Properties

Label 1218.2.p.b.289.12
Level $1218$
Weight $2$
Character 1218.289
Analytic conductor $9.726$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1218,2,Mod(289,1218)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1218.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1218, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1218 = 2 \cdot 3 \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1218.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.72577896619\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 289.12
Character \(\chi\) \(=\) 1218.289
Dual form 1218.2.p.b.1159.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.09965 + 1.90465i) q^{5} -1.00000 q^{6} +(-2.59884 - 0.496020i) q^{7} +1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(-1.90465 + 1.09965i) q^{10} +(-4.17005 + 2.40758i) q^{11} +(-0.866025 - 0.500000i) q^{12} +0.594482 q^{13} +(-2.00265 - 1.72899i) q^{14} -2.19930i q^{15} +(-0.500000 + 0.866025i) q^{16} +(6.33711 - 3.65873i) q^{17} +(0.866025 - 0.500000i) q^{18} +(-5.49013 - 3.16973i) q^{19} -2.19930 q^{20} +(2.49867 - 0.869854i) q^{21} -4.81516 q^{22} +(1.91009 - 3.30837i) q^{23} +(-0.500000 - 0.866025i) q^{24} +(0.0815493 + 0.141248i) q^{25} +(0.514836 + 0.297241i) q^{26} +1.00000i q^{27} +(-0.869854 - 2.49867i) q^{28} +(-2.42359 - 4.80897i) q^{29} +(1.09965 - 1.90465i) q^{30} +(-4.91922 + 2.84011i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(2.40758 - 4.17005i) q^{33} +7.31747 q^{34} +(3.80255 - 4.40442i) q^{35} +1.00000 q^{36} +(4.45835 + 2.57403i) q^{37} +(-3.16973 - 5.49013i) q^{38} +(-0.514836 + 0.297241i) q^{39} +(-1.90465 - 1.09965i) q^{40} -9.19954i q^{41} +(2.59884 + 0.496020i) q^{42} -0.843054i q^{43} +(-4.17005 - 2.40758i) q^{44} +(1.09965 + 1.90465i) q^{45} +(3.30837 - 1.91009i) q^{46} +(-7.67146 - 4.42912i) q^{47} -1.00000i q^{48} +(6.50793 + 2.57815i) q^{49} +0.163099i q^{50} +(-3.65873 + 6.33711i) q^{51} +(0.297241 + 0.514836i) q^{52} +(-1.10529 - 1.91441i) q^{53} +(-0.500000 + 0.866025i) q^{54} -10.5900i q^{55} +(0.496020 - 2.59884i) q^{56} +6.33946 q^{57} +(0.305592 - 5.37649i) q^{58} +(4.27285 + 7.40079i) q^{59} +(1.90465 - 1.09965i) q^{60} +(-12.8544 - 7.42151i) q^{61} -5.68023 q^{62} +(-1.72899 + 2.00265i) q^{63} -1.00000 q^{64} +(-0.653720 + 1.13228i) q^{65} +(4.17005 - 2.40758i) q^{66} +(5.60937 + 9.71571i) q^{67} +(6.33711 + 3.65873i) q^{68} +3.82018i q^{69} +(5.49532 - 1.91307i) q^{70} -5.95717 q^{71} +(0.866025 + 0.500000i) q^{72} +(-13.8612 + 8.00279i) q^{73} +(2.57403 + 4.45835i) q^{74} +(-0.141248 - 0.0815493i) q^{75} -6.33946i q^{76} +(12.0315 - 4.18848i) q^{77} -0.594482 q^{78} +(1.18751 + 0.685608i) q^{79} +(-1.09965 - 1.90465i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(4.59977 - 7.96703i) q^{82} -12.2828 q^{83} +(2.00265 + 1.72899i) q^{84} +16.0933i q^{85} +(0.421527 - 0.730106i) q^{86} +(4.50338 + 2.95289i) q^{87} +(-2.40758 - 4.17005i) q^{88} +(-2.58959 - 1.49510i) q^{89} +2.19930i q^{90} +(-1.54496 - 0.294875i) q^{91} +3.82018 q^{92} +(2.84011 - 4.91922i) q^{93} +(-4.42912 - 7.67146i) q^{94} +(12.0744 - 6.97117i) q^{95} +(0.500000 - 0.866025i) q^{96} -7.38538i q^{97} +(4.34696 + 5.48671i) q^{98} +4.81516i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 22 q^{4} - 44 q^{6} - 8 q^{7} + 22 q^{9} - 16 q^{13} - 22 q^{16} - 4 q^{23} - 22 q^{24} - 22 q^{25} - 4 q^{28} + 4 q^{29} - 16 q^{34} - 10 q^{35} + 44 q^{36} + 4 q^{38} + 8 q^{42} - 52 q^{49} + 8 q^{51}+ \cdots + 22 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1218\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(871\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −1.09965 + 1.90465i −0.491777 + 0.851784i −0.999955 0.00946869i \(-0.996986\pi\)
0.508178 + 0.861252i \(0.330319\pi\)
\(6\) −1.00000 −0.408248
\(7\) −2.59884 0.496020i −0.982269 0.187478i
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −1.90465 + 1.09965i −0.602302 + 0.347739i
\(11\) −4.17005 + 2.40758i −1.25732 + 0.725912i −0.972552 0.232685i \(-0.925249\pi\)
−0.284765 + 0.958598i \(0.591915\pi\)
\(12\) −0.866025 0.500000i −0.250000 0.144338i
\(13\) 0.594482 0.164880 0.0824398 0.996596i \(-0.473729\pi\)
0.0824398 + 0.996596i \(0.473729\pi\)
\(14\) −2.00265 1.72899i −0.535231 0.462091i
\(15\) 2.19930i 0.567856i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 6.33711 3.65873i 1.53698 0.887373i 0.537962 0.842969i \(-0.319195\pi\)
0.999014 0.0444037i \(-0.0141388\pi\)
\(18\) 0.866025 0.500000i 0.204124 0.117851i
\(19\) −5.49013 3.16973i −1.25952 0.727186i −0.286541 0.958068i \(-0.592506\pi\)
−0.972982 + 0.230882i \(0.925839\pi\)
\(20\) −2.19930 −0.491777
\(21\) 2.49867 0.869854i 0.545255 0.189818i
\(22\) −4.81516 −1.02659
\(23\) 1.91009 3.30837i 0.398281 0.689843i −0.595233 0.803553i \(-0.702940\pi\)
0.993514 + 0.113710i \(0.0362735\pi\)
\(24\) −0.500000 0.866025i −0.102062 0.176777i
\(25\) 0.0815493 + 0.141248i 0.0163099 + 0.0282495i
\(26\) 0.514836 + 0.297241i 0.100968 + 0.0582937i
\(27\) 1.00000i 0.192450i
\(28\) −0.869854 2.49867i −0.164387 0.472204i
\(29\) −2.42359 4.80897i −0.450050 0.893003i
\(30\) 1.09965 1.90465i 0.200767 0.347739i
\(31\) −4.91922 + 2.84011i −0.883518 + 0.510100i −0.871817 0.489832i \(-0.837058\pi\)
−0.0117015 + 0.999932i \(0.503725\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 2.40758 4.17005i 0.419106 0.725912i
\(34\) 7.31747 1.25494
\(35\) 3.80255 4.40442i 0.642748 0.744483i
\(36\) 1.00000 0.166667
\(37\) 4.45835 + 2.57403i 0.732947 + 0.423167i 0.819499 0.573080i \(-0.194252\pi\)
−0.0865520 + 0.996247i \(0.527585\pi\)
\(38\) −3.16973 5.49013i −0.514198 0.890617i
\(39\) −0.514836 + 0.297241i −0.0824398 + 0.0475966i
\(40\) −1.90465 1.09965i −0.301151 0.173870i
\(41\) 9.19954i 1.43673i −0.695668 0.718363i \(-0.744892\pi\)
0.695668 0.718363i \(-0.255108\pi\)
\(42\) 2.59884 + 0.496020i 0.401010 + 0.0765375i
\(43\) 0.843054i 0.128564i −0.997932 0.0642822i \(-0.979524\pi\)
0.997932 0.0642822i \(-0.0204758\pi\)
\(44\) −4.17005 2.40758i −0.628658 0.362956i
\(45\) 1.09965 + 1.90465i 0.163926 + 0.283928i
\(46\) 3.30837 1.91009i 0.487793 0.281627i
\(47\) −7.67146 4.42912i −1.11900 0.646054i −0.177853 0.984057i \(-0.556915\pi\)
−0.941145 + 0.338004i \(0.890248\pi\)
\(48\) 1.00000i 0.144338i
\(49\) 6.50793 + 2.57815i 0.929704 + 0.368307i
\(50\) 0.163099i 0.0230656i
\(51\) −3.65873 + 6.33711i −0.512325 + 0.887373i
\(52\) 0.297241 + 0.514836i 0.0412199 + 0.0713949i
\(53\) −1.10529 1.91441i −0.151823 0.262965i 0.780075 0.625686i \(-0.215181\pi\)
−0.931898 + 0.362722i \(0.881848\pi\)
\(54\) −0.500000 + 0.866025i −0.0680414 + 0.117851i
\(55\) 10.5900i 1.42795i
\(56\) 0.496020 2.59884i 0.0662834 0.347284i
\(57\) 6.33946 0.839682
\(58\) 0.305592 5.37649i 0.0401262 0.705967i
\(59\) 4.27285 + 7.40079i 0.556277 + 0.963501i 0.997803 + 0.0662519i \(0.0211041\pi\)
−0.441526 + 0.897249i \(0.645563\pi\)
\(60\) 1.90465 1.09965i 0.245889 0.141964i
\(61\) −12.8544 7.42151i −1.64584 0.950227i −0.978700 0.205296i \(-0.934184\pi\)
−0.667141 0.744931i \(-0.732482\pi\)
\(62\) −5.68023 −0.721390
\(63\) −1.72899 + 2.00265i −0.217832 + 0.252310i
\(64\) −1.00000 −0.125000
\(65\) −0.653720 + 1.13228i −0.0810840 + 0.140442i
\(66\) 4.17005 2.40758i 0.513297 0.296352i
\(67\) 5.60937 + 9.71571i 0.685293 + 1.18696i 0.973345 + 0.229348i \(0.0736593\pi\)
