Properties

Label 1248.1.cm.a.1013.4
Level $1248$
Weight $1$
Character 1248.1013
Analytic conductor $0.623$
Analytic rank $0$
Dimension $16$
Projective image $D_{16}$
CM discriminant -39
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1248,1,Mod(77,1248)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1248, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 7, 4, 4])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1248.77"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1248.cm (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.622833135766\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{32})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{16}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{16} - \cdots)\)

Embedding invariants

Embedding label 1013.4
Root \(0.555570 - 0.831470i\) of defining polynomial
Character \(\chi\) \(=\) 1248.1013
Dual form 1248.1.cm.a.701.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.980785 + 0.195090i) q^{2} +(-0.923880 + 0.382683i) q^{3} +(0.923880 + 0.382683i) q^{4} +(-0.750661 + 1.81225i) q^{5} +(-0.980785 + 0.195090i) q^{6} +(0.831470 + 0.555570i) q^{8} +(0.707107 - 0.707107i) q^{9} +(-1.08979 + 1.63099i) q^{10} +(-1.53636 - 0.636379i) q^{11} -1.00000 q^{12} +(0.382683 + 0.923880i) q^{13} -1.96157i q^{15} +(0.707107 + 0.707107i) q^{16} +(0.831470 - 0.555570i) q^{18} +(-1.38704 + 1.38704i) q^{20} +(-1.38268 - 0.923880i) q^{22} +(-0.980785 - 0.195090i) q^{24} +(-2.01367 - 2.01367i) q^{25} +(0.195090 + 0.980785i) q^{26} +(-0.382683 + 0.923880i) q^{27} +(0.382683 - 1.92388i) q^{30} +(0.555570 + 0.831470i) q^{32} +1.66294 q^{33} +(0.923880 - 0.382683i) q^{36} +(-0.707107 - 0.707107i) q^{39} +(-1.63099 + 1.08979i) q^{40} +(-0.275899 + 0.275899i) q^{41} +(0.707107 + 0.292893i) q^{43} +(-1.17588 - 1.17588i) q^{44} +(0.750661 + 1.81225i) q^{45} +1.11114i q^{47} +(-0.923880 - 0.382683i) q^{48} +1.00000i q^{49} +(-1.58213 - 2.36783i) q^{50} +1.00000i q^{52} +(-0.555570 + 0.831470i) q^{54} +(2.30656 - 2.30656i) q^{55} +(0.750661 - 1.81225i) q^{59} +(0.750661 - 1.81225i) q^{60} +(1.30656 - 0.541196i) q^{61} +(0.382683 + 0.923880i) q^{64} -1.96157 q^{65} +(1.63099 + 0.324423i) q^{66} +(1.17588 + 1.17588i) q^{71} +(0.980785 - 0.195090i) q^{72} +(2.63099 + 1.08979i) q^{75} +(-0.555570 - 0.831470i) q^{78} -0.765367i q^{79} +(-1.81225 + 0.750661i) q^{80} -1.00000i q^{81} +(-0.324423 + 0.216773i) q^{82} +(0.149316 + 0.360480i) q^{83} +(0.636379 + 0.425215i) q^{86} +(-0.923880 - 1.38268i) q^{88} +(0.785695 + 0.785695i) q^{89} +(0.382683 + 1.92388i) q^{90} +(-0.216773 + 1.08979i) q^{94} +(-0.831470 - 0.555570i) q^{96} +(-0.195090 + 0.980785i) q^{98} +(-1.53636 + 0.636379i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{12} - 16 q^{22} + 16 q^{55} + 16 q^{75}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1248\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.980785 + 0.195090i 0.980785 + 0.195090i
\(3\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(4\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(5\) −0.750661 + 1.81225i −0.750661 + 1.81225i −0.195090 + 0.980785i \(0.562500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(6\) −0.980785 + 0.195090i −0.980785 + 0.195090i
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) 0.831470 + 0.555570i 0.831470 + 0.555570i
\(9\) 0.707107 0.707107i 0.707107 0.707107i
\(10\) −1.08979 + 1.63099i −1.08979 + 1.63099i
\(11\) −1.53636 0.636379i −1.53636 0.636379i −0.555570 0.831470i \(-0.687500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(12\) −1.00000 −1.00000
\(13\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(14\) 0 0
\(15\) 1.96157i 1.96157i
\(16\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0.831470 0.555570i 0.831470 0.555570i
\(19\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(20\) −1.38704 + 1.38704i −1.38704 + 1.38704i
\(21\) 0 0
\(22\) −1.38268 0.923880i −1.38268 0.923880i
\(23\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(24\) −0.980785 0.195090i −0.980785 0.195090i
\(25\) −2.01367 2.01367i −2.01367 2.01367i
\(26\) 0.195090 + 0.980785i 0.195090 + 0.980785i
\(27\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(28\) 0 0
\(29\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(30\) 0.382683 1.92388i 0.382683 1.92388i
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0.555570 + 0.831470i 0.555570 + 0.831470i
\(33\) 1.66294 1.66294
\(34\) 0 0
\(35\) 0 0
\(36\) 0.923880 0.382683i 0.923880 0.382683i
\(37\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(38\) 0 0
