Properties

Label 1248.2.ca.b.49.19
Level $1248$
Weight $2$
Character 1248.49
Analytic conductor $9.965$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1248,2,Mod(49,1248)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1248, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1248.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.ca (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.96533017226\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.19
Character \(\chi\) \(=\) 1248.49
Dual form 1248.2.ca.b.433.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{3} +0.112463 q^{5} +(-0.0378844 - 0.0218726i) q^{7} +(0.500000 - 0.866025i) q^{9} +(3.10283 + 5.37427i) q^{11} +(-1.35237 - 3.34232i) q^{13} +(0.0973959 - 0.0562315i) q^{15} +(1.70610 - 2.95506i) q^{17} +(3.27166 - 5.66668i) q^{19} -0.0437452 q^{21} +(2.27419 + 3.93902i) q^{23} -4.98735 q^{25} -1.00000i q^{27} +(5.22044 - 3.01402i) q^{29} +7.66040i q^{31} +(5.37427 + 3.10283i) q^{33} +(-0.00426060 - 0.00245986i) q^{35} +(5.07408 + 8.78857i) q^{37} +(-2.84235 - 2.21835i) q^{39} +(2.01283 - 1.16211i) q^{41} +(8.02853 + 4.63527i) q^{43} +(0.0562315 - 0.0973959i) q^{45} -6.65732i q^{47} +(-3.49904 - 6.06052i) q^{49} -3.41220i q^{51} -11.2461i q^{53} +(0.348954 + 0.604406i) q^{55} -6.54332i q^{57} +(1.11081 - 1.92397i) q^{59} +(8.56334 + 4.94405i) q^{61} +(-0.0378844 + 0.0218726i) q^{63} +(-0.152092 - 0.375887i) q^{65} +(-2.26023 - 3.91483i) q^{67} +(3.93902 + 2.27419i) q^{69} +(-2.64086 - 1.52470i) q^{71} +4.71199i q^{73} +(-4.31917 + 2.49368i) q^{75} -0.271468i q^{77} -8.01847 q^{79} +(-0.500000 - 0.866025i) q^{81} +2.86994 q^{83} +(0.191873 - 0.332335i) q^{85} +(3.01402 - 5.22044i) q^{87} +(3.35627 - 1.93775i) q^{89} +(-0.0218715 + 0.156202i) q^{91} +(3.83020 + 6.63410i) q^{93} +(0.367941 - 0.637292i) q^{95} +(-0.971031 - 0.560625i) q^{97} +6.20567 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 12 q^{7} + 24 q^{9} + 12 q^{17} - 20 q^{23} + 48 q^{25} + 12 q^{33} - 28 q^{39} - 12 q^{41} + 16 q^{49} + 68 q^{55} + 12 q^{63} + 12 q^{65} + 12 q^{71} + 192 q^{79} - 24 q^{81} - 48 q^{89} + 20 q^{95}+ \cdots + 144 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1248\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 0 0
\(5\) 0.112463 0.0502950 0.0251475 0.999684i \(-0.491994\pi\)
0.0251475 + 0.999684i \(0.491994\pi\)
\(6\) 0 0
\(7\) −0.0378844 0.0218726i −0.0143190 0.00826706i 0.492823 0.870129i \(-0.335965\pi\)
−0.507142 + 0.861862i \(0.669298\pi\)
\(8\) 0 0
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) 3.10283 + 5.37427i 0.935540 + 1.62040i 0.773669 + 0.633590i \(0.218420\pi\)
0.161871 + 0.986812i \(0.448247\pi\)
\(12\) 0 0
\(13\) −1.35237 3.34232i −0.375080 0.926993i
\(14\) 0 0
\(15\) 0.0973959 0.0562315i 0.0251475 0.0145189i
\(16\) 0 0
\(17\) 1.70610 2.95506i 0.413791 0.716706i −0.581510 0.813539i \(-0.697538\pi\)
0.995301 + 0.0968330i \(0.0308713\pi\)
\(18\) 0 0
\(19\) 3.27166 5.66668i 0.750570 1.30003i −0.196976 0.980408i \(-0.563112\pi\)
0.947547 0.319618i \(-0.103555\pi\)
\(20\) 0 0
\(21\) −0.0437452 −0.00954598
\(22\) 0 0
\(23\) 2.27419 + 3.93902i 0.474202 + 0.821342i 0.999564 0.0295369i \(-0.00940324\pi\)
−0.525362 + 0.850879i \(0.676070\pi\)
\(24\) 0 0
\(25\) −4.98735 −0.997470
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 5.22044 3.01402i 0.969411 0.559690i 0.0703545 0.997522i \(-0.477587\pi\)
0.899057 + 0.437832i \(0.144254\pi\)
\(30\) 0 0
\(31\) 7.66040i 1.37585i 0.725782 + 0.687925i \(0.241478\pi\)
−0.725782 + 0.687925i \(0.758522\pi\)
\(32\) 0 0
\(33\) 5.37427 + 3.10283i 0.935540 + 0.540134i
\(34\) 0 0
\(35\) −0.00426060 0.00245986i −0.000720173 0.000415792i
\(36\) 0 0
\(37\) 5.07408 + 8.78857i 0.834174 + 1.44483i 0.894701 + 0.446665i \(0.147388\pi\)
−0.0605274 + 0.998167i \(0.519278\pi\)
\(38\) 0 0
\(39\) −2.84235 2.21835i −0.455140 0.355220i
\(40\) 0 0
\(41\) 2.01283 1.16211i 0.314352 0.181491i −0.334520 0.942389i \(-0.608574\pi\)
0.648872 + 0.760897i \(0.275241\pi\)
\(42\) 0 0
\(43\) 8.02853 + 4.63527i 1.22434 + 0.706873i 0.965840 0.259139i \(-0.0834388\pi\)
0.258499 + 0.966011i \(0.416772\pi\)
\(44\) 0 0
\(45\) 0.0562315 0.0973959i 0.00838250 0.0145189i
\(46\) 0 0
\(47\) 6.65732i 0.971070i −0.874217 0.485535i \(-0.838625\pi\)
0.874217 0.485535i \(-0.161375\pi\)
\(48\) 0 0
\(49\) −3.49904 6.06052i −0.499863 0.865789i
\(50\) 0 0
\(51\) 3.41220i 0.477804i
\(52\) 0 0
\(53\) 11.2461i 1.54477i −0.635153 0.772387i \(-0.719063\pi\)
0.635153 0.772387i \(-0.280937\pi\)
\(54\) 0 0
\(55\) 0.348954 + 0.604406i 0.0470530 + 0.0814981i
\(56\) 0 0
\(57\) 6.54332i 0.866684i
\(58\) 0 0
\(59\) 1.11081 1.92397i 0.144615 0.250480i −0.784614 0.619984i \(-0.787139\pi\)
0.929229 + 0.369504i \(0.120472\pi\)
\(60\) 0 0
\(61\) 8.56334 + 4.94405i 1.09642 + 0.633021i 0.935279 0.353910i \(-0.115148\pi\)
0.161144 + 0.986931i \(0.448481\pi\)
\(62\) 0 0
\(63\) −0.0378844 + 0.0218726i −0.00477299 + 0.00275569i
\(64\) 0 0
\(65\) −0.152092 0.375887i −0.0188646 0.0466231i
\(66\) 0 0
\(67\) −2.26023 3.91483i −0.276131 0.478273i 0.694289 0.719696i \(-0.255719\pi\)
−0.970420 + 0.241424i \(0.922386\pi\)
\(68\) 0 0
\(69\) 3.93902 + 2.27419i 0.474202 + 0.273781i
\(70\) 0 0
\(71\) −2.64086 1.52470i −0.313413 0.180949i 0.335040 0.942204i \(-0.391250\pi\)
−0.648453 + 0.761255i \(0.724584\pi\)
\(72\) 0 0
