Properties

Label 1248.2.ca.b.49.21
Level $1248$
Weight $2$
Character 1248.49
Analytic conductor $9.965$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1248,2,Mod(49,1248)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1248, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1248.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.ca (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.96533017226\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.21
Character \(\chi\) \(=\) 1248.49
Dual form 1248.2.ca.b.433.21

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{3} -2.09848 q^{5} +(0.271467 + 0.156732i) q^{7} +(0.500000 - 0.866025i) q^{9} +(-2.72516 - 4.72012i) q^{11} +(3.57644 - 0.457231i) q^{13} +(-1.81734 + 1.04924i) q^{15} +(-2.72851 + 4.72591i) q^{17} +(1.45653 - 2.52278i) q^{19} +0.313463 q^{21} +(-1.87839 - 3.25346i) q^{23} -0.596381 q^{25} -1.00000i q^{27} +(-6.94137 + 4.00760i) q^{29} +0.514113i q^{31} +(-4.72012 - 2.72516i) q^{33} +(-0.569668 - 0.328898i) q^{35} +(-2.45591 - 4.25376i) q^{37} +(2.86867 - 2.18419i) q^{39} +(-0.638588 + 0.368689i) q^{41} +(-7.75984 - 4.48015i) q^{43} +(-1.04924 + 1.81734i) q^{45} -0.233036i q^{47} +(-3.45087 - 5.97708i) q^{49} +5.45701i q^{51} -10.7779i q^{53} +(5.71870 + 9.90507i) q^{55} -2.91306i q^{57} +(3.99560 - 6.92057i) q^{59} +(4.25265 + 2.45527i) q^{61} +(0.271467 - 0.156732i) q^{63} +(-7.50509 + 0.959489i) q^{65} +(-5.53265 - 9.58284i) q^{67} +(-3.25346 - 1.87839i) q^{69} +(-10.2705 - 5.92965i) q^{71} +8.59916i q^{73} +(-0.516481 + 0.298191i) q^{75} -1.70848i q^{77} +4.49154 q^{79} +(-0.500000 - 0.866025i) q^{81} +12.2544 q^{83} +(5.72572 - 9.91724i) q^{85} +(-4.00760 + 6.94137i) q^{87} +(-1.00878 + 0.582419i) q^{89} +(1.04255 + 0.436418i) q^{91} +(0.257056 + 0.445235i) q^{93} +(-3.05650 + 5.29401i) q^{95} +(8.51390 + 4.91550i) q^{97} -5.45032 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 12 q^{7} + 24 q^{9} + 12 q^{17} - 20 q^{23} + 48 q^{25} + 12 q^{33} - 28 q^{39} - 12 q^{41} + 16 q^{49} + 68 q^{55} + 12 q^{63} + 12 q^{65} + 12 q^{71} + 192 q^{79} - 24 q^{81} - 48 q^{89} + 20 q^{95}+ \cdots + 144 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1248\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 0 0
\(5\) −2.09848 −0.938469 −0.469234 0.883074i \(-0.655470\pi\)
−0.469234 + 0.883074i \(0.655470\pi\)
\(6\) 0 0
\(7\) 0.271467 + 0.156732i 0.102605 + 0.0592390i 0.550424 0.834885i \(-0.314466\pi\)
−0.447819 + 0.894124i \(0.647799\pi\)
\(8\) 0 0
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) −2.72516 4.72012i −0.821667 1.42317i −0.904440 0.426601i \(-0.859711\pi\)
0.0827731 0.996568i \(-0.473622\pi\)
\(12\) 0 0
\(13\) 3.57644 0.457231i 0.991927 0.126813i
\(14\) 0 0
\(15\) −1.81734 + 1.04924i −0.469234 + 0.270913i
\(16\) 0 0
\(17\) −2.72851 + 4.72591i −0.661760 + 1.14620i 0.318393 + 0.947959i \(0.396857\pi\)
−0.980153 + 0.198243i \(0.936476\pi\)
\(18\) 0 0
\(19\) 1.45653 2.52278i 0.334151 0.578766i −0.649170 0.760643i \(-0.724884\pi\)
0.983321 + 0.181877i \(0.0582172\pi\)
\(20\) 0 0
\(21\) 0.313463 0.0684033
\(22\) 0 0
\(23\) −1.87839 3.25346i −0.391671 0.678394i 0.600999 0.799250i \(-0.294770\pi\)
−0.992670 + 0.120855i \(0.961436\pi\)
\(24\) 0 0
\(25\) −0.596381 −0.119276
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −6.94137 + 4.00760i −1.28898 + 0.744193i −0.978472 0.206378i \(-0.933832\pi\)
−0.310508 + 0.950571i \(0.600499\pi\)
\(30\) 0 0
\(31\) 0.514113i 0.0923374i 0.998934 + 0.0461687i \(0.0147012\pi\)
−0.998934 + 0.0461687i \(0.985299\pi\)
\(32\) 0 0
\(33\) −4.72012 2.72516i −0.821667 0.474390i
\(34\) 0 0
\(35\) −0.569668 0.328898i −0.0962915 0.0555939i
\(36\) 0 0
\(37\) −2.45591 4.25376i −0.403749 0.699313i 0.590426 0.807092i \(-0.298960\pi\)
−0.994175 + 0.107778i \(0.965626\pi\)
\(38\) 0 0
\(39\) 2.86867 2.18419i 0.459356 0.349751i
\(40\) 0 0
\(41\) −0.638588 + 0.368689i −0.0997306 + 0.0575795i −0.549036 0.835799i \(-0.685005\pi\)
0.449305 + 0.893378i \(0.351672\pi\)
\(42\) 0 0
\(43\) −7.75984 4.48015i −1.18336 0.683216i −0.226574 0.973994i \(-0.572753\pi\)
−0.956791 + 0.290778i \(0.906086\pi\)
\(44\) 0 0
\(45\) −1.04924 + 1.81734i −0.156411 + 0.270913i
\(46\) 0 0
\(47\) 0.233036i 0.0339917i −0.999856 0.0169959i \(-0.994590\pi\)
0.999856 0.0169959i \(-0.00541021\pi\)
\(48\) 0 0
\(49\) −3.45087 5.97708i −0.492981 0.853869i
\(50\) 0 0
\(51\) 5.45701i 0.764135i
\(52\) 0 0
\(53\) 10.7779i 1.48045i −0.672357 0.740227i \(-0.734718\pi\)
0.672357 0.740227i \(-0.265282\pi\)
\(54\) 0 0
\(55\) 5.71870 + 9.90507i 0.771109 + 1.33560i
\(56\) 0 0
\(57\) 2.91306i 0.385844i
\(58\) 0 0
\(59\) 3.99560 6.92057i 0.520182 0.900982i −0.479542 0.877519i \(-0.659197\pi\)
0.999725 0.0234634i \(-0.00746932\pi\)
\(60\) 0 0
\(61\) 4.25265 + 2.45527i 0.544496 + 0.314365i 0.746899 0.664937i \(-0.231542\pi\)
−0.202403 + 0.979302i \(0.564875\pi\)
\(62\) 0 0
\(63\) 0.271467 0.156732i 0.0342016 0.0197463i
\(64\) 0 0
\(65\) −7.50509 + 0.959489i −0.930892 + 0.119010i
\(66\) 0 0
\(67\) −5.53265 9.58284i −0.675921 1.17073i −0.976199 0.216878i \(-0.930413\pi\)
0.300278 0.953852i \(-0.402921\pi\)
\(68\) 0 0
\(69\) −3.25346 1.87839i −0.391671 0.226131i
\(70\) 0 0
\(71\) −10.2705 5.92965i −1.21888 0.703720i −0.254201 0.967151i \(-0.581812\pi\)
−0.964678 + 0.263431i \(0.915146\pi\)