−0.288051 + 0.957615i \(0.593007\pi\)
\(68\) 6.33711 + 3.65873i 0.768488 + 0.443687i
\(69\) 3.82018i 0.459895i
\(70\) 5.49532 1.91307i 0.656816 0.228655i
\(71\) −5.95717 −0.706986 −0.353493 0.935437i \(-0.615006\pi\)
−0.353493 + 0.935437i \(0.615006\pi\)
\(72\) 0.866025 + 0.500000i 0.102062 + 0.0589256i
\(73\) −13.8612 + 8.00279i −1.62234 + 0.936656i −0.636043 + 0.771654i \(0.719430\pi\)
−0.986293 + 0.165002i \(0.947237\pi\)
\(74\) 2.57403 + 4.45835i 0.299225 + 0.518272i
\(75\) −0.141248 0.0815493i −0.0163099 0.00941651i
\(76\) 6.33946i 0.727186i
\(77\) 12.0315 4.18848i 1.37112 0.477322i
\(78\) −0.594482 −0.0673118
\(79\) 1.18751 + 0.685608i 0.133605 + 0.0771369i 0.565313 0.824877i \(-0.308755\pi\)
−0.431708 + 0.902014i \(0.642089\pi\)
\(80\) −1.09965 1.90465i −0.122944 0.212946i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 4.59977 7.96703i 0.507960 0.879812i
\(83\) −12.2828 −1.34822 −0.674108 0.738632i \(-0.735472\pi\)
−0.674108 + 0.738632i \(0.735472\pi\)
\(84\) 2.00265 + 1.72899i 0.218507 + 0.188648i
\(85\) 16.0933i 1.74556i
\(86\) 0.421527 0.730106i 0.0454544 0.0787293i
\(87\) 4.50338 + 2.95289i 0.482813 + 0.316583i
\(88\) −2.40758 4.17005i −0.256649 0.444529i
\(89\) −2.58959 1.49510i −0.274496 0.158481i 0.356433 0.934321i \(-0.383993\pi\)
−0.630929 + 0.775840i \(0.717326\pi\)
\(90\) 2.19930i 0.231826i
\(91\) −1.54496 0.294875i −0.161956 0.0309113i
\(92\) 3.82018 0.398281
\(93\) 2.84011 4.91922i 0.294506 0.510100i
\(94\) −4.42912 7.67146i −0.456829 0.791251i
\(95\) 12.0744 6.97117i 1.23881 0.715227i
\(96\) 0.500000 0.866025i 0.0510310 0.0883883i
\(97\) 7.38538i 0.749871i −0.927051 0.374936i \(-0.877665\pi\)
0.927051 0.374936i \(-0.122335\pi\)
\(98\) 4.34696 + 5.48671i 0.439109 + 0.554241i
\(99\) 4.81516i 0.483941i
\(100\) −0.0815493 + 0.141248i −0.00815493 + 0.0141248i
\(101\) 5.47566 3.16138i 0.544849 0.314569i −0.202193 0.979346i \(-0.564807\pi\)
0.747042 + 0.664777i \(0.231473\pi\)
\(102\) −6.33711 + 3.65873i −0.627468 + 0.362269i
\(103\) 5.69644 9.86652i 0.561287 0.972178i −0.436098 0.899899i \(-0.643640\pi\)
0.997385 0.0722781i \(-0.0230269\pi\)
\(104\) 0.594482i 0.0582937i
\(105\) −1.09089 + 5.71562i −0.106460 + 0.557787i
\(106\) 2.21057i 0.214710i
\(107\) −0.110178 + 0.190834i −0.0106513 + 0.0184486i −0.871302 0.490747i \(-0.836724\pi\)
0.860651 + 0.509196i \(0.170057\pi\)
\(108\) −0.866025 + 0.500000i −0.0833333 + 0.0481125i
\(109\) 1.66862 + 2.89013i 0.159825 + 0.276824i 0.934805 0.355161i \(-0.115574\pi\)
−0.774981 + 0.631985i \(0.782240\pi\)
\(110\) 5.29498 9.17117i 0.504856 0.874436i
\(111\) −5.14805 −0.488632
\(112\) 1.72899 2.00265i 0.163374 0.189233i
\(113\) 2.35527i 0.221565i −0.993845 0.110782i \(-0.964664\pi\)
0.993845 0.110782i \(-0.0353357\pi\)
\(114\) 5.49013 + 3.16973i 0.514198 + 0.296872i
\(115\) 4.20085 + 7.27609i 0.391731 + 0.678498i
\(116\) 2.95289 4.50338i 0.274169 0.418128i
\(117\) 0.297241 0.514836i 0.0274799 0.0475966i
\(118\) 8.54569i 0.786695i
\(119\) −18.2839 + 6.36513i −1.67609 + 0.583490i
\(120\) 2.19930 0.200767
\(121\) 6.09286 10.5531i 0.553897 0.959377i
\(122\) −7.42151 12.8544i −0.671912 1.16379i
\(123\) 4.59977 + 7.96703i 0.414747 + 0.718363i
\(124\) −4.91922 2.84011i −0.441759 0.255050i
\(125\) −11.3552 −1.01564
\(126\) −2.49867 + 0.869854i −0.222599 + 0.0774927i
\(127\) 0.218107i 0.0193539i 0.999953 + 0.00967695i \(0.00308032\pi\)
−0.999953 + 0.00967695i \(0.996920\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 0.421527 + 0.730106i 0.0371134 + 0.0642822i
\(130\) −1.13228 + 0.653720i −0.0993073 + 0.0573351i
\(131\) −3.00694 1.73606i −0.262717 0.151680i 0.362856 0.931845i \(-0.381802\pi\)
−0.625573 + 0.780165i \(0.715135\pi\)
\(132\) 4.81516 0.419106
\(133\) 12.6957 + 10.9608i 1.10086 + 0.950425i
\(134\) 11.2187i 0.969151i
\(135\) −1.90465 1.09965i −0.163926 0.0946426i
\(136\) 3.65873 + 6.33711i 0.313734 + 0.543403i
\(137\) −11.9558 + 6.90268i −1.02145 + 0.589736i −0.914524 0.404531i \(-0.867435\pi\)
−0.106928 + 0.994267i \(0.534102\pi\)
\(138\) −1.91009 + 3.30837i −0.162598 + 0.281627i
\(139\) 0.425359 0.0360785 0.0180392 0.999837i \(-0.494258\pi\)
0.0180392 + 0.999837i \(0.494258\pi\)
\(140\) 5.71562 + 1.09089i 0.483058 + 0.0921974i
\(141\) 8.85824 0.745998
\(142\) −5.15906 2.97858i −0.432939 0.249957i
\(143\) −2.47902 + 1.43126i −0.207306 + 0.119688i
\(144\) 0.500000 + 0.866025i 0.0416667 + 0.0721688i
\(145\) 11.8245 + 0.672087i 0.981970 + 0.0558138i
\(146\) −16.0056 −1.32463
\(147\) −6.92511 + 1.02122i −0.571173 + 0.0842288i
\(148\) 5.14805i 0.423167i
\(149\) −7.40768 + 12.8305i −0.606861 + 1.05111i 0.384894 + 0.922961i \(0.374238\pi\)
−0.991754 + 0.128153i \(0.959095\pi\)
\(150\) −0.0815493 0.141248i −0.00665848 0.0115328i
\(151\) 6.28229 + 10.8813i 0.511246 + 0.885504i 0.999915 + 0.0130345i \(0.00414914\pi\)
−0.488669 + 0.872469i \(0.662518\pi\)
\(152\) 3.16973 5.49013i 0.257099 0.445309i
\(153\) 7.31747i 0.591582i
\(154\) 12.5138 + 2.38841i 1.00839 + 0.192464i
\(155\) 12.4925i 1.00342i
\(156\) −0.514836 0.297241i −0.0412199 0.0237983i
\(157\) −10.9715 + 6.33439i −0.875619 + 0.505539i −0.869211 0.494440i \(-0.835373\pi\)
−0.00640771 + 0.999979i \(0.502040\pi\)
\(158\) 0.685608 + 1.18751i 0.0545440 + 0.0944730i
\(159\) 1.91441 + 1.10529i 0.151823 + 0.0876549i
\(160\) 2.19930i 0.173870i
\(161\) −6.60503 + 7.65048i −0.520549 + 0.602942i
\(162\) 1.00000i 0.0785674i
\(163\) 3.28121 + 1.89441i 0.257004 + 0.148382i 0.622967 0.782248i \(-0.285927\pi\)
−0.365963 + 0.930629i \(0.619260\pi\)
\(164\) 7.96703 4.59977i 0.622121 0.359182i
\(165\) 5.29498 + 9.17117i 0.412213 + 0.713974i
\(166\) −10.6373 6.14142i −0.825611 0.476667i
\(167\) 6.26854 0.485074 0.242537 0.970142i \(-0.422020\pi\)
0.242537 + 0.970142i \(0.422020\pi\)
\(168\) 0.869854 + 2.49867i 0.0671107 + 0.192777i
\(169\) −12.6466 −0.972815
\(170\) −8.04664 + 13.9372i −0.617149 + 1.06893i
\(171\) −5.49013 + 3.16973i −0.419841 + 0.242395i
\(172\) 0.730106 0.421527i 0.0556700 0.0321411i
\(173\) 7.73083 13.3902i 0.587764 1.01804i −0.406761 0.913535i \(-0.633342\pi\)
0.994525 0.104502i \(-0.0333249\pi\)
\(174\) 2.42359 + 4.80897i 0.183732 + 0.364567i
\(175\) −0.141872 0.407530i −0.0107245 0.0308064i
\(176\) 4.81516i 0.362956i
\(177\) −7.40079 4.27285i −0.556277 0.321167i
\(178\) −1.49510 2.58959i −0.112063 0.194098i
\(179\) 1.12603 + 1.95034i 0.0841636 + 0.145776i 0.905034 0.425338i \(-0.139845\pi\)
−0.820871 + 0.571114i \(0.806512\pi\)
\(180\) −1.09965 + 1.90465i −0.0819629 + 0.141964i
\(181\) −7.53342 −0.559955 −0.279977 0.960007i \(-0.590327\pi\)
−0.279977 + 0.960007i \(0.590327\pi\)
\(182\) −1.19054 1.02785i −0.0882486 0.0761893i
\(183\) 14.8430 1.09723
\(184\) 3.30837 + 1.91009i 0.243896 + 0.140814i
\(185\) −9.80522 + 5.66105i −0.720894 + 0.416208i
\(186\) 4.91922 2.84011i 0.360695 0.208247i
\(187\) −17.6174 + 30.5142i −1.28831 + 2.23142i
\(188\) 8.85824i 0.646054i
\(189\) 0.496020 2.59884i 0.0360801 0.189038i
\(190\) 13.9423 1.01148
\(191\) 3.63023 + 2.09591i 0.262674 + 0.151655i 0.625554 0.780181i \(-0.284873\pi\)
−0.362880 + 0.931836i \(0.618206\pi\)
\(192\) 0.866025 0.500000i 0.0625000 0.0360844i
\(193\) −13.8057 + 7.97072i −0.993755 + 0.573745i −0.906395 0.422432i \(-0.861176\pi\)
−0.0873604 + 0.996177i \(0.527843\pi\)
\(194\) 3.69269 6.39592i 0.265120 0.459201i
