Properties

Label 1218.2.p.b.1159.18
Level $1218$
Weight $2$
Character 1218.1159
Analytic conductor $9.726$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1218,2,Mod(289,1218)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1218.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1218, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1218 = 2 \cdot 3 \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1218.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.72577896619\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1159.18
Character \(\chi\) \(=\) 1218.1159
Dual form 1218.2.p.b.289.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(0.110464 + 0.191328i) q^{5} -1.00000 q^{6} +(-1.52713 + 2.16053i) q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(0.191328 + 0.110464i) q^{10} +(-0.274800 - 0.158656i) q^{11} +(-0.866025 + 0.500000i) q^{12} -1.21353 q^{13} +(-0.242272 + 2.63464i) q^{14} -0.220927i q^{15} +(-0.500000 - 0.866025i) q^{16} +(4.46212 + 2.57621i) q^{17} +(0.866025 + 0.500000i) q^{18} +(6.73813 - 3.89026i) q^{19} +0.220927 q^{20} +(2.40280 - 1.10750i) q^{21} -0.317311 q^{22} +(1.31488 + 2.27743i) q^{23} +(-0.500000 + 0.866025i) q^{24} +(2.47560 - 4.28786i) q^{25} +(-1.05094 + 0.606763i) q^{26} -1.00000i q^{27} +(1.10750 + 2.40280i) q^{28} +(2.08334 - 4.96585i) q^{29} +(-0.110464 - 0.191328i) q^{30} +(7.64677 + 4.41486i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(0.158656 + 0.274800i) q^{33} +5.15241 q^{34} +(-0.582062 - 0.0535244i) q^{35} +1.00000 q^{36} +(-3.27121 + 1.88863i) q^{37} +(3.89026 - 6.73813i) q^{38} +(1.05094 + 0.606763i) q^{39} +(0.191328 - 0.110464i) q^{40} -6.58939i q^{41} +(1.52713 - 2.16053i) q^{42} +11.1579i q^{43} +(-0.274800 + 0.158656i) q^{44} +(-0.110464 + 0.191328i) q^{45} +(2.27743 + 1.31488i) q^{46} +(9.94369 - 5.74099i) q^{47} +1.00000i q^{48} +(-2.33574 - 6.59881i) q^{49} -4.95119i q^{50} +(-2.57621 - 4.46212i) q^{51} +(-0.606763 + 1.05094i) q^{52} +(-3.70604 + 6.41905i) q^{53} +(-0.500000 - 0.866025i) q^{54} -0.0701026i q^{55} +(2.16053 + 1.52713i) q^{56} -7.78053 q^{57} +(-0.678700 - 5.34222i) q^{58} +(0.748385 - 1.29624i) q^{59} +(-0.191328 - 0.110464i) q^{60} +(-2.42457 + 1.39983i) q^{61} +8.82973 q^{62} +(-2.63464 - 0.242272i) q^{63} -1.00000 q^{64} +(-0.134050 - 0.232182i) q^{65} +(0.274800 + 0.158656i) q^{66} +(-4.08337 + 7.07261i) q^{67} +(4.46212 - 2.57621i) q^{68} -2.62975i q^{69} +(-0.530843 + 0.244678i) q^{70} +1.43010 q^{71} +(0.866025 - 0.500000i) q^{72} +(-1.82300 - 1.05251i) q^{73} +(-1.88863 + 3.27121i) q^{74} +(-4.28786 + 2.47560i) q^{75} -7.78053i q^{76} +(0.762434 - 0.351424i) q^{77} +1.21353 q^{78} +(8.74395 - 5.04832i) q^{79} +(0.110464 - 0.191328i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-3.29469 - 5.70658i) q^{82} +4.86994 q^{83} +(0.242272 - 2.63464i) q^{84} +1.13831i q^{85} +(5.57896 + 9.66304i) q^{86} +(-4.28715 + 3.25888i) q^{87} +(-0.158656 + 0.274800i) q^{88} +(-3.63682 + 2.09972i) q^{89} +0.220927i q^{90} +(1.85321 - 2.62185i) q^{91} +2.62975 q^{92} +(-4.41486 - 7.64677i) q^{93} +(5.74099 - 9.94369i) q^{94} +(1.48864 + 0.859465i) q^{95} +(0.500000 + 0.866025i) q^{96} -5.41085i q^{97} +(-5.32222 - 4.54687i) q^{98} -0.317311i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 22 q^{4} - 44 q^{6} - 8 q^{7} + 22 q^{9} - 16 q^{13} - 22 q^{16} - 4 q^{23} - 22 q^{24} - 22 q^{25} - 4 q^{28} + 4 q^{29} - 16 q^{34} - 10 q^{35} + 44 q^{36} + 4 q^{38} + 8 q^{42} - 52 q^{49} + 8 q^{51}+ \cdots + 22 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1218\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(871\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0.110464 + 0.191328i 0.0494008 + 0.0855647i 0.889668 0.456607i \(-0.150936\pi\)
−0.840268 + 0.542172i \(0.817602\pi\)
\(6\) −1.00000 −0.408248
\(7\) −1.52713 + 2.16053i −0.577201 + 0.816602i
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0.191328 + 0.110464i 0.0605034 + 0.0349316i
\(11\) −0.274800 0.158656i −0.0828552 0.0478365i 0.458000 0.888952i \(-0.348566\pi\)
−0.540855 + 0.841116i \(0.681899\pi\)
\(12\) −0.866025 + 0.500000i −0.250000 + 0.144338i
\(13\) −1.21353 −0.336572 −0.168286 0.985738i \(-0.553823\pi\)
−0.168286 + 0.985738i \(0.553823\pi\)
\(14\) −0.242272 + 2.63464i −0.0647498 + 0.704136i
\(15\) 0.220927i 0.0570431i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 4.46212 + 2.57621i 1.08222 + 0.624822i 0.931495 0.363754i \(-0.118505\pi\)
0.150728 + 0.988575i \(0.451838\pi\)
\(18\) 0.866025 + 0.500000i 0.204124 + 0.117851i
\(19\) 6.73813 3.89026i 1.54583 0.892488i 0.547381 0.836884i \(-0.315625\pi\)
0.998453 0.0556040i \(-0.0177084\pi\)
\(20\) 0.220927 0.0494008
\(21\) 2.40280 1.10750i 0.524333 0.241677i
\(22\) −0.317311 −0.0676510
\(23\) 1.31488 + 2.27743i 0.274171 + 0.474878i 0.969926 0.243402i \(-0.0782633\pi\)
−0.695755 + 0.718279i \(0.744930\pi\)
\(24\) −0.500000 + 0.866025i −0.102062 + 0.176777i
\(25\) 2.47560 4.28786i 0.495119 0.857571i
\(26\) −1.05094 + 0.606763i −0.206107 + 0.118996i
\(27\) 1.00000i 0.192450i
\(28\) 1.10750 + 2.40280i 0.209299 + 0.454086i
\(29\) 2.08334 4.96585i 0.386867 0.922136i
\(30\) −0.110464 0.191328i −0.0201678 0.0349316i
\(31\) 7.64677 + 4.41486i 1.37340 + 0.792933i 0.991354 0.131211i \(-0.0418865\pi\)
0.382045 + 0.924144i \(0.375220\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0.158656 + 0.274800i 0.0276184 + 0.0478365i
\(34\) 5.15241 0.883631
\(35\) −0.582062 0.0535244i −0.0983865 0.00904727i
\(36\) 1.00000 0.166667
\(37\) −3.27121 + 1.88863i −0.537784 + 0.310489i −0.744180 0.667979i \(-0.767160\pi\)
0.206397 + 0.978468i \(0.433826\pi\)
\(38\) 3.89026 6.73813i 0.631084 1.09307i
\(39\) 1.05094 + 0.606763i 0.168286 + 0.0971599i
\(40\) 0.191328 0.110464i 0.0302517 0.0174658i
\(41\) 6.58939i 1.02909i −0.857464 0.514545i \(-0.827961\pi\)
0.857464 0.514545i \(-0.172039\pi\)
\(42\) 1.52713 2.16053i 0.235641 0.333376i
\(43\) 11.1579i 1.70157i 0.525516 + 0.850783i \(0.323872\pi\)
−0.525516 + 0.850783i \(0.676128\pi\)
\(44\) −0.274800 + 0.158656i −0.0414276 + 0.0239182i
\(45\) −0.110464 + 0.191328i −0.0164669 + 0.0285216i
\(46\) 2.27743 + 1.31488i 0.335789 + 0.193868i
\(47\) 9.94369 5.74099i 1.45044 0.837410i 0.451931 0.892053i \(-0.350735\pi\)
0.998506 + 0.0546430i \(0.0174021\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −2.33574 6.59881i −0.333677 0.942687i
\(50\) 4.95119i 0.700204i
\(51\) −2.57621 4.46212i −0.360741 0.624822i
\(52\) −0.606763 + 1.05094i −0.0841429 + 0.145740i
\(53\) −3.70604 + 6.41905i −0.509064 + 0.881725i 0.490881 + 0.871227i \(0.336675\pi\)
−0.999945 + 0.0104982i \(0.996658\pi\)
\(54\) −0.500000 0.866025i −0.0680414 0.117851i
\(55\) 0.0701026i 0.00945264i
\(56\) 2.16053 + 1.52713i 0.288712 + 0.204071i
\(57\) −7.78053 −1.03056
\(58\) −0.678700 5.34222i −0.0891176 0.701468i
\(59\) 0.748385 1.29624i 0.0974314 0.168756i −0.813189 0.581999i \(-0.802271\pi\)
0.910621 + 0.413243i \(0.135604\pi\)
\(60\) −0.191328 0.110464i −0.0247004 0.0142608i
\(61\) −2.42457 + 1.39983i −0.310434 + 0.179229i −0.647121 0.762387i \(-0.724027\pi\)
0.336687 + 0.941617i \(0.390694\pi\)
\(62\) 8.82973 1.12138
\(63\) −2.63464 0.242272i −0.331933 0.0305234i
\(64\) −1.00000 −0.125000
\(65\) −0.134050 0.232182i −0.0166269 0.0287986i
\(66\) 0.274800 + 0.158656i 0.0338255 + 0.0195292i