\(72\) 0 0
\(73\) 8.59916i 1.00646i 0.864154 + 0.503228i \(0.167854\pi\)
−0.864154 + 0.503228i \(0.832146\pi\)
\(74\) 0 0
\(75\) −0.516481 + 0.298191i −0.0596381 + 0.0344321i
\(76\) 0 0
\(77\) 1.70848i 0.194699i
\(78\) 0 0
\(79\) 4.49154 0.505337 0.252669 0.967553i \(-0.418692\pi\)
0.252669 + 0.967553i \(0.418692\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 12.2544 1.34510 0.672550 0.740052i \(-0.265199\pi\)
0.672550 + 0.740052i \(0.265199\pi\)
\(84\) 0 0
\(85\) 5.72572 9.91724i 0.621041 1.07568i
\(86\) 0 0
\(87\) −4.00760 + 6.94137i −0.429660 + 0.744193i
\(88\) 0 0
\(89\) −1.00878 + 0.582419i −0.106930 + 0.0617363i −0.552511 0.833505i \(-0.686330\pi\)
0.445581 + 0.895242i \(0.352997\pi\)
\(90\) 0 0
\(91\) 1.04255 + 0.436418i 0.109289 + 0.0457491i
\(92\) 0 0
\(93\) 0.257056 + 0.445235i 0.0266555 + 0.0461687i
\(94\) 0 0
\(95\) −3.05650 + 5.29401i −0.313590 + 0.543154i
\(96\) 0 0
\(97\) 8.51390 + 4.91550i 0.864455 + 0.499093i 0.865502 0.500906i \(-0.167000\pi\)
−0.00104649 + 0.999999i \(0.500333\pi\)
\(98\) 0 0
\(99\) −5.45032 −0.547778
\(100\) 0 0
\(101\) −12.2472 + 7.07094i −1.21864 + 0.703584i −0.964628 0.263616i \(-0.915085\pi\)
−0.254016 + 0.967200i \(0.581752\pi\)
\(102\) 0 0
\(103\) −5.06936 −0.499499 −0.249749 0.968311i \(-0.580348\pi\)
−0.249749 + 0.968311i \(0.580348\pi\)
\(104\) 0 0
\(105\) −0.657796 −0.0641943
\(106\) 0 0
\(107\) −6.30915 + 3.64259i −0.609929 + 0.352143i −0.772938 0.634482i \(-0.781213\pi\)
0.163009 + 0.986625i \(0.447880\pi\)
\(108\) 0 0
\(109\) −0.947305 −0.0907354 −0.0453677 0.998970i \(-0.514446\pi\)
−0.0453677 + 0.998970i \(0.514446\pi\)
\(110\) 0 0
\(111\) −4.25376 2.45591i −0.403749 0.233104i
\(112\) 0 0
\(113\) 5.86587 10.1600i 0.551814 0.955770i −0.446330 0.894869i \(-0.647269\pi\)
0.998144 0.0609016i \(-0.0193976\pi\)
\(114\) 0 0
\(115\) 3.94176 + 6.82733i 0.367571 + 0.636652i
\(116\) 0 0
\(117\) 1.39225 3.32591i 0.128713 0.307480i
\(118\) 0 0
\(119\) −1.48140 + 0.855287i −0.135800 + 0.0784040i
\(120\) 0 0
\(121\) −9.35301 + 16.1999i −0.850273 + 1.47272i
\(122\) 0 0
\(123\) −0.368689 + 0.638588i −0.0332435 + 0.0575795i
\(124\) 0 0
\(125\) 11.7439 1.05041
\(126\) 0 0
\(127\) 10.8620 + 18.8135i 0.963845 + 1.66943i 0.712688 + 0.701482i \(0.247478\pi\)
0.251157 + 0.967946i \(0.419189\pi\)
\(128\) 0 0
\(129\) −8.96029 −0.788910
\(130\) 0 0
\(131\) 14.4731i 1.26452i 0.774755 + 0.632261i \(0.217873\pi\)
−0.774755 + 0.632261i \(0.782127\pi\)
\(132\) 0 0
\(133\) 0.790800 0.456568i 0.0685710 0.0395895i
\(134\) 0 0
\(135\) 2.09848i 0.180608i
\(136\) 0 0
\(137\) 15.5779 + 8.99389i 1.33091 + 0.768400i 0.985439 0.170030i \(-0.0543866\pi\)
0.345469 + 0.938430i \(0.387720\pi\)
\(138\) 0 0
\(139\) 5.14879 + 2.97266i 0.436715 + 0.252137i 0.702203 0.711977i \(-0.252200\pi\)
−0.265488 + 0.964114i \(0.585533\pi\)
\(140\) 0 0
\(141\) −0.116518 0.201815i −0.00981257 0.0169959i
\(142\) 0 0
\(143\) −11.9046 15.6352i −0.995510 1.30748i
\(144\) 0 0
\(145\) 14.5663 8.40987i 1.20967 0.698402i
\(146\) 0 0
\(147\) −5.97708 3.45087i −0.492981 0.284623i
\(148\) 0 0
\(149\) 3.63811 6.30138i 0.298045 0.516229i −0.677643 0.735391i \(-0.736999\pi\)
0.975689 + 0.219161i \(0.0703321\pi\)
\(150\) 0 0
\(151\) 8.17854i 0.665560i −0.943005 0.332780i \(-0.892013\pi\)
0.943005 0.332780i \(-0.107987\pi\)
\(152\) 0 0
\(153\) 2.72851 + 4.72591i 0.220587 + 0.382067i
\(154\) 0 0
\(155\) 1.07886i 0.0866558i
\(156\) 0 0
\(157\) 19.1531i 1.52858i −0.644871 0.764291i \(-0.723089\pi\)
0.644871 0.764291i \(-0.276911\pi\)
\(158\) 0 0
\(159\) −5.38894 9.33391i −0.427370 0.740227i
\(160\) 0 0
\(161\) 1.17761i 0.0928088i
\(162\) 0 0
\(163\) −0.257211 + 0.445503i −0.0201463 + 0.0348945i −0.875923 0.482451i \(-0.839747\pi\)
0.855776 + 0.517346i \(0.173080\pi\)
\(164\) 0 0
\(165\) 9.90507 + 5.71870i 0.771109 + 0.445200i
\(166\) 0 0
\(167\) 1.78396 1.02997i 0.138047 0.0797013i −0.429386 0.903121i \(-0.641270\pi\)
0.567433 + 0.823420i \(0.307937\pi\)
\(168\) 0 0
\(169\) 12.5819 3.27052i 0.967837 0.251578i
\(170\) 0 0
\(171\) −1.45653 2.52278i −0.111384 0.192922i
\(172\) 0 0
\(173\) −6.69644 3.86619i −0.509121 0.293941i 0.223351 0.974738i \(-0.428300\pi\)
−0.732472 + 0.680797i \(0.761634\pi\)
\(174\) 0 0
\(175\) −0.161898 0.0934718i −0.0122383 0.00706580i
\(176\) 0 0
\(177\) 7.99119i 0.600655i
\(178\) 0 0
\(179\) −14.4554 + 8.34581i −1.08045 + 0.623795i −0.931016 0.364977i \(-0.881077\pi\)
−0.149429 + 0.988773i \(0.547743\pi\)
\(180\) 0 0
\(181\) 2.59200i 0.192662i 0.995349 + 0.0963311i \(0.0307108\pi\)
−0.995349 + 0.0963311i \(0.969289\pi\)
\(182\) 0 0
\(183\) 4.91054 0.362998
\(184\) 0 0
\(185\) 5.15367 + 8.92642i 0.378905 + 0.656284i
\(186\) 0 0
\(187\) 29.7425 2.17499
\(188\) 0 0
\(189\) 0.156732 0.271467i 0.0114005 0.0197463i
\(190\) 0 0
\(191\) 5.19164 8.99218i 0.375654 0.650652i −0.614771 0.788706i \(-0.710751\pi\)
0.990425 + 0.138054i \(0.0440848\pi\)
\(192\) 0 0
\(193\) 14.4597 8.34834i 1.04084 0.600927i 0.120766 0.992681i \(-0.461465\pi\)
0.920070 + 0.391754i \(0.128132\pi\)
\(194\) 0 0
\(195\) −6.01986 + 4.58349i −0.431091 + 0.328230i
\(196\) 0 0
\(197\) 10.8247 + 18.7489i 0.771226 + 1.33580i 0.936891 + 0.349621i \(0.113690\pi\)
−0.165665 + 0.986182i \(0.552977\pi\)
\(198\) 0 0
\(199\) 0.444224 0.769419i 0.0314902 0.0545427i −0.849851 0.527023i \(-0.823308\pi\)