\(39\) −0.707107 0.707107i −0.707107 0.707107i
\(40\) −1.63099 + 1.08979i −1.63099 + 1.08979i
\(41\) −0.275899 + 0.275899i −0.275899 + 0.275899i −0.831470 0.555570i \(-0.812500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(42\) 0 0
\(43\) 0.707107 + 0.292893i 0.707107 + 0.292893i 0.707107 0.707107i \(-0.250000\pi\)
1.00000i \(0.5\pi\)
\(44\) −1.17588 1.17588i −1.17588 1.17588i
\(45\) 0.750661 + 1.81225i 0.750661 + 1.81225i
\(46\) 0 0
\(47\) 1.11114i 1.11114i 0.831470 + 0.555570i \(0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(48\) −0.923880 0.382683i −0.923880 0.382683i
\(49\) 1.00000i 1.00000i
\(50\) −1.58213 2.36783i −1.58213 2.36783i
\(51\) 0 0
\(52\) 1.00000i 1.00000i
\(53\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(54\) −0.555570 + 0.831470i −0.555570 + 0.831470i
\(55\) 2.30656 2.30656i 2.30656 2.30656i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.750661 1.81225i 0.750661 1.81225i 0.195090 0.980785i \(-0.437500\pi\)
0.555570 0.831470i \(-0.312500\pi\)
\(60\) 0.750661 1.81225i 0.750661 1.81225i
\(61\) 1.30656 0.541196i 1.30656 0.541196i 0.382683 0.923880i \(-0.375000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(65\) −1.96157 −1.96157
\(66\) 1.63099 + 0.324423i 1.63099 + 0.324423i
\(67\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.17588 + 1.17588i 1.17588 + 1.17588i 0.980785 + 0.195090i \(0.0625000\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(72\) 0.980785 0.195090i 0.980785 0.195090i
\(73\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 0 0
\(75\) 2.63099 + 1.08979i 2.63099 + 1.08979i
\(76\) 0 0
\(77\) 0 0
\(78\) −0.555570 0.831470i −0.555570 0.831470i
\(79\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(80\) −1.81225 + 0.750661i −1.81225 + 0.750661i
\(81\) 1.00000i 1.00000i
\(82\) −0.324423 + 0.216773i −0.324423 + 0.216773i
\(83\) 0.149316 + 0.360480i 0.149316 + 0.360480i 0.980785 0.195090i \(-0.0625000\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.636379 + 0.425215i 0.636379 + 0.425215i
\(87\) 0 0
\(88\) −0.923880 1.38268i −0.923880 1.38268i
\(89\) 0.785695 + 0.785695i 0.785695 + 0.785695i 0.980785 0.195090i \(-0.0625000\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(90\) 0.382683 + 1.92388i 0.382683 + 1.92388i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −0.216773 + 1.08979i −0.216773 + 1.08979i
\(95\) 0 0
\(96\) −0.831470 0.555570i −0.831470 0.555570i
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −0.195090 + 0.980785i −0.195090 + 0.980785i
\(99\) −1.53636 + 0.636379i −1.53636 + 0.636379i
\(100\) −1.08979 2.63099i −1.08979 2.63099i
\(101\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(102\) 0 0
\(103\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(104\) −0.195090 + 0.980785i −0.195090 + 0.980785i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(108\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(109\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(110\) 2.71223 1.81225i 2.71223 1.81225i
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(118\) 1.08979 1.63099i 1.08979 1.63099i
\(119\) 0 0
\(120\) 1.08979 1.63099i 1.08979 1.63099i
\(121\) 1.24830 + 1.24830i 1.24830 + 1.24830i
\(122\) 1.38704 0.275899i 1.38704 0.275899i
\(123\) 0.149316 0.360480i 0.149316 0.360480i
\(124\) 0 0
\(125\) 3.34861 1.38704i 3.34861 1.38704i
\(126\) 0 0
\(127\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(128\) 0.195090 + 0.980785i 0.195090 + 0.980785i
\(129\) −0.765367 −0.765367
\(130\) −1.92388 0.382683i −1.92388 0.382683i
\(131\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(132\) 1.53636 + 0.636379i 1.53636 + 0.636379i
\(133\) 0 0
\(134\) 0 0
\(135\) −1.38704 1.38704i −1.38704 1.38704i
\(136\) 0 0
\(137\) 0.785695 0.785695i 0.785695 0.785695i −0.195090 0.980785i \(-0.562500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(138\) 0 0
\(139\) −1.70711 0.707107i −1.70711 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) −0.425215 1.02656i −0.425215 1.02656i
\(142\) 0.923880 + 1.38268i 0.923880 + 1.38268i
\(143\) 1.66294i 1.66294i
\(144\) 1.00000 1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) −0.382683 0.923880i −0.382683 0.923880i
\(148\) 0 0
\(149\) −1.02656 0.425215i −1.02656 0.425215i −0.195090 0.980785i \(-0.562500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(150\) 2.36783 + 1.58213i 2.36783 + 1.58213i
\(151\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −0.382683 0.923880i −0.382683 0.923880i