\(73\) 4.71199i 0.551496i 0.961230 + 0.275748i \(0.0889256\pi\)
−0.961230 + 0.275748i \(0.911074\pi\)
\(74\) 0 0
\(75\) −4.31917 + 2.49368i −0.498735 + 0.287945i
\(76\) 0 0
\(77\) 0.271468i 0.0309367i
\(78\) 0 0
\(79\) −8.01847 −0.902149 −0.451074 0.892486i \(-0.648959\pi\)
−0.451074 + 0.892486i \(0.648959\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 2.86994 0.315017 0.157509 0.987518i \(-0.449654\pi\)
0.157509 + 0.987518i \(0.449654\pi\)
\(84\) 0 0
\(85\) 0.191873 0.332335i 0.0208116 0.0360467i
\(86\) 0 0
\(87\) 3.01402 5.22044i 0.323137 0.559690i
\(88\) 0 0
\(89\) 3.35627 1.93775i 0.355764 0.205401i −0.311457 0.950260i \(-0.600817\pi\)
0.667221 + 0.744860i \(0.267484\pi\)
\(90\) 0 0
\(91\) −0.0218715 + 0.156202i −0.00229275 + 0.0163744i
\(92\) 0 0
\(93\) 3.83020 + 6.63410i 0.397173 + 0.687925i
\(94\) 0 0
\(95\) 0.367941 0.637292i 0.0377499 0.0653848i
\(96\) 0 0
\(97\) −0.971031 0.560625i −0.0985932 0.0569228i 0.449893 0.893083i \(-0.351462\pi\)
−0.548486 + 0.836160i \(0.684796\pi\)
\(98\) 0 0
\(99\) 6.20567 0.623693
\(100\) 0 0
\(101\) 2.33138 1.34602i 0.231981 0.133934i −0.379505 0.925190i \(-0.623906\pi\)
0.611485 + 0.791256i \(0.290572\pi\)
\(102\) 0 0
\(103\) −8.58090 −0.845501 −0.422750 0.906246i \(-0.638935\pi\)
−0.422750 + 0.906246i \(0.638935\pi\)
\(104\) 0 0
\(105\) −0.00491972 −0.000480115
\(106\) 0 0
\(107\) 9.46960 5.46727i 0.915460 0.528541i 0.0332764 0.999446i \(-0.489406\pi\)
0.882184 + 0.470905i \(0.156073\pi\)
\(108\) 0 0
\(109\) −1.35607 −0.129888 −0.0649438 0.997889i \(-0.520687\pi\)
−0.0649438 + 0.997889i \(0.520687\pi\)
\(110\) 0 0
\(111\) 8.78857 + 5.07408i 0.834174 + 0.481611i
\(112\) 0 0
\(113\) −4.54900 + 7.87909i −0.427934 + 0.741203i −0.996689 0.0813038i \(-0.974092\pi\)
0.568756 + 0.822506i \(0.307425\pi\)
\(114\) 0 0
\(115\) 0.255763 + 0.442994i 0.0238500 + 0.0413094i
\(116\) 0 0
\(117\) −3.57072 0.499974i −0.330113 0.0462226i
\(118\) 0 0
\(119\) −0.129269 + 0.0746337i −0.0118501 + 0.00684166i
\(120\) 0 0
\(121\) −13.7552 + 23.8246i −1.25047 + 2.16588i
\(122\) 0 0
\(123\) 1.16211 2.01283i 0.104784 0.181491i
\(124\) 0 0
\(125\) −1.12321 −0.100463
\(126\) 0 0
\(127\) −2.71600 4.70425i −0.241006 0.417435i 0.719995 0.693979i \(-0.244144\pi\)
−0.961001 + 0.276545i \(0.910811\pi\)
\(128\) 0 0
\(129\) 9.27055 0.816226
\(130\) 0 0
\(131\) 12.9469i 1.13118i 0.824688 + 0.565588i \(0.191351\pi\)
−0.824688 + 0.565588i \(0.808649\pi\)
\(132\) 0 0
\(133\) −0.247890 + 0.143119i −0.0214948 + 0.0124100i
\(134\) 0 0
\(135\) 0.112463i 0.00967928i
\(136\) 0 0
\(137\) −8.11473 4.68504i −0.693289 0.400270i 0.111554 0.993758i \(-0.464417\pi\)
−0.804843 + 0.593488i \(0.797750\pi\)
\(138\) 0 0
\(139\) −11.5652 6.67714i −0.980944 0.566348i −0.0783887 0.996923i \(-0.524978\pi\)
−0.902555 + 0.430575i \(0.858311\pi\)
\(140\) 0 0
\(141\) −3.32866 5.76541i −0.280324 0.485535i
\(142\) 0 0
\(143\) 13.7663 17.6387i 1.15120 1.47502i
\(144\) 0 0
\(145\) 0.587106 0.338966i 0.0487565 0.0281496i
\(146\) 0 0
\(147\) −6.06052 3.49904i −0.499863 0.288596i
\(148\) 0 0
\(149\) −3.72048 + 6.44406i −0.304794 + 0.527918i −0.977215 0.212250i \(-0.931921\pi\)
0.672422 + 0.740168i \(0.265254\pi\)
\(150\) 0 0
\(151\) 5.32718i 0.433520i 0.976225 + 0.216760i \(0.0695489\pi\)
−0.976225 + 0.216760i \(0.930451\pi\)
\(152\) 0 0
\(153\) −1.70610 2.95506i −0.137930 0.238902i
\(154\) 0 0
\(155\) 0.861512i 0.0691983i
\(156\) 0 0
\(157\) 0.685882i 0.0547394i −0.999625 0.0273697i \(-0.991287\pi\)
0.999625 0.0273697i \(-0.00871313\pi\)
\(158\) 0 0
\(159\) −5.62306 9.73943i −0.445938 0.772387i
\(160\) 0 0
\(161\) 0.198970i 0.0156810i
\(162\) 0 0
\(163\) −2.13178 + 3.69236i −0.166974 + 0.289208i −0.937355 0.348377i \(-0.886733\pi\)
0.770380 + 0.637584i \(0.220066\pi\)
\(164\) 0 0
\(165\) 0.604406 + 0.348954i 0.0470530 + 0.0271660i
\(166\) 0 0
\(167\) 18.7011 10.7971i 1.44713 0.835502i 0.448823 0.893621i \(-0.351843\pi\)
0.998310 + 0.0581186i \(0.0185102\pi\)
\(168\) 0 0
\(169\) −9.34220 + 9.04010i −0.718631 + 0.695392i
\(170\) 0 0
\(171\) −3.27166 5.66668i −0.250190 0.433342i
\(172\) 0 0
\(173\) −8.50417 4.90988i −0.646560 0.373291i 0.140577 0.990070i \(-0.455104\pi\)
−0.787137 + 0.616778i \(0.788438\pi\)
\(174\) 0 0
\(175\) 0.188943 + 0.109086i 0.0142828 + 0.00824615i
\(176\) 0 0
\(177\) 2.22161i 0.166987i
\(178\) 0 0
\(179\) −17.9739 + 10.3772i −1.34343 + 0.775631i −0.987309 0.158808i \(-0.949235\pi\)
−0.356123 + 0.934439i \(0.615901\pi\)
\(180\) 0 0
\(181\) 15.8357i 1.17706i −0.808476 0.588530i \(-0.799707\pi\)
0.808476 0.588530i \(-0.200293\pi\)
\(182\) 0 0
\(183\) 9.88810 0.730949
\(184\) 0 0
\(185\) 0.570647 + 0.988389i 0.0419548 + 0.0726678i
\(186\) 0 0
\(187\) 21.1750 1.54847
\(188\) 0 0
\(189\) −0.0218726 + 0.0378844i −0.00159100 + 0.00275569i
\(190\) 0 0
\(191\) −5.91519 + 10.2454i −0.428008 + 0.741332i −0.996696 0.0812216i \(-0.974118\pi\)
0.568688 + 0.822553i \(0.307451\pi\)
\(192\) 0 0
\(193\) 7.37552 4.25826i 0.530901 0.306516i −0.210482 0.977598i \(-0.567503\pi\)
0.741383 + 0.671082i \(0.234170\pi\)
\(194\) 0 0
\(195\) −0.319659 0.249482i −0.0228912 0.0178658i
\(196\) 0 0
\(197\) 4.62690 + 8.01403i 0.329653 + 0.570976i 0.982443 0.186563i \(-0.0597349\pi\)
−0.652790 + 0.757539i \(0.726402\pi\)
\(198\) 0 0
\(199\) −4.56241 + 7.90232i −0.323420 + 0.560181i −0.981191 0.193037i \(-0.938166\pi\)