\(195\) 1.30744i 0.0936278i
\(196\) 1.02122 + 6.92511i 0.0729443 + 0.494651i
\(197\) −17.2700 −1.23044 −0.615219 0.788356i \(-0.710932\pi\)
−0.615219 + 0.788356i \(0.710932\pi\)
\(198\) −2.40758 + 4.17005i −0.171099 + 0.296352i
\(199\) −7.21660 12.4995i −0.511571 0.886067i −0.999910 0.0134129i \(-0.995730\pi\)
0.488339 0.872654i \(-0.337603\pi\)
\(200\) −0.141248 + 0.0815493i −0.00998771 + 0.00576641i
\(201\) −9.71571 5.60937i −0.685293 0.395654i
\(202\) 6.32275 0.444867
\(203\) 3.91318 + 13.6999i 0.274652 + 0.961544i
\(204\) −7.31747 −0.512325
\(205\) 17.5219 + 10.1163i 1.22378 + 0.706550i
\(206\) 9.86652 5.69644i 0.687433 0.396890i
\(207\) −1.91009 3.30837i −0.132760 0.229948i
\(208\) −0.297241 + 0.514836i −0.0206099 + 0.0356975i
\(209\) 30.5255 2.11149
\(210\) −3.80255 + 4.40442i −0.262401 + 0.303934i
\(211\) 18.9257i 1.30290i 0.758693 + 0.651449i \(0.225838\pi\)
−0.758693 + 0.651449i \(0.774162\pi\)
\(212\) 1.10529 1.91441i 0.0759113 0.131482i
\(213\) 5.15906 2.97858i 0.353493 0.204089i
\(214\) −0.190834 + 0.110178i −0.0130451 + 0.00753161i
\(215\) 1.60572 + 0.927062i 0.109509 + 0.0632251i
\(216\) −1.00000 −0.0680414
\(217\) 14.1930 4.94097i 0.963485 0.335415i
\(218\) 3.33723i 0.226026i
\(219\) 8.00279 13.8612i 0.540779 0.936656i
\(220\) 9.17117 5.29498i 0.618320 0.356987i
\(221\) 3.76730 2.17505i 0.253416 0.146310i
\(222\) −4.45835 2.57403i −0.299225 0.172757i
\(223\) −7.55452 −0.505888 −0.252944 0.967481i \(-0.581399\pi\)
−0.252944 + 0.967481i \(0.581399\pi\)
\(224\) 2.49867 0.869854i 0.166949 0.0581196i
\(225\) 0.163099 0.0108732
\(226\) 1.17763 2.03972i 0.0783351 0.135680i
\(227\) −9.64323 16.7026i −0.640044 1.10859i −0.985423 0.170125i \(-0.945583\pi\)
0.345379 0.938463i \(-0.387750\pi\)
\(228\) 3.16973 + 5.49013i 0.209920 + 0.363593i
\(229\) 16.1917 + 9.34830i 1.06998 + 0.617753i 0.928176 0.372142i \(-0.121377\pi\)
0.141803 + 0.989895i \(0.454710\pi\)
\(230\) 8.40170i 0.553992i
\(231\) −8.32533 + 9.64308i −0.547767 + 0.634468i
\(232\) 4.80897 2.42359i 0.315724 0.159117i
\(233\) 7.57598 13.1220i 0.496319 0.859649i −0.503672 0.863895i \(-0.668018\pi\)
0.999991 + 0.00424549i \(0.00135138\pi\)
\(234\) 0.514836 0.297241i 0.0336559 0.0194312i
\(235\) 16.8718 9.74094i 1.10060 0.635429i
\(236\) −4.27285 + 7.40079i −0.278139 + 0.481750i
\(237\) −1.37122 −0.0890700
\(238\) −19.0169 3.62961i −1.23268 0.235272i
\(239\) −13.2370 −0.856233 −0.428117 0.903723i \(-0.640823\pi\)
−0.428117 + 0.903723i \(0.640823\pi\)
\(240\) 1.90465 + 1.09965i 0.122944 + 0.0709820i
\(241\) −2.46882 4.27613i −0.159031 0.275450i 0.775489 0.631362i \(-0.217504\pi\)
−0.934519 + 0.355912i \(0.884170\pi\)
\(242\) 10.5531 6.09286i 0.678382 0.391664i
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) 14.8430i 0.950227i
\(245\) −12.0669 + 9.56024i −0.770926 + 0.610781i
\(246\) 9.19954i 0.586541i
\(247\) −3.26378 1.88435i −0.207670 0.119898i
\(248\) −2.84011 4.91922i −0.180347 0.312371i
\(249\) 10.6373 6.14142i 0.674108 0.389197i
\(250\) −9.83387 5.67759i −0.621949 0.359082i
\(251\) 7.59532i 0.479412i 0.970846 + 0.239706i \(0.0770511\pi\)
−0.970846 + 0.239706i \(0.922949\pi\)
\(252\) −2.59884 0.496020i −0.163711 0.0312463i
\(253\) 18.3948i 1.15647i
\(254\) −0.109054 + 0.188886i −0.00684264 + 0.0118518i
\(255\) −8.04664 13.9372i −0.503900 0.872780i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −11.6870 + 20.2424i −0.729012 + 1.26269i 0.228289 + 0.973593i \(0.426687\pi\)
−0.957301 + 0.289093i \(0.906646\pi\)
\(258\) 0.843054i 0.0524862i
\(259\) −10.3098 8.90091i −0.640617 0.553076i
\(260\) −1.30744 −0.0810840
\(261\) −5.37649 0.305592i −0.332796 0.0189157i
\(262\) −1.73606 3.00694i −0.107254 0.185769i
\(263\) 25.8393 14.9183i 1.59332 0.919903i 0.600587 0.799560i \(-0.294934\pi\)
0.992732 0.120343i \(-0.0383996\pi\)
\(264\) 4.17005 + 2.40758i 0.256649 + 0.148176i
\(265\) 4.86170 0.298652
\(266\) 5.51440 + 15.8402i 0.338110 + 0.971226i
\(267\) 2.99020 0.182998
\(268\) −5.60937 + 9.71571i −0.342647 + 0.593481i
\(269\) −0.465468 + 0.268738i −0.0283801 + 0.0163853i −0.514123 0.857717i \(-0.671882\pi\)
0.485743 + 0.874102i \(0.338549\pi\)
\(270\) −1.09965 1.90465i −0.0669224 0.115913i
\(271\) 17.6764 + 10.2055i 1.07377 + 0.619939i 0.929208 0.369557i \(-0.120491\pi\)
0.144558 + 0.989496i \(0.453824\pi\)
\(272\) 7.31747i 0.443687i
\(273\) 1.48541 0.517112i 0.0899013 0.0312971i
\(274\) −13.8054 −0.834013
\(275\) −0.680129 0.392673i −0.0410133 0.0236791i
\(276\) −3.30837 + 1.91009i −0.199141 + 0.114974i
\(277\) −0.659387 1.14209i −0.0396187 0.0686216i 0.845536 0.533918i \(-0.179281\pi\)
−0.885155 + 0.465297i \(0.845948\pi\)
\(278\) 0.368372 + 0.212679i 0.0220935 + 0.0127557i
\(279\) 5.68023i 0.340066i
\(280\) 4.40442 + 3.80255i 0.263215 + 0.227246i
\(281\) 31.0763 1.85386 0.926929 0.375236i \(-0.122438\pi\)
0.926929 + 0.375236i \(0.122438\pi\)
\(282\) 7.67146 + 4.42912i 0.456829 + 0.263750i
\(283\) 16.4363 + 28.4685i 0.977035 + 1.69227i 0.673050 + 0.739597i \(0.264984\pi\)
0.303985 + 0.952677i \(0.401683\pi\)
\(284\) −2.97858 5.15906i −0.176746 0.306134i
\(285\) −6.97117 + 12.0744i −0.412937 + 0.715227i
\(286\) −2.86252 −0.169264
\(287\) −4.56315 + 23.9081i −0.269354 + 1.41125i
\(288\) 1.00000i 0.0589256i
\(289\) 18.2727 31.6492i 1.07486 1.86172i
\(290\) 9.90426 + 6.49429i 0.581598 + 0.381358i
\(291\) 3.69269 + 6.39592i 0.216469 + 0.374936i
\(292\) −13.8612 8.00279i −0.811168 0.468328i
\(293\) 0.0962519i 0.00562310i −0.999996 0.00281155i \(-0.999105\pi\)
0.999996 0.00281155i \(-0.000894945\pi\)
\(294\) −6.50793 2.57815i −0.379550 0.150361i
\(295\) −18.7945 −1.09426
\(296\) −2.57403 + 4.45835i −0.149612 + 0.259136i
\(297\) −2.40758 4.17005i −0.139702 0.241971i
\(298\) −12.8305 + 7.40768i −0.743250 + 0.429115i
\(299\) 1.13551 1.96677i 0.0656684 0.113741i
\(300\) 0.163099i 0.00941651i
\(301\) −0.418171 + 2.19096i −0.0241030 + 0.126285i
\(302\) 12.5646i 0.723011i
\(303\) −3.16138 + 5.47566i −0.181616 + 0.314569i
\(304\) 5.49013 3.16973i 0.314881 0.181796i
\(305\) 28.2707 16.3221i 1.61878 0.934600i
\(306\) 3.65873 6.33711i 0.209156 0.362269i
\(307\) 11.5432i 0.658802i 0.944190 + 0.329401i \(0.106847\pi\)
−0.944190 + 0.329401i \(0.893153\pi\)
\(308\) 9.64308 + 8.32533i 0.549465 + 0.474380i
\(309\) 11.3929i 0.648118i
\(310\) 6.24625 10.8188i 0.354763 0.614468i
\(311\) −21.3002 + 12.2977i −1.20782 + 0.697338i −0.962283 0.272049i \(-0.912299\pi\)
−0.245541 + 0.969386i \(0.578965\pi\)
\(312\) −0.297241 0.514836i −0.0168279 0.0291469i
\(313\) −15.5072 + 26.8593i −0.876519 + 1.51818i −0.0213837 + 0.999771i \(0.506807\pi\)
−0.855136 + 0.518404i \(0.826526\pi\)
\(314\) −12.6688 −0.714940
\(315\) −1.91307 5.49532i −0.107789 0.309626i
\(316\) 1.37122i 0.0771369i
\(317\) 13.8606 + 8.00240i 0.778487 + 0.449459i 0.835894 0.548891i \(-0.184950\pi\)
−0.0574070 + 0.998351i \(0.518283\pi\)
\(318\) 1.10529 + 1.91441i 0.0619813 + 0.107355i
\(319\) 21.6845 + 14.2186i 1.21410 + 0.796091i
\(320\) 1.09965 1.90465i 0.0614722 0.106473i
\(321\) 0.220356i 0.0122991i
\(322\) −9.54537 + 3.32300i −0.531942 + 0.185183i
\(323\) −46.3888 −2.58114
\(324\) 0.500000 0.866025i 0.0277778 0.0481125i
\(325\) 0.0484796 + 0.0839691i 0.00268916 + 0.00465777i
\(326\) 1.89441 + 3.28121i 0.104922 + 0.181729i
\(327\) −2.89013 1.66862i −0.159825 0.0922747i
\(328\) 9.19954 0.507960