\(67\) −4.08337 + 7.07261i −0.498863 + 0.864057i −0.999999 0.00131209i \(-0.999582\pi\)
0.501136 + 0.865369i \(0.332916\pi\)
\(68\) 4.46212 2.57621i 0.541111 0.312411i
\(69\) 2.62975i 0.316585i
\(70\) −0.530843 + 0.244678i −0.0634479 + 0.0292446i
\(71\) 1.43010 0.169722 0.0848610 0.996393i \(-0.472955\pi\)
0.0848610 + 0.996393i \(0.472955\pi\)
\(72\) 0.866025 0.500000i 0.102062 0.0589256i
\(73\) −1.82300 1.05251i −0.213366 0.123187i 0.389509 0.921023i \(-0.372645\pi\)
−0.602875 + 0.797836i \(0.705978\pi\)
\(74\) −1.88863 + 3.27121i −0.219549 + 0.380270i
\(75\) −4.28786 + 2.47560i −0.495119 + 0.285857i
\(76\) 7.78053i 0.892488i
\(77\) 0.762434 0.351424i 0.0868875 0.0400484i
\(78\) 1.21353 0.137405
\(79\) 8.74395 5.04832i 0.983771 0.567980i 0.0803645 0.996766i \(-0.474392\pi\)
0.903407 + 0.428785i \(0.141058\pi\)
\(80\) 0.110464 0.191328i 0.0123502 0.0213912i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −3.29469 5.70658i −0.363838 0.630186i
\(83\) 4.86994 0.534545 0.267273 0.963621i \(-0.413878\pi\)
0.267273 + 0.963621i \(0.413878\pi\)
\(84\) 0.242272 2.63464i 0.0264340 0.287462i
\(85\) 1.13831i 0.123467i
\(86\) 5.57896 + 9.66304i 0.601595 + 1.04199i
\(87\) −4.28715 + 3.25888i −0.459631 + 0.349389i
\(88\) −0.158656 + 0.274800i −0.0169127 + 0.0292937i
\(89\) −3.63682 + 2.09972i −0.385502 + 0.222570i −0.680209 0.733018i \(-0.738111\pi\)
0.294707 + 0.955588i \(0.404778\pi\)
\(90\) 0.220927i 0.0232878i
\(91\) 1.85321 2.62185i 0.194270 0.274845i
\(92\) 2.62975 0.274171
\(93\) −4.41486 7.64677i −0.457800 0.792933i
\(94\) 5.74099 9.94369i 0.592138 1.02561i
\(95\) 1.48864 + 0.859465i 0.152731 + 0.0881792i
\(96\) 0.500000 + 0.866025i 0.0510310 + 0.0883883i
\(97\) 5.41085i 0.549389i −0.961532 0.274694i \(-0.911423\pi\)
0.961532 0.274694i \(-0.0885767\pi\)
\(98\) −5.32222 4.54687i −0.537625 0.459303i
\(99\) 0.317311i 0.0318910i
\(100\) −2.47560 4.28786i −0.247560 0.428786i
\(101\) 9.02235 + 5.20906i 0.897757 + 0.518320i 0.876472 0.481453i \(-0.159891\pi\)
0.0212854 + 0.999773i \(0.493224\pi\)
\(102\) −4.46212 2.57621i −0.441816 0.255082i
\(103\) −2.33496 4.04426i −0.230070 0.398493i 0.727758 0.685834i \(-0.240562\pi\)
−0.957829 + 0.287340i \(0.907229\pi\)
\(104\) 1.21353i 0.118996i
\(105\) 0.477319 + 0.337385i 0.0465815 + 0.0329254i
\(106\) 7.41209i 0.719925i
\(107\) 3.83354 + 6.63989i 0.370602 + 0.641902i 0.989658 0.143445i \(-0.0458179\pi\)
−0.619056 + 0.785347i \(0.712485\pi\)
\(108\) −0.866025 0.500000i −0.0833333 0.0481125i
\(109\) −1.47989 + 2.56325i −0.141748 + 0.245515i −0.928155 0.372194i \(-0.878606\pi\)
0.786407 + 0.617709i \(0.211939\pi\)
\(110\) −0.0350513 0.0607107i −0.00334201 0.00578853i
\(111\) 3.77727 0.358522
\(112\) 2.63464 + 0.242272i 0.248950 + 0.0228925i
\(113\) 10.1377i 0.953678i −0.878991 0.476839i \(-0.841782\pi\)
0.878991 0.476839i \(-0.158218\pi\)
\(114\) −6.73813 + 3.89026i −0.631084 + 0.364357i
\(115\) −0.290492 + 0.503147i −0.0270885 + 0.0469187i
\(116\) −3.25888 4.28715i −0.302580 0.398052i
\(117\) −0.606763 1.05094i −0.0560953 0.0971599i
\(118\) 1.49677i 0.137789i
\(119\) −12.3802 + 5.70632i −1.13489 + 0.523097i
\(120\) −0.220927 −0.0201678
\(121\) −5.44966 9.43908i −0.495423 0.858098i
\(122\) −1.39983 + 2.42457i −0.126734 + 0.219510i
\(123\) −3.29469 + 5.70658i −0.297072 + 0.514545i
\(124\) 7.64677 4.41486i 0.686700 0.396466i
\(125\) 2.19849 0.196639
\(126\) −2.40280 + 1.10750i −0.214058 + 0.0986643i
\(127\) 1.54515i 0.137110i 0.997647 + 0.0685551i \(0.0218389\pi\)
−0.997647 + 0.0685551i \(0.978161\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 5.57896 9.66304i 0.491200 0.850783i
\(130\) −0.232182 0.134050i −0.0203637 0.0117570i
\(131\) 5.14271 2.96914i 0.449320 0.259415i −0.258223 0.966085i \(-0.583137\pi\)
0.707543 + 0.706670i \(0.249804\pi\)
\(132\) 0.317311 0.0276184
\(133\) −1.88500 + 20.4989i −0.163450 + 1.77748i
\(134\) 8.16674i 0.705499i
\(135\) 0.191328 0.110464i 0.0164669 0.00950719i
\(136\) 2.57621 4.46212i 0.220908 0.382624i
\(137\) 3.36335 + 1.94183i 0.287351 + 0.165902i 0.636746 0.771073i \(-0.280280\pi\)
−0.349396 + 0.936975i \(0.613613\pi\)
\(138\) −1.31488 2.27743i −0.111930 0.193868i
\(139\) −20.8867 −1.77158 −0.885792 0.464082i \(-0.846384\pi\)
−0.885792 + 0.464082i \(0.846384\pi\)
\(140\) −0.337385 + 0.477319i −0.0285142 + 0.0403408i
\(141\) −11.4820 −0.966958
\(142\) 1.23851 0.715052i 0.103933 0.0600058i
\(143\) 0.333476 + 0.192533i 0.0278867 + 0.0161004i
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) 1.18024 0.149943i 0.0980138 0.0124521i
\(146\) −2.10502 −0.174212
\(147\) −1.27659 + 6.88261i −0.105292 + 0.567668i
\(148\) 3.77727i 0.310489i
\(149\) −4.46307 7.73027i −0.365629 0.633288i 0.623248 0.782024i \(-0.285813\pi\)
−0.988877 + 0.148736i \(0.952479\pi\)
\(150\) −2.47560 + 4.28786i −0.202132 + 0.350102i
\(151\) −9.20482 + 15.9432i −0.749077 + 1.29744i 0.199188 + 0.979961i \(0.436170\pi\)
−0.948265 + 0.317479i \(0.897164\pi\)
\(152\) −3.89026 6.73813i −0.315542 0.546535i
\(153\) 5.15241i 0.416548i
\(154\) 0.484576 0.685559i 0.0390482 0.0552439i
\(155\) 1.95073i 0.156686i
\(156\) 1.05094 0.606763i 0.0841429 0.0485799i
\(157\) 7.19216 + 4.15240i 0.573997 + 0.331397i 0.758744 0.651389i \(-0.225813\pi\)
−0.184747 + 0.982786i \(0.559147\pi\)
\(158\) 5.04832 8.74395i 0.401623 0.695631i
\(159\) 6.41905 3.70604i 0.509064 0.293908i
\(160\) 0.220927i 0.0174658i
\(161\) −6.92845 0.637115i −0.546038 0.0502117i
\(162\) 1.00000i 0.0785674i
\(163\) −17.9970 + 10.3906i −1.40963 + 0.813851i −0.995352 0.0962987i \(-0.969300\pi\)
−0.414279 + 0.910150i \(0.635966\pi\)
\(164\) −5.70658 3.29469i −0.445609 0.257272i
\(165\) −0.0350513 + 0.0607107i −0.00272874 + 0.00472632i
\(166\) 4.21749 2.43497i 0.327341 0.188990i
\(167\) 17.1162 1.32449 0.662247 0.749286i \(-0.269603\pi\)
0.662247 + 0.749286i \(0.269603\pi\)
\(168\) −1.10750 2.40280i −0.0854458 0.185380i
\(169\) −11.5274 −0.886720
\(170\) 0.569154 + 0.985803i 0.0436521 + 0.0756076i
\(171\) 6.73813 + 3.89026i 0.515278 + 0.297496i
\(172\) 9.66304 + 5.57896i 0.736800 + 0.425392i
\(173\) 5.90310 + 10.2245i 0.448804 + 0.777352i 0.998309 0.0581389i \(-0.0185166\pi\)
−0.549504 + 0.835491i \(0.685183\pi\)
\(174\) −2.08334 + 4.96585i −0.157938 + 0.376460i
\(175\) 5.48347 + 11.8967i 0.414511 + 0.899307i
\(176\) 0.317311i 0.0239182i
\(177\) −1.29624 + 0.748385i −0.0974314 + 0.0562520i
\(178\) −2.09972 + 3.63682i −0.157381 + 0.272591i
\(179\) −5.38113 + 9.32038i −0.402204 + 0.696638i −0.993992 0.109456i \(-0.965089\pi\)
0.591787 + 0.806094i \(0.298422\pi\)
\(180\) 0.110464 + 0.191328i 0.00823347 + 0.0142608i
\(181\) 13.7491 1.02196 0.510982 0.859591i \(-0.329282\pi\)
0.510982 + 0.859591i \(0.329282\pi\)
\(182\) 0.294003 3.19720i 0.0217929 0.236992i
\(183\) 2.79965 0.206956
\(184\) 2.27743 1.31488i 0.167895 0.0969340i
\(185\) −0.722699 0.417250i −0.0531339 0.0306769i
\(186\) −7.64677 4.41486i −0.560688 0.323713i
\(187\) −0.817459 1.41588i −0.0597785 0.103539i
\(188\) 11.4820i 0.837410i
\(189\) 2.16053 + 1.52713i 0.157155 + 0.111082i
\(190\) 1.71893 0.124704
\(191\) 7.01329 4.04913i 0.507464 0.292984i −0.224327 0.974514i \(-0.572018\pi\)
0.731791 + 0.681530i \(0.238685\pi\)
\(192\) 0.866025 + 0.500000i 0.0625000 + 0.0360844i
\(193\) −20.9307 12.0843i −1.50662 0.869850i −0.999970 0.00769983i \(-0.997549\pi\)
−0.506653 0.862150i \(-0.669118\pi\)
\(194\) −2.70543 4.68594i −0.194238 0.336431i