\(157\) 0.707107 0.292893i 0.707107 0.292893i 1.00000i \(-0.5\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(158\) 0.149316 0.750661i 0.149316 0.750661i
\(159\) 0 0
\(160\) −1.92388 + 0.382683i −1.92388 + 0.382683i
\(161\) 0 0
\(162\) 0.195090 0.980785i 0.195090 0.980785i
\(163\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(164\) −0.360480 + 0.149316i −0.360480 + 0.149316i
\(165\) −1.24830 + 3.01367i −1.24830 + 3.01367i
\(166\) 0.0761205 + 0.382683i 0.0761205 + 0.382683i
\(167\) 0.275899 + 0.275899i 0.275899 + 0.275899i 0.831470 0.555570i \(-0.187500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(168\) 0 0
\(169\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(170\) 0 0
\(171\) 0 0
\(172\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(173\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.636379 1.53636i −0.636379 1.53636i
\(177\) 1.96157i 1.96157i
\(178\) 0.617317 + 0.923880i 0.617317 + 0.923880i
\(179\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(180\) 1.96157i 1.96157i
\(181\) −1.70711 0.707107i −1.70711 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −0.425215 + 1.02656i −0.425215 + 1.02656i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −0.707107 0.707107i −0.707107 0.707107i
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 1.81225 0.750661i 1.81225 0.750661i
\(196\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(197\) 0.636379 1.53636i 0.636379 1.53636i −0.195090 0.980785i \(-0.562500\pi\)
0.831470 0.555570i \(-0.187500\pi\)
\(198\) −1.63099 + 0.324423i −1.63099 + 0.324423i
\(199\) −1.30656 1.30656i −1.30656 1.30656i −0.923880 0.382683i \(-0.875000\pi\)
−0.382683 0.923880i \(-0.625000\pi\)
\(200\) −0.555570 2.79304i −0.555570 2.79304i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −0.292893 0.707107i −0.292893 0.707107i
\(206\) 0 0
\(207\) 0 0
\(208\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(209\) 0 0
\(210\) 0 0
\(211\) 0.541196 + 1.30656i 0.541196 + 1.30656i 0.923880 + 0.382683i \(0.125000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(212\) 0 0
\(213\) −1.53636 0.636379i −1.53636 0.636379i
\(214\) 0 0
\(215\) −1.06159 + 1.06159i −1.06159 + 1.06159i
\(216\) −0.831470 + 0.555570i −0.831470 + 0.555570i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 3.01367 1.24830i 3.01367 1.24830i
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) −2.84776 −2.84776
\(226\) 0 0
\(227\) 1.02656 0.425215i 1.02656 0.425215i 0.195090 0.980785i \(-0.437500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(228\) 0 0
\(229\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(234\) 0.831470 + 0.555570i 0.831470 + 0.555570i
\(235\) −2.01367 0.834089i −2.01367 0.834089i
\(236\) 1.38704 1.38704i 1.38704 1.38704i
\(237\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(238\) 0 0
\(239\) 0.390181i 0.390181i −0.980785 0.195090i \(-0.937500\pi\)
0.980785 0.195090i \(-0.0625000\pi\)
\(240\) 1.38704 1.38704i 1.38704 1.38704i
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0.980785 + 1.46785i 0.980785 + 1.46785i
\(243\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(244\) 1.41421 1.41421
\(245\) −1.81225 0.750661i −1.81225 0.750661i
\(246\) 0.216773 0.324423i 0.216773 0.324423i
\(247\) 0 0
\(248\) 0 0
\(249\) −0.275899 0.275899i −0.275899 0.275899i
\(250\) 3.55487 0.707107i 3.55487 0.707107i
\(251\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0.750661 + 0.149316i 0.750661 + 0.149316i
\(255\) 0 0
\(256\) 1.00000i 1.00000i
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) −0.750661 0.149316i −0.750661 0.149316i
\(259\) 0 0
\(260\) −1.81225 0.750661i −1.81225 0.750661i
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) 1.38268 + 0.923880i 1.38268 + 0.923880i
\(265\) 0 0
\(266\) 0 0
\(267\) −1.02656 0.425215i −1.02656 0.425215i
\(268\) 0 0
\(269\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(270\) −1.08979 1.63099i −1.08979 1.63099i
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0.923880 0.617317i 0.923880 0.617317i
\(275\) 1.81225 + 4.37517i 1.81225 + 4.37517i
\(276\) 0 0
\(277\) 1.70711 + 0.707107i 1.70711 + 0.707107i 1.00000 \(0\)
0.707107 + 0.707107i \(0.250000\pi\)
\(278\) −1.53636 1.02656i −1.53636 1.02656i
\(279\) 0 0
\(280\) 0 0
\(281\) −1.38704 1.38704i −1.38704 1.38704i −0.831470 0.555570i \(-0.812500\pi\)
−0.555570 0.831470i \(-0.687500\pi\)
\(282\) −0.216773 1.08979i −0.216773 1.08979i
\(283\) −0.541196 + 1.30656i −0.541196 + 1.30656i 0.382683 + 0.923880i \(0.375000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(284\) 0.636379 + 1.53636i 0.636379 + 1.53636i