\(329\) 17.7400 + 15.3158i 0.978036 + 0.844386i
\(330\) 10.5900i 0.582958i
\(331\) −2.37104 1.36892i −0.130324 0.0752426i 0.433421 0.901192i \(-0.357306\pi\)
−0.563745 + 0.825949i \(0.690640\pi\)
\(332\) −6.14142 10.6373i −0.337054 0.583795i
\(333\) 4.45835 2.57403i 0.244316 0.141056i
\(334\) 5.42872 + 3.13427i 0.297046 + 0.171500i
\(335\) −24.6733 −1.34805
\(336\) −0.496020 + 2.59884i −0.0270601 + 0.141778i
\(337\) 17.2240i 0.938251i −0.883131 0.469126i \(-0.844569\pi\)
0.883131 0.469126i \(-0.155431\pi\)
\(338\) −10.9523 6.32330i −0.595725 0.343942i
\(339\) 1.17763 + 2.03972i 0.0639603 + 0.110782i
\(340\) −13.9372 + 8.04664i −0.755850 + 0.436390i
\(341\) 13.6756 23.6868i 0.740575 1.28271i
\(342\) −6.33946 −0.342799
\(343\) −15.6342 9.92826i −0.844170 0.536076i
\(344\) 0.843054 0.0454544
\(345\) −7.27609 4.20085i −0.391731 0.226166i
\(346\) 13.3902 7.73083i 0.719861 0.415612i
\(347\) −1.38423 2.39755i −0.0743092 0.128707i 0.826476 0.562971i \(-0.190342\pi\)
−0.900786 + 0.434264i \(0.857009\pi\)
\(348\) −0.305592 + 5.37649i −0.0163814 + 0.288210i
\(349\) 0.676478 0.0362110 0.0181055 0.999836i \(-0.494237\pi\)
0.0181055 + 0.999836i \(0.494237\pi\)
\(350\) 0.0809002 0.423867i 0.00432430 0.0226567i
\(351\) 0.594482i 0.0317311i
\(352\) 2.40758 4.17005i 0.128324 0.222264i
\(353\) −3.36614 5.83033i −0.179162 0.310317i 0.762432 0.647068i \(-0.224005\pi\)
−0.941594 + 0.336751i \(0.890672\pi\)
\(354\) −4.27285 7.40079i −0.227099 0.393347i
\(355\) 6.55079 11.3463i 0.347680 0.602199i
\(356\) 2.99020i 0.158481i
\(357\) 12.6518 14.6543i 0.669604 0.775589i
\(358\) 2.25206i 0.119025i
\(359\) −21.1481 12.2099i −1.11615 0.644412i −0.175738 0.984437i \(-0.556231\pi\)
−0.940416 + 0.340025i \(0.889565\pi\)
\(360\) −1.90465 + 1.09965i −0.100384 + 0.0579565i
\(361\) 10.5944 + 18.3500i 0.557599 + 0.965789i
\(362\) −6.52413 3.76671i −0.342901 0.197974i
\(363\) 12.1857i 0.639585i
\(364\) −0.517112 1.48541i −0.0271040 0.0778568i
\(365\) 35.2010i 1.84251i
\(366\) 12.8544 + 7.42151i 0.671912 + 0.387929i
\(367\) 1.99693 1.15293i 0.104239 0.0601822i −0.446974 0.894547i \(-0.647498\pi\)
0.551213 + 0.834365i \(0.314165\pi\)
\(368\) 1.91009 + 3.30837i 0.0995703 + 0.172461i
\(369\) −7.96703 4.59977i −0.414747 0.239454i
\(370\) −11.3221 −0.588608
\(371\) 1.92287 + 5.52349i 0.0998306 + 0.286765i
\(372\) 5.68023 0.294506
\(373\) −4.71187 + 8.16120i −0.243971 + 0.422571i −0.961842 0.273606i \(-0.911784\pi\)
0.717871 + 0.696177i \(0.245117\pi\)
\(374\) −30.5142 + 17.6174i −1.57785 + 0.910972i
\(375\) 9.83387 5.67759i 0.507819 0.293189i
\(376\) 4.42912 7.67146i 0.228414 0.395625i
\(377\) −1.44078 2.85884i −0.0742040 0.147238i
\(378\) 1.72899 2.00265i 0.0889294 0.103005i
\(379\) 31.2425i 1.60482i −0.596772 0.802411i \(-0.703551\pi\)
0.596772 0.802411i \(-0.296449\pi\)
\(380\) 12.0744 + 6.97117i 0.619405 + 0.357614i
\(381\) −0.109054 0.188886i −0.00558699 0.00967695i
\(382\) 2.09591 + 3.63023i 0.107236 + 0.185739i
\(383\) 15.2148 26.3529i 0.777442 1.34657i −0.155970 0.987762i \(-0.549850\pi\)
0.933412 0.358807i \(-0.116816\pi\)
\(384\) 1.00000 0.0510310
\(385\) −5.25282 + 27.5216i −0.267709 + 1.40263i
\(386\) −15.9414 −0.811398
\(387\) −0.730106 0.421527i −0.0371134 0.0214274i
\(388\) 6.39592 3.69269i 0.324704 0.187468i
\(389\) −9.19895 + 5.31102i −0.466405 + 0.269279i −0.714734 0.699397i \(-0.753452\pi\)
0.248328 + 0.968676i \(0.420119\pi\)
\(390\) 0.653720 1.13228i 0.0331024 0.0573351i
\(391\) 27.9540i 1.41370i
\(392\) −2.57815 + 6.50793i −0.130216 + 0.328700i
\(393\) 3.47211 0.175145
\(394\) −14.9563 8.63501i −0.753486 0.435026i
\(395\) −2.61168 + 1.50785i −0.131408 + 0.0758684i
\(396\) −4.17005 + 2.40758i −0.209553 + 0.120985i
\(397\) −13.5822 + 23.5250i −0.681669 + 1.18069i 0.292802 + 0.956173i \(0.405412\pi\)
−0.974471 + 0.224513i \(0.927921\pi\)
\(398\) 14.4332i 0.723471i
\(399\) −16.4752 3.14450i −0.824793 0.157422i
\(400\) −0.163099 −0.00815493
\(401\) 18.3307 31.7496i 0.915389 1.58550i 0.109059 0.994035i \(-0.465216\pi\)
0.806330 0.591466i \(-0.201450\pi\)
\(402\) −5.60937 9.71571i −0.279770 0.484576i
\(403\) −2.92439 + 1.68840i −0.145674 + 0.0841050i
\(404\) 5.47566 + 3.16138i 0.272424 + 0.157284i
\(405\) 2.19930 0.109284
\(406\) −3.46103 + 13.8210i −0.171768 + 0.685927i
\(407\) −24.7887 −1.22873
\(408\) −6.33711 3.65873i −0.313734 0.181134i
\(409\) 18.8936 10.9082i 0.934230 0.539378i 0.0460828 0.998938i \(-0.485326\pi\)
0.888147 + 0.459560i \(0.151993\pi\)
\(410\) 10.1163 + 17.5219i 0.499606 + 0.865343i
\(411\) 6.90268 11.9558i 0.340484 0.589736i
\(412\) 11.3929 0.561287
\(413\) −7.43351 21.3529i −0.365779 1.05071i
\(414\) 3.82018i 0.187751i
\(415\) 13.5068 23.3945i 0.663023 1.14839i
\(416\) −0.514836 + 0.297241i −0.0252419 + 0.0145734i
\(417\) −0.368372 + 0.212679i −0.0180392 + 0.0104150i
\(418\) 26.4358 + 15.2627i 1.29302 + 0.746525i
\(419\) −0.0979001 −0.00478273 −0.00239137 0.999997i \(-0.500761\pi\)
−0.00239137 + 0.999997i \(0.500761\pi\)
\(420\) −5.49532 + 1.91307i −0.268144 + 0.0933481i
\(421\) 7.35008i 0.358221i 0.983829 + 0.179110i \(0.0573219\pi\)
−0.983829 + 0.179110i \(0.942678\pi\)
\(422\) −9.46284 + 16.3901i −0.460644 + 0.797859i
\(423\) −7.67146 + 4.42912i −0.372999 + 0.215351i
\(424\) 1.91441 1.10529i 0.0929720 0.0536774i
\(425\) 1.03357 + 0.596734i 0.0501357 + 0.0289459i
\(426\) 5.95717 0.288626
\(427\) 29.7254 + 25.6634i 1.43851 + 1.24194i
\(428\) −0.220356 −0.0106513
\(429\) 1.43126 2.47902i 0.0691019 0.119688i
\(430\) 0.927062 + 1.60572i 0.0447069 + 0.0774346i
\(431\) −10.3116 17.8602i −0.496691 0.860294i 0.503302 0.864111i \(-0.332118\pi\)
−0.999993 + 0.00381655i \(0.998785\pi\)
\(432\) −0.866025 0.500000i −0.0416667 0.0240563i
\(433\) 24.1177i 1.15902i 0.814964 + 0.579512i \(0.196757\pi\)
−0.814964 + 0.579512i \(0.803243\pi\)
\(434\) 14.7620 + 2.81751i 0.708599 + 0.135245i
\(435\) −10.5763 + 5.33020i −0.507097 + 0.255563i
\(436\) −1.66862 + 2.89013i −0.0799123 + 0.138412i
\(437\) −20.9733 + 12.1089i −1.00329 + 0.579249i
\(438\) 13.8612 8.00279i 0.662316 0.382388i
\(439\) 7.01332 12.1474i 0.334727 0.579765i −0.648705 0.761040i \(-0.724689\pi\)
0.983432 + 0.181275i \(0.0580224\pi\)
\(440\) 10.5900 0.504856
\(441\) 5.48671 4.34696i 0.261272 0.206998i
\(442\) 4.35010 0.206913
\(443\) −27.3057 15.7650i −1.29733 0.749016i −0.317392 0.948295i \(-0.602807\pi\)
−0.979943 + 0.199278i \(0.936140\pi\)
\(444\) −2.57403 4.45835i −0.122158 0.211584i
\(445\) 5.69528 3.28817i 0.269982 0.155874i
\(446\) −6.54240 3.77726i −0.309792 0.178858i
\(447\) 14.8154i 0.700743i
\(448\) 2.59884 + 0.496020i 0.122784 + 0.0234347i
\(449\) 30.8736i 1.45702i 0.685038 + 0.728508i \(0.259786\pi\)
−0.685038 + 0.728508i \(0.740214\pi\)
\(450\) 0.141248 + 0.0815493i 0.00665848 + 0.00384427i
\(451\) 22.1486 + 38.3625i 1.04294 + 1.80642i
\(452\) 2.03972 1.17763i 0.0959405 0.0553912i
\(453\) −10.8813 6.28229i −0.511246 0.295168i
\(454\) 19.2865i 0.905158i
\(455\) 2.26055 2.61835i 0.105976 0.122750i
\(456\) 6.33946i 0.296872i
\(457\) −10.3166 + 17.8689i −0.482591 + 0.835873i −0.999800 0.0199865i \(-0.993638\pi\)
0.517209 + 0.855859i \(0.326971\pi\)
\(458\) 9.34830 + 16.1917i 0.436817 + 0.756590i
\(459\) 3.65873 + 6.33711i 0.170775 + 0.295791i
\(460\) −4.20085 + 7.27609i −0.195866 + 0.339249i
\(461\) 14.0889i 0.656187i −0.944645 0.328094i \(-0.893594\pi\)