\(195\) 0.268101i 0.0191991i
\(196\) −6.88261 1.27659i −0.491615 0.0911853i
\(197\) 27.2623 1.94236 0.971180 0.238349i \(-0.0766061\pi\)
0.971180 + 0.238349i \(0.0766061\pi\)
\(198\) −0.158656 0.274800i −0.0112752 0.0195292i
\(199\) 3.70741 6.42143i 0.262812 0.455203i −0.704176 0.710025i \(-0.748684\pi\)
0.966988 + 0.254822i \(0.0820169\pi\)
\(200\) −4.28786 2.47560i −0.303197 0.175051i
\(201\) 7.07261 4.08337i 0.498863 0.288019i
\(202\) 10.4181 0.733016
\(203\) 7.54732 + 12.0846i 0.529718 + 0.848174i
\(204\) −5.15241 −0.360741
\(205\) 1.26074 0.727887i 0.0880537 0.0508378i
\(206\) −4.04426 2.33496i −0.281777 0.162684i
\(207\) −1.31488 + 2.27743i −0.0913903 + 0.158293i
\(208\) 0.606763 + 1.05094i 0.0420715 + 0.0728699i
\(209\) −2.46885 −0.170774
\(210\) 0.582062 + 0.0535244i 0.0401661 + 0.00369353i
\(211\) 3.11259i 0.214280i −0.994244 0.107140i \(-0.965831\pi\)
0.994244 0.107140i \(-0.0341693\pi\)
\(212\) 3.70604 + 6.41905i 0.254532 + 0.440862i
\(213\) −1.23851 0.715052i −0.0848610 0.0489945i
\(214\) 6.63989 + 3.83354i 0.453893 + 0.262055i
\(215\) −2.13483 + 1.23254i −0.145594 + 0.0840588i
\(216\) −1.00000 −0.0680414
\(217\) −21.2160 + 9.77896i −1.44024 + 0.663839i
\(218\) 2.95979i 0.200462i
\(219\) 1.05251 + 1.82300i 0.0711220 + 0.123187i
\(220\) −0.0607107 0.0350513i −0.00409311 0.00236316i
\(221\) −5.41490 3.12629i −0.364245 0.210297i
\(222\) 3.27121 1.88863i 0.219549 0.126757i
\(223\) 9.49845 0.636063 0.318032 0.948080i \(-0.396978\pi\)
0.318032 + 0.948080i \(0.396978\pi\)
\(224\) 2.40280 1.10750i 0.160544 0.0739983i
\(225\) 4.95119 0.330079
\(226\) −5.06887 8.77954i −0.337176 0.584006i
\(227\) −10.5170 + 18.2160i −0.698040 + 1.20904i 0.271105 + 0.962550i \(0.412611\pi\)
−0.969145 + 0.246491i \(0.920722\pi\)
\(228\) −3.89026 + 6.73813i −0.257639 + 0.446244i
\(229\) −22.1527 + 12.7898i −1.46389 + 0.845176i −0.999188 0.0402915i \(-0.987171\pi\)
−0.464701 + 0.885468i \(0.653838\pi\)
\(230\) 0.580984i 0.0383090i
\(231\) −0.835999 0.0768755i −0.0550047 0.00505804i
\(232\) −4.96585 2.08334i −0.326024 0.136778i
\(233\) −3.81968 6.61588i −0.250236 0.433421i 0.713355 0.700803i \(-0.247175\pi\)
−0.963591 + 0.267382i \(0.913841\pi\)
\(234\) −1.05094 0.606763i −0.0687024 0.0396653i
\(235\) 2.19683 + 1.26834i 0.143305 + 0.0827374i
\(236\) −0.748385 1.29624i −0.0487157 0.0843781i
\(237\) −10.0966 −0.655847
\(238\) −7.86841 + 11.1319i −0.510033 + 0.721575i
\(239\) 0.712097 0.0460617 0.0230309 0.999735i \(-0.492668\pi\)
0.0230309 + 0.999735i \(0.492668\pi\)
\(240\) −0.191328 + 0.110464i −0.0123502 + 0.00713039i
\(241\) −13.8541 + 23.9959i −0.892418 + 1.54571i −0.0554500 + 0.998461i \(0.517659\pi\)
−0.836968 + 0.547252i \(0.815674\pi\)
\(242\) −9.43908 5.44966i −0.606767 0.350317i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 2.79965i 0.179229i
\(245\) 1.00453 1.17582i 0.0641768 0.0751205i
\(246\) 6.58939i 0.420124i
\(247\) −8.17690 + 4.72094i −0.520284 + 0.300386i
\(248\) 4.41486 7.64677i 0.280344 0.485570i
\(249\) −4.21749 2.43497i −0.267273 0.154310i
\(250\) 1.90395 1.09924i 0.120416 0.0695223i
\(251\) 15.1349i 0.955308i 0.878548 + 0.477654i \(0.158513\pi\)
−0.878548 + 0.477654i \(0.841487\pi\)
\(252\) −1.52713 + 2.16053i −0.0962002 + 0.136100i
\(253\) 0.834451i 0.0524615i
\(254\) 0.772576 + 1.33814i 0.0484757 + 0.0839624i
\(255\) 0.569154 0.985803i 0.0356418 0.0617334i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −11.9550 20.7067i −0.745735 1.29165i −0.949851 0.312704i \(-0.898765\pi\)
0.204116 0.978947i \(-0.434568\pi\)
\(258\) 11.1579i 0.694662i
\(259\) 0.915125 9.95172i 0.0568631 0.618370i
\(260\) −0.268101 −0.0166269
\(261\) 5.34222 0.678700i 0.330675 0.0420105i
\(262\) 2.96914 5.14271i 0.183434 0.317718i
\(263\) −27.2423 15.7284i −1.67983 0.969852i −0.961764 0.273881i \(-0.911693\pi\)
−0.718070 0.695971i \(-0.754974\pi\)
\(264\) 0.274800 0.158656i 0.0169127 0.00976458i
\(265\) −1.63753 −0.100593
\(266\) 8.61697 + 18.6950i 0.528340 + 1.14627i
\(267\) 4.19944 0.257001
\(268\) 4.08337 + 7.07261i 0.249432 + 0.432028i
\(269\) −12.6806 7.32116i −0.773152 0.446379i 0.0608462 0.998147i \(-0.480620\pi\)
−0.833998 + 0.551768i \(0.813953\pi\)
\(270\) 0.110464 0.191328i 0.00672260 0.0116439i
\(271\) 4.59414 2.65243i 0.279074 0.161123i −0.353930 0.935272i \(-0.615155\pi\)
0.633004 + 0.774148i \(0.281822\pi\)
\(272\) 5.15241i 0.312411i
\(273\) −2.91586 + 1.34399i −0.176476 + 0.0813417i
\(274\) 3.88367 0.234621
\(275\) −1.36059 + 0.785534i −0.0820464 + 0.0473695i
\(276\) −2.27743 1.31488i −0.137085 0.0791463i
\(277\) −13.7879 + 23.8814i −0.828437 + 1.43489i 0.0708274 + 0.997489i \(0.477436\pi\)
−0.899264 + 0.437406i \(0.855897\pi\)
\(278\) −18.0884 + 10.4433i −1.08487 + 0.626350i
\(279\) 8.82973i 0.528622i
\(280\) −0.0535244 + 0.582062i −0.00319869 + 0.0347849i
\(281\) 15.5471 0.927465 0.463732 0.885975i \(-0.346510\pi\)
0.463732 + 0.885975i \(0.346510\pi\)
\(282\) −9.94369 + 5.74099i −0.592138 + 0.341871i
\(283\) 10.0635 17.4305i 0.598213 1.03613i −0.394872 0.918736i \(-0.629211\pi\)
0.993085 0.117398i \(-0.0374555\pi\)
\(284\) 0.715052 1.23851i 0.0424305 0.0734918i
\(285\) −0.859465 1.48864i −0.0509103 0.0881792i
\(286\) 0.385065 0.0227694
\(287\) 14.2365 + 10.0629i 0.840356 + 0.593992i
\(288\) 1.00000i 0.0589256i
\(289\) 4.77367 + 8.26824i 0.280804 + 0.486367i
\(290\) 0.947148 0.719976i 0.0556185 0.0422784i
\(291\) −2.70543 + 4.68594i −0.158595 + 0.274694i
\(292\) −1.82300 + 1.05251i −0.106683 + 0.0615934i
\(293\) 21.8552i 1.27679i −0.769707 0.638397i \(-0.779598\pi\)
0.769707 0.638397i \(-0.220402\pi\)
\(294\) 2.33574 + 6.59881i 0.136223 + 0.384851i
\(295\) 0.330677 0.0192528
\(296\) 1.88863 + 3.27121i 0.109775 + 0.190135i
\(297\) −0.158656 + 0.274800i −0.00920613 + 0.0159455i
\(298\) −7.73027 4.46307i −0.447802 0.258539i
\(299\) −1.59564 2.76373i −0.0922781 0.159830i
\(300\) 4.95119i 0.285857i
\(301\) −24.1070 17.0396i −1.38950 0.982147i
\(302\) 18.4096i 1.05936i
\(303\) −5.20906 9.02235i −0.299252 0.518320i
\(304\) −6.73813 3.89026i −0.386458 0.223122i
\(305\) −0.535653 0.309259i −0.0306714 0.0177081i
\(306\) 2.57621 + 4.46212i 0.147272 + 0.255082i
\(307\) 29.8609i 1.70425i −0.523336 0.852126i \(-0.675313\pi\)
0.523336 0.852126i \(-0.324687\pi\)
\(308\) 0.0768755 0.835999i 0.00438039 0.0476355i
\(309\) 4.66991i 0.265662i
\(310\) 0.975363 + 1.68938i 0.0553969 + 0.0959502i
\(311\) −8.03916 4.64141i −0.455859 0.263190i 0.254442 0.967088i \(-0.418108\pi\)
−0.710302 + 0.703898i \(0.751441\pi\)
\(312\) 0.606763 1.05094i 0.0343512 0.0594980i
\(313\) 7.84599 + 13.5897i 0.443482 + 0.768133i 0.997945 0.0640754i \(-0.0204098\pi\)
−0.554463 + 0.832208i \(0.687076\pi\)
\(314\) 8.30479 0.468667
\(315\) −0.244678 0.530843i −0.0137860 0.0299096i
\(316\) 10.0966i 0.567980i
\(317\) 6.68217 3.85795i 0.375308 0.216684i −0.300467 0.953792i \(-0.597142\pi\)
0.675775 + 0.737108i \(0.263809\pi\)
\(318\) 3.70604 6.41905i 0.207825 0.359963i
\(319\) −1.36036 + 1.03408i −0.0761656 + 0.0578974i
\(320\) −0.110464 0.191328i −0.00617510 0.0106956i
\(321\) 7.66708i 0.427935i
\(322\) −6.31877 + 2.91246i −0.352131 + 0.162305i
\(323\) 40.0885 2.23058
\(324\) 0.500000 + 0.866025i 0.0277778 + 0.0481125i
\(325\) −3.00420 + 5.20343i −0.166643 + 0.288634i
\(326\) −10.3906 + 17.9970i −0.575480 + 0.996760i
\(327\) 2.56325 1.47989i 0.141748 0.0818383i
\(328\) −6.58939 −0.363838