0.881341 + 0.472481i \(0.156641\pi\)
\(200\) 0 0
\(201\) −9.58284 5.53265i −0.675921 0.390243i
\(202\) 0 0
\(203\) −2.51247 −0.176341
\(204\) 0 0
\(205\) 1.34006 0.773686i 0.0935941 0.0540366i
\(206\) 0 0
\(207\) −3.75678 −0.261114
\(208\) 0 0
\(209\) −15.8771 −1.09824
\(210\) 0 0
\(211\) −4.09674 + 2.36525i −0.282031 + 0.162831i −0.634342 0.773052i \(-0.718729\pi\)
0.352312 + 0.935883i \(0.385396\pi\)
\(212\) 0 0
\(213\) −11.8593 −0.812586
\(214\) 0 0
\(215\) 16.2839 + 9.40150i 1.11055 + 0.641177i
\(216\) 0 0
\(217\) −0.0805777 + 0.139565i −0.00546997 + 0.00947427i
\(218\) 0 0
\(219\) 4.29958 + 7.44709i 0.290539 + 0.503228i
\(220\) 0 0
\(221\) −7.59752 + 18.1495i −0.511064 + 1.22087i
\(222\) 0 0
\(223\) −2.04336 + 1.17974i −0.136834 + 0.0790009i −0.566854 0.823818i \(-0.691840\pi\)
0.430020 + 0.902819i \(0.358506\pi\)
\(224\) 0 0
\(225\) −0.298191 + 0.516481i −0.0198794 + 0.0344321i
\(226\) 0 0
\(227\) −0.473407 + 0.819965i −0.0314211 + 0.0544230i −0.881308 0.472542i \(-0.843337\pi\)
0.849887 + 0.526965i \(0.176670\pi\)
\(228\) 0 0
\(229\) −19.2314 −1.27085 −0.635424 0.772164i \(-0.719174\pi\)
−0.635424 + 0.772164i \(0.719174\pi\)
\(230\) 0 0
\(231\) −0.854238 1.47958i −0.0562047 0.0973494i
\(232\) 0 0
\(233\) −3.40170 −0.222853 −0.111426 0.993773i \(-0.535542\pi\)
−0.111426 + 0.993773i \(0.535542\pi\)
\(234\) 0 0
\(235\) 0.489021i 0.0319002i
\(236\) 0 0
\(237\) 3.88979 2.24577i 0.252669 0.145878i
\(238\) 0 0
\(239\) 0.682800i 0.0441667i −0.999756 0.0220833i \(-0.992970\pi\)
0.999756 0.0220833i \(-0.00702992\pi\)
\(240\) 0 0
\(241\) −5.24788 3.02987i −0.338046 0.195171i 0.321362 0.946957i \(-0.395859\pi\)
−0.659408 + 0.751786i \(0.729193\pi\)
\(242\) 0 0
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) 0 0
\(245\) 7.24158 + 12.5428i 0.462648 + 0.801329i
\(246\) 0 0
\(247\) 4.05570 9.68856i 0.258058 0.616468i
\(248\) 0 0
\(249\) 10.6127 6.12722i 0.672550 0.388297i
\(250\) 0 0
\(251\) 14.7400 + 8.51013i 0.930379 + 0.537155i 0.886931 0.461901i \(-0.152832\pi\)
0.0434477 + 0.999056i \(0.486166\pi\)
\(252\) 0 0
\(253\) −10.2378 + 17.7324i −0.643647 + 1.11483i
\(254\) 0 0
\(255\) 11.4514i 0.717117i
\(256\) 0 0
\(257\) −14.0728 24.3749i −0.877839 1.52046i −0.853708 0.520753i \(-0.825651\pi\)
−0.0241312 0.999709i \(-0.507682\pi\)
\(258\) 0 0
\(259\) 1.53967i 0.0956706i
\(260\) 0 0
\(261\) 8.01520i 0.496129i
\(262\) 0 0
\(263\) −11.1498 19.3120i −0.687526 1.19083i −0.972636 0.232335i \(-0.925363\pi\)
0.285109 0.958495i \(-0.407970\pi\)
\(264\) 0 0
\(265\) 22.6171i 1.38936i
\(266\) 0 0
\(267\) −0.582419 + 1.00878i −0.0356435 + 0.0617363i
\(268\) 0 0
\(269\) 6.77982 + 3.91433i 0.413373 + 0.238661i 0.692238 0.721669i \(-0.256625\pi\)
−0.278865 + 0.960330i \(0.589958\pi\)
\(270\) 0 0
\(271\) 14.2139 8.20639i 0.863432 0.498502i −0.00172834 0.999999i \(-0.500550\pi\)
0.865160 + 0.501496i \(0.167217\pi\)
\(272\) 0 0
\(273\) 1.12108 0.143325i 0.0678510 0.00867442i
\(274\) 0 0
\(275\) 1.62524 + 2.81499i 0.0980054 + 0.169750i
\(276\) 0 0
\(277\) 16.1690 + 9.33520i 0.971503 + 0.560898i 0.899694 0.436521i \(-0.143789\pi\)
0.0718091 + 0.997418i \(0.477123\pi\)
\(278\) 0 0
\(279\) 0.445235 + 0.257056i 0.0266555 + 0.0153896i
\(280\) 0 0
\(281\) 13.8036i 0.823457i −0.911307 0.411728i \(-0.864925\pi\)
0.911307 0.411728i \(-0.135075\pi\)
\(282\) 0 0
\(283\) −6.27773 + 3.62445i −0.373172 + 0.215451i −0.674843 0.737961i \(-0.735789\pi\)
0.301671 + 0.953412i \(0.402456\pi\)
\(284\) 0 0
\(285\) 6.11300i 0.362103i
\(286\) 0 0
\(287\) −0.231141 −0.0136438
\(288\) 0 0
\(289\) −6.38951 11.0669i −0.375853 0.650997i
\(290\) 0 0
\(291\) 9.83100 0.576303
\(292\) 0 0
\(293\) 4.40832 7.63543i 0.257537 0.446067i −0.708045 0.706168i \(-0.750422\pi\)
0.965581 + 0.260101i \(0.0837558\pi\)
\(294\) 0 0
\(295\) −8.38468 + 14.5227i −0.488175 + 0.845544i
\(296\) 0 0
\(297\) −4.72012 + 2.72516i −0.273889 + 0.158130i
\(298\) 0 0
\(299\) −8.20553 10.7770i −0.474538 0.623248i
\(300\) 0 0
\(301\) −1.40436 2.43242i −0.0809460 0.140203i
\(302\) 0 0
\(303\) −7.07094 + 12.2472i −0.406215 + 0.703584i
\(304\) 0 0
\(305\) −8.92411 5.15234i −0.510993 0.295022i
\(306\) 0 0
\(307\) −8.62295 −0.492138 −0.246069 0.969252i \(-0.579139\pi\)
−0.246069 + 0.969252i \(0.579139\pi\)
\(308\) 0 0
\(309\) −4.39019 + 2.53468i −0.249749 + 0.144193i
\(310\) 0 0
\(311\) 30.6497 1.73799 0.868993 0.494825i \(-0.164768\pi\)
0.868993 + 0.494825i \(0.164768\pi\)
\(312\) 0 0
\(313\) 26.7480 1.51189 0.755944 0.654637i \(-0.227178\pi\)
0.755944 + 0.654637i \(0.227178\pi\)
\(314\) 0 0
\(315\) −0.569668 + 0.328898i −0.0320972 + 0.0185313i
\(316\) 0 0
\(317\) 9.28415 0.521450 0.260725 0.965413i \(-0.416038\pi\)
0.260725 + 0.965413i \(0.416038\pi\)
\(318\) 0 0
\(319\) 37.8327 + 21.8427i 2.11823 + 1.22296i
\(320\) 0 0
\(321\) −3.64259 + 6.30915i −0.203310 + 0.352143i
\(322\) 0 0
\(323\) 7.94831 + 13.7669i 0.442256 + 0.766009i
\(324\) 0 0
\(325\) −2.13292 + 0.272684i −0.118313 + 0.0151258i
\(326\) 0 0
\(327\) −0.820390 + 0.473653i −0.0453677 + 0.0261930i
\(328\) 0 0
\(329\) 0.0365240 0.0632615i 0.00201364 0.00348772i
\(330\) 0 0
\(331\) 11.3270 19.6189i 0.622586 1.07835i −0.366416 0.930451i \(-0.619415\pi\)
0.989002 0.147900i \(-0.0472514\pi\)
\(332\) 0 0
\(333\) −4.91181 −0.269166