\(285\) 0 0
\(286\) 0.324423 1.63099i 0.324423 1.63099i
\(287\) 0 0
\(288\) 0.980785 + 0.195090i 0.980785 + 0.195090i
\(289\) −1.00000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.425215 + 1.02656i −0.425215 + 1.02656i 0.555570 + 0.831470i \(0.312500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(294\) −0.195090 0.980785i −0.195090 0.980785i
\(295\) 2.72078 + 2.72078i 2.72078 + 2.72078i
\(296\) 0 0
\(297\) 1.17588 1.17588i 1.17588 1.17588i
\(298\) −0.923880 0.617317i −0.923880 0.617317i
\(299\) 0 0
\(300\) 2.01367 + 2.01367i 2.01367 + 2.01367i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.77408i 2.77408i
\(306\) 0 0
\(307\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(312\) −0.195090 0.980785i −0.195090 0.980785i
\(313\) −0.541196 0.541196i −0.541196 0.541196i 0.382683 0.923880i \(-0.375000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(314\) 0.750661 0.149316i 0.750661 0.149316i
\(315\) 0 0
\(316\) 0.292893 0.707107i 0.292893 0.707107i
\(317\) 1.02656 0.425215i 1.02656 0.425215i 0.195090 0.980785i \(-0.437500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1.96157 −1.96157
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.382683 0.923880i 0.382683 0.923880i
\(325\) 1.08979 2.63099i 1.08979 2.63099i
\(326\) 0 0
\(327\) 0 0
\(328\) −0.382683 + 0.0761205i −0.382683 + 0.0761205i
\(329\) 0 0
\(330\) −1.81225 + 2.71223i −1.81225 + 2.71223i
\(331\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(332\) 0.390181i 0.390181i
\(333\) 0 0
\(334\) 0.216773 + 0.324423i 0.216773 + 0.324423i
\(335\) 0 0
\(336\) 0 0
\(337\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(338\) −0.831470 + 0.555570i −0.831470 + 0.555570i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0.425215 + 0.636379i 0.425215 + 0.636379i
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(348\) 0 0
\(349\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(350\) 0 0
\(351\) −1.00000 −1.00000
\(352\) −0.324423 1.63099i −0.324423 1.63099i
\(353\) 0.390181 0.390181 0.195090 0.980785i \(-0.437500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(354\) −0.382683 + 1.92388i −0.382683 + 1.92388i
\(355\) −3.01367 + 1.24830i −3.01367 + 1.24830i
\(356\) 0.425215 + 1.02656i 0.425215 + 1.02656i
\(357\) 0 0
\(358\) 0 0
\(359\) −0.785695 0.785695i −0.785695 0.785695i 0.195090 0.980785i \(-0.437500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(360\) −0.382683 + 1.92388i −0.382683 + 1.92388i
\(361\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(362\) −1.53636 1.02656i −1.53636 1.02656i
\(363\) −1.63099 0.675577i −1.63099 0.675577i
\(364\) 0 0
\(365\) 0 0
\(366\) −1.17588 + 0.785695i −1.17588 + 0.785695i
\(367\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0 0
\(369\) 0.390181i 0.390181i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.30656 + 0.541196i 1.30656 + 0.541196i 0.923880 0.382683i \(-0.125000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(374\) 0 0
\(375\) −2.56292 + 2.56292i −2.56292 + 2.56292i
\(376\) −0.617317 + 0.923880i −0.617317 + 0.923880i
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(380\) 0 0
\(381\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(382\) 0 0
\(383\) −0.390181 −0.390181 −0.195090 0.980785i \(-0.562500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(384\) −0.555570 0.831470i −0.555570 0.831470i
\(385\) 0 0
\(386\) 0 0
\(387\) 0.707107 0.292893i 0.707107 0.292893i
\(388\) 0 0
\(389\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(390\) 1.92388 0.382683i 1.92388 0.382683i
\(391\) 0 0
\(392\) −0.555570 + 0.831470i −0.555570 + 0.831470i
\(393\) 0 0
\(394\) 0.923880 1.38268i 0.923880 1.38268i
\(395\) 1.38704 + 0.574531i 1.38704 + 0.574531i
\(396\) −1.66294 −1.66294
\(397\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(398\) −1.02656 1.53636i −1.02656 1.53636i
\(399\) 0 0
\(400\) 2.84776i 2.84776i
\(401\) 1.66294i 1.66294i −0.555570 0.831470i \(-0.687500\pi\)
0.555570 0.831470i \(-0.312500\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.81225 + 0.750661i 1.81225 + 0.750661i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(410\) −0.149316 0.750661i −0.149316 0.750661i
\(411\) −0.425215 + 1.02656i −0.425215 + 1.02656i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −0.765367 −0.765367
\(416\) −0.555570 + 0.831470i −0.555570 + 0.831470i
\(417\) 1.84776 1.84776
\(418\) 0 0
\(419\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(420\) 0 0
\(421\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(422\) 0.275899 + 1.38704i 0.275899 + 1.38704i