\(329\) −2.78176 + 30.2509i −0.153363 + 1.66778i
\(330\) 0.0701026i 0.00385902i
\(331\) 3.81163 2.20065i 0.209506 0.120958i −0.391576 0.920146i \(-0.628070\pi\)
0.601082 + 0.799187i \(0.294737\pi\)
\(332\) 2.43497 4.21749i 0.133636 0.231465i
\(333\) −3.27121 1.88863i −0.179261 0.103496i
\(334\) 14.8231 8.55811i 0.811083 0.468279i
\(335\) −1.80425 −0.0985770
\(336\) −2.16053 1.52713i −0.117866 0.0833118i
\(337\) 20.9678i 1.14219i 0.820885 + 0.571093i \(0.193481\pi\)
−0.820885 + 0.571093i \(0.806519\pi\)
\(338\) −9.98298 + 5.76368i −0.543003 + 0.313503i
\(339\) −5.06887 + 8.77954i −0.275303 + 0.476839i
\(340\) 0.985803 + 0.569154i 0.0534627 + 0.0308667i
\(341\) −1.40089 2.42640i −0.0758622 0.131397i
\(342\) 7.78053 0.420723
\(343\) 17.8239 + 5.03082i 0.962399 + 0.271639i
\(344\) 11.1579 0.601595
\(345\) 0.503147 0.290492i 0.0270885 0.0156396i
\(346\) 10.2245 + 5.90310i 0.549671 + 0.317353i
\(347\) −5.98823 + 10.3719i −0.321465 + 0.556794i −0.980791 0.195064i \(-0.937509\pi\)
0.659326 + 0.751858i \(0.270842\pi\)
\(348\) 0.678700 + 5.34222i 0.0363821 + 0.286373i
\(349\) −15.4664 −0.827899 −0.413949 0.910300i \(-0.635851\pi\)
−0.413949 + 0.910300i \(0.635851\pi\)
\(350\) 10.6972 + 7.56112i 0.571788 + 0.404159i
\(351\) 1.21353i 0.0647732i
\(352\) 0.158656 + 0.274800i 0.00845637 + 0.0146469i
\(353\) 11.1355 19.2873i 0.592683 1.02656i −0.401186 0.915997i \(-0.631402\pi\)
0.993869 0.110561i \(-0.0352647\pi\)
\(354\) −0.748385 + 1.29624i −0.0397762 + 0.0688944i
\(355\) 0.157974 + 0.273620i 0.00838441 + 0.0145222i
\(356\) 4.19944i 0.222570i
\(357\) 13.5747 + 1.24828i 0.718451 + 0.0660661i
\(358\) 10.7623i 0.568803i
\(359\) 20.0728 11.5890i 1.05940 0.611646i 0.134136 0.990963i \(-0.457174\pi\)
0.925267 + 0.379317i \(0.123841\pi\)
\(360\) 0.191328 + 0.110464i 0.0100839 + 0.00582194i
\(361\) 20.7683 35.9717i 1.09307 1.89325i
\(362\) 11.9071 6.87456i 0.625823 0.361319i
\(363\) 10.8993i 0.572066i
\(364\) −1.34399 2.91586i −0.0704440 0.152832i
\(365\) 0.465055i 0.0243421i
\(366\) 2.42457 1.39983i 0.126734 0.0731701i
\(367\) −20.0834 11.5952i −1.04835 0.605263i −0.126160 0.992010i \(-0.540265\pi\)
−0.922186 + 0.386747i \(0.873599\pi\)
\(368\) 1.31488 2.27743i 0.0685427 0.118719i
\(369\) 5.70658 3.29469i 0.297072 0.171515i
\(370\) −0.834501 −0.0433836
\(371\) −8.20892 17.8097i −0.426186 0.924636i
\(372\) −8.82973 −0.457800
\(373\) −11.3787 19.7084i −0.589165 1.02046i −0.994342 0.106226i \(-0.966123\pi\)
0.405177 0.914238i \(-0.367210\pi\)
\(374\) −1.41588 0.817459i −0.0732134 0.0422698i
\(375\) −1.90395 1.09924i −0.0983194 0.0567647i
\(376\) −5.74099 9.94369i −0.296069 0.512807i
\(377\) −2.52819 + 6.02619i −0.130208 + 0.310365i
\(378\) 2.63464 + 0.242272i 0.135511 + 0.0124611i
\(379\) 1.86376i 0.0957350i −0.998854 0.0478675i \(-0.984757\pi\)
0.998854 0.0478675i \(-0.0152425\pi\)
\(380\) 1.48864 0.859465i 0.0763654 0.0440896i
\(381\) 0.772576 1.33814i 0.0395803 0.0685551i
\(382\) 4.04913 7.01329i 0.207171 0.358831i
\(383\) 17.1755 + 29.7489i 0.877628 + 1.52010i 0.853937 + 0.520377i \(0.174208\pi\)
0.0236910 + 0.999719i \(0.492458\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0.151459 + 0.107056i 0.00771904 + 0.00545607i
\(386\) −24.1687 −1.23015
\(387\) −9.66304 + 5.57896i −0.491200 + 0.283594i
\(388\) −4.68594 2.70543i −0.237892 0.137347i
\(389\) −24.6108 14.2091i −1.24782 0.720428i −0.277144 0.960829i \(-0.589388\pi\)
−0.970674 + 0.240401i \(0.922721\pi\)
\(390\) 0.134050 + 0.232182i 0.00678791 + 0.0117570i
\(391\) 13.5496i 0.685232i
\(392\) −6.59881 + 2.33574i −0.333290 + 0.117973i
\(393\) −5.93829 −0.299547
\(394\) 23.6099 13.6312i 1.18945 0.686728i
\(395\) 1.93177 + 1.11531i 0.0971981 + 0.0561174i
\(396\) −0.274800 0.158656i −0.0138092 0.00797274i
\(397\) 9.94309 + 17.2219i 0.499029 + 0.864344i 0.999999 0.00112060i \(-0.000356698\pi\)
−0.500970 + 0.865465i \(0.667023\pi\)
\(398\) 7.41483i 0.371672i
\(399\) 11.8819 16.8100i 0.594838 0.841554i
\(400\) −4.95119 −0.247560
\(401\) −8.82036 15.2773i −0.440468 0.762912i 0.557257 0.830340i \(-0.311854\pi\)
−0.997724 + 0.0674282i \(0.978521\pi\)
\(402\) 4.08337 7.07261i 0.203660 0.352750i
\(403\) −9.27955 5.35755i −0.462247 0.266879i
\(404\) 9.02235 5.20906i 0.448879 0.259160i
\(405\) −0.220927 −0.0109780
\(406\) 12.5785 + 6.69193i 0.624259 + 0.332115i
\(407\) 1.19857 0.0594109
\(408\) −4.46212 + 2.57621i −0.220908 + 0.127541i
\(409\) −2.93279 1.69324i −0.145017 0.0837256i 0.425736 0.904847i \(-0.360015\pi\)
−0.570753 + 0.821122i \(0.693349\pi\)
\(410\) 0.727887 1.26074i 0.0359478 0.0622634i
\(411\) −1.94183 3.36335i −0.0957836 0.165902i
\(412\) −4.66991 −0.230070
\(413\) 1.65768 + 3.59643i 0.0815690 + 0.176969i
\(414\) 2.62975i 0.129245i
\(415\) 0.537951 + 0.931758i 0.0264070 + 0.0457382i
\(416\) 1.05094 + 0.606763i 0.0515268 + 0.0297490i
\(417\) 18.0884 + 10.4433i 0.885792 + 0.511412i
\(418\) −2.13809 + 1.23442i −0.104577 + 0.0603777i
\(419\) −4.65875 −0.227595 −0.113797 0.993504i \(-0.536301\pi\)
−0.113797 + 0.993504i \(0.536301\pi\)
\(420\) 0.530843 0.244678i 0.0259025 0.0119391i
\(421\) 13.7311i 0.669214i 0.942358 + 0.334607i \(0.108604\pi\)
−0.942358 + 0.334607i \(0.891396\pi\)
\(422\) −1.55630 2.69558i −0.0757593 0.131219i
\(423\) 9.94369 + 5.74099i 0.483479 + 0.279137i
\(424\) 6.41905 + 3.70604i 0.311737 + 0.179981i
\(425\) 22.0928 12.7553i 1.07166 0.618722i
\(426\) −1.43010 −0.0692887
\(427\) 0.678276 7.37606i 0.0328241 0.356953i
\(428\) 7.66708 0.370602
\(429\) −0.192533 0.333476i −0.00929557 0.0161004i
\(430\) −1.23254 + 2.13483i −0.0594385 + 0.102951i
\(431\) 0.0345413 0.0598273i 0.00166380 0.00288178i −0.865192 0.501440i \(-0.832804\pi\)
0.866856 + 0.498558i \(0.166137\pi\)
\(432\) −0.866025 + 0.500000i −0.0416667 + 0.0240563i
\(433\) 25.5734i 1.22898i −0.788924 0.614491i \(-0.789362\pi\)
0.788924 0.614491i \(-0.210638\pi\)
\(434\) −13.4841 + 19.0768i −0.647260 + 0.915718i
\(435\) −1.09709 0.460267i −0.0526015 0.0220681i
\(436\) 1.47989 + 2.56325i 0.0708741 + 0.122758i
\(437\) 17.7196 + 10.2304i 0.847645 + 0.489388i
\(438\) 1.82300 + 1.05251i 0.0871062 + 0.0502908i
\(439\) 13.8168 + 23.9314i 0.659441 + 1.14219i 0.980761 + 0.195215i \(0.0625403\pi\)
−0.321319 + 0.946971i \(0.604126\pi\)
\(440\) −0.0701026 −0.00334201
\(441\) 4.54687 5.32222i 0.216518 0.253439i
\(442\) −6.25259 −0.297405
\(443\) −10.8619 + 6.27111i −0.516063 + 0.297949i −0.735322 0.677717i \(-0.762969\pi\)
0.219259 + 0.975667i \(0.429636\pi\)
\(444\) 1.88863 3.27121i 0.0896306 0.155245i
\(445\) −0.803472 0.463885i −0.0380882 0.0219903i
\(446\) 8.22590 4.74922i 0.389508 0.224882i
\(447\) 8.92615i 0.422192i
\(448\) 1.52713 2.16053i 0.0721502 0.102075i
\(449\) 30.7618i 1.45174i 0.687832 + 0.725870i \(0.258563\pi\)
−0.687832 + 0.725870i \(0.741437\pi\)
\(450\) 4.28786 2.47560i 0.202132 0.116701i
\(451\) −1.04544 + 1.81076i −0.0492280 + 0.0852654i
\(452\) −8.77954 5.06887i −0.412955 0.238420i
\(453\) 15.9432 9.20482i 0.749077 0.432480i
\(454\) 21.0341i 0.987178i
\(455\) 0.706348 + 0.0649532i 0.0331141 + 0.00304505i
\(456\) 7.78053i 0.364357i
\(457\) −5.35170 9.26942i −0.250342 0.433605i 0.713278 0.700881i \(-0.247210\pi\)
−0.963620 + 0.267276i \(0.913876\pi\)
\(458\) −12.7898 + 22.1527i −0.597630 + 1.03513i
\(459\) 2.57621 4.46212i 0.120247 0.208274i
\(460\) 0.290492 + 0.503147i 0.0135443 + 0.0234593i
\(461\) 24.7437i 1.15243i −0.817299 0.576214i \(-0.804530\pi\)