0.944645 0.328094i \(-0.106406\pi\)
\(462\) −12.0315 + 4.18848i −0.559755 + 0.194866i
\(463\) −18.6875 −0.868481 −0.434240 0.900797i \(-0.642983\pi\)
−0.434240 + 0.900797i \(0.642983\pi\)
\(464\) 5.37649 + 0.305592i 0.249597 + 0.0141868i
\(465\) 6.24625 + 10.8188i 0.289663 + 0.501711i
\(466\) 13.1220 7.57598i 0.607864 0.350950i
\(467\) −28.4612 16.4321i −1.31703 0.760385i −0.333776 0.942652i \(-0.608323\pi\)
−0.983249 + 0.182268i \(0.941656\pi\)
\(468\) 0.594482 0.0274799
\(469\) −9.75866 28.0319i −0.450613 1.29439i
\(470\) 19.4819 0.898633
\(471\) 6.33439 10.9715i 0.291873 0.505539i
\(472\) −7.40079 + 4.27285i −0.340649 + 0.196674i
\(473\) 2.02972 + 3.51557i 0.0933265 + 0.161646i
\(474\) −1.18751 0.685608i −0.0545440 0.0314910i
\(475\) 1.03396i 0.0474412i
\(476\) −14.6543 12.6518i −0.671680 0.579894i
\(477\) −2.21057 −0.101215
\(478\) −11.4636 6.61852i −0.524334 0.302724i
\(479\) 34.1441 19.7131i 1.56008 0.900715i 0.562836 0.826569i \(-0.309710\pi\)
0.997247 0.0741458i \(-0.0236230\pi\)
\(480\) 1.09965 + 1.90465i 0.0501918 + 0.0869348i
\(481\) 2.65040 + 1.53021i 0.120848 + 0.0697717i
\(482\) 4.93765i 0.224904i
\(483\) 1.89488 9.92803i 0.0862202 0.451741i
\(484\) 12.1857 0.553897
\(485\) 14.0665 + 8.12131i 0.638728 + 0.368770i
\(486\) 0.500000 + 0.866025i 0.0226805 + 0.0392837i
\(487\) −10.8732 18.8330i −0.492714 0.853406i 0.507251 0.861798i \(-0.330662\pi\)
−0.999965 + 0.00839286i \(0.997328\pi\)
\(488\) 7.42151 12.8544i 0.335956 0.581893i
\(489\) −3.78882 −0.171336
\(490\) −15.2304 + 2.24597i −0.688037 + 0.101462i
\(491\) 1.51305i 0.0682831i 0.999417 + 0.0341415i \(0.0108697\pi\)
−0.999417 + 0.0341415i \(0.989130\pi\)
\(492\) −4.59977 + 7.96703i −0.207374 + 0.359182i
\(493\) −32.9533 21.6077i −1.48414 0.973162i
\(494\) −1.88435 3.26378i −0.0847807 0.146845i
\(495\) −9.17117 5.29498i −0.412213 0.237991i
\(496\) 5.68023i 0.255050i
\(497\) 15.4817 + 2.95487i 0.694450 + 0.132544i
\(498\) 12.2828 0.550407
\(499\) 3.46991 6.01005i 0.155334 0.269047i −0.777846 0.628454i \(-0.783688\pi\)
0.933181 + 0.359408i \(0.117021\pi\)
\(500\) −5.67759 9.83387i −0.253910 0.439784i
\(501\) −5.42872 + 3.13427i −0.242537 + 0.140029i
\(502\) −3.79766 + 6.57774i −0.169498 + 0.293579i
\(503\) 28.4017i 1.26637i −0.774002 0.633184i \(-0.781748\pi\)
0.774002 0.633184i \(-0.218252\pi\)
\(504\) −2.00265 1.72899i −0.0892052 0.0770151i
\(505\) 13.9056i 0.618791i
\(506\) −9.19738 + 15.9303i −0.408873 + 0.708189i
\(507\) 10.9523 6.32330i 0.486407 0.280827i
\(508\) −0.188886 + 0.109054i −0.00838048 + 0.00483847i
\(509\) 9.94763 17.2298i 0.440921 0.763697i −0.556837 0.830622i \(-0.687985\pi\)
0.997758 + 0.0669244i \(0.0213186\pi\)
\(510\) 16.0933i 0.712622i
\(511\) 39.9927 13.9225i 1.76917 0.615896i
\(512\) 1.00000i 0.0441942i
\(513\) 3.16973 5.49013i 0.139947 0.242395i
\(514\) −20.2424 + 11.6870i −0.892854 + 0.515489i
\(515\) 12.5282 + 21.6994i 0.552057 + 0.956190i
\(516\) −0.421527 + 0.730106i −0.0185567 + 0.0321411i
\(517\) 42.6538 1.87591
\(518\) −4.47805 12.8633i −0.196754 0.565181i
\(519\) 15.4617i 0.678691i
\(520\) −1.13228 0.653720i −0.0496536 0.0286675i
\(521\) 8.50149 + 14.7250i 0.372457 + 0.645115i 0.989943 0.141467i \(-0.0451820\pi\)
−0.617486 + 0.786582i \(0.711849\pi\)
\(522\) −4.50338 2.95289i −0.197108 0.129245i
\(523\) −3.92688 + 6.80155i −0.171710 + 0.297411i −0.939018 0.343868i \(-0.888263\pi\)
0.767308 + 0.641279i \(0.221596\pi\)
\(524\) 3.47211i 0.151680i
\(525\) 0.326630 + 0.281995i 0.0142553 + 0.0123073i
\(526\) 29.8366 1.30094
\(527\) −20.7824 + 35.9962i −0.905297 + 1.56802i
\(528\) 2.40758 + 4.17005i 0.104776 + 0.181478i
\(529\) 4.20312 + 7.28002i 0.182744 + 0.316523i
\(530\) 4.21036 + 2.43085i 0.182886 + 0.105589i
\(531\) 8.54569 0.370852
\(532\) −3.14450 + 16.4752i −0.136331 + 0.714292i
\(533\) 5.46896i 0.236887i
\(534\) 2.58959 + 1.49510i 0.112063 + 0.0646994i
\(535\) −0.242314 0.419700i −0.0104761 0.0181452i
\(536\) −9.71571 + 5.60937i −0.419655 + 0.242288i
\(537\) −1.95034 1.12603i −0.0841636 0.0485919i
\(538\) −0.537477 −0.0231723
\(539\) −33.3455 + 4.91734i −1.43629 + 0.211805i
\(540\) 2.19930i 0.0946426i
\(541\) −27.7397 16.0156i −1.19262 0.688562i −0.233724 0.972303i \(-0.575091\pi\)
−0.958901 + 0.283741i \(0.908425\pi\)
\(542\) 10.2055 + 17.6764i 0.438363 + 0.759267i
\(543\) 6.52413 3.76671i 0.279977 0.161645i
\(544\) −3.65873 + 6.33711i −0.156867 + 0.271701i
\(545\) −7.33957 −0.314392
\(546\) 1.54496 + 0.294875i 0.0661183 + 0.0126195i
\(547\) −26.3098 −1.12492 −0.562462 0.826823i \(-0.690146\pi\)
−0.562462 + 0.826823i \(0.690146\pi\)
\(548\) −11.9558 6.90268i −0.510726 0.294868i
\(549\) −12.8544 + 7.42151i −0.548614 + 0.316742i
\(550\) −0.392673 0.680129i −0.0167436 0.0290008i
\(551\) −1.93729 + 34.0840i −0.0825312 + 1.45203i
\(552\) −3.82018 −0.162598
\(553\) −2.74607 2.37081i −0.116775 0.100817i
\(554\) 1.31877i 0.0560293i
\(555\) 5.66105 9.80522i 0.240298 0.416208i
\(556\) 0.212679 + 0.368372i 0.00901962 + 0.0156224i
\(557\) −1.32808 2.30031i −0.0562727 0.0974672i 0.836517 0.547941i \(-0.184588\pi\)
−0.892789 + 0.450474i \(0.851255\pi\)
\(558\) −2.84011 + 4.91922i −0.120232 + 0.208247i
\(559\) 0.501180i 0.0211976i
\(560\) 1.91307 + 5.49532i 0.0808418 + 0.232219i
\(561\) 35.2347i 1.48761i
\(562\) 26.9129 + 15.5382i 1.13525 + 0.655438i
\(563\) 6.94323 4.00868i 0.292622 0.168946i −0.346502 0.938049i \(-0.612630\pi\)
0.639124 + 0.769104i \(0.279297\pi\)
\(564\) 4.42912 + 7.67146i 0.186500 + 0.323027i
\(565\) 4.48595 + 2.58997i 0.188725 + 0.108961i
\(566\) 32.8725i 1.38174i
\(567\) 0.869854 + 2.49867i 0.0365304 + 0.104934i
\(568\) 5.95717i 0.249957i
\(569\) 15.7831 + 9.11237i 0.661661 + 0.382010i 0.792910 0.609339i \(-0.208565\pi\)
−0.131248 + 0.991350i \(0.541899\pi\)
\(570\) −12.0744 + 6.97117i −0.505742 + 0.291990i
\(571\) −5.13597 8.89576i −0.214934 0.372276i 0.738318 0.674452i \(-0.235620\pi\)
−0.953252 + 0.302176i \(0.902287\pi\)
\(572\) −2.47902 1.43126i −0.103653 0.0598440i
\(573\) −4.19182 −0.175116
\(574\) −15.9059 + 18.4235i −0.663898 + 0.768981i
\(575\) 0.623066 0.0259836
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 2.72202 1.57156i 0.113319 0.0654249i −0.442269 0.896882i \(-0.645826\pi\)
0.555588 + 0.831457i \(0.312493\pi\)
\(578\) 31.6492 18.2727i 1.31643 0.760042i
\(579\) 7.97072 13.8057i 0.331252 0.573745i
\(580\) 5.33020 + 10.5763i 0.221324 + 0.439159i
\(581\) 31.9211 + 6.09253i 1.32431 + 0.252761i
\(582\) 7.38538i 0.306134i
\(583\) 9.21819 + 5.32212i 0.381778 + 0.220420i
\(584\) −8.00279 13.8612i −0.331158 0.573582i
\(585\) 0.653720 + 1.13228i 0.0270280 + 0.0468139i
\(586\) 0.0481260 0.0833566i 0.00198807 0.00344343i
\(587\) 10.4362 0.430746 0.215373 0.976532i \(-0.430903\pi\)
0.215373 + 0.976532i \(0.430903\pi\)
\(588\) −4.34696 5.48671i −0.179265 0.226268i
\(589\) 36.0096 1.48375
\(590\) −16.2765 9.39725i −0.670094 0.386879i
\(591\) 14.9563 8.63501i 0.615219 0.355197i
\(592\) −4.45835 + 2.57403i −0.183237 + 0.105792i
\(593\) 7.91664 13.7120i 0.325098 0.563085i −0.656435 0.754383i \(-0.727936\pi\)
0.981532 + 0.191298i \(0.0612695\pi\)
\(594\) 4.81516i 0.197568i
\(595\) 7.98258 41.8238i 0.327254 1.71461i
\(596\) −14.8154 −0.606861
\(597\) 12.4995 + 7.21660i 0.511571 + 0.295356i
\(598\) 1.96677 1.13551i 0.0804270 0.0464346i