\(423\) 0.785695 + 0.785695i 0.785695 + 0.785695i
\(424\) 0 0
\(425\) 0 0
\(426\) −1.38268 0.923880i −1.38268 0.923880i
\(427\) 0 0
\(428\) 0 0
\(429\) 0.636379 + 1.53636i 0.636379 + 1.53636i
\(430\) −1.24830 + 0.834089i −1.24830 + 0.834089i
\(431\) 0.390181i 0.390181i 0.980785 + 0.195090i \(0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(432\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(433\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(440\) 3.19929 0.636379i 3.19929 0.636379i
\(441\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(442\) 0 0
\(443\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(444\) 0 0
\(445\) −2.01367 + 0.834089i −2.01367 + 0.834089i
\(446\) 0 0
\(447\) 1.11114 1.11114
\(448\) 0 0
\(449\) −1.11114 −1.11114 −0.555570 0.831470i \(-0.687500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(450\) −2.79304 0.555570i −2.79304 0.555570i
\(451\) 0.599456 0.248303i 0.599456 0.248303i
\(452\) 0 0
\(453\) 0 0
\(454\) 1.08979 0.216773i 1.08979 0.216773i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −0.636379 1.53636i −0.636379 1.53636i −0.831470 0.555570i \(-0.812500\pi\)
0.195090 0.980785i \(-0.437500\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(468\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(469\) 0 0
\(470\) −1.81225 1.21091i −1.81225 1.21091i
\(471\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(472\) 1.63099 1.08979i 1.63099 1.08979i
\(473\) −0.899976 0.899976i −0.899976 0.899976i
\(474\) 0.149316 + 0.750661i 0.149316 + 0.750661i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0.0761205 0.382683i 0.0761205 0.382683i
\(479\) 1.66294 1.66294 0.831470 0.555570i \(-0.187500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(480\) 1.63099 1.08979i 1.63099 1.08979i
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0.675577 + 1.63099i 0.675577 + 1.63099i
\(485\) 0 0
\(486\) 0.195090 + 0.980785i 0.195090 + 0.980785i
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) 1.38704 + 0.275899i 1.38704 + 0.275899i
\(489\) 0 0
\(490\) −1.63099 1.08979i −1.63099 1.08979i
\(491\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(492\) 0.275899 0.275899i 0.275899 0.275899i
\(493\) 0 0
\(494\) 0 0
\(495\) 3.26197i 3.26197i
\(496\) 0 0
\(497\) 0 0
\(498\) −0.216773 0.324423i −0.216773 0.324423i
\(499\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(500\) 3.62451 3.62451
\(501\) −0.360480 0.149316i −0.360480 0.149316i
\(502\) 0 0
\(503\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.382683 0.923880i 0.382683 0.923880i
\(508\) 0.707107 + 0.292893i 0.707107 + 0.292893i
\(509\) −0.360480 + 0.149316i −0.360480 + 0.149316i −0.555570 0.831470i \(-0.687500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.195090 + 0.980785i −0.195090 + 0.980785i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) −0.707107 0.292893i −0.707107 0.292893i
\(517\) 0.707107 1.70711i 0.707107 1.70711i
\(518\) 0 0
\(519\) 0 0
\(520\) −1.63099 1.08979i −1.63099 1.08979i
\(521\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(522\) 0 0
\(523\) −1.70711 0.707107i −1.70711 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 1.17588 + 1.17588i 1.17588 + 1.17588i
\(529\) 1.00000i 1.00000i
\(530\) 0 0
\(531\) −0.750661 1.81225i −0.750661 1.81225i
\(532\) 0 0
\(533\) −0.360480 0.149316i −0.360480 0.149316i
\(534\) −0.923880 0.617317i −0.923880 0.617317i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.636379 1.53636i 0.636379 1.53636i
\(540\) −0.750661 1.81225i −0.750661 1.81225i
\(541\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(542\) 0 0
\(543\) 1.84776 1.84776
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.70711 0.707107i 1.70711 0.707107i 0.707107 0.707107i \(-0.250000\pi\)
1.00000 \(0\)
\(548\) 1.02656 0.425215i 1.02656 0.425215i
\(549\) 0.541196 1.30656i 0.541196 1.30656i
\(550\) 0.923880 + 4.64466i 0.923880 + 4.64466i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 1.53636 + 1.02656i 1.53636 + 1.02656i
\(555\) 0 0
\(556\) −1.30656 1.30656i −1.30656 1.30656i
\(557\) 0.149316 + 0.360480i 0.149316 + 0.360480i 0.980785 0.195090i \(-0.0625000\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(558\) 0 0
\(559\) 0.765367i 0.765367i
\(560\) 0 0
\(561\) 0 0
\(562\) −1.08979 1.63099i −1.08979 1.63099i
\(563\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(564\) 1.11114i 1.11114i
\(565\) 0 0
\(566\) −0.785695 + 1.17588i −0.785695 + 1.17588i
\(567\) 0 0
\(568\) 0.324423 + 1.63099i 0.324423 + 1.63099i