0.817299 0.576214i \(-0.195470\pi\)
\(462\) −0.762434 + 0.351424i −0.0354717 + 0.0163497i
\(463\) 12.6567 0.588209 0.294104 0.955773i \(-0.404979\pi\)
0.294104 + 0.955773i \(0.404979\pi\)
\(464\) −5.34222 + 0.678700i −0.248007 + 0.0315078i
\(465\) 0.975363 1.68938i 0.0452314 0.0783430i
\(466\) −6.61588 3.81968i −0.306475 0.176943i
\(467\) 14.3675 8.29506i 0.664847 0.383850i −0.129274 0.991609i \(-0.541265\pi\)
0.794121 + 0.607759i \(0.207931\pi\)
\(468\) −1.21353 −0.0560953
\(469\) −9.04470 19.6230i −0.417646 0.906107i
\(470\) 2.53668 0.117008
\(471\) −4.15240 7.19216i −0.191332 0.331397i
\(472\) −1.29624 0.748385i −0.0596643 0.0344472i
\(473\) 1.77027 3.06619i 0.0813969 0.140984i
\(474\) −8.74395 + 5.04832i −0.401623 + 0.231877i
\(475\) 38.5229i 1.76755i
\(476\) −1.24828 + 13.5747i −0.0572150 + 0.622196i
\(477\) −7.41209 −0.339376
\(478\) 0.616694 0.356049i 0.0282069 0.0162853i
\(479\) 8.83435 + 5.10051i 0.403652 + 0.233048i 0.688058 0.725655i \(-0.258463\pi\)
−0.284407 + 0.958704i \(0.591797\pi\)
\(480\) −0.110464 + 0.191328i −0.00504195 + 0.00873291i
\(481\) 3.96970 2.29191i 0.181003 0.104502i
\(482\) 27.7081i 1.26207i
\(483\) 5.68165 + 4.01598i 0.258524 + 0.182733i
\(484\) −10.8993 −0.495423
\(485\) 1.03525 0.597702i 0.0470083 0.0271403i
\(486\) 0.500000 0.866025i 0.0226805 0.0392837i
\(487\) −8.21529 + 14.2293i −0.372270 + 0.644791i −0.989914 0.141667i \(-0.954754\pi\)
0.617644 + 0.786458i \(0.288087\pi\)
\(488\) 1.39983 + 2.42457i 0.0633671 + 0.109755i
\(489\) 20.7811 0.939754
\(490\) 0.282034 1.52055i 0.0127410 0.0686917i
\(491\) 25.4101i 1.14674i −0.819295 0.573372i \(-0.805635\pi\)
0.819295 0.573372i \(-0.194365\pi\)
\(492\) 3.29469 + 5.70658i 0.148536 + 0.257272i
\(493\) 22.0892 16.7911i 0.994846 0.756233i
\(494\) −4.72094 + 8.17690i −0.212405 + 0.367896i
\(495\) 0.0607107 0.0350513i 0.00272874 0.00157544i
\(496\) 8.82973i 0.396466i
\(497\) −2.18396 + 3.08978i −0.0979638 + 0.138595i
\(498\) −4.86994 −0.218227
\(499\) −4.72862 8.19021i −0.211682 0.366644i 0.740559 0.671991i \(-0.234561\pi\)
−0.952241 + 0.305347i \(0.901227\pi\)
\(500\) 1.09924 1.90395i 0.0491597 0.0851471i
\(501\) −14.8231 8.55811i −0.662247 0.382348i
\(502\) 7.56746 + 13.1072i 0.337752 + 0.585004i
\(503\) 31.1591i 1.38931i 0.719341 + 0.694657i \(0.244444\pi\)
−0.719341 + 0.694657i \(0.755556\pi\)
\(504\) −0.242272 + 2.63464i −0.0107916 + 0.117356i
\(505\) 2.30164i 0.102422i
\(506\) −0.417225 0.722655i −0.0185479 0.0321260i
\(507\) 9.98298 + 5.76368i 0.443360 + 0.255974i
\(508\) 1.33814 + 0.772576i 0.0593704 + 0.0342775i
\(509\) −14.4714 25.0652i −0.641434 1.11100i −0.985113 0.171909i \(-0.945007\pi\)
0.343679 0.939087i \(-0.388327\pi\)
\(510\) 1.13831i 0.0504051i
\(511\) 5.05793 2.33132i 0.223750 0.103131i
\(512\) 1.00000i 0.0441942i
\(513\) −3.89026 6.73813i −0.171759 0.297496i
\(514\) −20.7067 11.9550i −0.913335 0.527314i
\(515\) 0.515855 0.893487i 0.0227313 0.0393718i
\(516\) −5.57896 9.66304i −0.245600 0.425392i
\(517\) −3.64336 −0.160235
\(518\) −4.18334 9.07601i −0.183805 0.398777i
\(519\) 11.8062i 0.518235i
\(520\) −0.232182 + 0.134050i −0.0101819 + 0.00587850i
\(521\) −6.22505 + 10.7821i −0.272724 + 0.472373i −0.969559 0.244860i \(-0.921258\pi\)
0.696834 + 0.717232i \(0.254591\pi\)
\(522\) 4.28715 3.25888i 0.187644 0.142637i
\(523\) −13.0842 22.6625i −0.572133 0.990963i −0.996347 0.0854009i \(-0.972783\pi\)
0.424214 0.905562i \(-0.360550\pi\)
\(524\) 5.93829i 0.259415i
\(525\) 1.19953 13.0446i 0.0523519 0.569312i
\(526\) −31.4567 −1.37158
\(527\) 22.7472 + 39.3993i 0.990883 + 1.71626i
\(528\) 0.158656 0.274800i 0.00690460 0.0119591i
\(529\) 8.04220 13.9295i 0.349661 0.605630i
\(530\) −1.41814 + 0.818765i −0.0616002 + 0.0355649i
\(531\) 1.49677 0.0649543
\(532\) 16.8100 + 11.8819i 0.728807 + 0.515145i
\(533\) 7.99639i 0.346362i
\(534\) 3.63682 2.09972i 0.157381 0.0908637i
\(535\) −0.846933 + 1.46693i −0.0366161 + 0.0634210i
\(536\) 7.07261 + 4.08337i 0.305490 + 0.176375i
\(537\) 9.32038 5.38113i 0.402204 0.232213i
\(538\) −14.6423 −0.631276
\(539\) −0.405078 + 2.18393i −0.0174479 + 0.0940685i
\(540\) 0.220927i 0.00950719i
\(541\) −30.1452 + 17.4044i −1.29604 + 0.748272i −0.979719 0.200379i \(-0.935783\pi\)
−0.316326 + 0.948650i \(0.602449\pi\)
\(542\) 2.65243 4.59414i 0.113931 0.197335i
\(543\) −11.9071 6.87456i −0.510982 0.295016i
\(544\) −2.57621 4.46212i −0.110454 0.191312i
\(545\) −0.653897 −0.0280099
\(546\) −1.85321 + 2.62185i −0.0793102 + 0.112205i
\(547\) −1.93713 −0.0828258 −0.0414129 0.999142i \(-0.513186\pi\)
−0.0414129 + 0.999142i \(0.513186\pi\)
\(548\) 3.36335 1.94183i 0.143675 0.0829510i
\(549\) −2.42457 1.39983i −0.103478 0.0597431i
\(550\) −0.785534 + 1.36059i −0.0334953 + 0.0580155i
\(551\) −5.28064 41.5653i −0.224963 1.77074i
\(552\) −2.62975 −0.111930
\(553\) −2.44613 + 26.6010i −0.104020 + 1.13119i
\(554\) 27.5759i 1.17159i
\(555\) 0.417250 + 0.722699i 0.0177113 + 0.0306769i
\(556\) −10.4433 + 18.0884i −0.442896 + 0.767119i
\(557\) 6.40858 11.1000i 0.271540 0.470322i −0.697716 0.716374i \(-0.745800\pi\)
0.969256 + 0.246053i \(0.0791336\pi\)
\(558\) 4.41486 + 7.64677i 0.186896 + 0.323713i
\(559\) 13.5404i 0.572699i
\(560\) 0.244678 + 0.530843i 0.0103395 + 0.0224322i
\(561\) 1.63492i 0.0690263i
\(562\) 13.4642 7.77357i 0.567954 0.327908i
\(563\) 23.6196 + 13.6368i 0.995448 + 0.574722i 0.906898 0.421350i \(-0.138443\pi\)
0.0885496 + 0.996072i \(0.471777\pi\)
\(564\) −5.74099 + 9.94369i −0.241739 + 0.418705i
\(565\) 1.93964 1.11985i 0.0816012 0.0471125i
\(566\) 20.1270i 0.846000i
\(567\) −1.10750 2.40280i −0.0465108 0.100908i
\(568\) 1.43010i 0.0600058i
\(569\) 15.8085 9.12706i 0.662728 0.382626i −0.130588 0.991437i \(-0.541686\pi\)
0.793316 + 0.608811i \(0.208353\pi\)
\(570\) −1.48864 0.859465i −0.0623521 0.0359990i
\(571\) −8.84380 + 15.3179i −0.370101 + 0.641035i −0.989581 0.143978i \(-0.954010\pi\)
0.619479 + 0.785013i \(0.287344\pi\)
\(572\) 0.333476 0.192533i 0.0139434 0.00805020i
\(573\) −8.09825 −0.338309
\(574\) 17.3606 + 1.59642i 0.724619 + 0.0666333i
\(575\) 13.0204 0.542989
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 9.37504 + 5.41268i 0.390288 + 0.225333i 0.682285 0.731086i \(-0.260986\pi\)
−0.291997 + 0.956419i \(0.594320\pi\)
\(578\) 8.26824 + 4.77367i 0.343913 + 0.198558i
\(579\) 12.0843 + 20.9307i 0.502208 + 0.869850i
\(580\) 0.460267 1.09709i 0.0191115 0.0455542i
\(581\) −7.43703 + 10.5216i −0.308540 + 0.436511i
\(582\) 5.41085i 0.224287i
\(583\) 2.03684 1.17597i 0.0843572 0.0487037i
\(584\) −1.05251 + 1.82300i −0.0435531 + 0.0754362i
\(585\) 0.134050 0.232182i 0.00554230 0.00959955i
\(586\) −10.9276 18.9272i −0.451415 0.781874i
\(587\) −31.4402 −1.29767 −0.648837 0.760927i \(-0.724744\pi\)
−0.648837 + 0.760927i \(0.724744\pi\)
\(588\) 5.32222 + 4.54687i 0.219485 + 0.187510i
\(589\) 68.6999 2.83073
\(590\) 0.286375 0.165338i 0.0117899 0.00680688i
\(591\) −23.6099 13.6312i −0.971180 0.560711i
\(592\) 3.27121 + 1.88863i 0.134446 + 0.0776224i
\(593\) −17.8946 30.9944i −0.734844 1.27279i −0.954792 0.297276i \(-0.903922\pi\)
0.219947 0.975512i \(-0.429411\pi\)
\(594\) 0.317311i 0.0130194i
\(595\) −2.45934 1.73834i −0.100823 0.0712652i
\(596\) −8.92615 −0.365629
\(597\) −6.42143 + 3.70741i −0.262812 + 0.151734i
\(598\) −2.76373 1.59564i −0.113017 0.0652505i