\(599\) −9.06748 + 5.23511i −0.370487 + 0.213901i −0.673671 0.739031i \(-0.735284\pi\)
0.303184 + 0.952932i \(0.401950\pi\)
\(600\) 0.0815493 0.141248i 0.00332924 0.00576641i
\(601\) 13.3306i 0.543766i −0.962330 0.271883i \(-0.912354\pi\)
0.962330 0.271883i \(-0.0876464\pi\)
\(602\) −1.45763 + 1.68834i −0.0594084 + 0.0688117i
\(603\) 11.2187 0.456862
\(604\) −6.28229 + 10.8813i −0.255623 + 0.442752i
\(605\) 13.4000 + 23.2095i 0.544788 + 0.943600i
\(606\) −5.47566 + 3.16138i −0.222434 + 0.128422i
\(607\) −31.6093 18.2496i −1.28298 0.740730i −0.305589 0.952163i \(-0.598853\pi\)
−0.977392 + 0.211433i \(0.932187\pi\)
\(608\) 6.33946 0.257099
\(609\) −10.2389 9.90786i −0.414900 0.401487i
\(610\) 32.6442 1.32172
\(611\) −4.56054 2.63303i −0.184500 0.106521i
\(612\) 6.33711 3.65873i 0.256163 0.147896i
\(613\) −13.5539 23.4760i −0.547436 0.948187i −0.998449 0.0556695i \(-0.982271\pi\)
0.451013 0.892517i \(-0.351063\pi\)
\(614\) −5.77158 + 9.99666i −0.232922 + 0.403432i
\(615\) −20.2325 −0.815853
\(616\) 4.18848 + 12.0315i 0.168759 + 0.484762i
\(617\) 22.4580i 0.904124i 0.891987 + 0.452062i \(0.149311\pi\)
−0.891987 + 0.452062i \(0.850689\pi\)
\(618\) −5.69644 + 9.86652i −0.229144 + 0.396890i
\(619\) −19.2527 + 11.1155i −0.773831 + 0.446772i −0.834240 0.551402i \(-0.814093\pi\)
0.0604084 + 0.998174i \(0.480760\pi\)
\(620\) 10.8188 6.24625i 0.434494 0.250855i
\(621\) 3.30837 + 1.91009i 0.132760 + 0.0766492i
\(622\) −24.5954 −0.986184
\(623\) 5.98834 + 5.17002i 0.239918 + 0.207132i
\(624\) 0.594482i 0.0237983i
\(625\) 12.0790 20.9214i 0.483158 0.836854i
\(626\) −26.8593 + 15.5072i −1.07351 + 0.619793i
\(627\) −26.4358 + 15.2627i −1.05575 + 0.609535i
\(628\) −10.9715 6.33439i −0.437810 0.252769i
\(629\) 37.6707 1.50203
\(630\) 1.09089 5.71562i 0.0434623 0.227716i
\(631\) −9.95203 −0.396184 −0.198092 0.980183i \(-0.563474\pi\)
−0.198092 + 0.980183i \(0.563474\pi\)
\(632\) −0.685608 + 1.18751i −0.0272720 + 0.0472365i
\(633\) −9.46284 16.3901i −0.376114 0.651449i
\(634\) 8.00240 + 13.8606i 0.317816 + 0.550473i
\(635\) −0.415417 0.239841i −0.0164853 0.00951781i
\(636\) 2.21057i 0.0876549i
\(637\) 3.86884 + 1.53266i 0.153289 + 0.0607263i
\(638\) 11.6700 + 23.1559i 0.462019 + 0.916753i
\(639\) −2.97858 + 5.15906i −0.117831 + 0.204089i
\(640\) 1.90465 1.09965i 0.0752877 0.0434674i
\(641\) 37.3377 21.5569i 1.47475 0.851448i 0.475156 0.879902i \(-0.342392\pi\)
0.999595 + 0.0284535i \(0.00905824\pi\)
\(642\) 0.110178 0.190834i 0.00434837 0.00753161i
\(643\) 40.8857 1.61237 0.806187 0.591661i \(-0.201527\pi\)
0.806187 + 0.591661i \(0.201527\pi\)
\(644\) −9.92803 1.89488i −0.391219 0.0746689i
\(645\) −1.85412 −0.0730061
\(646\) −40.1739 23.1944i −1.58062 0.912571i
\(647\) 13.6476 + 23.6383i 0.536541 + 0.929316i 0.999087 + 0.0427211i \(0.0136027\pi\)
−0.462546 + 0.886595i \(0.653064\pi\)
\(648\) 0.866025 0.500000i 0.0340207 0.0196419i
\(649\) −35.6359 20.5744i −1.39883 0.807617i
\(650\) 0.0969592i 0.00380305i
\(651\) −9.82103 + 11.3755i −0.384917 + 0.445842i
\(652\) 3.78882i 0.148382i
\(653\) 29.7105 + 17.1533i 1.16266 + 0.671262i 0.951940 0.306284i \(-0.0990857\pi\)
0.210720 + 0.977546i \(0.432419\pi\)
\(654\) −1.66862 2.89013i −0.0652481 0.113013i
\(655\) 6.61314 3.81810i 0.258397 0.149185i
\(656\) 7.96703 + 4.59977i 0.311060 + 0.179591i
\(657\) 16.0056i 0.624437i
\(658\) 7.70537 + 22.1338i 0.300387 + 0.862866i
\(659\) 0.359595i 0.0140078i −0.999975 0.00700392i \(-0.997771\pi\)
0.999975 0.00700392i \(-0.00222944\pi\)
\(660\) −5.29498 + 9.17117i −0.206107 + 0.356987i
\(661\) −12.8208 22.2064i −0.498673 0.863727i 0.501326 0.865259i \(-0.332846\pi\)
−0.999999 + 0.00153143i \(0.999513\pi\)
\(662\) −1.36892 2.37104i −0.0532045 0.0921529i
\(663\) −2.17505 + 3.76730i −0.0844719 + 0.146310i
\(664\) 12.2828i 0.476667i
\(665\) −34.8373 + 12.1278i −1.35093 + 0.470296i
\(666\) 5.14805 0.199483
\(667\) −20.5391 1.16742i −0.795279 0.0452025i
\(668\) 3.13427 + 5.42872i 0.121269 + 0.210043i
\(669\) 6.54240 3.77726i 0.252944 0.146037i
\(670\) −21.3677 12.3367i −0.825507 0.476607i
\(671\) 71.4715 2.75912
\(672\) −1.72899 + 2.00265i −0.0666971 + 0.0772539i
\(673\) 24.5495 0.946312 0.473156 0.880979i \(-0.343115\pi\)
0.473156 + 0.880979i \(0.343115\pi\)
\(674\) 8.61200 14.9164i 0.331722 0.574559i
\(675\) −0.141248 + 0.0815493i −0.00543662 + 0.00313884i
\(676\) −6.32330 10.9523i −0.243204 0.421241i
\(677\) −41.9508 24.2203i −1.61230 0.930861i −0.988836 0.149008i \(-0.952392\pi\)
−0.623463 0.781853i \(-0.714275\pi\)
\(678\) 2.35527i 0.0904535i
\(679\) −3.66329 + 19.1934i −0.140584 + 0.736575i
\(680\) −16.0933 −0.617149
\(681\) 16.7026 + 9.64323i 0.640044 + 0.369529i
\(682\) 23.6868 13.6756i 0.907015 0.523666i
\(683\) 6.86776 + 11.8953i 0.262788 + 0.455162i 0.966982 0.254846i \(-0.0820248\pi\)
−0.704194 + 0.710008i \(0.748691\pi\)
\(684\) −5.49013 3.16973i −0.209920 0.121198i
\(685\) 30.3621i 1.16008i
\(686\) −8.57552 16.4152i −0.327415 0.626737i
\(687\) −18.6966 −0.713320
\(688\) 0.730106 + 0.421527i 0.0278350 + 0.0160706i
\(689\) −0.657072 1.13808i −0.0250325 0.0433575i
\(690\) −4.20085 7.27609i −0.159924 0.276996i
\(691\) 0.0388295 0.0672547i 0.00147714 0.00255849i −0.865286 0.501279i \(-0.832863\pi\)
0.866763 + 0.498720i \(0.166196\pi\)
\(692\) 15.4617 0.587764
\(693\) 2.38841 12.5138i 0.0907283 0.475361i
\(694\) 2.76845i 0.105089i
\(695\) −0.467745 + 0.810158i −0.0177426 + 0.0307310i
\(696\) −2.95289 + 4.50338i −0.111929 + 0.170700i
\(697\) −33.6587 58.2985i −1.27491 2.20821i
\(698\) 0.585847 + 0.338239i 0.0221746 + 0.0128025i
\(699\) 15.1520i 0.573100i
\(700\) 0.281995 0.326630i 0.0106584 0.0123454i
\(701\) 27.7163 1.04683 0.523416 0.852077i \(-0.324658\pi\)
0.523416 + 0.852077i \(0.324658\pi\)
\(702\) −0.297241 + 0.514836i −0.0112186 + 0.0194312i
\(703\) −16.3179 28.2635i −0.615443 1.06598i
\(704\) 4.17005 2.40758i 0.157165 0.0907390i
\(705\) −9.74094 + 16.8718i −0.366865 + 0.635429i
\(706\) 6.73229i 0.253373i
\(707\) −15.7985 + 5.49987i −0.594163 + 0.206844i
\(708\) 8.54569i 0.321167i
\(709\) 5.17825 8.96899i 0.194473 0.336837i −0.752255 0.658873i \(-0.771034\pi\)
0.946728 + 0.322035i \(0.104367\pi\)
\(710\) 11.3463 6.55079i 0.425819 0.245847i
\(711\) 1.18751 0.685608i 0.0445350 0.0257123i
\(712\) 1.49510 2.58959i 0.0560313 0.0970491i
\(713\) 21.6995i 0.812652i
\(714\) 18.2839 6.36513i 0.684259 0.238209i
\(715\) 6.29553i 0.235440i
\(716\) −1.12603 + 1.95034i −0.0420818 + 0.0728878i
\(717\) 11.4636 6.61852i 0.428117 0.247173i
\(718\) −12.2099 21.1481i −0.455668 0.789240i
\(719\) 5.10322 8.83904i 0.190318 0.329641i −0.755038 0.655682i \(-0.772381\pi\)
0.945356 + 0.326041i \(0.105715\pi\)
\(720\) −2.19930 −0.0819629
\(721\) −19.6981 + 22.8160i −0.733596 + 0.849711i
\(722\) 21.1887i 0.788564i
\(723\) 4.27613 + 2.46882i 0.159031 + 0.0918166i
\(724\) −3.76671 6.52413i −0.139989 0.242467i
\(725\) 0.481613 0.734495i 0.0178867 0.0272785i
\(726\) −6.09286 + 10.5531i −0.226127 + 0.391664i
\(727\) 5.51741i 0.204629i −0.994752 0.102315i \(-0.967375\pi\)
0.994752 0.102315i \(-0.0326249\pi\)
\(728\) 0.294875 1.54496i 0.0109288 0.0572601i
\(729\) −1.00000 −0.0370370
\(730\) 17.6005 30.4850i 0.651424 1.12830i
\(731\) −3.08451 5.34252i −0.114085 0.197600i
\(732\) 7.42151 + 12.8544i 0.274307 + 0.475113i
\(733\) 18.4472 + 10.6505i 0.681365 + 0.393386i 0.800369 0.599508i \(-0.204637\pi\)
