_{7} - \beta_{2} - 1) q^{5} + ( - \beta_{6} - \beta_1) q^{7} + ( - \beta_{4} - 1) q^{9} + ( - \beta_{7} - \beta_{5}) q^{11} + (\beta_{5} + \beta_{4} + \beta_1) q^{13} + (\beta_{7} + \beta_{4}) q^{15}+ \cdots + (\beta_{7} + \beta_{6} + \beta_{5} + \cdots + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 6 q^{5} - q^{7} - 4 q^{9} - 2 q^{11} - 2 q^{13} - 3 q^{15} + 5 q^{17} - 2 q^{21} + 30 q^{25} - 8 q^{27} + 3 q^{29} - 2 q^{31} + 2 q^{33} + 4 q^{35} + 17 q^{37} + 5 q^{39} + 3 q^{41} + 15 q^{43}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 8x^{6} - 4x^{5} + 56x^{4} - 16x^{3} + 68x^{2} + 16x + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 3\nu^{7} + 16\nu^{6} - 32\nu^{5} + 100\nu^{4} - 288\nu^{3} + 960\nu^{2} - 1460\nu + 1024 ) / 848 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -3\nu^{7} - 16\nu^{6} + 32\nu^{5} - 100\nu^{4} + 288\nu^{3} - 960\nu^{2} + 3156\nu - 1024 ) / 848 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{7} - 7\nu^{6} + 14\nu^{5} - 4\nu^{4} + 126\nu^{3} + 4\nu^{2} + 16\nu + 1248 ) / 424 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -2\nu^{7} + 7\nu^{6} - 14\nu^{5} + 57\nu^{4} - 126\nu^{3} + 420\nu^{2} - 122\nu + 24 ) / 424 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 9\nu^{7} + 48\nu^{6} + 116\nu^{5} + 300\nu^{4} + 408\nu^{3} + 1608\nu^{2} + 708\nu + 528 ) / 848 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 6\nu^{7} - 21\nu^{6} + 42\nu^{5} - 224\nu^{4} + 378\nu^{3} - 1260\nu^{2} + 472\nu - 1344 ) / 424 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{7} + 8\nu^{5} - 4\nu^{4} + 56\nu^{3} - 16\nu^{2} + 68\nu + 16 ) / 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + 4\beta_{4} + \beta_{3} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{7} - 4\beta_{6} - 4\beta_{5} - 4\beta_{3} - 2\beta_{2} - 4\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -8\beta_{6} - 24\beta_{4} + \beta_{2} + \beta _1 - 24 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -12\beta_{7} + 30\beta_{6} + 28\beta_{5} + 24\beta_{4} + 30\beta_{3} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 12\beta_{7} - 16\beta_{6} - 16\beta_{5} - 72\beta_{3} - 12\beta_{2} - 16\beta _1 + 164 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -32\beta_{6} - 224\beta_{4} + 82\beta_{2} + 194\beta _1 - 224 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1248\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(-1 - \beta_{4}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
0.646813 1.12031i
1.20269 2.08312i
−1.38564 + 2.40000i
−0.463860 + 0.803428i
0.646813 + 1.12031i
1.20269 + 2.08312i
−1.38564 2.40000i
−0.463860 0.803428i
0 0.500000 + 0.866025i 0 −4.09208 0 1.41568 2.45203i 0 −0.500000 + 0.866025i 0
289.2 0 0.500000 + 0.866025i 0 −2.66294 0 −2.46683 + 4.27268i 0 −0.500000 + 0.866025i 0
289.3 0 0.500000 + 0.866025i 0 0.443373 0 0.209587 0.363016i 0 −0.500000 + 0.866025i 0
289.4 0 0.500000 + 0.866025i 0 3.31165 0 0.341563 0.591604i 0 −0.500000 + 0.866025i 0
1153.1 0 0.500000 0.866025i 0 −4.09208 0 1.41568 + 2.45203i 0 −0.500000 0.866025i 0
1153.2 0 0.500000 0.866025i 0 −2.66294 0 −2.46683 4.27268i 0 −0.500000 0.866025i 0
1153.3 0 0.500000 0.866025i 0 0.443373 0 0.209587 + 0.363016i 0 −0.500000 0.866025i 0
1153.4 0 0.500000 0.866025i 0 3.31165 0 0.341563 + 0.591604i 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 289.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1248.2.q.n yes 8
4.b odd 2 1 1248.2.q.m 8
13.c even 3 1 inner 1248.2.q.n yes 8
52.j odd 6 1 1248.2.q.m 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1248.2.q.m 8 4.b odd 2 1
1248.2.q.m 8 52.j odd 6 1
1248.2.q.n yes 8 1.a even 1 1 trivial
1248.2.q.n yes 8 13.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1248, [\chi])\):

\( T_{5}^{4} + 3T_{5}^{3} - 13T_{5}^{2} - 31T_{5} + 16 \) Copy content Toggle raw display
\( T_{7}^{8} + T_{7}^{7} + 17T_{7}^{6} - 48T_{7}^{5} + 244T_{7}^{4} - 248T_{7}^{3} + 192T_{7}^{2} - 64T_{7} + 16 \) Copy content Toggle raw display
\( T_{19}^{8} + 16T_{19}^{6} - 8T_{19}^{5} + 208T_{19}^{4} - 64T_{19}^{3} + 784T_{19}^{2} + 192T_{19} + 2304 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$5$ \( (T^{4} + 3 T^{3} - 13 T^{2} + \cdots + 16)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} + T^{7} + \cdots + 16 \) Copy content Toggle raw display
$11$ \( T^{8} + 2 T^{7} + \cdots + 5184 \) Copy content Toggle raw display
$13$ \( T^{8} + 2 T^{7} + \cdots + 28561 \) Copy content Toggle raw display
$17$ \( T^{8} - 5 T^{7} + \cdots + 88804 \) Copy content Toggle raw display
$19$ \( T^{8} + 16 T^{6} + \cdots + 2304 \) Copy content Toggle raw display
$23$ \( T^{8} + 16 T^{6} + \cdots + 2304 \) Copy content Toggle raw display
$29$ \( T^{8} - 3 T^{7} + \cdots + 147456 \) Copy content Toggle raw display
$31$ \( (T^{4} + T^{3} - 80 T^{2} + \cdots - 96)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} - 17 T^{7} + \cdots + 20164 \) Copy content Toggle raw display
$41$ \( T^{8} - 3 T^{7} + \cdots + 71824 \) Copy content Toggle raw display
$43$ \( T^{8} - 15 T^{7} + \cdots + 583696 \) Copy content Toggle raw display
$47$ \( (T^{4} - 14 T^{3} + \cdots + 264)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 7 T^{3} + \cdots - 1884)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + 16 T^{7} + \cdots + 11943936 \) Copy content Toggle raw display
$61$ \( T^{8} - 20 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{8} - 19 T^{7} + \cdots + 55696 \) Copy content Toggle raw display
$71$ \( T^{8} + 16 T^{7} + \cdots + 25240576 \) Copy content Toggle raw display
$73$ \( (T^{4} + 22 T^{3} + \cdots - 1741)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 7 T^{3} + \cdots + 13824)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} - 2 T^{3} + \cdots + 2904)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 6 T + 36)^{4} \) Copy content Toggle raw display
$97$ \( T^{8} + 11 T^{7} + \cdots + 7795264 \) Copy content Toggle raw display
show more
show less