\(599\) −7.53261 4.34896i −0.307774 0.177694i 0.338156 0.941090i \(-0.390197\pi\)
−0.645930 + 0.763397i \(0.723530\pi\)
\(600\) 2.47560 + 4.28786i 0.101066 + 0.175051i
\(601\) 3.25920i 0.132945i 0.997788 + 0.0664727i \(0.0211745\pi\)
−0.997788 + 0.0664727i \(0.978825\pi\)
\(602\) −29.3971 2.70325i −1.19813 0.110176i
\(603\) −8.16674 −0.332576
\(604\) 9.20482 + 15.9432i 0.374539 + 0.648720i
\(605\) 1.20398 2.08535i 0.0489486 0.0847815i
\(606\) −9.02235 5.20906i −0.366508 0.211603i
\(607\) −9.20875 + 5.31668i −0.373772 + 0.215797i −0.675105 0.737722i \(-0.735902\pi\)
0.301333 + 0.953519i \(0.402568\pi\)
\(608\) −7.78053 −0.315542
\(609\) −0.493857 14.2392i −0.0200121 0.577003i
\(610\) −0.618519 −0.0250431
\(611\) −12.0669 + 6.96685i −0.488176 + 0.281848i
\(612\) 4.46212 + 2.57621i 0.180370 + 0.104137i
\(613\) −9.46520 + 16.3942i −0.382296 + 0.662156i −0.991390 0.130942i \(-0.958200\pi\)
0.609094 + 0.793098i \(0.291533\pi\)
\(614\) −14.9305 25.8603i −0.602544 1.04364i
\(615\) −1.45577 −0.0587025
\(616\) −0.351424 0.762434i −0.0141593 0.0307194i
\(617\) 36.8579i 1.48384i −0.670486 0.741922i \(-0.733914\pi\)
0.670486 0.741922i \(-0.266086\pi\)
\(618\) 2.33496 + 4.04426i 0.0939257 + 0.162684i
\(619\) 31.8324 + 18.3785i 1.27945 + 0.738693i 0.976748 0.214391i \(-0.0687767\pi\)
0.302706 + 0.953084i \(0.402110\pi\)
\(620\) 1.68938 + 0.975363i 0.0678470 + 0.0391715i
\(621\) 2.27743 1.31488i 0.0913903 0.0527642i
\(622\) −9.28283 −0.372207
\(623\) 1.01740 11.0640i 0.0407615 0.443269i
\(624\) 1.21353i 0.0485799i
\(625\) −12.1351 21.0187i −0.485405 0.840746i
\(626\) 13.5897 + 7.84599i 0.543152 + 0.313589i
\(627\) 2.13809 + 1.23442i 0.0853869 + 0.0492981i
\(628\) 7.19216 4.15240i 0.286999 0.165699i
\(629\) −19.4620 −0.776002
\(630\) −0.477319 0.337385i −0.0190168 0.0134417i
\(631\) −23.3835 −0.930882 −0.465441 0.885079i \(-0.654104\pi\)
−0.465441 + 0.885079i \(0.654104\pi\)
\(632\) −5.04832 8.74395i −0.200811 0.347816i
\(633\) −1.55630 + 2.69558i −0.0618572 + 0.107140i
\(634\) 3.85795 6.68217i 0.153219 0.265383i
\(635\) −0.295632 + 0.170683i −0.0117318 + 0.00677335i
\(636\) 7.41209i 0.293908i
\(637\) 2.83448 + 8.00783i 0.112306 + 0.317282i
\(638\) −0.661067 + 1.57572i −0.0261719 + 0.0623834i
\(639\) 0.715052 + 1.23851i 0.0282870 + 0.0489945i
\(640\) −0.191328 0.110464i −0.00756292 0.00436646i
\(641\) 32.7553 + 18.9113i 1.29376 + 0.746951i 0.979318 0.202327i \(-0.0648504\pi\)
0.314439 + 0.949278i \(0.398184\pi\)
\(642\) −3.83354 6.63989i −0.151298 0.262055i
\(643\) −37.2243 −1.46798 −0.733992 0.679158i \(-0.762345\pi\)
−0.733992 + 0.679158i \(0.762345\pi\)
\(644\) −4.01598 + 5.68165i −0.158252 + 0.223888i
\(645\) 2.46509 0.0970627
\(646\) 34.7176 20.0442i 1.36595 0.788630i
\(647\) −9.23054 + 15.9878i −0.362890 + 0.628544i −0.988435 0.151644i \(-0.951543\pi\)
0.625545 + 0.780188i \(0.284877\pi\)
\(648\) 0.866025 + 0.500000i 0.0340207 + 0.0196419i
\(649\) −0.411312 + 0.237471i −0.0161454 + 0.00932155i
\(650\) 6.00840i 0.235669i
\(651\) 23.2631 + 2.13919i 0.911753 + 0.0838415i
\(652\) 20.7811i 0.813851i
\(653\) 5.09880 2.94379i 0.199532 0.115200i −0.396905 0.917860i \(-0.629916\pi\)
0.596437 + 0.802660i \(0.296583\pi\)
\(654\) 1.47989 2.56325i 0.0578684 0.100231i
\(655\) 1.13616 + 0.655964i 0.0443936 + 0.0256306i
\(656\) −5.70658 + 3.29469i −0.222804 + 0.128636i
\(657\) 2.10502i 0.0821246i
\(658\) 12.7164 + 27.5889i 0.495735 + 1.07553i
\(659\) 13.9253i 0.542453i 0.962516 + 0.271227i \(0.0874292\pi\)
−0.962516 + 0.271227i \(0.912571\pi\)
\(660\) 0.0350513 + 0.0607107i 0.00136437 + 0.00236316i
\(661\) 16.2651 28.1720i 0.632639 1.09576i −0.354371 0.935105i \(-0.615305\pi\)
0.987010 0.160658i \(-0.0513617\pi\)
\(662\) 2.20065 3.81163i 0.0855306 0.148143i
\(663\) 3.12629 + 5.41490i 0.121415 + 0.210297i
\(664\) 4.86994i 0.188990i
\(665\) −4.13024 + 1.90372i −0.160164 + 0.0738232i
\(666\) −3.77727 −0.146366
\(667\) 14.0487 1.78481i 0.543969 0.0691083i
\(668\) 8.55811 14.8231i 0.331123 0.573522i
\(669\) −8.22590 4.74922i −0.318032 0.183616i
\(670\) −1.56253 + 0.902127i −0.0603658 + 0.0348522i
\(671\) 0.888361 0.0342948
\(672\) −2.63464 0.242272i −0.101633 0.00934583i
\(673\) 15.9346 0.614235 0.307117 0.951672i \(-0.400636\pi\)
0.307117 + 0.951672i \(0.400636\pi\)
\(674\) 10.4839 + 18.1586i 0.403824 + 0.699444i
\(675\) −4.28786 2.47560i −0.165040 0.0952857i
\(676\) −5.76368 + 9.98298i −0.221680 + 0.383961i
\(677\) −23.9884 + 13.8497i −0.921947 + 0.532287i −0.884256 0.467003i \(-0.845334\pi\)
−0.0376916 + 0.999289i \(0.512000\pi\)
\(678\) 10.1377i 0.389338i
\(679\) 11.6903 + 8.26308i 0.448632 + 0.317108i
\(680\) 1.13831 0.0436521
\(681\) 18.2160 10.5170i 0.698040 0.403014i
\(682\) −2.42640 1.40089i −0.0929118 0.0536427i
\(683\) 20.1638 34.9248i 0.771548 1.33636i −0.165167 0.986266i \(-0.552816\pi\)
0.936714 0.350094i \(-0.113850\pi\)
\(684\) 6.73813 3.89026i 0.257639 0.148748i
\(685\) 0.858007i 0.0327828i
\(686\) 17.9513 4.55512i 0.685386 0.173915i
\(687\) 25.5797 0.975926
\(688\) 9.66304 5.57896i 0.368400 0.212696i
\(689\) 4.49738 7.78969i 0.171337 0.296764i
\(690\) 0.290492 0.503147i 0.0110588 0.0191545i
\(691\) 8.77453 + 15.1979i 0.333799 + 0.578156i 0.983253 0.182244i \(-0.0583361\pi\)
−0.649455 + 0.760400i \(0.725003\pi\)
\(692\) 11.8062 0.448804
\(693\) 0.685559 + 0.484576i 0.0260422 + 0.0184075i
\(694\) 11.9765i 0.454620i
\(695\) −2.30722 3.99622i −0.0875177 0.151585i
\(696\) 3.25888 + 4.28715i 0.123528 + 0.162504i
\(697\) 16.9756 29.4026i 0.642997 1.11370i
\(698\) −13.3943 + 7.73321i −0.506982 + 0.292706i
\(699\) 7.63937i 0.288947i
\(700\) 13.0446 + 1.19953i 0.493039 + 0.0453381i
\(701\) −19.6096 −0.740645 −0.370322 0.928903i \(-0.620753\pi\)
−0.370322 + 0.928903i \(0.620753\pi\)
\(702\) 0.606763 + 1.05094i 0.0229008 + 0.0396653i
\(703\) −14.6946 + 25.4517i −0.554216 + 0.959930i
\(704\) 0.274800 + 0.158656i 0.0103569 + 0.00597956i
\(705\) −1.26834 2.19683i −0.0477685 0.0827374i
\(706\) 22.2710i 0.838181i
\(707\) −25.0326 + 11.5381i −0.941448 + 0.433935i
\(708\) 1.49677i 0.0562520i
\(709\) −8.62267 14.9349i −0.323831 0.560892i 0.657444 0.753503i \(-0.271638\pi\)
−0.981275 + 0.192611i \(0.938304\pi\)
\(710\) 0.273620 + 0.157974i 0.0102688 + 0.00592867i
\(711\) 8.74395 + 5.04832i 0.327924 + 0.189327i
\(712\) 2.09972 + 3.63682i 0.0786903 + 0.136296i
\(713\) 23.2200i 0.869596i
\(714\) 12.3802 5.70632i 0.463317 0.213554i
\(715\) 0.0850714i 0.00318149i
\(716\) 5.38113 + 9.32038i 0.201102 + 0.348319i
\(717\) −0.616694 0.356049i −0.0230309 0.0132969i
\(718\) 11.5890 20.0728i 0.432499 0.749111i
\(719\) −9.43716 16.3456i −0.351947 0.609590i 0.634644 0.772805i \(-0.281147\pi\)
−0.986590 + 0.163215i \(0.947813\pi\)
\(720\) 0.220927 0.00823347
\(721\) 12.3035 + 1.13139i 0.458207 + 0.0421351i
\(722\) 41.5366i 1.54583i
\(723\) 23.9959 13.8541i 0.892418 0.515238i
\(724\) 6.87456 11.9071i 0.255491 0.442524i
\(725\) −16.1354 21.2265i −0.599252 0.788333i
\(726\) 5.44966 + 9.43908i 0.202256 + 0.350317i
\(727\) 1.20134i 0.0445552i 0.999752 + 0.0222776i \(0.00709177\pi\)
−0.999752 + 0.0222776i \(0.992908\pi\)
\(728\) −2.62185 1.85321i −0.0971724 0.0686847i
\(729\) −1.00000 −0.0370370
\(730\) −0.232528 0.402750i −0.00860624 0.0149064i
\(731\) −28.7451 + 49.7880i −1.06318 + 1.84147i
\(732\) 1.39983 2.42457i 0.0517390 0.0896146i
\(733\) 33.7365 19.4778i 1.24609 0.719428i 0.275759 0.961227i \(-0.411071\pi\)