\(569\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(570\) 0 0
\(571\) 0.541196 1.30656i 0.541196 1.30656i −0.382683 0.923880i \(-0.625000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(572\) 0.636379 1.53636i 0.636379 1.53636i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −0.980785 0.195090i −0.980785 0.195090i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −1.38704 + 1.38704i −1.38704 + 1.38704i
\(586\) −0.617317 + 0.923880i −0.617317 + 0.923880i
\(587\) −1.81225 0.750661i −1.81225 0.750661i −0.980785 0.195090i \(-0.937500\pi\)
−0.831470 0.555570i \(-0.812500\pi\)
\(588\) 1.00000i 1.00000i
\(589\) 0 0
\(590\) 2.13770 + 3.19929i 2.13770 + 3.19929i
\(591\) 1.66294i 1.66294i
\(592\) 0 0
\(593\) 1.96157i 1.96157i −0.195090 0.980785i \(-0.562500\pi\)
0.195090 0.980785i \(-0.437500\pi\)
\(594\) 1.38268 0.923880i 1.38268 0.923880i
\(595\) 0 0
\(596\) −0.785695 0.785695i −0.785695 0.785695i
\(597\) 1.70711 + 0.707107i 1.70711 + 0.707107i
\(598\) 0 0
\(599\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(600\) 1.58213 + 2.36783i 1.58213 + 2.36783i
\(601\) 1.30656 + 1.30656i 1.30656 + 1.30656i 0.923880 + 0.382683i \(0.125000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.19929 + 1.32519i −3.19929 + 1.32519i
\(606\) 0 0
\(607\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(608\) 0 0
\(609\) 0 0
\(610\) −0.541196 + 2.72078i −0.541196 + 2.72078i
\(611\) −1.02656 + 0.425215i −1.02656 + 0.425215i
\(612\) 0 0
\(613\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(614\) 0 0
\(615\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(616\) 0 0
\(617\) 1.38704 1.38704i 1.38704 1.38704i 0.555570 0.831470i \(-0.312500\pi\)
0.831470 0.555570i \(-0.187500\pi\)
\(618\) 0 0
\(619\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 1.00000i 1.00000i
\(625\) 4.26197i 4.26197i
\(626\) −0.425215 0.636379i −0.425215 0.636379i
\(627\) 0 0
\(628\) 0.765367 0.765367
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(632\) 0.425215 0.636379i 0.425215 0.636379i
\(633\) −1.00000 1.00000i −1.00000 1.00000i
\(634\) 1.08979 0.216773i 1.08979 0.216773i
\(635\) −0.574531 + 1.38704i −0.574531 + 1.38704i
\(636\) 0 0
\(637\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(638\) 0 0
\(639\) 1.66294 1.66294
\(640\) −1.92388 0.382683i −1.92388 0.382683i
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(644\) 0 0
\(645\) 0.574531 1.38704i 0.574531 1.38704i
\(646\) 0 0
\(647\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(648\) 0.555570 0.831470i 0.555570 0.831470i
\(649\) −2.30656 + 2.30656i −2.30656 + 2.30656i
\(650\) 1.58213 2.36783i 1.58213 2.36783i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −0.390181 −0.390181
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(660\) −2.30656 + 2.30656i −2.30656 + 2.30656i
\(661\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −0.0761205 + 0.382683i −0.0761205 + 0.382683i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0.149316 + 0.360480i 0.149316 + 0.360480i
\(669\) 0 0
\(670\) 0 0
\(671\) −2.35175 −2.35175
\(672\) 0 0
\(673\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(674\) 0.149316 0.750661i 0.149316 0.750661i
\(675\) 2.63099 1.08979i 2.63099 1.08979i
\(676\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(677\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −0.785695 + 0.785695i −0.785695 + 0.785695i
\(682\) 0 0
\(683\) −1.81225 0.750661i −1.81225 0.750661i −0.980785 0.195090i \(-0.937500\pi\)
−0.831470 0.555570i \(-0.812500\pi\)
\(684\) 0 0
\(685\) 0.834089 + 2.01367i 0.834089 + 2.01367i
\(686\) 0 0
\(687\) 0 0
\(688\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.56292 2.56292i 2.56292 2.56292i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(702\) −0.980785 0.195090i −0.980785 0.195090i
\(703\) 0 0
\(704\) 1.66294i 1.66294i
\(705\) 2.17958 2.17958
\(706\) 0.382683 + 0.0761205i 0.382683 + 0.0761205i
\(707\) 0 0
\(708\) −0.750661 + 1.81225i −0.750661 + 1.81225i
\(709\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(710\) −3.19929 + 0.636379i −3.19929 + 0.636379i
\(711\) −0.541196 0.541196i −0.541196 0.541196i
\(712\) 0.216773 + 1.08979i 0.216773 + 1.08979i
\(713\) 0 0
\(714\) 0 0
\(715\) 3.01367 + 1.24830i 3.01367 + 1.24830i
\(716\) 0 0
\(717\) 0.149316 + 0.360480i 0.149316 + 0.360480i
\(718\) −0.617317 0.923880i −0.617317 0.923880i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) −0.750661 + 1.81225i −0.750661 + 1.81225i
\(721\) 0 0
\(722\) −0.831470 + 0.555570i −0.831470 + 0.555570i