0.657771 + 0.753218i \(0.271499\pi\)
\(200\) 0 0
\(201\) −3.91483 2.26023i −0.276131 0.159424i
\(202\) 0 0
\(203\) −0.263698 −0.0185080
\(204\) 0 0
\(205\) 0.226370 0.130695i 0.0158103 0.00912810i
\(206\) 0 0
\(207\) 4.54839 0.316135
\(208\) 0 0
\(209\) 40.6057 2.80875
\(210\) 0 0
\(211\) −17.9433 + 10.3596i −1.23527 + 0.713184i −0.968124 0.250472i \(-0.919414\pi\)
−0.267147 + 0.963656i \(0.586081\pi\)
\(212\) 0 0
\(213\) −3.04941 −0.208942
\(214\) 0 0
\(215\) 0.902913 + 0.521297i 0.0615781 + 0.0355522i
\(216\) 0 0
\(217\) 0.167553 0.290210i 0.0113742 0.0197007i
\(218\) 0 0
\(219\) 2.35599 + 4.08070i 0.159203 + 0.275748i
\(220\) 0 0
\(221\) −12.1840 1.70601i −0.819586 0.114759i
\(222\) 0 0
\(223\) 1.91875 1.10779i 0.128489 0.0741830i −0.434378 0.900731i \(-0.643032\pi\)
0.562867 + 0.826548i \(0.309698\pi\)
\(224\) 0 0
\(225\) −2.49368 + 4.31917i −0.166245 + 0.287945i
\(226\) 0 0
\(227\) −4.67656 + 8.10005i −0.310394 + 0.537619i −0.978448 0.206494i \(-0.933794\pi\)
0.668053 + 0.744113i \(0.267128\pi\)
\(228\) 0 0
\(229\) −6.14279 −0.405927 −0.202963 0.979186i \(-0.565057\pi\)
−0.202963 + 0.979186i \(0.565057\pi\)
\(230\) 0 0
\(231\) −0.135734 0.235098i −0.00893065 0.0154683i
\(232\) 0 0
\(233\) −25.5816 −1.67591 −0.837953 0.545742i \(-0.816248\pi\)
−0.837953 + 0.545742i \(0.816248\pi\)
\(234\) 0 0
\(235\) 0.748703i 0.0488400i
\(236\) 0 0
\(237\) −6.94420 + 4.00924i −0.451074 + 0.260428i
\(238\) 0 0
\(239\) 24.4002i 1.57831i 0.614191 + 0.789157i \(0.289482\pi\)
−0.614191 + 0.789157i \(0.710518\pi\)
\(240\) 0 0
\(241\) 13.3295 + 7.69576i 0.858626 + 0.495728i 0.863552 0.504260i \(-0.168235\pi\)
−0.00492624 + 0.999988i \(0.501568\pi\)
\(242\) 0 0
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) 0 0
\(245\) −0.393513 0.681585i −0.0251406 0.0435448i
\(246\) 0 0
\(247\) −23.3644 3.27149i −1.48664 0.208160i
\(248\) 0 0
\(249\) 2.48544 1.43497i 0.157509 0.0909376i
\(250\) 0 0
\(251\) −7.67751 4.43261i −0.484600 0.279784i 0.237732 0.971331i \(-0.423596\pi\)
−0.722331 + 0.691547i \(0.756929\pi\)
\(252\) 0 0
\(253\) −14.1129 + 24.4442i −0.887270 + 1.53680i
\(254\) 0 0
\(255\) 0.383747i 0.0240312i
\(256\) 0 0
\(257\) −1.86412 3.22876i −0.116281 0.201404i 0.802010 0.597310i \(-0.203764\pi\)
−0.918291 + 0.395906i \(0.870431\pi\)
\(258\) 0 0
\(259\) 0.443933i 0.0275847i
\(260\) 0 0
\(261\) 6.02804i 0.373127i
\(262\) 0 0
\(263\) 3.86616 + 6.69639i 0.238398 + 0.412917i 0.960255 0.279125i \(-0.0900445\pi\)
−0.721857 + 0.692042i \(0.756711\pi\)
\(264\) 0 0
\(265\) 1.26477i 0.0776944i
\(266\) 0 0
\(267\) 1.93775 3.35627i 0.118588 0.205401i
\(268\) 0 0
\(269\) 12.9358 + 7.46846i 0.788707 + 0.455360i 0.839507 0.543349i \(-0.182844\pi\)
−0.0508004 + 0.998709i \(0.516177\pi\)
\(270\) 0 0
\(271\) −25.4780 + 14.7097i −1.54768 + 0.893552i −0.549359 + 0.835586i \(0.685128\pi\)
−0.998319 + 0.0579660i \(0.981539\pi\)
\(272\) 0 0
\(273\) 0.0591596 + 0.146210i 0.00358050 + 0.00884905i
\(274\) 0 0
\(275\) −15.4749 26.8034i −0.933173 1.61630i
\(276\) 0 0
\(277\) −15.7963 9.12000i −0.949108 0.547968i −0.0563041 0.998414i \(-0.517932\pi\)
−0.892804 + 0.450446i \(0.851265\pi\)
\(278\) 0 0
\(279\) 6.63410 + 3.83020i 0.397173 + 0.229308i
\(280\) 0 0
\(281\) 14.2985i 0.852976i −0.904493 0.426488i \(-0.859751\pi\)
0.904493 0.426488i \(-0.140249\pi\)
\(282\) 0 0
\(283\) −19.3766 + 11.1871i −1.15182 + 0.665004i −0.949330 0.314280i \(-0.898237\pi\)
−0.202491 + 0.979284i \(0.564904\pi\)
\(284\) 0 0
\(285\) 0.735882i 0.0435899i
\(286\) 0 0
\(287\) −0.101673 −0.00600160
\(288\) 0 0
\(289\) 2.67843 + 4.63918i 0.157555 + 0.272893i
\(290\) 0 0
\(291\) −1.12125 −0.0657288
\(292\) 0 0
\(293\) 7.40233 12.8212i 0.432449 0.749024i −0.564635 0.825341i \(-0.690983\pi\)
0.997084 + 0.0763174i \(0.0243162\pi\)
\(294\) 0 0
\(295\) 0.124925 0.216376i 0.00727340 0.0125979i
\(296\) 0 0
\(297\) 5.37427 3.10283i 0.311847 0.180045i
\(298\) 0 0
\(299\) 10.0899 12.9281i 0.583515 0.747651i
\(300\) 0 0
\(301\) −0.202771 0.351209i −0.0116875 0.0202434i
\(302\) 0 0
\(303\) 1.34602 2.33138i 0.0773269 0.133934i
\(304\) 0 0
\(305\) 0.963060 + 0.556023i 0.0551446 + 0.0318378i
\(306\) 0 0
\(307\) 3.92702 0.224127 0.112063 0.993701i \(-0.464254\pi\)
0.112063 + 0.993701i \(0.464254\pi\)
\(308\) 0 0
\(309\) −7.43127 + 4.29045i −0.422750 + 0.244075i
\(310\) 0 0
\(311\) −5.57194 −0.315956 −0.157978 0.987443i \(-0.550498\pi\)
−0.157978 + 0.987443i \(0.550498\pi\)
\(312\) 0 0
\(313\) −3.34250 −0.188929 −0.0944647 0.995528i \(-0.530114\pi\)
−0.0944647 + 0.995528i \(0.530114\pi\)
\(314\) 0 0
\(315\) −0.00426060 + 0.00245986i −0.000240058 + 0.000138597i
\(316\) 0 0
\(317\) −9.69504 −0.544528 −0.272264 0.962223i \(-0.587772\pi\)
−0.272264 + 0.962223i \(0.587772\pi\)
\(318\) 0 0
\(319\) 32.3963 + 18.7040i 1.81385 + 1.04722i
\(320\) 0 0
\(321\) 5.46727 9.46960i 0.305153 0.528541i
\(322\) 0 0
\(323\) −11.1636 19.3359i −0.621158 1.07588i
\(324\) 0 0
\(325\) 6.74474 + 16.6693i 0.374131 + 0.924648i
\(326\) 0 0
\(327\) −1.17439 + 0.678033i −0.0649438 + 0.0374953i
\(328\) 0 0
\(329\) −0.145613 + 0.252209i −0.00802790 + 0.0139047i
\(330\) 0 0
\(331\) −9.32657 + 16.1541i −0.512635 + 0.887909i 0.487258 + 0.873258i \(0.337997\pi\)
−0.999893 + 0.0146513i \(0.995336\pi\)
\(332\) 0 0
\(333\) 10.1482 0.556116
\(334\) 0 0
\(335\) −0.254192 0.440274i −0.0138880 0.0240547i