0.970326 + 0.241799i \(0.0777375\pi\)
\(734\) −23.1903 −0.855970
\(735\) −1.45786 + 0.516028i −0.0537738 + 0.0190340i
\(736\) 2.62975i 0.0969340i
\(737\) 2.24422 1.29570i 0.0826668 0.0477277i
\(738\) 3.29469 5.70658i 0.121279 0.210062i
\(739\) 9.02586 + 5.21108i 0.332022 + 0.191693i 0.656738 0.754119i \(-0.271936\pi\)
−0.324717 + 0.945811i \(0.605269\pi\)
\(740\) −0.722699 + 0.417250i −0.0265669 + 0.0153384i
\(741\) 9.44187 0.346856
\(742\) −16.0140 11.3192i −0.587892 0.415542i
\(743\) 27.1753i 0.996964i −0.866900 0.498482i \(-0.833891\pi\)
0.866900 0.498482i \(-0.166109\pi\)
\(744\) −7.64677 + 4.41486i −0.280344 + 0.161857i
\(745\) 0.986014 1.70783i 0.0361247 0.0625699i
\(746\) −19.7084 11.3787i −0.721577 0.416603i
\(747\) 2.43497 + 4.21749i 0.0890908 + 0.154310i
\(748\) −1.63492 −0.0597785
\(749\) −20.2000 1.85752i −0.738091 0.0678722i
\(750\) −2.19849 −0.0802774
\(751\) 28.0247 16.1801i 1.02264 0.590420i 0.107770 0.994176i \(-0.465629\pi\)
0.914867 + 0.403756i \(0.132296\pi\)
\(752\) −9.94369 5.74099i −0.362609 0.209353i
\(753\) 7.56746 13.1072i 0.275774 0.477654i
\(754\) 0.823620 + 6.48293i 0.0299945 + 0.236094i
\(755\) −4.06719 −0.148020
\(756\) 2.40280 1.10750i 0.0873889 0.0402795i
\(757\) 34.2475i 1.24475i 0.782721 + 0.622373i \(0.213831\pi\)
−0.782721 + 0.622373i \(0.786169\pi\)
\(758\) −0.931881 1.61406i −0.0338474 0.0586255i
\(759\) −0.417225 + 0.722655i −0.0151443 + 0.0262307i
\(760\) 0.859465 1.48864i 0.0311761 0.0539985i
\(761\) −16.7499 29.0118i −0.607185 1.05168i −0.991702 0.128557i \(-0.958965\pi\)
0.384517 0.923118i \(-0.374368\pi\)
\(762\) 1.54515i 0.0559750i
\(763\) −3.27798 7.11177i −0.118671 0.257463i
\(764\) 8.09825i 0.292984i
\(765\) −0.985803 + 0.569154i −0.0356418 + 0.0205778i
\(766\) 29.7489 + 17.1755i 1.07487 + 0.620577i
\(767\) −0.908184 + 1.57302i −0.0327926 + 0.0567985i
\(768\) 0.866025 0.500000i 0.0312500 0.0180422i
\(769\) 3.74841i 0.135171i 0.997713 + 0.0675856i \(0.0215296\pi\)
−0.997713 + 0.0675856i \(0.978470\pi\)
\(770\) 0.184695 + 0.0169839i 0.00665594 + 0.000612057i
\(771\) 23.9101i 0.861100i
\(772\) −20.9307 + 12.0843i −0.753312 + 0.434925i
\(773\) −11.3798 6.57011i −0.409302 0.236310i 0.281188 0.959653i \(-0.409272\pi\)
−0.690490 + 0.723342i \(0.742605\pi\)
\(774\) −5.57896 + 9.66304i −0.200532 + 0.347331i
\(775\) 37.8606 21.8588i 1.35999 0.785192i
\(776\) −5.41085 −0.194238
\(777\) −5.76838 + 8.16088i −0.206940 + 0.292770i
\(778\) −28.4181 −1.01884
\(779\) −25.6344 44.4002i −0.918449 1.59080i
\(780\) 0.232182 + 0.134050i 0.00831345 + 0.00479977i
\(781\) −0.392992 0.226894i −0.0140624 0.00811890i
\(782\) 6.77479 + 11.7343i 0.242266 + 0.419617i
\(783\) −4.96585 2.08334i −0.177465 0.0744525i
\(784\) −4.54687 + 5.32222i −0.162388 + 0.190079i
\(785\) 1.83475i 0.0654852i
\(786\) −5.14271 + 2.96914i −0.183434 + 0.105906i
\(787\) −4.44260 + 7.69481i −0.158362 + 0.274291i −0.934278 0.356545i \(-0.883955\pi\)
0.775916 + 0.630836i \(0.217288\pi\)
\(788\) 13.6312 23.6099i 0.485590 0.841066i
\(789\) 15.7284 + 27.2423i 0.559944 + 0.969852i
\(790\) 2.23062 0.0793620
\(791\) 21.9028 + 15.4817i 0.778775 + 0.550464i
\(792\) −0.317311 −0.0112752
\(793\) 2.94228 1.69872i 0.104483 0.0603235i
\(794\) 17.2219 + 9.94309i 0.611183 + 0.352867i
\(795\) 1.41814 + 0.818765i 0.0502964 + 0.0290386i
\(796\) −3.70741 6.42143i −0.131406 0.227601i
\(797\) 49.4813i 1.75272i 0.481657 + 0.876360i \(0.340035\pi\)
−0.481657 + 0.876360i \(0.659965\pi\)
\(798\) 1.88500 20.4989i 0.0667283 0.725651i
\(799\) 59.1599 2.09293
\(800\) −4.28786 + 2.47560i −0.151599 + 0.0875255i
\(801\) −3.63682 2.09972i −0.128501 0.0741899i
\(802\) −15.2773 8.82036i −0.539460 0.311458i
\(803\) 0.333973 + 0.578458i 0.0117856 + 0.0204133i
\(804\) 8.16674i 0.288019i
\(805\) −0.643442 1.39599i −0.0226784 0.0492021i
\(806\) −10.7151 −0.377423
\(807\) 7.32116 + 12.6806i 0.257717 + 0.446379i
\(808\) 5.20906 9.02235i 0.183254 0.317405i
\(809\) −12.6119 7.28146i −0.443409 0.256002i 0.261634 0.965167i \(-0.415739\pi\)
−0.705043 + 0.709165i \(0.749072\pi\)
\(810\) −0.191328 + 0.110464i −0.00672260 + 0.00388129i
\(811\) −7.36893 −0.258758 −0.129379 0.991595i \(-0.541298\pi\)
−0.129379 + 0.991595i \(0.541298\pi\)
\(812\) 14.2392 0.493857i 0.499700 0.0173310i
\(813\) −5.30485 −0.186049
\(814\) 1.03799 0.599285i 0.0363816 0.0210049i
\(815\) −3.97602 2.29556i −0.139274 0.0804098i
\(816\) −2.57621 + 4.46212i −0.0901852 + 0.156205i
\(817\) 43.4072 + 75.1836i 1.51863 + 2.63034i
\(818\) −3.38649 −0.118406
\(819\) 3.19720 + 0.294003i 0.111719 + 0.0102733i
\(820\) 1.45577i 0.0508378i
\(821\) 15.1963 + 26.3208i 0.530356 + 0.918603i 0.999373 + 0.0354139i \(0.0112749\pi\)
−0.469017 + 0.883189i \(0.655392\pi\)
\(822\) −3.36335 1.94183i −0.117310 0.0677292i
\(823\) −34.7221 20.0468i −1.21034 0.698788i −0.247504 0.968887i \(-0.579610\pi\)
−0.962833 + 0.270098i \(0.912944\pi\)
\(824\) −4.04426 + 2.33496i −0.140889 + 0.0813421i
\(825\) 1.57107 0.0546976
\(826\) 3.23381 + 2.28576i 0.112519 + 0.0795319i
\(827\) 37.9109i 1.31829i 0.752015 + 0.659146i \(0.229082\pi\)
−0.752015 + 0.659146i \(0.770918\pi\)
\(828\) 1.31488 + 2.27743i 0.0456951 + 0.0791463i
\(829\) 12.7764 + 7.37648i 0.443744 + 0.256196i 0.705184 0.709024i \(-0.250864\pi\)
−0.261440 + 0.965220i \(0.584198\pi\)
\(830\) 0.931758 + 0.537951i 0.0323418 + 0.0186725i
\(831\) 23.8814 13.7879i 0.828437 0.478298i
\(832\) 1.21353 0.0420715
\(833\) 6.57754 35.4620i 0.227898 1.22869i
\(834\) 20.8867 0.723246
\(835\) 1.89072 + 3.27482i 0.0654310 + 0.113330i
\(836\) −1.23442 + 2.13809i −0.0426934 + 0.0739472i
\(837\) 4.41486 7.64677i 0.152600 0.264311i
\(838\) −4.03459 + 2.32937i −0.139373 + 0.0804669i
\(839\) 1.10674i 0.0382089i −0.999817 0.0191044i \(-0.993918\pi\)
0.999817 0.0191044i \(-0.00608151\pi\)
\(840\) 0.337385 0.477319i 0.0116409 0.0164691i
\(841\) −20.3194 20.6911i −0.700668 0.713487i
\(842\) 6.86556 + 11.8915i 0.236603 + 0.409808i
\(843\) −13.4642 7.77357i −0.463732 0.267736i
\(844\) −2.69558 1.55630i −0.0927858 0.0535699i
\(845\) −1.27335 2.20551i −0.0438047 0.0758719i
\(846\) 11.4820 0.394759
\(847\) 28.7157 + 2.64059i 0.986684 + 0.0907319i
\(848\) 7.41209 0.254532
\(849\) −17.4305 + 10.0635i −0.598213 + 0.345378i
\(850\) 12.7553 22.0928i 0.437503 0.757777i
\(851\) −8.60248 4.96664i −0.294889 0.170254i
\(852\) −1.23851 + 0.715052i −0.0424305 + 0.0244973i
\(853\) 3.91179i 0.133937i 0.997755 + 0.0669686i \(0.0213327\pi\)
−0.997755 + 0.0669686i \(0.978667\pi\)
\(854\) −3.10063 6.72699i −0.106101 0.230193i
\(855\) 1.71893i 0.0587861i
\(856\) 6.63989 3.83354i 0.226947 0.131028i
\(857\) −6.32818 + 10.9607i −0.216167 + 0.374412i −0.953633 0.300972i \(-0.902689\pi\)
0.737466 + 0.675384i \(0.236022\pi\)
\(858\) −0.333476 0.192533i −0.0113847 0.00657296i
\(859\) −8.15026 + 4.70555i −0.278083 + 0.160551i −0.632555 0.774515i \(-0.717994\pi\)
0.354472 + 0.935067i \(0.384661\pi\)
\(860\) 2.46509i 0.0840588i
\(861\) −7.29777 15.8330i −0.248707 0.539586i
\(862\) 0.0690826i 0.00235296i
\(863\) −16.0061 27.7234i −0.544854 0.943715i −0.998616 0.0525923i \(-0.983252\pi\)
0.453762 0.891123i \(-0.350082\pi\)
\(864\) −0.500000 + 0.866025i −0.0170103 + 0.0294628i
\(865\) −1.30415 + 2.25886i −0.0443426 + 0.0768036i
\(866\) −12.7867 22.1472i −0.434510 0.752594i
\(867\) 9.54734i 0.324245i
\(868\) −2.13919 + 23.2631i −0.0726089 + 0.789601i
\(869\) −3.20378 −0.108681