\(723\) 0 0
\(724\) −1.30656 1.30656i −1.30656 1.30656i
\(725\) 0 0
\(726\) −1.46785 0.980785i −1.46785 0.980785i
\(727\) −1.30656 + 1.30656i −1.30656 + 1.30656i −0.382683 + 0.923880i \(0.625000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(728\) 0 0
\(729\) −0.707107 0.707107i −0.707107 0.707107i
\(730\) 0 0
\(731\) 0 0
\(732\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(733\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(734\) −0.275899 + 1.38704i −0.275899 + 1.38704i
\(735\) 1.96157 1.96157
\(736\) 0 0
\(737\) 0 0
\(738\) −0.0761205 + 0.382683i −0.0761205 + 0.382683i
\(739\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.275899 0.275899i −0.275899 0.275899i 0.555570 0.831470i \(-0.312500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(744\) 0 0
\(745\) 1.54120 1.54120i 1.54120 1.54120i
\(746\) 1.17588 + 0.785695i 1.17588 + 0.785695i
\(747\) 0.360480 + 0.149316i 0.360480 + 0.149316i
\(748\) 0 0
\(749\) 0 0
\(750\) −3.01367 + 2.01367i −3.01367 + 2.01367i
\(751\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(752\) −0.785695 + 0.785695i −0.785695 + 0.785695i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.30656 0.541196i −1.30656 0.541196i −0.382683 0.923880i \(-0.625000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.17588 + 1.17588i 1.17588 + 1.17588i 0.980785 + 0.195090i \(0.0625000\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(762\) −0.750661 + 0.149316i −0.750661 + 0.149316i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −0.382683 0.0761205i −0.382683 0.0761205i
\(767\) 1.96157 1.96157
\(768\) −0.382683 0.923880i −0.382683 0.923880i
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.149316 + 0.360480i −0.149316 + 0.360480i −0.980785 0.195090i \(-0.937500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(774\) 0.750661 0.149316i 0.750661 0.149316i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 1.96157 1.96157
\(781\) −1.05826 2.55487i −1.05826 2.55487i
\(782\) 0 0
\(783\) 0 0
\(784\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(785\) 1.50132i 1.50132i
\(786\) 0 0
\(787\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(788\) 1.17588 1.17588i 1.17588 1.17588i
\(789\) 0 0
\(790\) 1.24830 + 0.834089i 1.24830 + 0.834089i
\(791\) 0 0
\(792\) −1.63099 0.324423i −1.63099 0.324423i
\(793\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(794\) 0 0
\(795\) 0 0
\(796\) −0.707107 1.70711i −0.707107 1.70711i
\(797\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.555570 2.79304i 0.555570 2.79304i
\(801\) 1.11114 1.11114
\(802\) 0.324423 1.63099i 0.324423 1.63099i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(810\) 1.63099 + 1.08979i 1.63099 + 1.08979i
\(811\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0.765367i 0.765367i
\(821\) 1.53636 + 0.636379i 1.53636 + 0.636379i 0.980785 0.195090i \(-0.0625000\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(822\) −0.617317 + 0.923880i −0.617317 + 0.923880i
\(823\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(824\) 0 0
\(825\) −3.34861 3.34861i −3.34861 3.34861i
\(826\) 0 0
\(827\) −0.750661 + 1.81225i −0.750661 + 1.81225i −0.195090 + 0.980785i \(0.562500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(828\) 0 0
\(829\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(830\) −0.750661 0.149316i −0.750661 0.149316i
\(831\) −1.84776 −1.84776
\(832\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(833\) 0 0
\(834\) 1.81225 + 0.360480i 1.81225 + 0.360480i
\(835\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.38704 + 1.38704i 1.38704 + 1.38704i 0.831470 + 0.555570i \(0.187500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(840\) 0 0
\(841\) 0.707107 0.707107i 0.707107 0.707107i
\(842\) 0 0
\(843\) 1.81225 + 0.750661i 1.81225 + 0.750661i
\(844\) 1.41421i 1.41421i
\(845\) −0.750661 1.81225i −0.750661 1.81225i
\(846\) 0.617317 + 0.923880i 0.617317 + 0.923880i
\(847\) 0 0
\(848\) 0 0
\(849\) 1.41421i 1.41421i
\(850\) 0 0
\(851\) 0 0
\(852\) −1.17588 1.17588i −1.17588 1.17588i
\(853\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(858\) 0.324423 + 1.63099i 0.324423 + 1.63099i
\(859\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(860\) −1.38704 + 0.574531i −1.38704 + 0.574531i
\(861\) 0 0
\(862\) −0.0761205 + 0.382683i −0.0761205 + 0.382683i
\(863\) 1.11114 1.11114 0.555570 0.831470i \(-0.312500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(864\) −0.980785 + 0.195090i −0.980785 + 0.195090i
\(865\) 0 0
\(866\) 0.360480 1.81225i 0.360480 1.81225i