\(334\) 0 0
\(335\) 11.6102 + 20.1094i 0.634331 + 1.09869i
\(336\) 0 0
\(337\) −21.2211 −1.15599 −0.577993 0.816042i \(-0.696164\pi\)
−0.577993 + 0.816042i \(0.696164\pi\)
\(338\) 0 0
\(339\) 11.7317i 0.637180i
\(340\) 0 0
\(341\) 2.42667 1.40104i 0.131412 0.0758706i
\(342\) 0 0
\(343\) 4.35768i 0.235293i
\(344\) 0 0
\(345\) 6.82733 + 3.94176i 0.367571 + 0.212217i
\(346\) 0 0
\(347\) −21.8750 12.6295i −1.17431 0.677989i −0.219619 0.975586i \(-0.570482\pi\)
−0.954692 + 0.297597i \(0.903815\pi\)
\(348\) 0 0
\(349\) 9.94741 + 17.2294i 0.532473 + 0.922270i 0.999281 + 0.0379114i \(0.0120705\pi\)
−0.466808 + 0.884359i \(0.654596\pi\)
\(350\) 0 0
\(351\) −0.457231 3.57644i −0.0244052 0.190896i
\(352\) 0 0
\(353\) 20.5991 11.8929i 1.09638 0.632995i 0.161111 0.986936i \(-0.448492\pi\)
0.935267 + 0.353942i \(0.115159\pi\)
\(354\) 0 0
\(355\) 21.5524 + 12.4433i 1.14388 + 0.660419i
\(356\) 0 0
\(357\) −0.855287 + 1.48140i −0.0452666 + 0.0784040i
\(358\) 0 0
\(359\) 25.3258i 1.33664i 0.743872 + 0.668322i \(0.232987\pi\)
−0.743872 + 0.668322i \(0.767013\pi\)
\(360\) 0 0
\(361\) 5.25704 + 9.10546i 0.276686 + 0.479235i
\(362\) 0 0
\(363\) 18.7060i 0.981811i
\(364\) 0 0
\(365\) 18.0452i 0.944527i
\(366\) 0 0
\(367\) 0.556637 + 0.964124i 0.0290562 + 0.0503269i 0.880188 0.474625i \(-0.157416\pi\)
−0.851132 + 0.524952i \(0.824083\pi\)
\(368\) 0 0
\(369\) 0.737378i 0.0383863i
\(370\) 0 0
\(371\) 1.68923 2.92584i 0.0877006 0.151902i
\(372\) 0 0
\(373\) 24.0473 + 13.8837i 1.24512 + 0.718873i 0.970133 0.242574i \(-0.0779917\pi\)
0.274991 + 0.961447i \(0.411325\pi\)
\(374\) 0 0
\(375\) 10.1705 5.87195i 0.525203 0.303226i
\(376\) 0 0
\(377\) −22.9930 + 17.5068i −1.18420 + 0.901644i
\(378\) 0 0
\(379\) −3.19771 5.53859i −0.164255 0.284498i 0.772135 0.635458i \(-0.219189\pi\)
−0.936391 + 0.350960i \(0.885855\pi\)
\(380\) 0 0
\(381\) 18.8135 + 10.8620i 0.963845 + 0.556476i
\(382\) 0 0
\(383\) −9.47584 5.47088i −0.484193 0.279549i 0.237969 0.971273i \(-0.423518\pi\)
−0.722162 + 0.691724i \(0.756852\pi\)
\(384\) 0 0
\(385\) 3.58520i 0.182719i
\(386\) 0 0
\(387\) −7.75984 + 4.48015i −0.394455 + 0.227739i
\(388\) 0 0
\(389\) 0.805661i 0.0408486i 0.999791 + 0.0204243i \(0.00650172\pi\)
−0.999791 + 0.0204243i \(0.993498\pi\)
\(390\) 0 0
\(391\) 20.5008 1.03677
\(392\) 0 0
\(393\) 7.23656 + 12.5341i 0.365036 + 0.632261i
\(394\) 0 0
\(395\) −9.42540 −0.474243
\(396\) 0 0
\(397\) −6.62359 + 11.4724i −0.332429 + 0.575783i −0.982987 0.183673i \(-0.941201\pi\)
0.650559 + 0.759456i \(0.274535\pi\)
\(398\) 0 0
\(399\) 0.456568 0.790800i 0.0228570 0.0395895i
\(400\) 0 0
\(401\) 21.7142 12.5367i 1.08435 0.626052i 0.152286 0.988336i \(-0.451337\pi\)
0.932067 + 0.362285i \(0.118003\pi\)
\(402\) 0 0
\(403\) 0.235068 + 1.83870i 0.0117096 + 0.0915919i
\(404\) 0 0
\(405\) 1.04924 + 1.81734i 0.0521372 + 0.0903042i
\(406\) 0 0
\(407\) −13.3855 + 23.1843i −0.663494 + 1.14920i
\(408\) 0 0
\(409\) 4.26820 + 2.46425i 0.211049 + 0.121849i 0.601799 0.798648i \(-0.294451\pi\)
−0.390750 + 0.920497i \(0.627784\pi\)
\(410\) 0 0
\(411\) 17.9878 0.887272
\(412\) 0 0
\(413\) 2.16935 1.25247i 0.106746 0.0616301i
\(414\) 0 0
\(415\) −25.7157 −1.26233
\(416\) 0 0
\(417\) 5.94531 0.291143
\(418\) 0 0
\(419\) 25.2117 14.5560i 1.23167 0.711106i 0.264294 0.964442i \(-0.414861\pi\)
0.967378 + 0.253336i \(0.0815279\pi\)
\(420\) 0 0
\(421\) 3.56321 0.173660 0.0868301 0.996223i \(-0.472326\pi\)
0.0868301 + 0.996223i \(0.472326\pi\)
\(422\) 0 0
\(423\) −0.201815 0.116518i −0.00981257 0.00566529i
\(424\) 0 0
\(425\) 1.62723 2.81845i 0.0789323 0.136715i
\(426\) 0 0
\(427\) 0.769637 + 1.33305i 0.0372453 + 0.0645108i
\(428\) 0 0
\(429\) −18.1273 7.58820i −0.875192 0.366362i
\(430\) 0 0
\(431\) −27.3090 + 15.7668i −1.31543 + 0.759462i −0.982989 0.183663i \(-0.941205\pi\)
−0.332438 + 0.943125i \(0.607871\pi\)
\(432\) 0 0
\(433\) −15.9464 + 27.6200i −0.766337 + 1.32733i 0.173200 + 0.984887i \(0.444589\pi\)
−0.939537 + 0.342448i \(0.888744\pi\)
\(434\) 0 0
\(435\) 8.40987 14.5663i 0.403223 0.698402i
\(436\) 0 0
\(437\) −10.9437 −0.523509
\(438\) 0 0
\(439\) −19.6769 34.0814i −0.939127 1.62662i −0.767104 0.641523i \(-0.778303\pi\)
−0.172024 0.985093i \(-0.555031\pi\)
\(440\) 0 0
\(441\) −6.90174 −0.328654
\(442\) 0 0
\(443\) 6.10659i 0.290133i 0.989422 + 0.145066i \(0.0463396\pi\)
−0.989422 + 0.145066i \(0.953660\pi\)
\(444\) 0 0
\(445\) 2.11690 1.22220i 0.100351 0.0579376i
\(446\) 0 0
\(447\) 7.27621i 0.344153i
\(448\) 0 0
\(449\) −16.1559 9.32761i −0.762444 0.440197i 0.0677286 0.997704i \(-0.478425\pi\)
−0.830172 + 0.557507i \(0.811758\pi\)
\(450\) 0 0
\(451\) 3.48051 + 2.00947i 0.163891 + 0.0946224i
\(452\) 0 0
\(453\) −4.08927 7.08282i −0.192131 0.332780i
\(454\) 0 0
\(455\) −2.18777 0.915815i −0.102564 0.0429341i
\(456\) 0 0
\(457\) −4.04431 + 2.33498i −0.189185 + 0.109226i −0.591601 0.806231i \(-0.701504\pi\)
0.402416 + 0.915457i \(0.368171\pi\)
\(458\) 0 0
\(459\) 4.72591 + 2.72851i 0.220587 + 0.127356i
\(460\) 0 0
\(461\) −8.90866 + 15.4303i −0.414918 + 0.718658i −0.995420 0.0956002i \(-0.969523\pi\)
0.580502 + 0.814259i \(0.302856\pi\)
\(462\) 0 0
\(463\) 24.9171i 1.15800i −0.815329 0.578998i \(-0.803444\pi\)
0.815329 0.578998i \(-0.196556\pi\)
\(464\) 0 0
\(465\) −0.539428 0.934316i −0.0250154 0.0433279i
\(466\) 0 0