\(336\) 0 0
\(337\) −3.77708 −0.205751 −0.102875 0.994694i \(-0.532804\pi\)
−0.102875 + 0.994694i \(0.532804\pi\)
\(338\) 0 0
\(339\) 9.09799i 0.494135i
\(340\) 0 0
\(341\) −41.1691 + 23.7690i −2.22943 + 1.28716i
\(342\) 0 0
\(343\) 0.612349i 0.0330637i
\(344\) 0 0
\(345\) 0.442994 + 0.255763i 0.0238500 + 0.0137698i
\(346\) 0 0
\(347\) 3.29621 + 1.90307i 0.176950 + 0.102162i 0.585859 0.810413i \(-0.300757\pi\)
−0.408909 + 0.912575i \(0.634091\pi\)
\(348\) 0 0
\(349\) −6.84360 11.8535i −0.366330 0.634502i 0.622659 0.782493i \(-0.286052\pi\)
−0.988989 + 0.147992i \(0.952719\pi\)
\(350\) 0 0
\(351\) −3.34232 + 1.35237i −0.178400 + 0.0721841i
\(352\) 0 0
\(353\) 19.0118 10.9765i 1.01190 0.584220i 0.100151 0.994972i \(-0.468067\pi\)
0.911747 + 0.410753i \(0.134734\pi\)
\(354\) 0 0
\(355\) −0.297000 0.171473i −0.0157631 0.00910083i
\(356\) 0 0
\(357\) −0.0746337 + 0.129269i −0.00395004 + 0.00684166i
\(358\) 0 0
\(359\) 28.3255i 1.49496i −0.664282 0.747482i \(-0.731263\pi\)
0.664282 0.747482i \(-0.268737\pi\)
\(360\) 0 0
\(361\) −11.9075 20.6244i −0.626712 1.08550i
\(362\) 0 0
\(363\) 27.5103i 1.44392i
\(364\) 0 0
\(365\) 0.529925i 0.0277375i
\(366\) 0 0
\(367\) −6.66461 11.5434i −0.347890 0.602562i 0.637985 0.770049i \(-0.279768\pi\)
−0.985874 + 0.167487i \(0.946435\pi\)
\(368\) 0 0
\(369\) 2.32422i 0.120994i
\(370\) 0 0
\(371\) −0.245982 + 0.426053i −0.0127707 + 0.0221196i
\(372\) 0 0
\(373\) 12.5046 + 7.21954i 0.647464 + 0.373813i 0.787484 0.616335i \(-0.211383\pi\)
−0.140020 + 0.990149i \(0.544717\pi\)
\(374\) 0 0
\(375\) −0.972727 + 0.561604i −0.0502314 + 0.0290011i
\(376\) 0 0
\(377\) −17.1338 13.3723i −0.882435 0.688709i
\(378\) 0 0
\(379\) −7.32609 12.6892i −0.376316 0.651799i 0.614207 0.789145i \(-0.289476\pi\)
−0.990523 + 0.137346i \(0.956143\pi\)
\(380\) 0 0
\(381\) −4.70425 2.71600i −0.241006 0.139145i
\(382\) 0 0
\(383\) −27.6336 15.9543i −1.41201 0.815224i −0.416433 0.909167i \(-0.636720\pi\)
−0.995578 + 0.0939422i \(0.970053\pi\)
\(384\) 0 0
\(385\) 0.0305301i 0.00155596i
\(386\) 0 0
\(387\) 8.02853 4.63527i 0.408113 0.235624i
\(388\) 0 0
\(389\) 10.8562i 0.550429i 0.961383 + 0.275214i \(0.0887488\pi\)
−0.961383 + 0.275214i \(0.911251\pi\)
\(390\) 0 0
\(391\) 15.5200 0.784881
\(392\) 0 0
\(393\) 6.47345 + 11.2123i 0.326542 + 0.565588i
\(394\) 0 0
\(395\) −0.901782 −0.0453736
\(396\) 0 0
\(397\) 14.8260 25.6793i 0.744093 1.28881i −0.206524 0.978442i \(-0.566215\pi\)
0.950617 0.310366i \(-0.100452\pi\)
\(398\) 0 0
\(399\) −0.143119 + 0.247890i −0.00716493 + 0.0124100i
\(400\) 0 0
\(401\) 18.5432 10.7059i 0.926001 0.534627i 0.0404563 0.999181i \(-0.487119\pi\)
0.885545 + 0.464554i \(0.153786\pi\)
\(402\) 0 0
\(403\) 25.6035 10.3597i 1.27540 0.516053i
\(404\) 0 0
\(405\) −0.0562315 0.0973959i −0.00279417 0.00483964i
\(406\) 0 0
\(407\) −31.4881 + 54.5389i −1.56081 + 2.70339i
\(408\) 0 0
\(409\) −18.0981 10.4490i −0.894896 0.516668i −0.0193551 0.999813i \(-0.506161\pi\)
−0.875541 + 0.483144i \(0.839495\pi\)
\(410\) 0 0
\(411\) −9.37009 −0.462192
\(412\) 0 0
\(413\) −0.0841646 + 0.0485925i −0.00414147 + 0.00239108i
\(414\) 0 0
\(415\) 0.322762 0.0158438
\(416\) 0 0
\(417\) −13.3543 −0.653962
\(418\) 0 0
\(419\) 3.61754 2.08859i 0.176728 0.102034i −0.409026 0.912523i \(-0.634132\pi\)
0.585755 + 0.810488i \(0.300798\pi\)
\(420\) 0 0
\(421\) −26.9125 −1.31164 −0.655818 0.754919i \(-0.727676\pi\)
−0.655818 + 0.754919i \(0.727676\pi\)
\(422\) 0 0
\(423\) −5.76541 3.32866i −0.280324 0.161845i
\(424\) 0 0
\(425\) −8.50893 + 14.7379i −0.412744 + 0.714893i
\(426\) 0 0
\(427\) −0.216278 0.374605i −0.0104664 0.0181284i
\(428\) 0 0
\(429\) 3.10267 22.1587i 0.149798 1.06983i
\(430\) 0 0
\(431\) 20.0200 11.5585i 0.964329 0.556756i 0.0668263 0.997765i \(-0.478713\pi\)
0.897503 + 0.441009i \(0.145379\pi\)
\(432\) 0 0
\(433\) −8.79268 + 15.2294i −0.422549 + 0.731877i −0.996188 0.0872315i \(-0.972198\pi\)
0.573639 + 0.819108i \(0.305531\pi\)
\(434\) 0 0
\(435\) 0.338966 0.587106i 0.0162522 0.0281496i
\(436\) 0 0
\(437\) 29.7616 1.42369
\(438\) 0 0
\(439\) 8.91367 + 15.4389i 0.425426 + 0.736860i 0.996460 0.0840668i \(-0.0267909\pi\)
−0.571034 + 0.820926i \(0.693458\pi\)
\(440\) 0 0
\(441\) −6.99809 −0.333242
\(442\) 0 0
\(443\) 5.80167i 0.275646i 0.990457 + 0.137823i \(0.0440105\pi\)
−0.990457 + 0.137823i \(0.955990\pi\)
\(444\) 0 0
\(445\) 0.377457 0.217925i 0.0178932 0.0103306i
\(446\) 0 0
\(447\) 7.44096i 0.351945i
\(448\) 0 0
\(449\) 13.5058 + 7.79756i 0.637377 + 0.367990i 0.783603 0.621261i \(-0.213380\pi\)
−0.146227 + 0.989251i \(0.546713\pi\)
\(450\) 0 0
\(451\) 12.4910 + 7.21167i 0.588178 + 0.339584i
\(452\) 0 0
\(453\) 2.66359 + 4.61348i 0.125146 + 0.216760i
\(454\) 0 0
\(455\) −0.00245973 + 0.0175669i −0.000115314 + 0.000823550i
\(456\) 0 0
\(457\) −9.66544 + 5.58035i −0.452130 + 0.261038i −0.708729 0.705480i \(-0.750731\pi\)
0.256599 + 0.966518i \(0.417398\pi\)
\(458\) 0 0
\(459\) −2.95506 1.70610i −0.137930 0.0796340i
\(460\) 0 0
\(461\) −1.29055 + 2.23530i −0.0601070 + 0.104108i −0.894513 0.447042i \(-0.852478\pi\)
0.834406 + 0.551150i \(0.185811\pi\)
\(462\) 0 0
\(463\) 18.5594i 0.862530i −0.902225 0.431265i \(-0.858067\pi\)
0.902225 0.431265i \(-0.141933\pi\)
\(464\) 0 0
\(465\) 0.430756 + 0.746092i 0.0199758 + 0.0345992i
\(466\) 0 0