−0.119004 + 0.992894i \(0.537970\pi\)
\(734\) 2.30585 0.0851105
\(735\) 5.67012 14.3129i 0.209145 0.527938i
\(736\) 3.82018i 0.140814i
\(737\) −46.7827 27.0100i −1.72326 0.994925i
\(738\) −4.59977 7.96703i −0.169320 0.293271i
\(739\) 34.0872 19.6802i 1.25392 0.723949i 0.282031 0.959405i \(-0.408992\pi\)
0.971885 + 0.235456i \(0.0756585\pi\)
\(740\) −9.80522 5.66105i −0.360447 0.208104i
\(741\) 3.76869 0.138446
\(742\) −1.09649 + 5.74492i −0.0402533 + 0.210903i
\(743\) 13.6231i 0.499781i 0.968274 + 0.249891i \(0.0803947\pi\)
−0.968274 + 0.249891i \(0.919605\pi\)
\(744\) 4.91922 + 2.84011i 0.180347 + 0.104124i
\(745\) −16.2917 28.2180i −0.596881 1.03383i
\(746\) −8.16120 + 4.71187i −0.298803 + 0.172514i
\(747\) −6.14142 + 10.6373i −0.224703 + 0.389197i
\(748\) −35.2347 −1.28831
\(749\) 0.380992 0.441296i 0.0139211 0.0161246i
\(750\) 11.3552 0.414633
\(751\) 12.0272 + 6.94389i 0.438878 + 0.253386i 0.703121 0.711070i \(-0.251789\pi\)
−0.264244 + 0.964456i \(0.585122\pi\)
\(752\) 7.67146 4.42912i 0.279749 0.161513i
\(753\) −3.79766 6.57774i −0.138394 0.239706i
\(754\) 0.181669 3.19622i 0.00661599 0.116400i
\(755\) −27.6332 −1.00568
\(756\) 2.49867 0.869854i 0.0908758 0.0316363i
\(757\) 41.6790i 1.51485i 0.652922 + 0.757425i \(0.273543\pi\)
−0.652922 + 0.757425i \(0.726457\pi\)
\(758\) 15.6213 27.0568i 0.567390 0.982748i
\(759\) −9.19738 15.9303i −0.333844 0.578234i
\(760\) 6.97117 + 12.0744i 0.252871 + 0.437985i
\(761\) −9.59660 + 16.6218i −0.347876 + 0.602540i −0.985872 0.167500i \(-0.946430\pi\)
0.637996 + 0.770040i \(0.279764\pi\)
\(762\) 0.218107i 0.00790120i
\(763\) −2.90291 8.33865i −0.105092 0.301879i
\(764\) 4.19182i 0.151655i
\(765\) 13.9372 + 8.04664i 0.503900 + 0.290927i
\(766\) 26.3529 15.2148i 0.952168 0.549734i
\(767\) 2.54013 + 4.39963i 0.0917188 + 0.158862i
\(768\) 0.866025 + 0.500000i 0.0312500 + 0.0180422i
\(769\) 35.9710i 1.29715i 0.761152 + 0.648574i \(0.224634\pi\)
−0.761152 + 0.648574i \(0.775366\pi\)
\(770\) −18.3099 + 21.2080i −0.659842 + 0.764282i
\(771\) 23.3739i 0.841791i
\(772\) −13.8057 7.97072i −0.496877 0.286872i
\(773\) −17.0590 + 9.84902i −0.613570 + 0.354245i −0.774361 0.632744i \(-0.781929\pi\)
0.160792 + 0.986988i \(0.448595\pi\)
\(774\) −0.421527 0.730106i −0.0151515 0.0262431i
\(775\) −0.802319 0.463219i −0.0288201 0.0166393i
\(776\) 7.38538 0.265120
\(777\) 13.3790 + 2.55354i 0.479968 + 0.0916076i
\(778\) −10.6220 −0.380818
\(779\) −29.1601 + 50.5067i −1.04477 + 1.80959i
\(780\) 1.13228 0.653720i 0.0405420 0.0234069i
\(781\) 24.8417 14.3423i 0.888905 0.513209i
\(782\) 13.9770 24.2089i 0.499817 0.865708i
\(783\) 4.80897 2.42359i 0.171859 0.0866122i
\(784\) −5.48671 + 4.34696i −0.195954 + 0.155248i
\(785\) 27.8624i 0.994451i
\(786\) 3.00694 + 1.73606i 0.107254 + 0.0619231i
\(787\) −4.41594 7.64863i −0.157411 0.272644i 0.776523 0.630089i \(-0.216981\pi\)
−0.933934 + 0.357445i \(0.883648\pi\)
\(788\) −8.63501 14.9563i −0.307610 0.532795i
\(789\) −14.9183 + 25.8393i −0.531106 + 0.919903i
\(790\) −3.01571 −0.107294
\(791\) −1.16826 + 6.12096i −0.0415385 + 0.217636i
\(792\) −4.81516 −0.171099
\(793\) −7.64172 4.41195i −0.271366 0.156673i
\(794\) −23.5250 + 13.5822i −0.834871 + 0.482013i
\(795\) −4.21036 + 2.43085i −0.149326 + 0.0862134i
\(796\) 7.21660 12.4995i 0.255785 0.443033i
\(797\) 41.7705i 1.47959i −0.672834 0.739794i \(-0.734923\pi\)
0.672834 0.739794i \(-0.265077\pi\)
\(798\) −12.6957 10.9608i −0.449424 0.388009i
\(799\) −64.8199 −2.29316
\(800\) −0.141248 0.0815493i −0.00499386 0.00288320i
\(801\) −2.58959 + 1.49510i −0.0914988 + 0.0528268i
\(802\) 31.7496 18.3307i 1.12112 0.647278i
\(803\) 38.5347 66.7440i 1.35986 2.35535i
\(804\) 11.2187i 0.395654i
\(805\) −7.30825 20.9931i −0.257582 0.739909i
\(806\) −3.37679 −0.118942
\(807\) 0.268738 0.465468i 0.00946004 0.0163853i
\(808\) 3.16138 + 5.47566i 0.111217 + 0.192633i
\(809\) −32.5186 + 18.7746i −1.14329 + 0.660081i −0.947244 0.320513i \(-0.896145\pi\)
−0.196050 + 0.980594i \(0.562811\pi\)
\(810\) 1.90465 + 1.09965i 0.0669224 + 0.0386377i
\(811\) 39.0441 1.37102 0.685512 0.728062i \(-0.259579\pi\)
0.685512 + 0.728062i \(0.259579\pi\)
\(812\) −9.90786 + 10.2389i −0.347698 + 0.359314i
\(813\) −20.4110 −0.715844
\(814\) −21.4676 12.3943i −0.752440 0.434421i
\(815\) −7.21635 + 4.16636i −0.252778 + 0.145941i
\(816\) −3.65873 6.33711i −0.128081 0.221843i
\(817\) −2.67225 + 4.62848i −0.0934903 + 0.161930i
\(818\) 21.8165 0.762795
\(819\) −1.02785 + 1.19054i −0.0359160 + 0.0416008i
\(820\) 20.2325i 0.706550i
\(821\) 20.5571 35.6060i 0.717448 1.24266i −0.244560 0.969634i \(-0.578643\pi\)
0.962008 0.273022i \(-0.0880233\pi\)
\(822\) 11.9558 6.90268i 0.417006 0.240759i
\(823\) −39.2672 + 22.6710i −1.36877 + 0.790260i −0.990771 0.135546i \(-0.956721\pi\)
−0.377999 + 0.925806i \(0.623388\pi\)
\(824\) 9.86652 + 5.69644i 0.343717 + 0.198445i
\(825\) 0.785346 0.0273422
\(826\) 4.23883 22.2089i 0.147488 0.772746i
\(827\) 4.37760i 0.152224i 0.997099 + 0.0761120i \(0.0242506\pi\)
−0.997099 + 0.0761120i \(0.975749\pi\)
\(828\) 1.91009 3.30837i 0.0663802 0.114974i
\(829\) −32.2022 + 18.5919i −1.11843 + 0.645725i −0.940999 0.338409i \(-0.890111\pi\)
−0.177429 + 0.984134i \(0.556778\pi\)
\(830\) 23.3945 13.5068i 0.812034 0.468828i
\(831\) 1.14209 + 0.659387i 0.0396187 + 0.0228739i
\(832\) −0.594482 −0.0206099
\(833\) 50.6742 7.47275i 1.75576 0.258915i
\(834\) −0.425359 −0.0147290
\(835\) −6.89319 + 11.9394i −0.238549 + 0.413178i
\(836\) 15.2627 + 26.4358i 0.527873 + 0.914303i
\(837\) −2.84011 4.91922i −0.0981687 0.170033i
\(838\) −0.0847839 0.0489500i −0.00292881 0.00169095i
\(839\) 37.3737i 1.29028i 0.764063 + 0.645142i \(0.223202\pi\)
−0.764063 + 0.645142i \(0.776798\pi\)
\(840\) −5.71562 1.09089i −0.197207 0.0376394i
\(841\) −17.2524 + 23.3100i −0.594910 + 0.803792i
\(842\) −3.67504 + 6.36535i −0.126650 + 0.219365i
\(843\) −26.9129 + 15.5382i −0.926929 + 0.535163i
\(844\) −16.3901 + 9.46284i −0.564171 + 0.325724i
\(845\) 13.9068 24.0873i 0.478408 0.828628i
\(846\) −8.85824 −0.304553
\(847\) −21.0689 + 24.4038i −0.723937 + 0.838523i
\(848\) 2.21057 0.0759113
\(849\) −28.4685 16.4363i −0.977035 0.564091i
\(850\) 0.596734 + 1.03357i 0.0204678 + 0.0354513i
\(851\) 17.0317 9.83324i 0.583838 0.337079i
\(852\) 5.15906 + 2.97858i 0.176746 + 0.102045i
\(853\) 20.8969i 0.715495i −0.933818 0.357748i \(-0.883545\pi\)
0.933818 0.357748i \(-0.116455\pi\)
\(854\) 12.9113 + 37.0878i 0.441814 + 1.26912i
\(855\) 13.9423i 0.476818i
\(856\) −0.190834 0.110178i −0.00652256 0.00376580i
\(857\) 9.60532 + 16.6369i 0.328112 + 0.568306i 0.982137 0.188166i \(-0.0602545\pi\)
−0.654026 + 0.756472i \(0.726921\pi\)
\(858\) 2.47902 1.43126i 0.0846322 0.0488624i
\(859\) 19.1511 + 11.0569i 0.653428 + 0.377257i 0.789769 0.613405i \(-0.210201\pi\)
−0.136340 + 0.990662i \(0.543534\pi\)
\(860\) 1.85412i 0.0632251i
\(861\) −8.00225 22.9866i −0.272716 0.783382i
\(862\) 20.6232i 0.702427i
\(863\) −13.0635 + 22.6266i −0.444686 + 0.770218i −0.998030 0.0627342i \(-0.980018\pi\)
0.553345 + 0.832952i \(0.313351\pi\)
\(864\) −0.500000 0.866025i −0.0170103 0.0294628i
\(865\) 17.0024 + 29.4490i 0.578098 + 1.00130i
\(866\) −12.0589 + 20.8866i −0.409777 + 0.709754i
\(867\) 36.5453i 1.24114i
\(868\) 11.3755 + 9.82103i 0.386110 + 0.333348i