\(467\) 2.76721i 0.128051i −0.997948 0.0640257i \(-0.979606\pi\)
0.997948 0.0640257i \(-0.0203939\pi\)
\(468\) 0 0
\(469\) 3.46857i 0.160163i
\(470\) 0 0
\(471\) −9.57654 16.5871i −0.441264 0.764291i
\(472\) 0 0
\(473\) 48.8365i 2.24550i
\(474\) 0 0
\(475\) −0.868647 + 1.50454i −0.0398563 + 0.0690331i
\(476\) 0 0
\(477\) −9.33391 5.38894i −0.427370 0.246742i
\(478\) 0 0
\(479\) 22.9569 13.2542i 1.04893 0.605599i 0.126579 0.991956i \(-0.459600\pi\)
0.922349 + 0.386357i \(0.126267\pi\)
\(480\) 0 0
\(481\) −10.7284 14.0904i −0.489171 0.642467i
\(482\) 0 0
\(483\) −0.588806 1.01984i −0.0267916 0.0464044i
\(484\) 0 0
\(485\) −17.8662 10.3151i −0.811264 0.468384i
\(486\) 0 0
\(487\) −24.5221 14.1578i −1.11120 0.641552i −0.172060 0.985086i \(-0.555042\pi\)
−0.939140 + 0.343534i \(0.888376\pi\)
\(488\) 0 0
\(489\) 0.514423i 0.0232630i
\(490\) 0 0
\(491\) −20.6604 + 11.9283i −0.932391 + 0.538316i −0.887567 0.460679i \(-0.847606\pi\)
−0.0448241 + 0.998995i \(0.514273\pi\)
\(492\) 0 0
\(493\) 43.7391i 1.96991i
\(494\) 0 0
\(495\) 11.4374 0.514073
\(496\) 0 0
\(497\) −1.85873 3.21941i −0.0833753 0.144410i
\(498\) 0 0
\(499\) −23.3984 −1.04746 −0.523728 0.851886i \(-0.675459\pi\)
−0.523728 + 0.851886i \(0.675459\pi\)
\(500\) 0 0
\(501\) 1.02997 1.78396i 0.0460156 0.0797013i
\(502\) 0 0
\(503\) −1.35256 + 2.34271i −0.0603079 + 0.104456i −0.894603 0.446862i \(-0.852542\pi\)
0.834295 + 0.551318i \(0.185875\pi\)
\(504\) 0 0
\(505\) 25.7005 14.8382i 1.14366 0.660292i
\(506\) 0 0
\(507\) 9.26097 9.12329i 0.411294 0.405180i
\(508\) 0 0
\(509\) −10.5171 18.2162i −0.466162 0.807417i 0.533091 0.846058i \(-0.321030\pi\)
−0.999253 + 0.0386411i \(0.987697\pi\)
\(510\) 0 0
\(511\) −1.34776 + 2.33439i −0.0596214 + 0.103267i
\(512\) 0 0
\(513\) −2.52278 1.45653i −0.111384 0.0643074i
\(514\) 0 0
\(515\) 10.6379 0.468764
\(516\) 0 0
\(517\) −1.09996 + 0.635060i −0.0483760 + 0.0279299i
\(518\) 0 0
\(519\) −7.73238 −0.339414
\(520\) 0 0
\(521\) 16.7402 0.733400 0.366700 0.930339i \(-0.380488\pi\)
0.366700 + 0.930339i \(0.380488\pi\)
\(522\) 0 0
\(523\) −32.5186 + 18.7746i −1.42194 + 0.820956i −0.996464 0.0840153i \(-0.973226\pi\)
−0.425473 + 0.904971i \(0.639892\pi\)
\(524\) 0 0
\(525\) −0.186944 −0.00815889
\(526\) 0 0
\(527\) −2.42965 1.40276i −0.105837 0.0611052i
\(528\) 0 0
\(529\) 4.44331 7.69604i 0.193187 0.334610i
\(530\) 0 0
\(531\) −3.99560 6.92057i −0.173394 0.300327i
\(532\) 0 0
\(533\) −2.11530 + 1.61058i −0.0916237 + 0.0697618i
\(534\) 0 0
\(535\) 13.2396 7.64391i 0.572399 0.330475i
\(536\) 0 0
\(537\) −8.34581 + 14.4554i −0.360148 + 0.623795i
\(538\) 0 0
\(539\) −18.8084 + 32.5770i −0.810133 + 1.40319i
\(540\) 0 0
\(541\) 13.4046 0.576307 0.288153 0.957584i \(-0.406959\pi\)
0.288153 + 0.957584i \(0.406959\pi\)
\(542\) 0 0
\(543\) 1.29600 + 2.24474i 0.0556168 + 0.0963311i
\(544\) 0 0
\(545\) 1.98790 0.0851523
\(546\) 0 0
\(547\) 34.8445i 1.48984i −0.667153 0.744921i \(-0.732487\pi\)
0.667153 0.744921i \(-0.267513\pi\)
\(548\) 0 0
\(549\) 4.25265 2.45527i 0.181499 0.104788i
\(550\) 0 0
\(551\) 23.3488i 0.994691i
\(552\) 0 0
\(553\) 1.21930 + 0.703966i 0.0518501 + 0.0299357i
\(554\) 0 0
\(555\) 8.92642 + 5.15367i 0.378905 + 0.218761i
\(556\) 0 0
\(557\) −14.7015 25.4638i −0.622924 1.07894i −0.988938 0.148326i \(-0.952611\pi\)
0.366015 0.930609i \(-0.380722\pi\)
\(558\) 0 0
\(559\) −29.8011 12.4750i −1.26045 0.527634i
\(560\) 0 0
\(561\) 25.7578 14.8712i 1.08749 0.627864i
\(562\) 0 0
\(563\) 17.5567 + 10.1363i 0.739925 + 0.427196i 0.822042 0.569427i \(-0.192835\pi\)
−0.0821172 + 0.996623i \(0.526168\pi\)
\(564\) 0 0
\(565\) −12.3094 + 21.3205i −0.517860 + 0.896961i
\(566\) 0 0
\(567\) 0.313463i 0.0131642i
\(568\) 0 0
\(569\) −10.7365 18.5961i −0.450097 0.779590i 0.548295 0.836285i \(-0.315277\pi\)
−0.998392 + 0.0566947i \(0.981944\pi\)
\(570\) 0 0
\(571\) 4.71314i 0.197239i 0.995125 + 0.0986193i \(0.0314426\pi\)
−0.995125 + 0.0986193i \(0.968557\pi\)
\(572\) 0 0
\(573\) 10.3833i 0.433768i
\(574\) 0 0
\(575\) 1.12024 + 1.94031i 0.0467171 + 0.0809164i
\(576\) 0 0
\(577\) 18.2969i 0.761711i −0.924634 0.380856i \(-0.875629\pi\)
0.924634 0.380856i \(-0.124371\pi\)
\(578\) 0 0
\(579\) 8.34834 14.4597i 0.346945 0.600927i
\(580\) 0 0
\(581\) 3.32668 + 1.92066i 0.138014 + 0.0796823i
\(582\) 0 0
\(583\) −50.8728 + 29.3714i −2.10694 + 1.21644i
\(584\) 0 0
\(585\) −2.92160 + 6.97935i −0.120793 + 0.288560i
\(586\) 0 0
\(587\) −18.7244 32.4316i −0.772839 1.33860i −0.936001 0.351997i \(-0.885503\pi\)
0.163162 0.986599i \(-0.447831\pi\)
\(588\) 0 0
\(589\) 1.29700 + 0.748821i 0.0534418 + 0.0308546i
\(590\) 0 0
\(591\) 18.7489 + 10.8247i 0.771226 + 0.445268i
\(592\) 0 0
\(593\) 25.0123i 1.02713i −0.858050 0.513566i \(-0.828324\pi\)
0.858050 0.513566i \(-0.171676\pi\)
\(594\) 0 0
\(595\) 3.10869 1.79480i 0.127444 0.0735797i
\(596\) 0 0
\(597\) 0.888449i 0.0363618i
\(598\) 0 0
\(599\) 26.3523 1.07673 0.538364 0.842713i \(-0.319043\pi\)
0.538364 + 0.842713i \(0.319043\pi\)
\(600\) 0 0
\(601\) 8.59419 + 14.8856i 0.350564 + 0.607195i 0.986348 0.164672i \(-0.0526564\pi\)
−0.635784 + 0.771867i \(0.719323\pi\)
\(602\) 0 0
\(603\) −11.0653 −0.450614
\(604\) 0 0
\(605\) 19.6271 33.9951i 0.797955 1.38210i
\(606\) 0 0
\(607\) −13.4030 + 23.2148i −0.544013 + 0.942258i 0.454656 + 0.890667i \(0.349762\pi\)