\(467\) 29.7896i 1.37850i 0.724525 + 0.689249i \(0.242059\pi\)
−0.724525 + 0.689249i \(0.757941\pi\)
\(468\) 0 0
\(469\) 0.197748i 0.00913117i
\(470\) 0 0
\(471\) −0.342941 0.593991i −0.0158019 0.0273697i
\(472\) 0 0
\(473\) 57.5299i 2.64523i
\(474\) 0 0
\(475\) −16.3169 + 28.2617i −0.748672 + 1.29674i
\(476\) 0 0
\(477\) −9.73943 5.62306i −0.445938 0.257462i
\(478\) 0 0
\(479\) −5.33480 + 3.08005i −0.243753 + 0.140731i −0.616901 0.787041i \(-0.711612\pi\)
0.373147 + 0.927772i \(0.378279\pi\)
\(480\) 0 0
\(481\) 22.5122 28.8446i 1.02647 1.31520i
\(482\) 0 0
\(483\) −0.0994850 0.172313i −0.00452673 0.00784052i
\(484\) 0 0
\(485\) −0.109205 0.0630496i −0.00495875 0.00286293i
\(486\) 0 0
\(487\) 1.79547 + 1.03662i 0.0813607 + 0.0469736i 0.540128 0.841583i \(-0.318376\pi\)
−0.458768 + 0.888556i \(0.651709\pi\)
\(488\) 0 0
\(489\) 4.26357i 0.192805i
\(490\) 0 0
\(491\) 11.4247 6.59605i 0.515589 0.297676i −0.219539 0.975604i \(-0.570455\pi\)
0.735128 + 0.677928i \(0.237122\pi\)
\(492\) 0 0
\(493\) 20.5689i 0.926377i
\(494\) 0 0
\(495\) 0.697908 0.0313687
\(496\) 0 0
\(497\) 0.0666984 + 0.115525i 0.00299183 + 0.00518201i
\(498\) 0 0
\(499\) 25.3564 1.13511 0.567554 0.823336i \(-0.307890\pi\)
0.567554 + 0.823336i \(0.307890\pi\)
\(500\) 0 0
\(501\) 10.7971 18.7011i 0.482377 0.835502i
\(502\) 0 0
\(503\) 6.42317 11.1253i 0.286395 0.496051i −0.686552 0.727081i \(-0.740876\pi\)
0.972947 + 0.231030i \(0.0742097\pi\)
\(504\) 0 0
\(505\) 0.262194 0.151378i 0.0116675 0.00673621i
\(506\) 0 0
\(507\) −3.57053 + 12.5001i −0.158573 + 0.555147i
\(508\) 0 0
\(509\) 12.2833 + 21.2754i 0.544449 + 0.943014i 0.998641 + 0.0521099i \(0.0165946\pi\)
−0.454192 + 0.890904i \(0.650072\pi\)
\(510\) 0 0
\(511\) 0.103063 0.178511i 0.00455926 0.00789686i
\(512\) 0 0
\(513\) −5.66668 3.27166i −0.250190 0.144447i
\(514\) 0 0
\(515\) −0.965034 −0.0425245
\(516\) 0 0
\(517\) 35.7782 20.6566i 1.57352 0.908475i
\(518\) 0 0
\(519\) −9.81976 −0.431040
\(520\) 0 0
\(521\) −2.81245 −0.123216 −0.0616078 0.998100i \(-0.519623\pi\)
−0.0616078 + 0.998100i \(0.519623\pi\)
\(522\) 0 0
\(523\) −9.12262 + 5.26694i −0.398904 + 0.230307i −0.686011 0.727591i \(-0.740640\pi\)
0.287107 + 0.957899i \(0.407307\pi\)
\(524\) 0 0
\(525\) 0.218173 0.00952183
\(526\) 0 0
\(527\) 22.6369 + 13.0694i 0.986080 + 0.569313i
\(528\) 0 0
\(529\) 1.15609 2.00240i 0.0502646 0.0870608i
\(530\) 0 0
\(531\) −1.11081 1.92397i −0.0482049 0.0834934i
\(532\) 0 0
\(533\) −6.60624 5.15593i −0.286148 0.223328i
\(534\) 0 0
\(535\) 1.06498 0.614866i 0.0460431 0.0265830i
\(536\) 0 0
\(537\) −10.3772 + 17.9739i −0.447811 + 0.775631i
\(538\) 0 0
\(539\) 21.7139 37.6096i 0.935284 1.61996i
\(540\) 0 0
\(541\) −33.5743 −1.44347 −0.721737 0.692167i \(-0.756656\pi\)
−0.721737 + 0.692167i \(0.756656\pi\)
\(542\) 0 0
\(543\) −7.91786 13.7141i −0.339788 0.588530i
\(544\) 0 0
\(545\) −0.152507 −0.00653270
\(546\) 0 0
\(547\) 27.3023i 1.16736i −0.811984 0.583680i \(-0.801612\pi\)
0.811984 0.583680i \(-0.198388\pi\)
\(548\) 0 0
\(549\) 8.56334 4.94405i 0.365475 0.211007i
\(550\) 0 0
\(551\) 39.4434i 1.68035i
\(552\) 0 0
\(553\) 0.303775 + 0.175385i 0.0129178 + 0.00745812i
\(554\) 0 0
\(555\) 0.988389 + 0.570647i 0.0419548 + 0.0242226i
\(556\) 0 0
\(557\) 13.2914 + 23.0215i 0.563176 + 0.975450i 0.997217 + 0.0745568i \(0.0237542\pi\)
−0.434040 + 0.900893i \(0.642912\pi\)
\(558\) 0 0
\(559\) 4.63503 33.1025i 0.196041 1.40009i
\(560\) 0 0
\(561\) 18.3381 10.5875i 0.774235 0.447005i
\(562\) 0 0
\(563\) 27.8800 + 16.0965i 1.17500 + 0.678387i 0.954853 0.297079i \(-0.0960125\pi\)
0.220148 + 0.975466i \(0.429346\pi\)
\(564\) 0 0
\(565\) −0.511594 + 0.886107i −0.0215229 + 0.0372788i
\(566\) 0 0
\(567\) 0.0437452i 0.00183713i
\(568\) 0 0
\(569\) −11.7985 20.4356i −0.494618 0.856704i 0.505363 0.862907i \(-0.331359\pi\)
−0.999981 + 0.00620347i \(0.998025\pi\)
\(570\) 0 0
\(571\) 26.6763i 1.11637i −0.829717 0.558184i \(-0.811498\pi\)
0.829717 0.558184i \(-0.188502\pi\)
\(572\) 0 0
\(573\) 11.8304i 0.494221i
\(574\) 0 0
\(575\) −11.3422 19.6453i −0.473003 0.819265i
\(576\) 0 0
\(577\) 25.7891i 1.07361i 0.843705 + 0.536806i \(0.180369\pi\)
−0.843705 + 0.536806i \(0.819631\pi\)
\(578\) 0 0
\(579\) 4.25826 7.37552i 0.176967 0.306516i
\(580\) 0 0
\(581\) −0.108726 0.0627731i −0.00451072 0.00260427i
\(582\) 0 0
\(583\) 60.4396 34.8948i 2.50315 1.44520i
\(584\) 0 0
\(585\) −0.401574 0.0562286i −0.0166030 0.00232477i
\(586\) 0 0
\(587\) −3.12213 5.40768i −0.128864 0.223199i 0.794373 0.607431i \(-0.207800\pi\)
−0.923237 + 0.384232i \(0.874466\pi\)
\(588\) 0 0
\(589\) 43.4091 + 25.0622i 1.78864 + 1.03267i
\(590\) 0 0
\(591\) 8.01403 + 4.62690i 0.329653 + 0.190325i
\(592\) 0 0
\(593\) 18.9712i 0.779053i −0.921015 0.389526i \(-0.872639\pi\)
0.921015 0.389526i \(-0.127361\pi\)
\(594\) 0 0
\(595\) −0.0145380 + 0.00839354i −0.000596001 + 0.000344102i
\(596\) 0 0
\(597\) 9.12481i 0.373454i
\(598\) 0 0
\(599\) −3.88163 −0.158599 −0.0792995 0.996851i \(-0.525268\pi\)
−0.0792995 + 0.996851i \(0.525268\pi\)
\(600\) 0 0
\(601\) −14.9897 25.9630i −0.611444 1.05905i −0.990997 0.133883i \(-0.957256\pi\)
0.379553 0.925170i \(-0.376078\pi\)
\(602\) 0 0
\(603\) −4.52046 −0.184087
\(604\) 0 0
\(605\) −1.54695 + 2.67939i −0.0628924 + 0.108933i
\(606\) 0 0
\(607\) −12.6058 + 21.8339i −0.511654 + 0.886210i 0.488255 + 0.872701i \(0.337634\pi\)