\(869\) −6.60262 −0.223978
\(870\) −11.8245 0.672087i −0.400888 0.0227859i
\(871\) 3.33467 + 5.77581i 0.112991 + 0.195706i
\(872\) −2.89013 + 1.66862i −0.0978721 + 0.0565065i
\(873\) −6.39592 3.69269i −0.216469 0.124979i
\(874\) −24.2179 −0.819181
\(875\) 29.5103 + 5.63239i 0.997630 + 0.190410i
\(876\) 16.0056 0.540779
\(877\) −25.4202 + 44.0290i −0.858378 + 1.48675i 0.0150975 + 0.999886i \(0.495194\pi\)
−0.873475 + 0.486868i \(0.838139\pi\)
\(878\) 12.1474 7.01332i 0.409956 0.236688i
\(879\) 0.0481260 + 0.0833566i 0.00162325 + 0.00281155i
\(880\) 9.17117 + 5.29498i 0.309160 + 0.178494i
\(881\) 44.8685i 1.51166i 0.654770 + 0.755829i \(0.272766\pi\)
−0.654770 + 0.755829i \(0.727234\pi\)
\(882\) 6.92511 1.02122i 0.233180 0.0343863i
\(883\) 5.97292 0.201005 0.100502 0.994937i \(-0.467955\pi\)
0.100502 + 0.994937i \(0.467955\pi\)
\(884\) 3.76730 + 2.17505i 0.126708 + 0.0731548i
\(885\) 16.2765 9.39725i 0.547129 0.315885i
\(886\) −15.7650 27.3057i −0.529635 0.917354i
\(887\) 25.3985 + 14.6638i 0.852798 + 0.492363i 0.861594 0.507598i \(-0.169466\pi\)
−0.00879574 + 0.999961i \(0.502800\pi\)
\(888\) 5.14805i 0.172757i
\(889\) 0.108186 0.566826i 0.00362843 0.0190107i
\(890\) 6.57634 0.220440
\(891\) 4.17005 + 2.40758i 0.139702 + 0.0806569i
\(892\) −3.77726 6.54240i −0.126472 0.219056i
\(893\) 28.0782 + 48.6329i 0.939602 + 1.62744i
\(894\) 7.40768 12.8305i 0.247750 0.429115i
\(895\) −4.95295 −0.165559
\(896\) 2.00265 + 1.72899i 0.0669039 + 0.0577613i
\(897\) 2.27103i 0.0758273i
\(898\) −15.4368 + 26.7373i −0.515133 + 0.892236i
\(899\) 25.5802 + 16.7731i 0.853148 + 0.559415i
\(900\) 0.0815493 + 0.141248i 0.00271831 + 0.00470825i
\(901\) −14.0086 8.08789i −0.466695 0.269447i
\(902\) 44.2972i 1.47494i
\(903\) −0.733333 2.10651i −0.0244038 0.0701004i
\(904\) 2.35527 0.0783351
\(905\) 8.28411 14.3485i 0.275373 0.476960i
\(906\) −6.28229 10.8813i −0.208715 0.361505i
\(907\) −13.9247 + 8.03940i −0.462361 + 0.266944i −0.713036 0.701127i \(-0.752681\pi\)
0.250676 + 0.968071i \(0.419347\pi\)
\(908\) 9.64323 16.7026i 0.320022 0.554294i
\(909\) 6.32275i 0.209712i
\(910\) 3.26686 1.13728i 0.108295 0.0377006i
\(911\) 32.7926i 1.08647i −0.839581 0.543234i \(-0.817200\pi\)
0.839581 0.543234i \(-0.182800\pi\)
\(912\) −3.16973 + 5.49013i −0.104960 + 0.181796i
\(913\) 51.2200 29.5719i 1.69514 0.978687i
\(914\) −17.8689 + 10.3166i −0.591051 + 0.341244i
\(915\) −16.3221 + 28.2707i −0.539592 + 0.934600i
\(916\) 18.6966i 0.617753i
\(917\) 6.95343 + 6.00323i 0.229622 + 0.198244i
\(918\) 7.31747i 0.241512i
\(919\) −0.631039 + 1.09299i −0.0208161 + 0.0360545i −0.876246 0.481864i \(-0.839960\pi\)
0.855430 + 0.517919i \(0.173293\pi\)
\(920\) −7.27609 + 4.20085i −0.239885 + 0.138498i
\(921\) −5.77158 9.99666i −0.190180 0.329401i
\(922\) 7.04447 12.2014i 0.231997 0.401831i
\(923\) −3.54143 −0.116567
\(924\) −12.5138 2.38841i −0.411674 0.0785730i
\(925\) 0.839641i 0.0276072i
\(926\) −16.1838 9.34374i −0.531834 0.307054i
\(927\) −5.69644 9.86652i −0.187096 0.324059i
\(928\) 4.50338 + 2.95289i 0.147831 + 0.0969335i
\(929\) 18.9876 32.8875i 0.622963 1.07900i −0.365968 0.930628i \(-0.619262\pi\)
0.988931 0.148377i \(-0.0474048\pi\)
\(930\) 12.4925i 0.409645i
\(931\) −27.5574 34.7828i −0.903156 1.13996i
\(932\) 15.1520 0.496319
\(933\) 12.2977 21.3002i 0.402608 0.697338i
\(934\) −16.4321 28.4612i −0.537673 0.931277i
\(935\) −38.7458 67.1097i −1.26712 2.19472i
\(936\) 0.514836 + 0.297241i 0.0168279 + 0.00971562i
\(937\) 31.7681 1.03782 0.518909 0.854829i \(-0.326338\pi\)
0.518909 + 0.854829i \(0.326338\pi\)
\(938\) 5.56471 29.1557i 0.181694 0.951967i
\(939\) 31.0144i 1.01212i
\(940\) 16.8718 + 9.74094i 0.550298 + 0.317715i
\(941\) 1.35369 + 2.34466i 0.0441290 + 0.0764336i 0.887246 0.461296i \(-0.152615\pi\)
−0.843117 + 0.537730i \(0.819282\pi\)
\(942\) 10.9715 6.33439i 0.357470 0.206385i
\(943\) −30.4355 17.5719i −0.991116 0.572221i
\(944\) −8.54569 −0.278139
\(945\) 4.40442 + 3.80255i 0.143276 + 0.123697i
\(946\) 4.05943i 0.131984i
\(947\) 44.2413 + 25.5427i 1.43765 + 0.830027i 0.997686 0.0679897i \(-0.0216585\pi\)
0.439962 + 0.898016i \(0.354992\pi\)
\(948\) −0.685608 1.18751i −0.0222675 0.0385684i
\(949\) −8.24025 + 4.75751i −0.267490 + 0.154435i
\(950\) 0.516979 0.895433i 0.0167730 0.0290517i
\(951\) −16.0048 −0.518991
\(952\) −6.36513 18.2839i −0.206295 0.592586i
\(953\) −30.5273 −0.988878 −0.494439 0.869212i \(-0.664626\pi\)
−0.494439 + 0.869212i \(0.664626\pi\)
\(954\) −1.91441 1.10529i −0.0619813 0.0357849i
\(955\) −7.98394 + 4.60953i −0.258354 + 0.149161i
\(956\) −6.61852 11.4636i −0.214058 0.370760i
\(957\) −25.8886 1.47147i −0.836860 0.0475660i
\(958\) 39.4262 1.27380
\(959\) 34.4951 12.0087i 1.11390 0.387780i
\(960\) 2.19930i 0.0709820i
\(961\) 0.632500 1.09552i 0.0204032 0.0353394i
\(962\) 1.53021 + 2.65040i 0.0493360 + 0.0854525i
\(963\) 0.110178 + 0.190834i 0.00355043 + 0.00614953i
\(964\) 2.46882 4.27613i 0.0795155 0.137725i
\(965\) 35.0599i 1.12862i
\(966\) 6.60503 7.65048i 0.212513 0.246150i
\(967\) 11.2033i 0.360274i 0.983642 + 0.180137i \(0.0576541\pi\)
−0.983642 + 0.180137i \(0.942346\pi\)
\(968\) 10.5531 + 6.09286i 0.339191 + 0.195832i
\(969\) 40.1739 23.1944i 1.29057 0.745111i
\(970\) 8.12131 + 14.0665i 0.260760 + 0.451649i
\(971\) 14.8620 + 8.58056i 0.476943 + 0.275363i 0.719142 0.694863i \(-0.244535\pi\)
−0.242199 + 0.970227i \(0.577869\pi\)
\(972\) 1.00000i 0.0320750i
\(973\) −1.10544 0.210986i −0.0354388 0.00676391i
\(974\) 21.7465i 0.696803i
\(975\) −0.0839691 0.0484796i −0.00268916 0.00155259i
\(976\) 12.8544 7.42151i 0.411460 0.237557i
\(977\) −28.1935 48.8325i −0.901989 1.56229i −0.824909 0.565266i \(-0.808773\pi\)
−0.0770805 0.997025i \(-0.524560\pi\)
\(978\) −3.28121 1.89441i −0.104922 0.0605765i
\(979\) 14.3983 0.460172
\(980\) −14.3129 5.67012i −0.457208 0.181125i
\(981\) 3.33723 0.106550
\(982\) −0.756526 + 1.31034i −0.0241417 + 0.0418147i
\(983\) −1.92723 + 1.11269i −0.0614691 + 0.0354892i −0.530420 0.847735i \(-0.677966\pi\)
0.468950 + 0.883224i \(0.344632\pi\)
\(984\) −7.96703 + 4.59977i −0.253980 + 0.146635i
\(985\) 18.9909 32.8933i 0.605102 1.04807i
\(986\) −17.7346 35.1895i −0.564783 1.12066i
\(987\) −23.0211 4.39386i −0.732771 0.139858i
\(988\) 3.76869i 0.119898i
\(989\) −2.78913 1.61031i −0.0886893 0.0512048i
\(990\) −5.29498 9.17117i −0.168285 0.291479i
\(991\) 5.43610 + 9.41560i 0.172683 + 0.299096i 0.939357 0.342940i \(-0.111423\pi\)
−0.766674 + 0.642037i \(0.778090\pi\)
\(992\) 2.84011 4.91922i 0.0901737 0.156185i
\(993\) 2.73784 0.0868826
\(994\) 11.9301 + 10.2999i 0.378401 + 0.326691i
\(995\) 31.7429 1.00632
\(996\) 10.6373 + 6.14142i 0.337054 + 0.194598i
\(997\) −48.1281 + 27.7867i −1.52423 + 0.880015i −0.524643 + 0.851323i \(0.675801\pi\)
−0.999588 + 0.0286926i \(0.990866\pi\)
\(998\) 6.01005 3.46991i 0.190245 0.109838i
\(999\) −2.57403 + 4.45835i −0.0814386 + 0.141056i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1218.2.p.b.289.12 yes 44
7.4 even 3 inner 1218.2.p.b.1159.4 yes 44
29.28 even 2 inner 1218.2.p.b.289.4 44
203.144 even 6 inner 1218.2.p.b.1159.12 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1218.2.p.b.289.4 44 29.28 even 2 inner
1218.2.p.b.289.12 yes 44 1.1 even 1 trivial
1218.2.p.b.1159.4 yes 44 7.4 even 3 inner
1218.2.p.b.1159.12 yes 44 203.144 even 6 inner