−0.998668 + 0.0515904i \(0.983571\pi\)
\(608\) 0 0
\(609\) −2.17586 + 1.25624i −0.0881705 + 0.0509052i
\(610\) 0 0
\(611\) −0.106551 0.833439i −0.00431059 0.0337173i
\(612\) 0 0
\(613\) −9.86389 17.0848i −0.398399 0.690047i 0.595130 0.803630i \(-0.297101\pi\)
−0.993529 + 0.113583i \(0.963767\pi\)
\(614\) 0 0
\(615\) 0.773686 1.34006i 0.0311980 0.0540366i
\(616\) 0 0
\(617\) 15.7585 + 9.09819i 0.634414 + 0.366279i 0.782460 0.622701i \(-0.213965\pi\)
−0.148045 + 0.988981i \(0.547298\pi\)
\(618\) 0 0
\(619\) −19.8662 −0.798490 −0.399245 0.916844i \(-0.630728\pi\)
−0.399245 + 0.916844i \(0.630728\pi\)
\(620\) 0 0
\(621\) −3.25346 + 1.87839i −0.130557 + 0.0753771i
\(622\) 0 0
\(623\) −0.365134 −0.0146288
\(624\) 0 0
\(625\) −21.6624 −0.866497
\(626\) 0 0
\(627\) −13.7500 + 7.93856i −0.549121 + 0.317035i
\(628\) 0 0
\(629\) 26.8038 1.06874
\(630\) 0 0
\(631\) 33.7151 + 19.4654i 1.34218 + 0.774905i 0.987126 0.159942i \(-0.0511308\pi\)
0.355049 + 0.934848i \(0.384464\pi\)
\(632\) 0 0
\(633\) −2.36525 + 4.09674i −0.0940103 + 0.162831i
\(634\) 0 0
\(635\) −22.7936 39.4797i −0.904538 1.56671i
\(636\) 0 0
\(637\) −15.0747 19.7988i −0.597283 0.784459i
\(638\) 0 0
\(639\) −10.2705 + 5.92965i −0.406293 + 0.234573i
\(640\) 0 0
\(641\) −1.88863 + 3.27121i −0.0745965 + 0.129205i −0.900911 0.434004i \(-0.857100\pi\)
0.826314 + 0.563209i \(0.190434\pi\)
\(642\) 0 0
\(643\) −21.6147 + 37.4378i −0.852402 + 1.47640i 0.0266315 + 0.999645i \(0.491522\pi\)
−0.879034 + 0.476759i \(0.841811\pi\)
\(644\) 0 0
\(645\) 18.8030 0.740367
\(646\) 0 0
\(647\) −13.3101 23.0538i −0.523274 0.906337i −0.999633 0.0270860i \(-0.991377\pi\)
0.476359 0.879251i \(-0.341956\pi\)
\(648\) 0 0
\(649\) −43.5546 −1.70967
\(650\) 0 0
\(651\) 0.161155i 0.00631618i
\(652\) 0 0
\(653\) 12.5518 7.24678i 0.491189 0.283588i −0.233878 0.972266i \(-0.575142\pi\)
0.725068 + 0.688678i \(0.241808\pi\)
\(654\) 0 0
\(655\) 30.3716i 1.18671i
\(656\) 0 0
\(657\) 7.44709 + 4.29958i 0.290539 + 0.167743i
\(658\) 0 0
\(659\) 9.60769 + 5.54700i 0.374263 + 0.216081i 0.675319 0.737526i \(-0.264006\pi\)
−0.301056 + 0.953606i \(0.597339\pi\)
\(660\) 0 0
\(661\) −10.4124 18.0348i −0.404996 0.701474i 0.589325 0.807896i \(-0.299394\pi\)
−0.994321 + 0.106422i \(0.966060\pi\)
\(662\) 0 0
\(663\) 2.49511 + 19.5167i 0.0969022 + 0.757966i
\(664\) 0 0
\(665\) −1.65948 + 0.958100i −0.0643518 + 0.0371535i
\(666\) 0 0
\(667\) 26.0772 + 15.0557i 1.00971 + 0.582958i
\(668\) 0 0
\(669\) −1.17974 + 2.04336i −0.0456112 + 0.0790009i
\(670\) 0 0
\(671\) 26.7640i 1.03321i
\(672\) 0 0
\(673\) −25.1355 43.5359i −0.968901 1.67819i −0.698748 0.715368i \(-0.746259\pi\)
−0.270153 0.962817i \(-0.587074\pi\)
\(674\) 0 0
\(675\) 0.596381i 0.0229547i
\(676\) 0 0
\(677\) 1.15925i 0.0445537i −0.999752 0.0222769i \(-0.992908\pi\)
0.999752 0.0222769i \(-0.00709153\pi\)
\(678\) 0 0
\(679\) 1.54083 + 2.66879i 0.0591316 + 0.102419i
\(680\) 0 0
\(681\) 0.946814i 0.0362820i
\(682\) 0 0
\(683\) 2.05391 3.55747i 0.0785906 0.136123i −0.824051 0.566515i \(-0.808291\pi\)
0.902642 + 0.430392i \(0.141625\pi\)
\(684\) 0 0
\(685\) −32.6899 18.8735i −1.24902 0.721119i
\(686\) 0 0
\(687\) −16.6549 + 9.61570i −0.635424 + 0.366862i
\(688\) 0 0
\(689\) −4.92797 38.5464i −0.187741 1.46850i
\(690\) 0 0
\(691\) −22.0592 38.2077i −0.839173 1.45349i −0.890587 0.454812i \(-0.849706\pi\)
0.0514148 0.998677i \(-0.483627\pi\)
\(692\) 0 0
\(693\) −1.47958 0.854238i −0.0562047 0.0324498i
\(694\) 0 0
\(695\) −10.8046 6.23806i −0.409843 0.236623i
\(696\) 0 0
\(697\) 4.02388i 0.152415i
\(698\) 0 0
\(699\) −2.94596 + 1.70085i −0.111426 + 0.0643320i
\(700\) 0 0
\(701\) 42.5841i 1.60838i 0.594373 + 0.804189i \(0.297400\pi\)
−0.594373 + 0.804189i \(0.702600\pi\)
\(702\) 0 0
\(703\) −14.3084 −0.539652
\(704\) 0 0
\(705\) 0.244510 + 0.423504i 0.00920879 + 0.0159501i
\(706\) 0 0
\(707\) −4.43296 −0.166718
\(708\) 0 0
\(709\) 15.1238 26.1952i 0.567985 0.983780i −0.428780 0.903409i \(-0.641056\pi\)
0.996765 0.0803705i \(-0.0256104\pi\)
\(710\) 0 0
\(711\) 2.24577 3.88979i 0.0842229 0.145878i
\(712\) 0 0
\(713\) 1.67265 0.965704i 0.0626412 0.0361659i
\(714\) 0 0
\(715\) 24.9815 + 32.8102i 0.934255 + 1.22703i
\(716\) 0 0
\(717\) −0.341400 0.591322i −0.0127498 0.0220833i
\(718\) 0 0
\(719\) −18.6668 + 32.3318i −0.696152 + 1.20577i 0.273638 + 0.961833i \(0.411773\pi\)
−0.969791 + 0.243939i \(0.921560\pi\)
\(720\) 0 0
\(721\) −1.37616 0.794529i −0.0512510 0.0295898i
\(722\) 0 0
\(723\) −6.05974 −0.225364
\(724\) 0 0
\(725\) 4.13970 2.39006i 0.153745 0.0887646i
\(726\) 0 0
\(727\) −13.6532 −0.506371 −0.253185 0.967418i \(-0.581478\pi\)
−0.253185 + 0.967418i \(0.581478\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 42.3456 24.4482i 1.56621 0.904251i
\(732\) 0 0
\(733\) −6.99689 −0.258436 −0.129218 0.991616i \(-0.541247\pi\)
−0.129218 + 0.991616i \(0.541247\pi\)
\(734\) 0 0
\(735\) 12.5428 + 7.24158i 0.462648 + 0.267110i
\(736\) 0 0
\(737\) −30.1547 + 52.2295i −1.11076 + 1.92390i
\(738\) 0 0
\(739\) −19.7960 34.2878i −0.728209 1.26130i −0.957639 0.287970i \(-0.907020\pi\)
0.229430 0.973325i \(-0.426314\pi\)
\(740\) 0 0
\(741\) −1.33194 10.4184i −0.0489300 0.382729i
\(742\) 0 0
\(743\) 30.3873 17.5441i 1.11480 0.643631i 0.174733 0.984616i \(-0.444094\pi\)