−0.999909 + 0.0135094i \(0.995700\pi\)
\(608\) 0 0
\(609\) −0.228369 + 0.131849i −0.00925398 + 0.00534279i
\(610\) 0 0
\(611\) −22.2509 + 9.00315i −0.900175 + 0.364229i
\(612\) 0 0
\(613\) −7.25898 12.5729i −0.293187 0.507816i 0.681374 0.731935i \(-0.261383\pi\)
−0.974562 + 0.224120i \(0.928049\pi\)
\(614\) 0 0
\(615\) 0.130695 0.226370i 0.00527011 0.00912810i
\(616\) 0 0
\(617\) 11.3549 + 6.55573i 0.457130 + 0.263924i 0.710837 0.703357i \(-0.248317\pi\)
−0.253707 + 0.967281i \(0.581650\pi\)
\(618\) 0 0
\(619\) −6.58321 −0.264602 −0.132301 0.991210i \(-0.542236\pi\)
−0.132301 + 0.991210i \(0.542236\pi\)
\(620\) 0 0
\(621\) 3.93902 2.27419i 0.158067 0.0912603i
\(622\) 0 0
\(623\) −0.169534 −0.00679224
\(624\) 0 0
\(625\) 24.8104 0.992418
\(626\) 0 0
\(627\) 35.1656 20.3028i 1.40438 0.810817i
\(628\) 0 0
\(629\) 34.6276 1.38069
\(630\) 0 0
\(631\) 12.8951 + 7.44499i 0.513346 + 0.296381i 0.734208 0.678925i \(-0.237554\pi\)
−0.220862 + 0.975305i \(0.570887\pi\)
\(632\) 0 0
\(633\) −10.3596 + 17.9433i −0.411757 + 0.713184i
\(634\) 0 0
\(635\) −0.305450 0.529054i −0.0121214 0.0209949i
\(636\) 0 0
\(637\) −15.5242 + 19.8910i −0.615091 + 0.788109i
\(638\) 0 0
\(639\) −2.64086 + 1.52470i −0.104471 + 0.0603163i
\(640\) 0 0
\(641\) −8.56846 + 14.8410i −0.338434 + 0.586185i −0.984138 0.177403i \(-0.943230\pi\)
0.645705 + 0.763587i \(0.276564\pi\)
\(642\) 0 0
\(643\) 14.2230 24.6349i 0.560899 0.971505i −0.436520 0.899695i \(-0.643789\pi\)
0.997418 0.0718101i \(-0.0228776\pi\)
\(644\) 0 0
\(645\) 1.04259 0.0410521
\(646\) 0 0
\(647\) −7.39125 12.8020i −0.290580 0.503299i 0.683367 0.730075i \(-0.260515\pi\)
−0.973947 + 0.226776i \(0.927182\pi\)
\(648\) 0 0
\(649\) 13.7866 0.541172
\(650\) 0 0
\(651\) 0.335106i 0.0131338i
\(652\) 0 0
\(653\) 30.7907 17.7770i 1.20493 0.695669i 0.243286 0.969955i \(-0.421775\pi\)
0.961648 + 0.274285i \(0.0884413\pi\)
\(654\) 0 0
\(655\) 1.45605i 0.0568925i
\(656\) 0 0
\(657\) 4.08070 + 2.35599i 0.159203 + 0.0919161i
\(658\) 0 0
\(659\) −12.1452 7.01204i −0.473110 0.273150i 0.244431 0.969667i \(-0.421399\pi\)
−0.717541 + 0.696517i \(0.754732\pi\)
\(660\) 0 0
\(661\) 20.7687 + 35.9725i 0.807810 + 1.39917i 0.914377 + 0.404863i \(0.132681\pi\)
−0.106567 + 0.994306i \(0.533986\pi\)
\(662\) 0 0
\(663\) −11.4047 + 4.61456i −0.442921 + 0.179215i
\(664\) 0 0
\(665\) −0.0278785 + 0.0160956i −0.00108108 + 0.000624162i
\(666\) 0 0
\(667\) 23.7446 + 13.7089i 0.919394 + 0.530812i
\(668\) 0 0
\(669\) 1.10779 1.91875i 0.0428296 0.0741830i
\(670\) 0 0
\(671\) 61.3623i 2.36886i
\(672\) 0 0
\(673\) 16.6927 + 28.9126i 0.643455 + 1.11450i 0.984656 + 0.174507i \(0.0558332\pi\)
−0.341200 + 0.939991i \(0.610833\pi\)
\(674\) 0 0
\(675\) 4.98735i 0.191963i
\(676\) 0 0
\(677\) 29.9211i 1.14996i −0.818167 0.574980i \(-0.805010\pi\)
0.818167 0.574980i \(-0.194990\pi\)
\(678\) 0 0
\(679\) 0.0245246 + 0.0424779i 0.000941169 + 0.00163015i
\(680\) 0 0
\(681\) 9.35313i 0.358413i
\(682\) 0 0
\(683\) 1.87235 3.24301i 0.0716436 0.124090i −0.827978 0.560760i \(-0.810509\pi\)
0.899622 + 0.436670i \(0.143842\pi\)
\(684\) 0 0
\(685\) −0.912608 0.526894i −0.0348690 0.0201316i
\(686\) 0 0
\(687\) −5.31981 + 3.07139i −0.202963 + 0.117181i
\(688\) 0 0
\(689\) −37.5881 + 15.2089i −1.43199 + 0.579413i
\(690\) 0 0
\(691\) 3.30629 + 5.72665i 0.125777 + 0.217852i 0.922036 0.387103i \(-0.126524\pi\)
−0.796259 + 0.604955i \(0.793191\pi\)
\(692\) 0 0
\(693\) −0.235098 0.135734i −0.00893065 0.00515611i
\(694\) 0 0
\(695\) −1.30065 0.750932i −0.0493366 0.0284845i
\(696\) 0 0
\(697\) 7.93072i 0.300397i
\(698\) 0 0
\(699\) −22.1543 + 12.7908i −0.837953 + 0.483793i
\(700\) 0 0
\(701\) 27.7966i 1.04986i −0.851145 0.524931i \(-0.824091\pi\)
0.851145 0.524931i \(-0.175909\pi\)
\(702\) 0 0
\(703\) 66.4027 2.50442
\(704\) 0 0
\(705\) −0.374351 0.648396i −0.0140989 0.0244200i
\(706\) 0 0
\(707\) −0.117764 −0.00442896
\(708\) 0 0
\(709\) −3.80578 + 6.59181i −0.142929 + 0.247561i −0.928598 0.371086i \(-0.878985\pi\)
0.785669 + 0.618647i \(0.212319\pi\)
\(710\) 0 0
\(711\) −4.00924 + 6.94420i −0.150358 + 0.260428i
\(712\) 0 0
\(713\) −30.1745 + 17.4212i −1.13004 + 0.652431i
\(714\) 0 0
\(715\) 1.54820 1.98370i 0.0578996 0.0741861i
\(716\) 0 0
\(717\) 12.2001 + 21.1312i 0.455620 + 0.789157i
\(718\) 0 0
\(719\) −9.68786 + 16.7799i −0.361296 + 0.625783i −0.988174 0.153334i \(-0.950999\pi\)
0.626878 + 0.779117i \(0.284332\pi\)
\(720\) 0 0
\(721\) 0.325082 + 0.187686i 0.0121067 + 0.00698981i
\(722\) 0 0
\(723\) 15.3915 0.572417
\(724\) 0 0
\(725\) −26.0362 + 15.0320i −0.966959 + 0.558274i
\(726\) 0 0
\(727\) −44.4404 −1.64820 −0.824102 0.566441i \(-0.808320\pi\)
−0.824102 + 0.566441i \(0.808320\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 27.3950 15.8165i 1.01324 0.584994i
\(732\) 0 0
\(733\) 38.2441 1.41258 0.706288 0.707924i \(-0.250368\pi\)
0.706288 + 0.707924i \(0.250368\pi\)
\(734\) 0 0
\(735\) −0.681585 0.393513i −0.0251406 0.0145149i
\(736\) 0 0
\(737\) 14.0262 24.2941i 0.516663 0.894886i
\(738\) 0 0
\(739\) 11.2629 + 19.5080i 0.414313 + 0.717612i 0.995356 0.0962612i \(-0.0306884\pi\)
−0.581043 + 0.813873i \(0.697355\pi\)
\(740\) 0 0
\(741\) −21.8699 + 8.84898i −0.803410 + 0.325076i
\(742\) 0 0
\(743\) −5.01591 + 2.89594i −0.184016 + 0.106242i −0.589178 0.808003i \(-0.700548\pi\)
0.405162 + 0.914245i \(0.367215\pi\)