\(870\) −1.18024 + 0.149943i −0.0400140 + 0.00508355i
\(871\) 4.95528 8.58279i 0.167903 0.290817i
\(872\) 2.56325 + 1.47989i 0.0868027 + 0.0501155i
\(873\) 4.68594 2.70543i 0.158595 0.0915648i
\(874\) 20.4609 0.692099
\(875\) −3.35738 + 4.74989i −0.113500 + 0.160576i
\(876\) 2.10502 0.0711220
\(877\) −2.19989 3.81032i −0.0742850 0.128665i 0.826490 0.562951i \(-0.190334\pi\)
−0.900775 + 0.434286i \(0.857001\pi\)
\(878\) 23.9314 + 13.8168i 0.807647 + 0.466295i
\(879\) −10.9276 + 18.9272i −0.368579 + 0.638397i
\(880\) −0.0607107 + 0.0350513i −0.00204656 + 0.00118158i
\(881\) 28.4837i 0.959639i −0.877367 0.479820i \(-0.840702\pi\)
0.877367 0.479820i \(-0.159298\pi\)
\(882\) 1.27659 6.88261i 0.0429852 0.231749i
\(883\) 22.2152 0.747603 0.373801 0.927509i \(-0.378054\pi\)
0.373801 + 0.927509i \(0.378054\pi\)
\(884\) −5.41490 + 3.12629i −0.182123 + 0.105149i
\(885\) −0.286375 0.165338i −0.00962638 0.00555779i
\(886\) −6.27111 + 10.8619i −0.210682 + 0.364912i
\(887\) −23.4567 + 13.5427i −0.787598 + 0.454720i −0.839116 0.543952i \(-0.816927\pi\)
0.0515181 + 0.998672i \(0.483594\pi\)
\(888\) 3.77727i 0.126757i
\(889\) −3.33834 2.35965i −0.111964 0.0791401i
\(890\) −0.927770 −0.0310989
\(891\) 0.274800 0.158656i 0.00920613 0.00531516i
\(892\) 4.74922 8.22590i 0.159016 0.275423i
\(893\) 44.6680 77.3672i 1.49476 2.58899i
\(894\) 4.46307 + 7.73027i 0.149267 + 0.258539i
\(895\) −2.37767 −0.0794768
\(896\) 0.242272 2.63464i 0.00809373 0.0880170i
\(897\) 3.19128i 0.106554i
\(898\) 15.3809 + 26.6405i 0.513268 + 0.889005i
\(899\) 37.8544 28.7750i 1.26251 0.959702i
\(900\) 2.47560 4.28786i 0.0825199 0.142929i
\(901\) −33.0736 + 19.0951i −1.10184 + 0.636149i
\(902\) 2.09089i 0.0696189i
\(903\) 12.3574 + 26.8102i 0.411230 + 0.892188i
\(904\) −10.1377 −0.337176
\(905\) 1.51878 + 2.63060i 0.0504859 + 0.0874441i
\(906\) 9.20482 15.9432i 0.305810 0.529678i
\(907\) 0.492048 + 0.284084i 0.0163382 + 0.00943286i 0.508147 0.861270i \(-0.330331\pi\)
−0.491809 + 0.870703i \(0.663664\pi\)
\(908\) 10.5170 + 18.2160i 0.349020 + 0.604521i
\(909\) 10.4181i 0.345547i
\(910\) 0.644192 0.296923i 0.0213548 0.00984290i
\(911\) 50.6095i 1.67677i −0.545080 0.838384i \(-0.683501\pi\)
0.545080 0.838384i \(-0.316499\pi\)
\(912\) 3.89026 + 6.73813i 0.128819 + 0.223122i
\(913\) −1.33826 0.772643i −0.0442898 0.0255707i
\(914\) −9.26942 5.35170i −0.306605 0.177019i
\(915\) 0.309259 + 0.535653i 0.0102238 + 0.0177081i
\(916\) 25.5797i 0.845176i
\(917\) −1.43868 + 15.6452i −0.0475093 + 0.516651i
\(918\) 5.15241i 0.170055i
\(919\) 10.5652 + 18.2994i 0.348513 + 0.603642i 0.985985 0.166831i \(-0.0533534\pi\)
−0.637473 + 0.770473i \(0.720020\pi\)
\(920\) 0.503147 + 0.290492i 0.0165883 + 0.00957724i
\(921\) −14.9305 + 25.8603i −0.491975 + 0.852126i
\(922\) −12.3718 21.4286i −0.407445 0.705715i
\(923\) −1.73547 −0.0571236
\(924\) −0.484576 + 0.685559i −0.0159414 + 0.0225532i
\(925\) 18.7020i 0.614917i
\(926\) 10.9611 6.32837i 0.360203 0.207963i
\(927\) 2.33496 4.04426i 0.0766900 0.132831i
\(928\) −4.28715 + 3.25888i −0.140733 + 0.106978i
\(929\) −11.1044 19.2334i −0.364324 0.631028i 0.624343 0.781150i \(-0.285367\pi\)
−0.988667 + 0.150122i \(0.952033\pi\)
\(930\) 1.95073i 0.0639668i
\(931\) −41.4096 35.3770i −1.35715 1.15944i
\(932\) −7.63937 −0.250236
\(933\) 4.64141 + 8.03916i 0.151953 + 0.263190i
\(934\) 8.29506 14.3675i 0.271423 0.470118i
\(935\) 0.180599 0.312806i 0.00590621 0.0102299i
\(936\) −1.05094 + 0.606763i −0.0343512 + 0.0198327i
\(937\) −24.6024 −0.803727 −0.401863 0.915700i \(-0.631637\pi\)
−0.401863 + 0.915700i \(0.631637\pi\)
\(938\) −17.6445 12.4717i −0.576112 0.407215i
\(939\) 15.6920i 0.512088i
\(940\) 2.19683 1.26834i 0.0716527 0.0413687i
\(941\) −25.0471 + 43.3828i −0.816512 + 1.41424i 0.0917257 + 0.995784i \(0.470762\pi\)
−0.908237 + 0.418455i \(0.862572\pi\)
\(942\) −7.19216 4.15240i −0.234333 0.135292i
\(943\) 15.0069 8.66423i 0.488692 0.282146i
\(944\) −1.49677 −0.0487157
\(945\) −0.0535244 + 0.582062i −0.00174115 + 0.0189345i
\(946\) 3.54053i 0.115113i
\(947\) −12.0583 + 6.96186i −0.391842 + 0.226230i −0.682958 0.730458i \(-0.739307\pi\)
0.291116 + 0.956688i \(0.405973\pi\)
\(948\) −5.04832 + 8.74395i −0.163962 + 0.283990i
\(949\) 2.21226 + 1.27725i 0.0718129 + 0.0414612i
\(950\) −19.2614 33.3618i −0.624924 1.08240i
\(951\) −7.71591 −0.250205
\(952\) 5.70632 + 12.3802i 0.184943 + 0.401245i
\(953\) 24.4214 0.791085 0.395543 0.918448i \(-0.370557\pi\)
0.395543 + 0.918448i \(0.370557\pi\)
\(954\) −6.41905 + 3.70604i −0.207825 + 0.119988i
\(955\) 1.54943 + 0.894562i 0.0501383 + 0.0289473i
\(956\) 0.356049 0.616694i 0.0115154 0.0199453i
\(957\) 1.69515 0.215359i 0.0547963 0.00696157i
\(958\) 10.2010 0.329580
\(959\) −9.33166 + 4.30118i −0.301335 + 0.138892i
\(960\) 0.220927i 0.00713039i
\(961\) 23.4820 + 40.6721i 0.757485 + 1.31200i
\(962\) 2.29191 3.96970i 0.0738940 0.127988i
\(963\) −3.83354 + 6.63989i −0.123534 + 0.213967i
\(964\) 13.8541 + 23.9959i 0.446209 + 0.772857i
\(965\) 5.33952i 0.171885i
\(966\) 6.92845 + 0.637115i 0.222919 + 0.0204988i
\(967\) 23.9578i 0.770430i −0.922827 0.385215i \(-0.874127\pi\)
0.922827 0.385215i \(-0.125873\pi\)
\(968\) −9.43908 + 5.44966i −0.303384 + 0.175159i
\(969\) −34.7176 20.0442i −1.11529 0.643914i
\(970\) 0.597702 1.03525i 0.0191911 0.0332399i
\(971\) −25.1230 + 14.5048i −0.806235 + 0.465480i −0.845647 0.533743i \(-0.820785\pi\)
0.0394117 + 0.999223i \(0.487452\pi\)
\(972\) 1.00000i 0.0320750i
\(973\) 31.8967 45.1262i 1.02256 1.44668i
\(974\) 16.4306i 0.526470i
\(975\) 5.20343 3.00420i 0.166643 0.0962114i
\(976\) 2.42457 + 1.39983i 0.0776086 + 0.0448073i
\(977\) −18.0239 + 31.2183i −0.576636 + 0.998762i 0.419226 + 0.907882i \(0.362301\pi\)
−0.995862 + 0.0908805i \(0.971032\pi\)
\(978\) 17.9970 10.3906i 0.575480 0.332253i
\(979\) 1.33253 0.0425878
\(980\) −0.516028 1.45786i −0.0164839 0.0465695i
\(981\) −2.95979 −0.0944988
\(982\) −12.7051 22.0058i −0.405435 0.702234i
\(983\) 14.2590 + 8.23244i 0.454792 + 0.262574i 0.709852 0.704351i \(-0.248762\pi\)
−0.255060 + 0.966925i \(0.582095\pi\)
\(984\) 5.70658 + 3.29469i 0.181919 + 0.105031i
\(985\) 3.01149 + 5.21606i 0.0959541 + 0.166197i
\(986\) 10.7342 25.5861i 0.341848 0.814828i
\(987\) 17.5345 24.8071i 0.558129 0.789620i
\(988\) 9.44187i 0.300386i
\(989\) −25.4114 + 14.6713i −0.808037 + 0.466520i
\(990\) 0.0350513 0.0607107i 0.00111400 0.00192951i
\(991\) −11.0076 + 19.0657i −0.349667 + 0.605641i −0.986190 0.165616i \(-0.947039\pi\)
0.636523 + 0.771258i \(0.280372\pi\)
\(992\) −4.41486 7.64677i −0.140172 0.242785i
\(993\) −4.40129 −0.139671
\(994\) −0.346474 + 3.76780i −0.0109895 + 0.119507i
\(995\) 1.63814 0.0519324
\(996\) −4.21749 + 2.43497i −0.133636 + 0.0771549i
\(997\) 38.4928 + 22.2238i 1.21908 + 0.703836i 0.964721 0.263274i \(-0.0848023\pi\)
0.254359 + 0.967110i \(0.418136\pi\)
\(998\) −8.19021 4.72862i −0.259257 0.149682i
\(999\) 1.88863 + 3.27121i 0.0597537 + 0.103496i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1218.2.p.b.1159.18 yes 44
7.2 even 3 inner 1218.2.p.b.289.7 44
29.28 even 2 inner 1218.2.p.b.1159.7 yes 44
203.86 even 6 inner 1218.2.p.b.289.18 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1218.2.p.b.289.7 44 7.2 even 3 inner
1218.2.p.b.289.18 yes 44 203.86 even 6 inner
1218.2.p.b.1159.7 yes 44 29.28 even 2 inner
1218.2.p.b.1159.18 yes 44 1.1 even 1 trivial