0.940069 + 0.340984i \(0.110760\pi\)
\(744\) 0 0
\(745\) −7.63449 + 13.2233i −0.279706 + 0.484465i
\(746\) 0 0
\(747\) 6.12722 10.6127i 0.224183 0.388297i
\(748\) 0 0
\(749\) −2.28364 −0.0834423
\(750\) 0 0
\(751\) 7.32809 + 12.6926i 0.267406 + 0.463160i 0.968191 0.250212i \(-0.0805002\pi\)
−0.700785 + 0.713372i \(0.747167\pi\)
\(752\) 0 0
\(753\) 17.0203 0.620253
\(754\) 0 0
\(755\) 17.1625i 0.624607i
\(756\) 0 0
\(757\) −45.4728 + 26.2537i −1.65274 + 0.954208i −0.676797 + 0.736170i \(0.736632\pi\)
−0.975940 + 0.218038i \(0.930034\pi\)
\(758\) 0 0
\(759\) 20.4756i 0.743219i
\(760\) 0 0
\(761\) 26.9115 + 15.5373i 0.975540 + 0.563228i 0.900921 0.433984i \(-0.142893\pi\)
0.0746191 + 0.997212i \(0.476226\pi\)
\(762\) 0 0
\(763\) −0.257162 0.148473i −0.00930989 0.00537507i
\(764\) 0 0
\(765\) −5.72572 9.91724i −0.207014 0.358558i
\(766\) 0 0
\(767\) 11.1257 26.5779i 0.401726 0.959674i
\(768\) 0 0
\(769\) −27.8593 + 16.0846i −1.00463 + 0.580024i −0.909615 0.415451i \(-0.863624\pi\)
−0.0950162 + 0.995476i \(0.530290\pi\)
\(770\) 0 0
\(771\) −24.3749 14.0728i −0.877839 0.506820i
\(772\) 0 0
\(773\) 17.6492 30.5694i 0.634799 1.09950i −0.351759 0.936091i \(-0.614416\pi\)
0.986558 0.163413i \(-0.0522504\pi\)
\(774\) 0 0
\(775\) 0.306607i 0.0110137i
\(776\) 0 0
\(777\) −0.769836 1.33340i −0.0276177 0.0478353i
\(778\) 0 0
\(779\) 2.14802i 0.0769610i
\(780\) 0 0
\(781\) 64.6370i 2.31289i
\(782\) 0 0
\(783\) 4.00760 + 6.94137i 0.143220 + 0.248064i
\(784\) 0 0
\(785\) 40.1924i 1.43453i
\(786\) 0 0
\(787\) 3.48371 6.03397i 0.124181 0.215088i −0.797232 0.603674i \(-0.793703\pi\)
0.921412 + 0.388586i \(0.127036\pi\)
\(788\) 0 0
\(789\) −19.3120 11.1498i −0.687526 0.396943i
\(790\) 0 0
\(791\) 3.18478 1.83873i 0.113238 0.0653778i
\(792\) 0 0
\(793\) 16.3320 + 6.83669i 0.579966 + 0.242778i
\(794\) 0 0
\(795\) 11.3086 + 19.5870i 0.401074 + 0.694680i
\(796\) 0 0
\(797\) 2.66536 + 1.53885i 0.0944119 + 0.0545088i 0.546463 0.837484i \(-0.315974\pi\)
−0.452051 + 0.891992i \(0.649307\pi\)
\(798\) 0 0
\(799\) 1.10131 + 0.635840i 0.0389614 + 0.0224944i
\(800\) 0 0
\(801\) 1.16484i 0.0411576i
\(802\) 0 0
\(803\) 40.5891 23.4341i 1.43236 0.826972i
\(804\) 0 0
\(805\) 2.47119i 0.0870981i
\(806\) 0 0
\(807\) 7.82866 0.275582
\(808\) 0 0
\(809\) 6.93330 + 12.0088i 0.243762 + 0.422208i 0.961783 0.273814i \(-0.0882852\pi\)
−0.718021 + 0.696021i \(0.754952\pi\)
\(810\) 0 0
\(811\) 19.9532 0.700652 0.350326 0.936628i \(-0.386071\pi\)
0.350326 + 0.936628i \(0.386071\pi\)
\(812\) 0 0
\(813\) 8.20639 14.2139i 0.287811 0.498502i
\(814\) 0 0
\(815\) 0.539753 0.934879i 0.0189067 0.0327474i
\(816\) 0 0
\(817\) −22.6049 + 13.0509i −0.790845 + 0.456594i
\(818\) 0 0
\(819\) 0.899224 0.684664i 0.0314214 0.0239241i
\(820\) 0 0
\(821\) 8.72499 + 15.1121i 0.304504 + 0.527417i 0.977151 0.212547i \(-0.0681759\pi\)
−0.672647 + 0.739964i \(0.734843\pi\)
\(822\) 0 0
\(823\) 2.90032 5.02351i 0.101099 0.175108i −0.811039 0.584992i \(-0.801097\pi\)
0.912138 + 0.409884i \(0.134431\pi\)
\(824\) 0 0
\(825\) 2.81499 + 1.62524i 0.0980054 + 0.0565834i
\(826\) 0 0
\(827\) 27.9904 0.973322 0.486661 0.873591i \(-0.338215\pi\)
0.486661 + 0.873591i \(0.338215\pi\)
\(828\) 0 0
\(829\) 45.7334 26.4042i 1.58839 0.917056i 0.594814 0.803864i \(-0.297226\pi\)
0.993573 0.113192i \(-0.0361075\pi\)
\(830\) 0 0
\(831\) 18.6704 0.647669
\(832\) 0 0
\(833\) 37.6629 1.30494
\(834\) 0 0
\(835\) −3.74360 + 2.16137i −0.129552 + 0.0747972i
\(836\) 0 0
\(837\) 0.514113 0.0177703
\(838\) 0 0
\(839\) −6.36083 3.67243i −0.219600 0.126786i 0.386165 0.922430i \(-0.373800\pi\)
−0.605765 + 0.795644i \(0.707133\pi\)
\(840\) 0 0
\(841\) 17.6218 30.5218i 0.607647 1.05247i
\(842\) 0 0
\(843\) −6.90182 11.9543i −0.237711 0.411728i
\(844\) 0 0
\(845\) −26.4028 + 6.86312i −0.908285 + 0.236098i
\(846\) 0 0
\(847\) −5.07807 + 2.93182i −0.174484 + 0.100739i
\(848\) 0 0
\(849\) −3.62445 + 6.27773i −0.124391 + 0.215451i
\(850\) 0 0
\(851\) −9.22630 + 15.9804i −0.316273 + 0.547801i
\(852\) 0 0
\(853\) −43.2083 −1.47942 −0.739712 0.672923i \(-0.765038\pi\)
−0.739712 + 0.672923i \(0.765038\pi\)
\(854\) 0 0
\(855\) 3.05650 + 5.29401i 0.104530 + 0.181051i
\(856\) 0 0
\(857\) −18.4720 −0.630992 −0.315496 0.948927i \(-0.602171\pi\)
−0.315496 + 0.948927i \(0.602171\pi\)
\(858\) 0 0
\(859\) 8.98716i 0.306638i −0.988177 0.153319i \(-0.951004\pi\)
0.988177 0.153319i \(-0.0489962\pi\)
\(860\) 0 0
\(861\) −0.200174 + 0.115570i −0.00682190 + 0.00393863i
\(862\) 0 0
\(863\) 42.4027i 1.44340i 0.692204 + 0.721702i \(0.256640\pi\)
−0.692204 + 0.721702i \(0.743360\pi\)
\(864\) 0 0
\(865\) 14.0523 + 8.11313i 0.477794 + 0.275855i
\(866\) 0 0
\(867\) −11.0669 6.38951i −0.375853 0.216999i
\(868\) 0 0
\(869\) −12.2402 21.2006i −0.415219 0.719181i
\(870\) 0 0
\(871\) −24.1688 31.7428i −0.818928 1.07556i
\(872\) 0 0
\(873\) 8.51390 4.91550i 0.288152 0.166364i
\(874\) 0 0
\(875\) 3.18808 + 1.84064i 0.107777 + 0.0622250i
\(876\) 0 0
\(877\) −7.22623 + 12.5162i −0.244012 + 0.422642i −0.961854 0.273565i \(-0.911797\pi\)
0.717841 + 0.696207i \(0.245130\pi\)
\(878\) 0 0
\(879\) 8.81664i 0.297378i
\(880\) 0 0
\(881\) 3.42746 + 5.93653i 0.115474 + 0.200007i 0.917969 0.396652i \(-0.129828\pi\)
−0.802495 + 0.596659i \(0.796495\pi\)
\(882\) 0 0
\(883\) 15.1989i 0.511484i −0.966745 0.255742i \(-0.917680\pi\)