\(867\) 0.923880 0.382683i 0.923880 0.382683i
\(868\) 0 0
\(869\) −0.487064 + 1.17588i −0.487064 + 1.17588i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(878\) −1.17588 + 0.785695i −1.17588 + 0.785695i
\(879\) 1.11114i 1.11114i
\(880\) 3.26197 3.26197
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0.555570 + 0.831470i 0.555570 + 0.831470i
\(883\) −0.541196 1.30656i −0.541196 1.30656i −0.923880 0.382683i \(-0.875000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(884\) 0 0
\(885\) −3.55487 1.47247i −3.55487 1.47247i
\(886\) 0 0
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −2.13770 + 0.425215i −2.13770 + 0.425215i
\(891\) −0.636379 + 1.53636i −0.636379 + 1.53636i
\(892\) 0 0
\(893\) 0 0
\(894\) 1.08979 + 0.216773i 1.08979 + 0.216773i
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −1.08979 0.216773i −1.08979 0.216773i
\(899\) 0 0
\(900\) −2.63099 1.08979i −2.63099 1.08979i
\(901\) 0 0
\(902\) 0.636379 0.126584i 0.636379 0.126584i
\(903\) 0 0
\(904\) 0 0
\(905\) 2.56292 2.56292i 2.56292 2.56292i
\(906\) 0 0
\(907\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(908\) 1.11114 1.11114
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0.648847i 0.648847i
\(914\) 0 0
\(915\) −1.06159 2.56292i −1.06159 2.56292i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.30656 + 1.30656i −1.30656 + 1.30656i −0.382683 + 0.923880i \(0.625000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −0.324423 1.63099i −0.324423 1.63099i
\(923\) −0.636379 + 1.53636i −0.636379 + 1.53636i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.96157 1.96157 0.980785 0.195090i \(-0.0625000\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0.555570 + 0.831470i 0.555570 + 0.831470i
\(937\) −0.541196 + 0.541196i −0.541196 + 0.541196i −0.923880 0.382683i \(-0.875000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(938\) 0 0
\(939\) 0.707107 + 0.292893i 0.707107 + 0.292893i
\(940\) −1.54120 1.54120i −1.54120 1.54120i
\(941\) −0.149316 0.360480i −0.149316 0.360480i 0.831470 0.555570i \(-0.187500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(942\) −0.636379 + 0.425215i −0.636379 + 0.425215i
\(943\) 0 0
\(944\) 1.81225 0.750661i 1.81225 0.750661i
\(945\) 0 0
\(946\) −0.707107 1.05826i −0.707107 1.05826i
\(947\) 0.425215 + 1.02656i 0.425215 + 1.02656i 0.980785 + 0.195090i \(0.0625000\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(948\) 0.765367i 0.765367i
\(949\) 0 0
\(950\) 0 0
\(951\) −0.785695 + 0.785695i −0.785695 + 0.785695i
\(952\) 0 0
\(953\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0.149316 0.360480i 0.149316 0.360480i
\(957\) 0 0
\(958\) 1.63099 + 0.324423i 1.63099 + 0.324423i
\(959\) 0 0
\(960\) 1.81225 0.750661i 1.81225 0.750661i
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(968\) 0.344406 + 1.73145i 0.344406 + 1.73145i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(972\) 1.00000i 1.00000i
\(973\) 0 0
\(974\) 0 0
\(975\) 2.84776i 2.84776i
\(976\) 1.30656 + 0.541196i 1.30656 + 0.541196i
\(977\) 0.390181i 0.390181i −0.980785 0.195090i \(-0.937500\pi\)
0.980785 0.195090i \(-0.0625000\pi\)
\(978\) 0 0
\(979\) −0.707107 1.70711i −0.707107 1.70711i
\(980\) −1.38704 1.38704i −1.38704 1.38704i
\(981\) 0 0
\(982\) 0 0
\(983\) −1.38704 + 1.38704i −1.38704 + 1.38704i −0.555570 + 0.831470i \(0.687500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(984\) 0.324423 0.216773i 0.324423 0.216773i
\(985\) 2.30656 + 2.30656i 2.30656 + 2.30656i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0.636379 3.19929i 0.636379 3.19929i
\(991\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3.34861 1.38704i 3.34861 1.38704i
\(996\) −0.149316 0.360480i −0.149316 0.360480i
\(997\) −0.707107 + 1.70711i −0.707107 + 1.70711i 1.00000i \(0.5\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.1.cm.a.1013.4 yes 16
3.2 odd 2 inner 1248.1.cm.a.1013.1 yes 16
13.12 even 2 inner 1248.1.cm.a.1013.1 yes 16
32.29 even 8 inner 1248.1.cm.a.701.4 yes 16
39.38 odd 2 CM 1248.1.cm.a.1013.4 yes 16
96.29 odd 8 inner 1248.1.cm.a.701.1 16
416.285 even 8 inner 1248.1.cm.a.701.1 16
1248.701 odd 8 inner 1248.1.cm.a.701.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1248.1.cm.a.701.1 16 96.29 odd 8 inner
1248.1.cm.a.701.1 16 416.285 even 8 inner
1248.1.cm.a.701.4 yes 16 32.29 even 8 inner
1248.1.cm.a.701.4 yes 16 1248.701 odd 8 inner
1248.1.cm.a.1013.1 yes 16 3.2 odd 2 inner
1248.1.cm.a.1013.1 yes 16 13.12 even 2 inner
1248.1.cm.a.1013.4 yes 16 1.1 even 1 trivial
1248.1.cm.a.1013.4 yes 16 39.38 odd 2 CM