\(744\) 0 0
\(745\) −0.418417 + 0.724719i −0.0153296 + 0.0265516i
\(746\) 0 0
\(747\) 1.43497 2.48544i 0.0525028 0.0909376i
\(748\) 0 0
\(749\) −0.478334 −0.0174779
\(750\) 0 0
\(751\) −21.1123 36.5675i −0.770398 1.33437i −0.937345 0.348403i \(-0.886724\pi\)
0.166947 0.985966i \(-0.446609\pi\)
\(752\) 0 0
\(753\) −8.86522 −0.323067
\(754\) 0 0
\(755\) 0.599111i 0.0218039i
\(756\) 0 0
\(757\) 23.6590 13.6595i 0.859900 0.496463i −0.00407907 0.999992i \(-0.501298\pi\)
0.863979 + 0.503528i \(0.167965\pi\)
\(758\) 0 0
\(759\) 28.2258i 1.02453i
\(760\) 0 0
\(761\) 47.5882 + 27.4750i 1.72507 + 0.995969i 0.907383 + 0.420305i \(0.138077\pi\)
0.817686 + 0.575664i \(0.195256\pi\)
\(762\) 0 0
\(763\) 0.0513738 + 0.0296607i 0.00185986 + 0.00107379i
\(764\) 0 0
\(765\) −0.191873 0.332335i −0.00693720 0.0120156i
\(766\) 0 0
\(767\) −7.93276 1.11075i −0.286435 0.0401068i
\(768\) 0 0
\(769\) 34.0582 19.6635i 1.22817 0.709085i 0.261524 0.965197i \(-0.415775\pi\)
0.966647 + 0.256112i \(0.0824416\pi\)
\(770\) 0 0
\(771\) −3.22876 1.86412i −0.116281 0.0671347i
\(772\) 0 0
\(773\) 24.7532 42.8738i 0.890310 1.54206i 0.0508062 0.998709i \(-0.483821\pi\)
0.839504 0.543354i \(-0.182846\pi\)
\(774\) 0 0
\(775\) 38.2051i 1.37237i
\(776\) 0 0
\(777\) −0.221967 0.384458i −0.00796301 0.0137923i
\(778\) 0 0
\(779\) 15.2081i 0.544888i
\(780\) 0 0
\(781\) 18.9236i 0.677140i
\(782\) 0 0
\(783\) −3.01402 5.22044i −0.107712 0.186563i
\(784\) 0 0
\(785\) 0.0771364i 0.00275312i
\(786\) 0 0
\(787\) −5.27752 + 9.14093i −0.188123 + 0.325839i −0.944625 0.328153i \(-0.893574\pi\)
0.756501 + 0.653992i \(0.226907\pi\)
\(788\) 0 0
\(789\) 6.69639 + 3.86616i 0.238398 + 0.137639i
\(790\) 0 0
\(791\) 0.344672 0.198997i 0.0122551 0.00707551i
\(792\) 0 0
\(793\) 4.94379 35.3076i 0.175559 1.25381i
\(794\) 0 0
\(795\) −0.632386 1.09533i −0.0224284 0.0388472i
\(796\) 0 0
\(797\) −2.33710 1.34933i −0.0827844 0.0477956i 0.458036 0.888933i \(-0.348553\pi\)
−0.540821 + 0.841138i \(0.681886\pi\)
\(798\) 0 0
\(799\) −19.6728 11.3581i −0.695972 0.401820i
\(800\) 0 0
\(801\) 3.87549i 0.136934i
\(802\) 0 0
\(803\) −25.3235 + 14.6205i −0.893646 + 0.515947i
\(804\) 0 0
\(805\) 0.0223768i 0.000788678i
\(806\) 0 0
\(807\) 14.9369 0.525804
\(808\) 0 0
\(809\) −18.6291 32.2665i −0.654963 1.13443i −0.981903 0.189384i \(-0.939351\pi\)
0.326940 0.945045i \(-0.393983\pi\)
\(810\) 0 0
\(811\) −23.8133 −0.836198 −0.418099 0.908401i \(-0.637304\pi\)
−0.418099 + 0.908401i \(0.637304\pi\)
\(812\) 0 0
\(813\) −14.7097 + 25.4780i −0.515893 + 0.893552i
\(814\) 0 0
\(815\) −0.239747 + 0.415254i −0.00839797 + 0.0145457i
\(816\) 0 0
\(817\) 52.5332 30.3301i 1.83791 1.06112i
\(818\) 0 0
\(819\) 0.124339 + 0.0970421i 0.00434475 + 0.00339093i
\(820\) 0 0
\(821\) 23.2659 + 40.2977i 0.811985 + 1.40640i 0.911473 + 0.411360i \(0.134946\pi\)
−0.0994882 + 0.995039i \(0.531721\pi\)
\(822\) 0 0
\(823\) −2.01612 + 3.49203i −0.0702776 + 0.121724i −0.899023 0.437902i \(-0.855722\pi\)
0.828745 + 0.559626i \(0.189055\pi\)
\(824\) 0 0
\(825\) −26.8034 15.4749i −0.933173 0.538768i
\(826\) 0 0
\(827\) 44.3039 1.54060 0.770299 0.637682i \(-0.220107\pi\)
0.770299 + 0.637682i \(0.220107\pi\)
\(828\) 0 0
\(829\) 11.6419 6.72147i 0.404341 0.233446i −0.284014 0.958820i \(-0.591666\pi\)
0.688355 + 0.725374i \(0.258333\pi\)
\(830\) 0 0
\(831\) −18.2400 −0.632738
\(832\) 0 0
\(833\) −23.8789 −0.827355
\(834\) 0 0
\(835\) 2.10318 1.21427i 0.0727835 0.0420216i
\(836\) 0 0
\(837\) 7.66040 0.264782
\(838\) 0 0
\(839\) 12.2305 + 7.06127i 0.422243 + 0.243782i 0.696037 0.718006i \(-0.254945\pi\)
−0.273793 + 0.961789i \(0.588278\pi\)
\(840\) 0 0
\(841\) 3.66866 6.35430i 0.126505 0.219114i
\(842\) 0 0
\(843\) −7.14924 12.3828i −0.246233 0.426488i
\(844\) 0 0
\(845\) −1.05065 + 1.01668i −0.0361435 + 0.0349747i
\(846\) 0 0
\(847\) 1.04221 0.601722i 0.0358109 0.0206754i
\(848\) 0 0
\(849\) −11.1871 + 19.3766i −0.383941 + 0.665004i
\(850\) 0 0
\(851\) −23.0789 + 39.9738i −0.791134 + 1.37028i
\(852\) 0 0
\(853\) −40.7923 −1.39670 −0.698350 0.715756i \(-0.746082\pi\)
−0.698350 + 0.715756i \(0.746082\pi\)
\(854\) 0 0
\(855\) −0.367941 0.637292i −0.0125833 0.0217949i
\(856\) 0 0
\(857\) −28.0604 −0.958526 −0.479263 0.877671i \(-0.659096\pi\)
−0.479263 + 0.877671i \(0.659096\pi\)
\(858\) 0 0
\(859\) 2.43440i 0.0830607i −0.999137 0.0415303i \(-0.986777\pi\)
0.999137 0.0415303i \(-0.0132233\pi\)
\(860\) 0 0
\(861\) −0.0880518 + 0.0508367i −0.00300080 + 0.00173251i
\(862\) 0 0
\(863\) 17.4046i 0.592459i −0.955117 0.296230i \(-0.904271\pi\)
0.955117 0.296230i \(-0.0957294\pi\)
\(864\) 0 0
\(865\) −0.956404 0.552180i −0.0325187 0.0187747i
\(866\) 0 0
\(867\) 4.63918 + 2.67843i 0.157555 + 0.0909643i
\(868\) 0 0
\(869\) −24.8800 43.0934i −0.843996 1.46184i
\(870\) 0 0
\(871\) −10.0280 + 12.8487i −0.339784 + 0.435362i
\(872\) 0 0
\(873\) −0.971031 + 0.560625i −0.0328644 + 0.0189743i
\(874\) 0 0
\(875\) 0.0425521 + 0.0245675i 0.00143852 + 0.000830532i
\(876\) 0 0
\(877\) −12.6152 + 21.8502i −0.425986 + 0.737829i −0.996512 0.0834505i \(-0.973406\pi\)
0.570526 + 0.821279i \(0.306739\pi\)
\(878\) 0 0
\(879\) 14.8047i 0.499349i
\(880\) 0 0
\(881\) −24.7204 42.8169i −0.832850 1.44254i −0.895769 0.444520i \(-0.853374\pi\)
0.0629186 0.998019i \(-0.479959\pi\)
\(882\) 0 0
