Properties

Label 1240.2.bo
Level $1240$
Weight $2$
Character orbit 1240.bo
Rep. character $\chi_{1240}(491,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $256$
Sturm bound $384$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1240 = 2^{3} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1240.bo (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 248 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(384\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1240, [\chi])\).

Total New Old
Modular forms 392 256 136
Cusp forms 376 256 120
Eisenstein series 16 0 16

Trace form

\( 256 q + 4 q^{4} - 12 q^{6} - 12 q^{8} + 128 q^{9} - 2 q^{10} - 8 q^{14} + 4 q^{16} + 6 q^{18} - 8 q^{19} - 4 q^{20} + 128 q^{25} + 20 q^{32} - 48 q^{34} + 14 q^{36} + 10 q^{38} - 16 q^{40} - 66 q^{42} - 42 q^{44}+ \cdots - 74 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1240, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1240, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1240, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(248, [\chi])\)\(^{\oplus 2}\)