0.966745 0.255742i \(-0.0823197\pi\)
\(884\) 0 0
\(885\) 16.7694i 0.563696i
\(886\) 0 0
\(887\) 12.6270 + 21.8707i 0.423974 + 0.734345i 0.996324 0.0856646i \(-0.0273014\pi\)
−0.572350 + 0.820010i \(0.693968\pi\)
\(888\) 0 0
\(889\) 6.80966i 0.228389i
\(890\) 0 0
\(891\) −2.72516 + 4.72012i −0.0912963 + 0.158130i
\(892\) 0 0
\(893\) −0.587899 0.339423i −0.0196733 0.0113584i
\(894\) 0 0
\(895\) 30.3343 17.5135i 1.01396 0.585412i
\(896\) 0 0
\(897\) −12.4947 5.23037i −0.417185 0.174637i
\(898\) 0 0
\(899\) −2.06036 3.56865i −0.0687169 0.119021i
\(900\) 0 0
\(901\) 50.9353 + 29.4075i 1.69690 + 0.979706i
\(902\) 0 0
\(903\) −2.43242 1.40436i −0.0809460 0.0467342i
\(904\) 0 0
\(905\) 5.43927i 0.180807i
\(906\) 0 0
\(907\) 0.992046 0.572758i 0.0329404 0.0190181i −0.483439 0.875378i \(-0.660613\pi\)
0.516380 + 0.856360i \(0.327279\pi\)
\(908\) 0 0
\(909\) 14.1419i 0.469056i
\(910\) 0 0
\(911\) 33.9691 1.12545 0.562724 0.826645i \(-0.309754\pi\)
0.562724 + 0.826645i \(0.309754\pi\)
\(912\) 0 0
\(913\) −33.3953 57.8424i −1.10522 1.91430i
\(914\) 0 0
\(915\) −10.3047 −0.340662
\(916\) 0 0
\(917\) −2.26839 + 3.92897i −0.0749090 + 0.129746i
\(918\) 0 0
\(919\) −1.69625 + 2.93799i −0.0559542 + 0.0969155i −0.892646 0.450759i \(-0.851153\pi\)
0.836692 + 0.547674i \(0.184487\pi\)
\(920\) 0 0
\(921\) −7.46770 + 4.31148i −0.246069 + 0.142068i
\(922\) 0 0
\(923\) −39.4429 16.5111i −1.29828 0.543469i
\(924\) 0 0
\(925\) 1.46466 + 2.53686i 0.0481576 + 0.0834115i
\(926\) 0 0
\(927\) −2.53468 + 4.39019i −0.0832498 + 0.144193i
\(928\) 0 0
\(929\) 13.6753 + 7.89543i 0.448672 + 0.259041i 0.707269 0.706944i \(-0.249927\pi\)
−0.258597 + 0.965985i \(0.583260\pi\)
\(930\) 0 0
\(931\) −20.1052 −0.658921
\(932\) 0 0
\(933\) 26.5434 15.3249i 0.868993 0.501713i
\(934\) 0 0
\(935\) −62.4140 −2.04116
\(936\) 0 0
\(937\) −4.68424 −0.153027 −0.0765137 0.997069i \(-0.524379\pi\)
−0.0765137 + 0.997069i \(0.524379\pi\)
\(938\) 0 0
\(939\) 23.1645 13.3740i 0.755944 0.436444i
\(940\) 0 0
\(941\) 33.4301 1.08979 0.544895 0.838504i \(-0.316569\pi\)
0.544895 + 0.838504i \(0.316569\pi\)
\(942\) 0 0
\(943\) 2.39903 + 1.38508i 0.0781232 + 0.0451045i
\(944\) 0 0
\(945\) −0.328898 + 0.569668i −0.0106991 + 0.0185313i
\(946\) 0 0
\(947\) −11.7967 20.4324i −0.383340 0.663965i 0.608197 0.793786i \(-0.291893\pi\)
−0.991537 + 0.129821i \(0.958560\pi\)
\(948\) 0 0
\(949\) 3.93180 + 30.7544i 0.127632 + 0.998330i
\(950\) 0 0
\(951\) 8.04031 4.64207i 0.260725 0.150530i
\(952\) 0 0
\(953\) −15.0985 + 26.1513i −0.489087 + 0.847124i −0.999921 0.0125557i \(-0.996003\pi\)
0.510834 + 0.859679i \(0.329337\pi\)
\(954\) 0 0
\(955\) −10.8946 + 18.8699i −0.352539 + 0.610616i
\(956\) 0 0
\(957\) 43.6855 1.41215
\(958\) 0 0
\(959\) 2.81925 + 4.88309i 0.0910384 + 0.157683i
\(960\) 0 0
\(961\) 30.7357 0.991474
\(962\) 0 0
\(963\) 7.28518i 0.234762i
\(964\) 0 0
\(965\) −30.3435 + 17.5188i −0.976792 + 0.563951i
\(966\) 0 0
\(967\) 21.6042i 0.694745i 0.937727 + 0.347373i \(0.112926\pi\)
−0.937727 + 0.347373i \(0.887074\pi\)
\(968\) 0 0
\(969\) 13.7669 + 7.94831i 0.442256 + 0.255336i
\(970\) 0 0
\(971\) 19.0345 + 10.9895i 0.610845 + 0.352671i 0.773296 0.634045i \(-0.218607\pi\)
−0.162451 + 0.986717i \(0.551940\pi\)
\(972\) 0 0
\(973\) 0.931818 + 1.61396i 0.0298727 + 0.0517411i
\(974\) 0 0
\(975\) −1.71082 + 1.30261i −0.0547902 + 0.0417170i
\(976\) 0 0
\(977\) 4.65434 2.68718i 0.148906 0.0859707i −0.423696 0.905804i \(-0.639268\pi\)
0.572602 + 0.819834i \(0.305934\pi\)
\(978\) 0 0
\(979\) 5.49818 + 3.17437i 0.175722 + 0.101453i
\(980\) 0 0
\(981\) −0.473653 + 0.820390i −0.0151226 + 0.0261930i
\(982\) 0 0
\(983\) 31.6005i 1.00790i −0.863733 0.503949i \(-0.831880\pi\)
0.863733 0.503949i \(-0.168120\pi\)
\(984\) 0 0
\(985\) −22.7154 39.3442i −0.723772 1.25361i
\(986\) 0 0
\(987\) 0.0730481i 0.00232515i
\(988\) 0 0
\(989\) 33.6618i 1.07038i
\(990\) 0 0
\(991\) −12.6021 21.8275i −0.400320 0.693374i 0.593445 0.804875i \(-0.297768\pi\)
−0.993764 + 0.111501i \(0.964434\pi\)
\(992\) 0 0
\(993\) 22.6539i 0.718901i
\(994\) 0 0
\(995\) −0.932196 + 1.61461i −0.0295526 + 0.0511866i
\(996\) 0 0
\(997\) −12.3839 7.14987i −0.392203 0.226439i 0.290911 0.956750i \(-0.406042\pi\)
−0.683114 + 0.730312i \(0.739375\pi\)
\(998\) 0 0
\(999\) −4.25376 + 2.45591i −0.134583 + 0.0777015i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.2.ca.b.49.21 48
4.3 odd 2 312.2.bk.b.205.14 48
8.3 odd 2 312.2.bk.b.205.21 yes 48
8.5 even 2 inner 1248.2.ca.b.49.4 48
12.11 even 2 936.2.dg.e.829.11 48
13.4 even 6 inner 1248.2.ca.b.433.4 48
24.11 even 2 936.2.dg.e.829.4 48
52.43 odd 6 312.2.bk.b.277.21 yes 48
104.43 odd 6 312.2.bk.b.277.14 yes 48
104.69 even 6 inner 1248.2.ca.b.433.21 48
156.95 even 6 936.2.dg.e.901.4 48
312.251 even 6 936.2.dg.e.901.11 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bk.b.205.14 48 4.3 odd 2
312.2.bk.b.205.21 yes 48 8.3 odd 2
312.2.bk.b.277.14 yes 48 104.43 odd 6
312.2.bk.b.277.21 yes 48 52.43 odd 6
936.2.dg.e.829.4 48 24.11 even 2
936.2.dg.e.829.11 48 12.11 even 2
936.2.dg.e.901.4 48 156.95 even 6
936.2.dg.e.901.11 48 312.251 even 6
1248.2.ca.b.49.4 48 8.5 even 2 inner
1248.2.ca.b.49.21 48 1.1 even 1 trivial
1248.2.ca.b.433.4 48 13.4 even 6 inner
1248.2.ca.b.433.21 48 104.69 even 6 inner