\(883\) 30.3032i 1.01978i −0.860238 0.509892i \(-0.829685\pi\)
0.860238 0.509892i \(-0.170315\pi\)
\(884\) 0 0
\(885\) 0.249850i 0.00839860i
\(886\) 0 0
\(887\) 14.7503 + 25.5482i 0.495265 + 0.857824i 0.999985 0.00545876i \(-0.00173759\pi\)
−0.504720 + 0.863283i \(0.668404\pi\)
\(888\) 0 0
\(889\) 0.237624i 0.00796965i
\(890\) 0 0
\(891\) 3.10283 5.37427i 0.103949 0.180045i
\(892\) 0 0
\(893\) −37.7249 21.7805i −1.26242 0.728857i
\(894\) 0 0
\(895\) −2.02140 + 1.16706i −0.0675679 + 0.0390104i
\(896\) 0 0
\(897\) 2.27407 16.2410i 0.0759292 0.542271i
\(898\) 0 0
\(899\) 23.0886 + 39.9907i 0.770049 + 1.33376i
\(900\) 0 0
\(901\) −33.2329 19.1870i −1.10715 0.639213i
\(902\) 0 0
\(903\) −0.351209 0.202771i −0.0116875 0.00674779i
\(904\) 0 0
\(905\) 1.78093i 0.0592002i
\(906\) 0 0
\(907\) 22.0489 12.7299i 0.732121 0.422690i −0.0870764 0.996202i \(-0.527752\pi\)
0.819198 + 0.573511i \(0.194419\pi\)
\(908\) 0 0
\(909\) 2.69204i 0.0892894i
\(910\) 0 0
\(911\) 29.6321 0.981755 0.490877 0.871229i \(-0.336676\pi\)
0.490877 + 0.871229i \(0.336676\pi\)
\(912\) 0 0
\(913\) 8.90495 + 15.4238i 0.294711 + 0.510454i
\(914\) 0 0
\(915\) 1.11205 0.0367631
\(916\) 0 0
\(917\) 0.283182 0.490486i 0.00935150 0.0161973i
\(918\) 0 0
\(919\) −8.72730 + 15.1161i −0.287887 + 0.498635i −0.973305 0.229515i \(-0.926286\pi\)
0.685418 + 0.728150i \(0.259619\pi\)
\(920\) 0 0
\(921\) 3.40090 1.96351i 0.112063 0.0646999i
\(922\) 0 0
\(923\) −1.52462 + 10.8886i −0.0501836 + 0.358402i
\(924\) 0 0
\(925\) −25.3062 43.8317i −0.832064 1.44118i
\(926\) 0 0
\(927\) −4.29045 + 7.43127i −0.140917 + 0.244075i
\(928\) 0 0
\(929\) 34.5218 + 19.9311i 1.13262 + 0.653920i 0.944593 0.328244i \(-0.106457\pi\)
0.188029 + 0.982163i \(0.439790\pi\)
\(930\) 0 0
\(931\) −45.7907 −1.50073
\(932\) 0 0
\(933\) −4.82545 + 2.78597i −0.157978 + 0.0912086i
\(934\) 0 0
\(935\) 2.38141 0.0778803
\(936\) 0 0
\(937\) 12.4580 0.406986 0.203493 0.979076i \(-0.434771\pi\)
0.203493 + 0.979076i \(0.434771\pi\)
\(938\) 0 0
\(939\) −2.89469 + 1.67125i −0.0944647 + 0.0545392i
\(940\) 0 0
\(941\) −32.3676 −1.05515 −0.527577 0.849507i \(-0.676899\pi\)
−0.527577 + 0.849507i \(0.676899\pi\)
\(942\) 0 0
\(943\) 9.15515 + 5.28573i 0.298133 + 0.172127i
\(944\) 0 0
\(945\) −0.00245986 + 0.00426060i −8.00192e−5 + 0.000138597i
\(946\) 0 0
\(947\) 14.2367 + 24.6587i 0.462630 + 0.801299i 0.999091 0.0426262i \(-0.0135724\pi\)
−0.536461 + 0.843925i \(0.680239\pi\)
\(948\) 0 0
\(949\) 15.7490 6.37235i 0.511233 0.206855i
\(950\) 0 0
\(951\) −8.39615 + 4.84752i −0.272264 + 0.157192i
\(952\) 0 0
\(953\) −5.10449 + 8.84123i −0.165350 + 0.286395i −0.936780 0.349920i \(-0.886209\pi\)
0.771429 + 0.636315i \(0.219542\pi\)
\(954\) 0 0
\(955\) −0.665240 + 1.15223i −0.0215267 + 0.0372853i
\(956\) 0 0
\(957\) 37.4080 1.20923
\(958\) 0 0
\(959\) 0.204948 + 0.354981i 0.00661812 + 0.0114629i
\(960\) 0 0
\(961\) −27.6818 −0.892961
\(962\) 0 0
\(963\) 10.9345i 0.352361i
\(964\) 0 0
\(965\) 0.829473 0.478896i 0.0267017 0.0154162i
\(966\) 0 0
\(967\) 12.0250i 0.386700i 0.981130 + 0.193350i \(0.0619352\pi\)
−0.981130 + 0.193350i \(0.938065\pi\)
\(968\) 0 0
\(969\) −19.3359 11.1636i −0.621158 0.358626i
\(970\) 0 0
\(971\) 1.94279 + 1.12167i 0.0623471 + 0.0359961i 0.530850 0.847466i \(-0.321873\pi\)
−0.468502 + 0.883462i \(0.655206\pi\)
\(972\) 0 0
\(973\) 0.292093 + 0.505920i 0.00936407 + 0.0162190i
\(974\) 0 0
\(975\) 14.1758 + 11.0637i 0.453988 + 0.354322i
\(976\) 0 0
\(977\) −32.6677 + 18.8607i −1.04513 + 0.603408i −0.921283 0.388893i \(-0.872857\pi\)
−0.123850 + 0.992301i \(0.539524\pi\)
\(978\) 0 0
\(979\) 20.8279 + 12.0250i 0.665663 + 0.384321i
\(980\) 0 0
\(981\) −0.678033 + 1.17439i −0.0216479 + 0.0374953i
\(982\) 0 0
\(983\) 26.2704i 0.837895i 0.908011 + 0.418947i \(0.137601\pi\)
−0.908011 + 0.418947i \(0.862399\pi\)
\(984\) 0 0
\(985\) 0.520355 + 0.901282i 0.0165799 + 0.0287172i
\(986\) 0 0
\(987\) 0.291226i 0.00926982i
\(988\) 0 0
\(989\) 42.1660i 1.34080i
\(990\) 0 0
\(991\) 19.5606 + 33.8799i 0.621362 + 1.07623i 0.989232 + 0.146354i \(0.0467538\pi\)
−0.367870 + 0.929877i \(0.619913\pi\)
\(992\) 0 0
\(993\) 18.6531i 0.591940i
\(994\) 0 0
\(995\) −0.513102 + 0.888719i −0.0162664 + 0.0281743i
\(996\) 0 0
\(997\) 9.80345 + 5.66002i 0.310478 + 0.179255i 0.647140 0.762371i \(-0.275965\pi\)
−0.336662 + 0.941625i \(0.609298\pi\)
\(998\) 0 0
\(999\) 8.78857 5.07408i 0.278058 0.160537i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.2.ca.b.49.19 48
4.3 odd 2 312.2.bk.b.205.9 48
8.3 odd 2 312.2.bk.b.205.18 yes 48
8.5 even 2 inner 1248.2.ca.b.49.6 48
12.11 even 2 936.2.dg.e.829.16 48
13.4 even 6 inner 1248.2.ca.b.433.6 48
24.11 even 2 936.2.dg.e.829.7 48
52.43 odd 6 312.2.bk.b.277.18 yes 48
104.43 odd 6 312.2.bk.b.277.9 yes 48
104.69 even 6 inner 1248.2.ca.b.433.19 48
156.95 even 6 936.2.dg.e.901.7 48
312.251 even 6 936.2.dg.e.901.16 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bk.b.205.9 48 4.3 odd 2
312.2.bk.b.205.18 yes 48 8.3 odd 2
312.2.bk.b.277.9 yes 48 104.43 odd 6
312.2.bk.b.277.18 yes 48 52.43 odd 6
936.2.dg.e.829.7 48 24.11 even 2
936.2.dg.e.829.16 48 12.11 even 2
936.2.dg.e.901.7 48 156.95 even 6
936.2.dg.e.901.16 48 312.251 even 6
1248.2.ca.b.49.6 48 8.5 even 2 inner
1248.2.ca.b.49.19 48 1.1 even 1 trivial
1248.2.ca.b.433.6 48 13.4 even 6 inner
1248.2.ca.b.433.19 48 104.69 even 6 inner